3.2. Functions

At last! We consider here a special case of relations that we know them as "functions". Many of you know already that a function is a relation with some special properties.

Let's make this official:
3.2.1 Definition. A function R is a single-valued relation. That is, whenever we have both $x R y$ and $x R z$, we will also have $y=z$.

It is traditional to use, generically, lower case letters from among f, g, h, k to denote functions but this is by no means a requirement.

2 Another way of putting it, using the notation from 3.1.51, is: A relation R is a function iff $(a) R$ is either empty or contains exactly one element.
3.2.2 Example. The empty set is a relation of course, the empty set of pairs. It is also a function since

$$
(x, y) \in \emptyset \wedge(x, z) \in \emptyset \rightarrow y=z
$$

vacuously, by virtue of the left hand side of \rightarrow being false.
We now turn to notation and concepts specific to functions.
3.2.3 Definition. (Function-specific notations) Let f be a function. First off, the concepts of domain, range, and -in case of a function $f: A \rightarrow B$ total and onto are inherited from that of relations without change. Even the notations " $a R b$ " and " $(a, b) \in R$ " transfer over to functions. And now we have an annoying difference in notation:

It is $f(a)$ that normally denotes the set $\{y: a f y\}$ in the literature, NOT (a) f (compare with 3.1.51). "Normally" allows some to differ: Notably, Kur63 writes " $a f$ " for functions and relations, omitting even the brackets around a.

The reason for the preferred notation " $f(a)$ " for functions will become more obvious once we consider composition of functions.
(2) Can I use " $(a) f$ " for a relation f regardless of whether it is also a function?

II YES! But once I proved (or I was told) that it is a function I ought to prefer to write $f(a)$.

If b is such that $a f b$ or $(a, b) \in f$ and f is a function, then seeing that b is unique we have $f(a)=\{b\}$.
However we will write

$$
f(a)=b
$$

That is,

$$
\underbrace{f(a)=b}_{\text {functional notation }} \quad \text { iff } \underbrace{(a) f=\{b\}}_{\text {relational notation }}
$$

The notation " $(a) R \downarrow$ " meaning $a \in \operatorname{dom}(R)$ is inherited by functions but for the flipping of the " (a) " part. Thus

Inherited from 3.1.51, $f(a) \downarrow$ iff $a \in \operatorname{dom}(f)$, pronounced " f is defined at a ".
and, similarly to the notation $(a) R \uparrow$, we have
Inherited from 3.1.51 $f(a) \uparrow$ iff $a \notin \operatorname{dom}(f)$, pronounced " f is $U N$ defined at a ".
The set of all outputs of a function, when the inputs come from a particular set X, is called the image of X under f and is denoted by $f[X]$. Thus,

$$
\begin{equation*}
f[X] \stackrel{D e f}{=}\{f(x): x \in X\} \tag{1}
\end{equation*}
$$

Note that careless notation (e.g., in our text) like $f(X)$ will not do. This means the input $I S X$. If I want the inputs to be from inside X I must change the round brackets notation; I did.

Pause. So far we have been giving definitions regarding functions of one variable. Or have we?

Not really: We have already said that the multiple-input case is subsumed by our notation. If $f: A \rightarrow B$ and A is a set of n-tuples, then f is a function of " n-variables", essentially. The binary relation that is the alias of f contains pairs like $\left(\left(\vec{x}_{n}\right), x_{n+1}\right)$. However, we usually abuse the notation $f\left(\left(\vec{x}_{n}\right)\right)$ and write instead $f\left(\vec{x}_{n}\right)$, omitting the brackets of the n-tuple $\left(\vec{x}_{n}\right)$.

The inverse image of a set Y under a function is useful as well, that is, the set of all inputs that generate f-outputs exclusively in Y. It is denoted by $f^{-1}[Y]$ and is defined as

$$
\begin{equation*}
f^{-1}[Y] \stackrel{\text { Def }}{=}\{x: f(x) \in Y\} \tag{2}
\end{equation*}
$$

3.2.4 Remark. Regarding, say, the definition of $f[X]$:

What if $f(a) \uparrow$? How do you "collect" an undefined value into a set?
Well, you don't. Both (1) and (2) have a rendering that is independent of the notation " $f(a)$ ".

Never forget that a function is no mystery; it is a relation and we have access to relational notation. Thus,

$$
\begin{gather*}
f[X]=\{y:(\exists x \in X) x f y\} \\
f^{-1}[Y]=\{x:(\exists y \in Y) x f y\}
\end{gather*}
$$

Fragments of "safe" set theory; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.
3.2.5 Example. Thus, $f[\{a\}]=\{f(x): x \in\{a\}\}=\{f(x): x=a\}=\{f(a)\}$.

Let now $g=\{\langle 1,2\rangle,\langle\{1,2\}, 2\rangle,\langle 2,7\rangle\}$, clearly a function. Thus, $g(\{1,2\})=$ 2 , but $g[\{1,2\}]=\{2,7\}$. Also, $g(5) \uparrow$ and thus $g[\{5\}]=\emptyset$.

On the other hand, $g^{-1}[\{2,7\}]=\{1,\{1,2\}, 2\}$ and $g^{-1}[\{2\}]=\{1,\{1,2\}\}$, while $g^{-1}[\{8\}]=\emptyset$ since no input causes output 8 .

When $f(a) \downarrow$, then $f(a)=f(a)$ as is naturally expected. What about when $f(a) \uparrow$? This begs a more general question that we settle as follows:
3.2.6 Remark. This is the first (and probably last) time that we will view an $(m+n+1)$-ary relation $R\left(z_{1}, \ldots, z_{m}, x, y_{1}, \ldots, y_{n}\right)$ as a function with input values entered into all the variables $z_{1}, \ldots, z_{m}, x, y_{1}, \ldots, y_{n}$ and output values belonging to the set $\{\mathbf{t}, \mathbf{f}\}$.

Such a relation, as we explained when we introduced relations, is always total, no matter what the input. That is, any input $a_{1}, \ldots, a_{m}, b, c_{1}, \ldots, c_{n}$ either appears in the table of the relation, or it does not. In other words, $R\left(a_{1}, \ldots, a_{m}, b, c_{1}, \ldots, c_{n}\right)$ is precisely one of true or false; there is no "maybe" or "I do not know".

Given such an $(m+n+1)$-ary relation, a function f, and an input u for f, when is $R\left(z_{1}, \ldots, z_{m}, f(u), y_{1}, \ldots, y_{n}\right)$ true, for any given $z_{1}, \ldots, z_{m}, u, y_{1}, \ldots, y_{n}$?

Well, what we are saying in the notation (in blue) above is that if $f(u)=w$, for some w, then $R\left(z_{1}, \ldots, z_{m}, w, y_{1}, \ldots, y_{n}\right)$ is true.

Thus,

$$
\begin{align*}
& R\left(z_{1}, \ldots, z_{m}, f(u), y_{1}, \ldots, y_{n}\right) \text { iff } \\
& \quad(\exists w)\left(w=f(u) \wedge R\left(z_{1}, \ldots, z_{m}, w, y_{1}, \ldots, y_{n}\right)\right) \tag{3}
\end{align*}
$$

Note that the part "for some $w, w=f(u)$ " in (3) entails that $f(u) \downarrow$, so that if no such w exists [the case where $f(u) \uparrow$], then the rhs of (3) is false; not undefined!

This convention is prevalent in the modern literature (cf. [Hin78, p.9]). Contrast with the convention in Kle43, where, for example, an expression like $f(a)=g(b)$ [and even $f(a)=b]$ is allowed to be undefined!
3.2.7 Example. Thus, applying the above twice, where our " R " is $x=y$, we get that $f(a)=g(b)$ means $(\exists u)(\exists w)(u=f(a) \wedge w=g(b) \wedge u=w)$ which simplifies to $(\exists u)(u=f(a) \wedge u=g(b))$. In particular, $f(a)=g(b)$ entails that $f(a) \downarrow$ and $g(b) \downarrow$ as we noted above.

Furthermore, using $x \neq y$ as R we get that $f(a) \neq g(b)$ means $(\exists u)(\exists w)(u=$ $f(a) \wedge w=g(b) \wedge u \neq w)$. Again, if $f(a) \neq g(b)$ is true, its meaning implies $f(a) \downarrow$ and $g(b) \downarrow$.

Fragments of "safe" set theory; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.
3.2.8 Example. Let $g=\{\langle 1,2\rangle,\langle\{1,2\}, 2\rangle,\langle 2,7\rangle\}$. Then, $g(1)=g(\{1,2\})$ and $g(1) \neq g(2)$.
3.2.9 Definition. A function f is $1-1$ if for all x and $y, f(x)=f(y)$ implies $x=y$.
2 Note that $f(x)=f(y)$ implies that $f(x) \downarrow$ and $f(y) \downarrow$ 3.2.6.
3.2.10 Example. $\{\langle 1,1\rangle\}$ and $\{\langle 1,1\rangle,\langle 2,7\rangle\}$ are $1-1$. $\{\langle 1,0\rangle,\langle 2,0\rangle\}$ is not. \emptyset is 1-1 vacuously.
3.2.11 Exercise. Prove that if f is a $1-1$ function, then the relation converse f^{-1} is a function (that is, single-valued).
3.2.12 Definition. (1-1 Correspondence) A function $f: A \rightarrow B$ is called a 1-1 correspondence iff it is all three: 1-1, total and onto.

Often we say that A and B are in 1-1 correspondence writing $A \sim B$, often omitting mention of the function that is the 1-1 correspondence.

The terminology is derived from the fact that every element of A is paired with precisely one element of B and vice versa.
3.2.13 Exercise. Show that \sim is a symmetric and transitive relation on sets.
3.2.14 Remark. Composition of functions is inherited from the composition of relations. Thus, $f \circ g$ for two functions still means

$$
\begin{equation*}
x f \circ g y \text { iff, for some } z, x f z g y \tag{1}
\end{equation*}
$$

In particular,
$f \circ g$ is also a function. Indeed, if we have

$$
x f \circ g y \text { and } x f \circ g y^{\prime}
$$

then

$$
\begin{equation*}
\text { for some } z, x f z g_{y} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for some } w, x f w{ }^{\prime} y^{\prime} \tag{2}
\end{equation*}
$$

As f is a function, (1) and (2) give $z=w$. In turn, this (g is a function too!) gives $y=y^{\prime}$.

The notation (as in 3.1.51) " (a) f" for relations is awkward when applied to functions -awkward but correct- where we prefer to use " $f(a)$ " instead. The awkwardness manifests itself when we compose functions: In something like

$$
x \rightarrow f \rightarrow z \rightarrow g \rightarrow y
$$

Fragments of "safe" set theory; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.
that represents (1) above, note that f acts first. Its result $z=f(x)$ is then inputed to g-that is, we do $g(z)=g(f(x))$ to obtain output y. Thus the first acting function f is "called" first with argument x and then g is called with argument $f(x)$. "Everyday math" notation places the two calls as in the red type above: The first call to the right of the 2 nd call-order reversal vis a vis relational notation!

So, set theory heeds these observations and defines:
3.2.15 Definition. (Composition of functions; Notation) We just learnt (3.2.14) that the composition of two functions produces a function. The present definition is about notation only.

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. The relation $f \circ g: A \rightarrow C$, their relational composition is given in 3.1.15.

For composition of functions, we have the alternative -so-called functional notation for composition: " $g f$ " for " $f \circ g$ "; note the order reversal and the absence of "०", the composition symbol. In particular we write $(g f)(a)$ for $(a)(f \circ g)$-cf. 3.2.3. Thus

$$
a(g f) y \stackrel{D e f}{\Longleftrightarrow} a f \circ g y \Longleftrightarrow(\exists z)(a f z \wedge z g y)
$$

also

$$
a(g f) y \stackrel{D e f}{\Longleftrightarrow} a f \circ g y \stackrel{D e f \sqrt{3.1 .51}}{\Longleftrightarrow}(a)(f \circ g)=\{y\}
$$

In particular, we have that $(a)(f \circ g)$ of 3.1 .51 is the same as $(g f)(a)=g(f(a))$ as seen through the "computation"

$$
\begin{align*}
(a)(f \circ g)=\sqrt{3.2 .14}\{y\} & \Longleftrightarrow \text { for some } z, \text { a } f z \wedge z g y \\
& \Longleftrightarrow \sqrt{3.2 .3} \text { for some } z, f(a)=z \wedge g(z)=y \\
& \Longleftrightarrow \text { subst. } z \text { by } f(a) g(f(x))=y \tag{1}
\end{align*}
$$

Conclusion:

$$
(g f)(a) \stackrel{\text { blue type above }}{=}(a)(f \circ g) \stackrel{(1)}{=} g(f(x))
$$

Thus the "reversal" $g f=f \circ g$ now makes sense! So does $(g f)(a)=g(f(a))$.
3.2.16 Theorem. Functional composition is associative, that is, $(g f) h=g(f h)$.

Proof. Exercise!
Hint. Note that by, 3.2.15, $(g f) h=h \circ(f \circ g)$. Take it from here.
3.2.17 Example. The identity relation on a set A is a function since $(a) \mathbf{1}_{A}$ is the singleton $\{x\}$.

The following interesting result connects the notions of ontoness and 1-1ness with the "algebra" of composition.
3.2.18 Theorem. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be functions. If

$$
\begin{equation*}
(g f)=\mathbf{1}_{A} \tag{1}
\end{equation*}
$$

then g is onto while f is total and 1-1.
We say that g is a left inverse of f and f is a right inverse of g. "A" because these are not in general unique! Stay tuned on this!

Proof. About g : Our goal, ontoness, means that, for each $x \in A$, I can "solve the equation $g(y)=x$ for y ". Indeed I can: By definition of $\mathbf{1}_{A}$,

$$
g(f(x)) \stackrel{3.2 .15}{=}(g f)(x) \stackrel{(1)}{=} \mathbf{1}_{A}(x)=x
$$

So to solve, take $y=f(x)$.
About f : As seen above, $x=g(f(x))$, for each $x \in A$. Since this is the same as " $x f \circ g, x$ is true", there must be a z such that $x f z$ and $z g x$. The first of these says $f(x)=z$ and therefore $f(x) \downarrow$. This settles totalness.

For the 1-1ness, let $f(a)=f(b)$. Applying g to both sides we get $g(f(a))=$ $g(f(b))$. But this says $a=b$, by $(g f)=\mathbf{1}_{A}$, and we are done.
3.2.19 Example. The above is as much as can be proved. For example, say $A=\{1,2\}$ and $B=\{3,4,5,6\}$. Let $f: A \rightarrow B$ be $\{\langle 1,4\rangle,\langle 2,3\rangle\}$ and $g: B \rightarrow A$ be $\{\langle 4,1\rangle,\langle 3,2\rangle,\langle 6,1\rangle\}$, or in friendlier notation
$f(1)=4$
$f(2)=3$
and
$g(3)=2$
$g(4)=1$
$g(5) \uparrow$
$g(6)=1$
Clearly, $(g f)=\mathbf{1}_{A}$ holds, but note:
(1) f is not onto.
(2) g is neither 1-1 nor total.

2
(2 3.2.20 Example. With $A=\{1,2\}, B=\{3,4,5,6\}$ and $f: A \rightarrow B$ and
II $g: B \rightarrow A$ as in the previous example, consider also the functions \tilde{f} and \tilde{g} given by
$\tilde{f}(1)=6$
$\tilde{f}(2)=3$
and
$\tilde{g}(3)=2$
$\tilde{g}(4)=1$
$\tilde{g}(5) \uparrow$
$\tilde{g}(6)=2$

Fragments of "safe" set theory; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.

Clearly, $(\tilde{g} f)=\mathbf{1}_{A}$ and $(g \tilde{f})=\mathbf{1}_{A}$ hold, but note:
(1) $f \neq \tilde{f}$.
(2) $g \neq \tilde{g}$.

Thus, neither left nor right inverses need to be unique. The article "a" in the definition of said inverses was well-chosen.

The following two partial converses of 3.2 .18 are useful.
3.2.21 Theorem. Let $f: A \rightarrow B$ be total and 1-1. Then there is an onto $g: B \rightarrow A$ such that $(g f)=\mathbf{1}_{A}$.

Proof. Consider the converse relation 3.1 .50 of f that is, the relation $f^{-1}-$ and call it g :

$$
\begin{equation*}
x g y \text { iff } y f x \tag{1}
\end{equation*}
$$

By Exercise 3.2.11, $g: B \rightarrow A$ is a (possibly nontotal) function so we can write (1) as $g(x)=y$ iff $f(y)=x$, from which, substituting $f(y)$ for x in $g(x)$ we get $g(f(x))=x$, for all $x \in A$, that is $g f=\mathbf{1}_{A}$, hence g is onto by 3.2.18. We got both statements that we needed to prove.
3.2.22 Remark. By (1) above, $\operatorname{dom}(g)=\{x:(\exists y) g(x)=y\}=\{x:(\exists y) f(y)=$ $x\}=\operatorname{ran}(f)$.
3.2.23 Theorem. Let $f: A \rightarrow B$ be onto. Then there is a total and 1-1 $g: B \rightarrow A$ such that $(f g)=\mathbf{1}_{B}$.

Proof. By assumption, $\emptyset \neq f^{-1}[\{b\}] \subseteq A$, for all $b \in B$. To define $g(b)$ choose one $c \in f^{-1}[\{b\}]$ and set $g(b)=c$. Since $f(c)=b$, we get $f(g(b))=b$ for all $b \in B$, and hence g is 1-1 and total by 3.2.18.

