
3.2. Functions 57

3.2. Functions

At last! We consider here a special case of relations that we know them as
“functions”. Many of you know already that a function is a relation with some
special properties.

Let’s make this official:

3.2.1 Definition. A function R is a single-valued relation. That is, whenever
we have both xRy and xRz, we will also have y = z.

It is traditional to use, generically, lower case letters from among f, g, h, k
to denote functions but this is by no means a requirement. �

� Another way of putting it, using the notation from 3.1.51, is: A relation R is a
function iff (a)R is either empty or contains exactly one element. �

3.2.2 Example. The empty set is a relation of course, the empty set of pairs.
It is also a function since

(x, y) ∈ ∅ ∧ (x, z) ∈ ∅ → y = z

vacuously, by virtue of the left hand side of → being false. �

We now turn to notation and concepts specific to functions.

3.2.3 Definition. (Function-specific notations) Let f be a function. First
off, the concepts of domain, range, and —in case of a function f : A → B—
total and onto are inherited from that of relations without change. Even the
notations “aRb” and “(a, b) ∈ R” transfer over to functions. And now we have
an annoying difference in notation:

It is f(a) that normally denotes the set {y : afy} in the literature, NOT
(a)f (compare with 3.1.51). “Normally” allows some to differ: Notably, [Kur63]
writes “af” for functions and relations, omitting even the brackets around a.

The reason for the preferred notation “f(a)” for functions will become more
obvious once we consider composition of functions.

� Can I use “(a)f” for a relation f regardless of whether it is also a function?
YES! But once I proved (or I was told) that it is a function I ought to prefer to
write f(a). �

If b is such that afb or (a, b) ∈ f and f is a function, then seeing that b is
unique we have f(a) = {b}.

� However we will write
f(a) = b

That is,
f(a) = b︸ ︷︷ ︸

functional notation

iff (a)f = {b}︸ ︷︷ ︸
relational notation

�

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



58 3. Relations and functions

The notation “(a)R ↓” meaning a ∈ dom(R) is inherited by functions but
for the flipping of the “(a)” part. Thus

Inherited from 3.1.51, f(a) ↓ iff a ∈ dom(f), pronounced “f is defined at a”.

and, similarly to the notation (a)R ↑, we have

Inherited from 3.1.51, f(a) ↑ iff a /∈ dom(f), pronounced “f is UN defined at a”.

The set of all outputs of a function, when the inputs come from a particular
set X, is called the image of X under f and is denoted by f [X]. Thus,

f [X]
Def
= {f(x) : x ∈ X} (1)

� Note that careless notation (e.g., in our text) like f(X) will not do. This means
the input IS X. If I want the inputs to be from inside X I must change the
round brackets notation; I did. �

Pause. So far we have been giving definitions regarding functions of one
variable. Or have we?J

Not really: We have already said that the multiple-input case is subsumed
by our notation. If f : A → B and A is a set of n-tuples, then f is a function
of “n-variables”, essentially. The binary relation that is the alias of f contains

pairs like
(
(~xn), xn+1

)
. However, we usually abuse the notation f

(
(~xn)

)
and

write instead f(~xn), omitting the brackets of the n-tuple (~xn).

The inverse image of a set Y under a function is useful as well, that is,
the set of all inputs that generate f -outputs exclusively in Y . It is denoted by
f−1[Y ] and is defined as

f−1[Y ]
Def
= {x : f(x) ∈ Y } (2)

�

3.2.4� Remark. Regarding, say, the definition of f [X]:

What if f(a) ↑? How do you “collect” an undefined value into a set?

Well, you don’t. Both (1) and (2) have a rendering that is independent of the
notation “f(a)”.

Never forget that a function is no mystery; it is a relation and we have access
to relational notation. Thus,

f [X] = {y : (∃x ∈ X)xfy} (1′)

f−1[Y ] = {x : (∃y ∈ Y )xfy} (2′)

� �

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



3.2. Functions 59

3.2.5 Example. Thus, f [{a}] = {f(x) : x ∈ {a}} = {f(x) : x = a} = {f(a)}.

Let now g = {〈1, 2〉, 〈{1, 2}, 2〉, 〈2, 7〉}, clearly a function. Thus, g({1, 2}) =
2, but g[{1, 2}] = {2, 7}. Also, g(5) ↑ and thus g[{5}] = ∅.

On the other hand, g−1[{2, 7}] = {1, {1, 2}, 2} and g−1[{2}] = {1, {1, 2}},
while g−1[{8}] = ∅ since no input causes output 8. �

When f(a) ↓, then f(a) = f(a) as is naturally expected. What about when
f(a) ↑? This begs a more general question that we settle as follows:

3.2.6� Remark. This is the first (and probably last) time that we will view an
(m + n + 1)-ary relation R(z1, . . . , zm, x, y1, . . . , yn) as a function with input
values entered into all the variables z1, . . . , zm, x, y1, . . . , yn and output values
belonging to the set {t, f}.

Such a relation, as we explained when we introduced relations, is always
total, no matter what the input. That is, any input a1, . . . , am, b, c1, . . . , cn
either appears in the table of the relation, or it does not. In other words,
R(a1, . . . , am, b, c1, . . . , cn) is precisely one of true or false; there is no “maybe”
or “I do not know”.

Given such an (m+ n+ 1)-ary relation, a function f , and an input u for f ,

when is R(z1, . . . , zm, f(u), y1, . . . , yn) true, for any given z1, . . . , zm, u, y1, . . . , yn?

Well, what we are saying in the notation (in blue) above is that if f(u) = w, for
some w, then R(z1, . . . , zm, w, y1, . . . , yn) is true.

Thus,

R(z1, . . . , zm, f(u), y1,. . . , yn) iff

(∃w)
(
w = f(u) ∧R(z1, . . . , zm, w, y1, . . . , yn)

)
(3)

Note that the part “for some w, w = f(u)” in (3) entails that f(u) ↓, so
that if no such w exists [the case where f(u) ↑], then the rhs of (3) is false; not
undefined!

This convention is prevalent in the modern literature (cf. [Hin78, p.9]). Con-
trast with the convention in [Kle43], where, for example, an expression like
f(a) = g(b) [and even f(a) = b] is allowed to be undefined! � �

3.2.7 Example. Thus, applying the above twice, where our “R” is x = y, we
get that f(a) = g(b) means (∃u)(∃w)(u = f(a) ∧ w = g(b) ∧ u = w) which
simplifies to (∃u)(u = f(a) ∧ u = g(b)). In particular, f(a) = g(b) entails that
f(a) ↓ and g(b) ↓ as we noted above.

Furthermore, using x 6= y as R we get that f(a) 6= g(b) means (∃u)(∃w)(u =
f(a) ∧ w = g(b) ∧ u 6= w). Again, if f(a) 6= g(b) is true, its meaning implies
f(a) ↓ and g(b) ↓. �

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



60 3. Relations and functions

3.2.8 Example. Let g = {〈1, 2〉, 〈{1, 2}, 2〉, 〈2, 7〉}. Then, g(1) = g({1, 2}) and
g(1) 6= g(2). �

3.2.9 Definition. A function f is 1-1 if for all x and y, f(x) = f(y) implies
x = y. �

� Note that f(x) = f(y) implies that f(x) ↓ and f(y) ↓ (3.2.6). �

3.2.10 Example. {〈1, 1〉} and {〈1, 1〉, 〈2, 7〉} are 1-1. {〈1, 0〉, 〈2, 0〉} is not. ∅
is 1-1 vacuously. �

3.2.11 Exercise. Prove that if f is a 1-1 function, then the relation converse
f−1 is a function (that is, single-valued). �

3.2.12 Definition. (1-1 Correspondence) A function f : A→ B is called a
1-1 correspondence iff it is all three: 1-1, total and onto.

Often we say that A and B are in 1-1 correspondence writing A ∼ B, often
omitting mention of the function that is the 1-1 correspondence. �

The terminology is derived from the fact that every element of A is paired
with precisely one element of B and vice versa.

3.2.13 Exercise. Show that ∼ is a symmetric and transitive relation on sets.

�

3.2.14� Remark. Composition of functions is inherited from the composition
of relations. Thus, f ◦ g for two functions still means

x f ◦ g y iff, for some z, x f z g y (1)

In particular,
f ◦ g is also a function. Indeed, if we have

x f ◦ g y and x f ◦ g y′

then
for some z, x f z g y (1)

and
for some w, x f w g y′ (2)

As f is a function, (1) and (2) give z = w. In turn, this (g is a function too!)
gives y = y′. � �

The notation (as in 3.1.51) “(a)f” for relations is awkward when applied to
functions —awkward but correct— where we prefer to use “f(a)” instead. The
awkwardness manifests itself when we compose functions: In something like

x→ f → z → g → y

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



3.2. Functions 61

that represents (1) above, note that f acts first. Its result z = f(x) is then

inputed to g —that is, we do g(z) = g
(
f(x)

)
to obtain output y. Thus the first

acting function f is “called” first with argument x and then g is called with
argument f(x). “Everyday math” notation places the two calls as in the red
type above: The first call to the right of the 2nd call —order reversal vis a vis
relational notation!

So, set theory heeds these observations and defines:

3.2.15 Definition. (Composition of functions; Notation) We just learnt
(3.2.14) that the composition of two functions produces a function. The present
definition is about notation only.

Let f : A→ B and g : B → C be two functions. The relation f ◦ g : A→ C,
their relational composition is given in 3.1.15.

For composition of functions, we have the alternative —so-called functional
notation for composition: “gf” for “f ◦ g”; note the order reversal and the
absence of “◦”, the composition symbol. In particular we write (gf)(a) for
(a)(f ◦ g) —cf. 3.2.3. Thus

a(gf)y
Def⇐⇒ a f ◦ g y ⇐⇒ (∃z)(afz ∧ z g y)

also

a(gf)y
Def⇐⇒ a f ◦ g y Def 3.1.51⇐⇒ (a)(f ◦ g) = {y}

In particular, we have that (a)(f ◦g) of 3.1.51 is the same as (gf)(a) = g
(
f(a)

)
as seen through the “computation”

(a)(f ◦ g) =3.2.14{y}⇐⇒ for some z, a f z ∧ z g y
⇐⇒3.2.3 for some z, f(a) = z ∧ g(z) = y

⇐⇒subst. z by f(a) g
(
f(x)

)
= y (1)

Conclusion:

(gf)(a)
blue type above

= (a)(f ◦ g)
(1)
= g
(
f(x)

)
Thus the “reversal” gf = f◦g now makes sense! So does (gf)(a) = g

(
f(a)

)
.

�

3.2.16 Theorem. Functional composition is associative, that is, (gf)h = g(fh).

Proof. Exercise!
Hint. Note that by, 3.2.15, (gf)h = h ◦ (f ◦ g). Take it from here. �

3.2.17 Example. The identity relation on a set A is a function since (a)1A is
the singleton {x}. �

The following interesting result connects the notions of ontoness and 1-1ness
with the “algebra” of composition.

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



62 3. Relations and functions

3.2.18 Theorem. Let f : A→ B and g : B → A be functions. If

(gf) = 1A (1)

then g is onto while f is total and 1-1.

� We say that g is a left inverse of f and f is a right inverse of g. “A” because
these are not in general unique! Stay tuned on this! �

Proof. About g: Our goal, ontoness, means that, for each x ∈ A, I can “solve
the equation g(y) = x for y”. Indeed I can: By definition of 1A,

g
(
f(x)

)
3.2.15

= (gf)(x)
(1)
= 1A(x) = x

So to solve, take y = f(x).
About f : As seen above, x = g(f(x)), for each x ∈ A. Since this is the

same as “x f ◦ g, x is true”, there must be a z such that x f z and z g x. The
first of these says f(x) = z and therefore f(x) ↓. This settles totalness.

For the 1-1ness, let f(a) = f(b). Applying g to both sides we get g(f(a)) =
g(f(b)). But this says a = b, by (gf) = 1A, and we are done. �

3.2.19� Example. The above is as much as can be proved. For example, say
A = {1, 2} and B = {3, 4, 5, 6}. Let f : A→ B be {〈1, 4〉, 〈2, 3〉} and g : B → A
be {〈4, 1〉, 〈3, 2〉, 〈6, 1〉}, or in friendlier notation

f(1)= 4
f(2)= 3

and
g(3)= 2
g(4)= 1
g(5)↑
g(6)= 1

Clearly, (gf) = 1A holds, but note:
(1) f is not onto.
(2) g is neither 1-1 nor total. � �

3.2.20� Example. With A = {1, 2}, B = {3, 4, 5, 6} and f : A → B and
g : B → A as in the previous example, consider also the functions f̃ and g̃ given
by

f̃(1)= 6
f̃(2)= 3

and
g̃(3)= 2
g̃(4)= 1
g̃(5)↑
g̃(6)= 2

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.



3.2. Functions 63

Clearly, (g̃f) = 1A and (gf̃) = 1A hold, but note:

(1) f 6= f̃ .
(2) g 6= g̃.
Thus, neither left nor right inverses need to be unique. The article “a” in

the definition of said inverses was well-chosen. � �

The following two partial converses of 3.2.18 are useful.

3.2.21 Theorem. Let f : A → B be total and 1-1. Then there is an onto
g : B → A such that (gf) = 1A.

Proof. Consider the converse relation (3.1.50) of f —that is, the relation f−1—
and call it g:

x g y
Def

iff y f x (1)

By Exercise 3.2.11, g : B → A is a (possibly nontotal) function so we can write
(1) as g(x) = y iff f(y) = x, from which, substituting f(y) for x in g(x) we get
g(f(x)) = x, for all x ∈ A, that is gf = 1A, hence g is onto by 3.2.18. We got
both statements that we needed to prove. �

3.2.22� Remark. By (1) above, dom(g) = {x : (∃y)g(x) = y} = {x : (∃y)f(y) =
x} = ran(f). � �

3.2.23 Theorem. Let f : A → B be onto. Then there is a total and 1-1
g : B → A such that (fg) = 1B.

Proof. By assumption, ∅ 6= f−1[{b}] ⊆ A, for all b ∈ B. To define g(b) choose
one c ∈ f−1[{b}] and set g(b) = c. Since f(c) = b, we get f(g(b)) = b for all
b ∈ B, and hence g is 1-1 and total by 3.2.18. �

Fragments of “safe” set theory; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.


