
Chapter 4

A Tiny Bit of Informal
Logic

We have come somewhat proficient in using informal logic in our arguments
about aspects of discrete mathematics.

Although we have used quantifiers, ∃ and ∀ we did so mostly viewing them
as symbolic abbreviations of English texts about mathematics. In this chapter
we will expand our techniques in logic, extending them to include manipulation
of quantifiers including the versatile Induction —or mathematical induction—
technique used to prove properties of the natural numbers.

We know how to detect fallacious statements formulated in Boolean logic:
Simply show by a truth table that the statement is not a tautology. (talk about
tautological implication too)

We will show in the domain of quantifiers not only how to prove statements
that include quantifiers but also how to disprove false statements that happen
to include quantifiers.

4.1. Enriching our proofs to manipulate quan-
tifiers

Manipulation of quantifiers boils down to “how can I remove a quantifier from
the beginning of a formula?” and “how can I add a quantifier at the beginning
of a formula?” Once we learn this technique we will be able to reason within
mathematics with ease.

But first let us define once and for all what a mathematical proof looks like:
its correct, expected syntax or form.

We will need some concepts to begin with.

1. The alphabet and structure of formulas. Formulas are strings. The alpha-
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78 4. A Tiny Bit of Informal Logic

bet of symbols that we use contain, at a minimum,

=,¬,∧,∨,→,≡, (, ),∀,∃, object variables†

We finitely generate the infinite set of object variables using single letters,
if necessary with primes and/or subscripts: A, x, y′′, w′′′23, u501.

2. One normally works in a mathematical area of interest, or mathemat-
ical theory —such as Geometry, Set Theory, Number Theory, Algebra,
Calculus— where one needs additional symbols to write down formulas,
like

0, ∅,∈,⊂,
∫

, ◦,+,×

and many others.

3. Mathematicians as a rule get to recognise the formulas and terms in the
math areas of their interest without being necessarily taught the recursive
definition of the syntax of these. We will not give the syntax in these
notes either (but see [Tou08] if you want to know!). Thus one learns to be
content with getting to know formulas and terms by their behaviour and
through use, rather than by their exact definition of syntax.

• Terms are “function calls”, in the jargon of the computer savvy per-
son. These calls take math objects as inputs and return math objects
as outputs. Examples are: x + y, x × 3, 0 × x + 1 (one is told that
× is stronger than +, so, notwithstanding the bracket-parsimonious
notation “0 × x + 1”, we know it means “(0 × x) + 1”, so this call
returns 1, no matter what we plugged into x).

• Formulas are also function calls, but their output is restricted (by
their syntax that I will not define carefully!) to be one or the other of
the truth values true or false (t or f) but nothing else! Their input,
just as in the case for terms, is any math object. Examples are: 2 < 3
(t), (∀x)x = x (t), (∀x)x = 0 (f), (∃x)x = 0 (t), x = 0 neither true
nor false; answer depends on the input in x!

More: x = x (t) answer is independent of input; x = 0 → x = 0
(t) answer is independent of input; x = 0 → (∀x)x = 0 neither true
nor false; answer depends on input in x! The input variable is the
leftmost x; the other two are bound and unavailable to accept inputs.
See below.

• If an occurrence of formula variable is available for input it would
normally be called an occurrence as an input variable. Rather, such
occurrences are called free occurrences in the literature.

At the expense of writing style, “occurrence” occurred no less than
four times in the short passage above. The aim is emphasis: It is not a
variable x that is free or bound in a formula, but it is the occurrences

†That is, variables that denote objects such as numbers, arrays, matrices, sets, trees, etc.
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4.1. Enriching our proofs to manipulate quantifiers 79

of said variable that we are speaking of, as the immediately preceding
example makes clear.

4. In (∀x)x = 0 the variable x is non input, it is “bound” we say. Just like
this: Σ4

i=1i, which means 1 + 2 + 3 + 4 and “i” is not available for input:
Something like Σ4

3=13 is nonsense! Similar comment for ∃.

5. We call ∀,∃,¬,∧,∨,→,≡ the “logical connectives”, the last 5 of them be-
ing called Boolean connectives. People avoid cluttering notation with a lot
of brackets by agreeing that the first 3 have the same “strength” or “pri-
ority”; the highest. The remaining connectives have priorities decreasing
as we walk to the right.

Thus, if A and B are (denote) formulas, then ¬A∨B means (¬A)∨B; ¬
wins the claim for A. If we want (∀x) to apply to the entire A → B we
must write (∀x)(A→ B).

What about A → B → C and A ≡ B ≡ C? Brackets are implied from
right to left : A → (B → C) and A ≡ (B ≡ C). And this? (∃y)(∀x)¬A.

Brackets are implied, again, from right to left :
(

(∃y)
(
(∀x)(¬A)

))
.

BTW, the part where a ∀x or ∃x acts —the “(. . .)” in (∀x)(. . .) and
(∃x)(. . .)— is called their scope.

6. Boolean deconstruction. A formula like (∀x)A → B can be decon-
structed Boolean-wise into (∀x)A and B. If I knew more about B —say,
it is x = 3→ x = 7, then I can deconstruct further.

So, now I have got

(∀x)A, x = 3, x = 7

The last two have NO Boolean structure so deconstructing stops with
them. How about (∀x)A? This cannot be deconstructed either, even if A
had Boolean structure! Such structure is locked up in the scope of (∀x).

We call the formulas where deconstruction stops “prime”. A prime for-
mula is one with no Boolean structure, e.g., x < 8, or one of the form
(∀x)A (A is the scope) or (∃x)A (A is the scope).

Every formula is either prime or can be deconstructed into prime compo-
nents.

4.1.1� Remark. (Tautologies) A formula A is a tautology iff it is true due to
its Boolean structure, according to truth tables (2.3.4) no matter what the
values of its prime formulas into which it is deconstructed are assumed to be.
Assumed to be: We do NOT compute the intrinsic truth value of a prime
formula when we check whether A is a tautology or not.

For example, x = x is a prime formula and thus its assumed value could be
ANY of t or f . Thus it is NOT a tautology, even though, intrinsically IS true,
no matter what the value of x. � �
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80 4. A Tiny Bit of Informal Logic

4.1.2 Example.

1. (∀x)A is not a tautology as it has two possible truth values (being a prime
formula) in principle.

2. x = 0→ x = 0 is a tautology. Which are its prime (sub) formulas? �

3. (∀x)x = 0 → x = 0 is not a tautology. I repeat (once): To determine
tautologyhood we DO NOT evaluate prime formulas; we just consider
each of the two scenarios, t or f , for each prime formula and use truth
tables to compute the overall truth value.

� If we DID evaluate (∀x)x = 0 we would see that (say over the natural
numbers, or reals, or complex numbers) it is false.† So the implication is
true! But we DON’T do that! Not true as a Boolean formula!

� So, how do we show that (∀x)A is true (if it is)? Well, in easy cases we try to
see if A is true for all values of x. That failing, we will use a proof (see 4.1.9).

Similarly for (∃x)A. To show it is true (if it is) we try to see if A is true
for some value of x. Often we just guess one such value that works, say c, and
verify the truth of A when x = c. That failing, we will use a proof. �

4.1.3 Definition. (Tautological implication)
We say that the formulas A1, A2, . . . , An tautologically imply a formula B

—in symbols A1, A2, . . . , An |=taut B— meaning

“the truth of A1 ∧A2 ∧ . . . ∧An implies the truth of B”

that is, that
A1 ∧A2 ∧ . . . ∧An → B is a tautology

�

4.1.4� Remark. Note that we do NOT care to check, or even state, what hap-
pens if A1 ∧A2 ∧ . . . ∧An is false.

The implication in blue type is true regardless of the truth value of B

So, a tautological implication A1, A2, . . . , An |=taut B says that B is true
provided we proved (or accepted) that the lhs of |=taut is true.

|=taut propagates truth from left to right. � �

4.1.5 Example. Here are some easy and some involved tautological implica-
tions. They can all be verified using truth tables, either building the tables in
full, or taking shortcuts.

†If we are doing our mathematics restricted to the set {0}, then, in this “theory” the
formula IS true!
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4.1. Enriching our proofs to manipulate quantifiers 81

1. A |=taut A

2. A |=taut A ∨B

3. A |=taut B → A

4. A,¬A |=taut B —any B. Because I do work only if A ∧ ¬A is true! See
above.

5. f |=taut B —any B. Because I do work only if lhs is true! See above.

6. Is this a valid tautological implication? B,A→ B |=taut A, where A and
B are distinct.

No, for if A is false and B is true, then the lhs is true, but the rhs is false!

7. Is this a valid tautological implication? A,A→ B |=taut B? Yes! Say
A = t and (A → B) = t. Then, from the truth table of →, it must be
B = t.

8. How about this? A,A ≡ B |=taut B? Yes! Verify!

9. How about this? A ∨B ≡ B |=taut A→ B? Yes! I verify:

First off, assume lhs of |=taut —that is, A ∨B ≡ B— is true.

Two cases:

• B = f . Then I need the lhs of ≡ to be true to satisfy the bolded
“assume”. So A = f as well and clearly the rhs of |=taut is true with
these values.

• B = t. Then I need not worry about A on the lhs. The rhs of |=taut

is true by truth table of →.

10. A ∧ (f ≡ A) |=taut B, for any B. Well, just note that the lhs of |=taut is f
so we need to do no work with B to conclude that the implication is valid.

11.
A→ B,C → B |=taut A ∨ C → B

This is nicknamed “proof by cases” for the obvious reasons. Verify this
tautological implication! �

The job of a mathematical proof is to start from established (previous
theorems) truths, or assumed truths (axioms) and unfailingly preserve truths
in all its steps as it is developed. Thus, it will have produced, in particular, a
truth at its very last step. A theorem.

What are our axioms, our starting assumptions, when we do proofs?

4.1.6 Definition. First off, in any proof that we will write in math there are
axioms that are independent of the type of math that we do, whether it is set
theory, number theory, algebra, calculus, etc.

Our logical axioms are
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82 4. A Tiny Bit of Informal Logic

1. All tautologies; these need no defence as “start-up truths”.

2. Formulas of the form (∀x)A[x]→ A[t], for any formula A, variable x and
“object” t.

This object can be as simple as a variable y (might be same as x), constant
c, or as complex as a “function call”, f(t1, t2, . . . , fn) where f accepts n-
inputs, and the inputs shown here are already available objects.

� Two comments: This is a bona fide start-up truth as its says “if A[x] is
true for all x-values,† then it is true also if we plug a specific value/object
into x”.

The other comment is that I write A[x] to indicate a variable of interest.
This may or may not occur in A, which may also have other variables that
it depends on. I would write A(x, y, z) —round brackets— if I knew that
x, y, z are all the variables on which A depends. �

3. Formulas of the form A[x] → (∀x)A[x], for any formula A where the
variable x does not occur in it. For example say A is 3 = 3. This
axiom says then, “if 3 = 3 is true, then so is (∀x)3 = 3”. Sure! 3 = 3 does
not depend on x. So saying “for all values of x we have 3 = 3” is the same
as saying just “we have 3 = 3”.

4. Formulas of the form A[t]→ (∃x)A[x], for any formula A, variable x and
“object t. This is a good start-up truth: It says that if we know that some
object plugged into x makes A[x] true, then it is correct to say “there is
some value x that makes A[x] true —in symbols (∃x)A[x].”

5. x = x is the identity axiom, no matter what “x” I use to express it. So,
y = y and w = w are also instances of the axiom.

6. x = y → y = x and x = y ∧ y = z → x = z are the equality axioms.

They can be expressed equally well using variables other than x and y
(e.g., u, v and w).

7. The ∃ vs. ∀ axiom. For any formula A, (∃x)A[x] ≡ ¬(∀x)¬A[x] is an
axiom. �

The “rules of proving”, or rules of inference. These are two up in front —you
will find I am grossly miscounting:

4.1.7 Definition. (Rules)

1. From A[x] I may infer (∀x)A[x]. Logicians write the up-in-front (“pri-
mary”) rules as fractions without words:

A[x]

(∀x)A[x]

this rule we call generalisation, or Gen for short.

†People usually say “for all x”, meaning for all values of x.
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4.1. Enriching our proofs to manipulate quantifiers 83

2. I may construct (and use) using any tautological implication that I verified,
say, this one

A1, A2, . . . , An |=taut B

the rule
A1, A2, . . . , An

B

Seeing readily that A,A→ B |=taut B, we have the rule

A,A→ B

B

This is a very popular rule, known as modus ponens, for short MP.

�

�

1. HOW do you use rules? See Definition 4.1.9 below. If in a proof you
are writing you have reached the numerator of a rule, then it is correct
to write next (or later) the denominator of the rule. We say that you
applied the rule.

2. The second “rule” above is a rule constructor. Any tautological implica-
tion we come up with is fair game: It leads to a valid rule since the name
of the game (in a proof) is preservation/propagation of truth.

This is NOT an invitation to learn and memorise infinitely many rules
(!) but is rather a license to build your own rules as you go, as long as
you bothered to verify the validity of the tautological implication they are
derived from.

3. Gen is a rule that indeed propagates truth: If A[x] is true, that means
that it is so for all values of x and all values of any other variables on
which A depends but I did not show in the [. . .] notation. But then so
is (∀x)A[x] true, as it says precisely the same thing: “A[x] is true, for all
values of x and all values of any other variables on which A depends but
I did not show in the [. . .] notation”.

The only difference between the two notations is that I added some nota-
tional emphasis in the second —(∀x).

For example, if I know that B has just two variables, u and v, I can write
it as B(u, v). Then

B(u, v) t iff (∀u)B(u, v) t iff (∀v)B(u, v) t iff (∀u)(∀v)B(u, v) t

4. Hmm. So is ∀x redundant? Yes, but only as a formula prefix. In something
like this

x = 0→ (∀x)x = 0 (1)
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84 4. A Tiny Bit of Informal Logic

it is NOT redundant!

Dropping ∀ we change the meaning of (1).

As is, (1) is not a true statement. For example, for x = 0 it is false.
However dropping ∀x, (1) changes to x = 0→ x = 0 which is a tautology;
always true.

5. The axioms in 4.1.6 are indispensable to do just logic; that is why we call
them logical axioms.

You also use them in all math reasoning no matter what type of math it
is. However, the latter has its own additional axioms! These are called
special, but most often “mathematical axioms”.

We are not going to list them. Why? Because every math branch, or
“theory” as we say, has different axioms!

�

4.1.8 Example. Here is a sample of axioms from math (theories):

1. Number theory for N:

• x < y ∨ x = y ∨ x > y (trichotomy)

• ¬x < 0 this axiom indicates that 0 is minimal in N. Adding the
previous one makes < a total order, so 0 is also minimum.

• Many others that we omit.

2. Euclidean geometry:

• From two distinct points passes one and only one line.

• (“Axiom of parallels”) From a point A off a line named k —both A
and k being on the same plane— passes a unique line on said plane
that is parallel to k.

• Many others that we omit.

3. Axiomatic set theory:

• For any set A,

(∃y)y ∈ A→ (∃x)
(
x ∈ A ∧ ¬(∃z)(z ∈ x ∧ z ∈ A)

)
This is the axiom of “foundation” from which one can prove things
like A ∈ A is always false.

It says that IF there is any element in A at all —this is the hy-
pothesis part “(∃y)y ∈ A”— THEN there is some element —this

is the part “(∃x)
(
x ∈ A”— below which, if you follow “∈” back-

wards from it, you will not find a z (“¬(∃z)”) that is both be-
low x along ∈ backwards, and also a member of A —this part is
“(z ∈ x ∧ z ∈ A)”.
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4.1. Enriching our proofs to manipulate quantifiers 85

4. And a few others that we omit. �

So what is the shape of proofs?

4.1.9 Definition. (Proofs and theorems) A proof is a finite sequence of for-
mulas

F1, F2, . . . , Fi, . . . , Fn (1)

such that, for each i = 1, 2, . . . , n, Fi is obtained as ONE of:

1. It is an axiom from among the ones we listed in 4.1.6.

2. It is an axiom of the theory (area of Math) that we are working in.

3. It is a PREVIOUSLY proved theorem.

4. It is the result of “Gen” applied to a previous formula Fj . That is, Fi =
(∀x)Fj , for some x and j < i.

5. It is the result of “|=taut” applied to previous formulas Fjk , k = 1, 2, . . . ,m.
That is, Fj1 , Fj2 , Fj3 , . . . , Fjm |=taut Fi, and all jr for r = 1, 2, . . . ,m are
< i.

Such proofs are known as “Hilbert-style proofs”. We write them vertically,
ONE formula per line, every formula consecutively numbered, with annotation
to the right of formulas (the “why did I write this?”). Like this

1) F1 〈because〉
2) F2 〈because〉
...

...
...

n) Fn 〈because〉

Every Fn in (1) is called a theorem. Thus we define

A theorem is a formula that appears in a proof.

Often one writes ` A to symbolically say that A is a theorem. If we must
indicate that we worked in some specific theory, say ZFC (set theory), then we
may indicate this as

`ZFC A

If moreover we have had some “non-axiom assumptions” (read on to see when
this happens!) that form a set Σ, then we may indicate so by writing

Σ `ZFC A

�

� Why Σ for a set of (non-axiom) assumptions? Because we reserve upper
case latin letters for formulas. For sets of formulas we use a distinguish-
able capital letter, so, we chose distinguishable Greek capital letters, such as
Γ,Σ,∆,Φ,Θ,Ψ,Ω. Obviously, Greek capital letters like A,B,E,Z will not do! �
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86 4. A Tiny Bit of Informal Logic

4.1.10 Example. (New (derived) rules) A derived rule is one we were not
given —in 4.1.7— to bootstrap logic, but we can still prove they propagate
truth.

1. We have a new (derived) rule: (∀x)A[x] ` A[t].

This is called Specialisation, or Spec.

Aha! We used a non-axiom assumption here! I write a Hilbert proof
to show that A[t] is a theorem if (∀x)A[x] is a (non-axiom) hypothesis
(assumption) —shortened to “hyp”.

1) (∀x)A[x] 〈hyp〉
2) (∀x)A[x]→ A[t] 〈axiom〉
3) A[t] 〈1 + 2 + MP〉

2. Taking t to be x we have (∀x)A[x] ` A[x], simply written as (∀x)A ` A.

3. The Dual Spec derived rule: A[t] ` (∃x)A[x]. We prove it:

1) A[t] 〈hyp〉
2) A[t]→ (∃x)A[x] 〈axiom〉
3) (∃x)A[x] 〈1 + 2 + MP〉

Taking t to be x we have A[x] ` (∃x)A[x], simply written as A ` (∃x)A. �

There are two principles of proof that we state without proving them (see
[Tou08] if curious).

4.1.11� Remark. (Deduction theorem and proof by contradiction)

1. The deduction theorem (also known as “proof by assuming the antecedent”)
states, if

Γ, A ` B (1)

then also Γ ` A → B, provided that in the proof of (1), all free variables
of A were treated as constants: That is we neither used them to do a Gen,
nor substituted objects into them.

The notation “Γ, A” is standard for the more cumbersome Γ ∪ {A}.
In practice, this principle is applied to prove Γ ` A→ B, by doing instead
the “easier” (1). Why easier? We are helped by an extra hypothesis, A,
and the formula to prove, B, is less complex than A→ B.

2. Proof by contradiction. To prove Γ ` A is equivalent to proving the
“constant formula” f from hypothesis Γ,¬A.

3. Why the burden of the non-axiom hypotheses Γ? Because in applying the
deduction theorem we usually start with a task like “do ` A→ B → C →
D”.

So we go like this:
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• By DThm, it suffices to prove A ` B → C → D instead (here “Γ”was
∅).

• Again, by DThm, it suffices to prove A,B ` C → D instead (here
“Γ” was A).

• Again, by DThm, it suffices to prove A,B,C ` D instead (here “Γ”
was A,B).

� �

� � I referred you to [Tou08] for some things. However, the short intro here adopted
the so-called “strong generalisation”, which has the side-effect of making the
deduction theorem to hedge: In proving B from Γ, A one must ensure that no
variable of A was subject to generalisation or substitution. [Tou08] trades some
power of generalisation in order to get an easier to apply deduction theorem,
with no hedging.

So this is a choice on what we want to be “easy”, and what we want to “not
be so easy”. There are two options! � �

4.1.12 Remark. (Ping-Pong) For any formulas A and B, the formula —
where I am using way more brackets than I have to, ironically, to improve
readability—

(A ≡ B) ≡
(

(A→ B) ∧ (B → A)
)

is a tautology (draw up a truth table with one row for each of the possible values
of A and B and verify that the equivalence is always t).

Thus to prove the lhs of the ≡ suffices to prove the rhs:

...
...

1) (A→ B) ∧ (B → A) 〈suppose I proved this〉
2) (A ≡ B) ≡

(
(A→ B) ∧ (B → A)

)
〈axiom〉

3) A ≡ B 〈1 + 2 + tautological implication〉

In turn, to prove the rhs it suffices to prove each of A → B and B → A sepa-
rately. This last idea encapsulates the ping-pong approach to proving equiva-
lences.

Here are a few applications. �

4.1.13 Example. 1. Establish ` (∀x)(A ∧B) ≡ (∀x)A ∧ (∀x)B.

By ping-pong.

• Prove ` (∀x)(A ∧ B) → (∀x)A ∧ (∀x)B. By DThm suffices to do
(∀x)(A ∧B) ` (∀x)A ∧ (∀x)B instead.

1) (∀x)(A ∧B) 〈hyp〉
2) A ∧B 〈1 + Spec〉
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3) A 〈2 + tautological implication〉
4) B 〈2 + tautological implication〉
5) (∀x)A 〈3 + Gen; OK: x is not free in line 1〉
6) (∀x)B 〈4 + Gen; OK: x is not free in line 1〉
7) (∀x)A ∧ (∀x)B 〈5 + 6 + tautological implication〉

• Prove ` (∀x)A ∧ (∀x)B → (∀x)(A ∧ B). By DThm suffices to do
(∀x)A ∧ (∀x)B ` (∀x)(A ∧B) instead.

1) (∀x)A ∧ (∀x)B 〈hyp〉
2) (∀x)A 〈1 + tautological implication〉
3) (∀x)B 〈1 + tautological implication〉

Complete the above proof!

2. Prove ` (∀x)(∀y)A ≡ (∀y)(∀x)A. By ping-pong.

• Prove ` (∀x)(∀y)A→ (∀y)(∀x)A.

By DThm suffices to do (∀x)(∀y)A ` (∀y)(∀x)A instead.

1) (∀x)(∀y)A 〈hyp〉
2) (∀y)A 〈1 + Spec〉
3) A 〈2 + Spec〉
4) (∀x)A 〈3 + Gen; OK, no free x in line 1〉
5) (∀y)(∀x)A 〈4 + Gen; OK, no free y in line 1〉

• Prove ` (∀y)(∀x)A→ (∀x)(∀y)A.

Exercise! �

� We have seen how to add an (∃x) in front of a formula (4.1.10 3.).
How about removing an (∃x)-prefix? This is much more complex than re-

moving a (∀x)-prefix:
The technique can be proved to be correct (eg., [Tou03a]) but I will omit the

proof here as I did omit the proof of the deduction theorem technique and the
proof by contradiction technique. I could say “see [Tou03a] if you want to learn
the proof”, but this reference is too advanced for a first year course on discrete
math. So, why not look at [Tou08]? These two books have chosen incompatible
“generalisation” rules, which results to incompatible deduction theorem versions.

The proof of the technique of eliminating ∃-prefixes relies on the deduction theorem.

Technique of removing an ∃-prefix: Suppose I have that (∃x)A[x] is true —
either as an assumption or a theorem I proved earlier— and I want to
prove B.

Then I assume that —for some constant c that does not occur in B— A[c]
is true.

That is, I add A[c] for an unknown c NOT in B as a non-axiom hypothesis.
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People annotate this step in a proof as “aux. hyp. caused by (∃x)A[x].”

Now proceed to prove B using all that is known to you —that is, the axioms
of the theory T that you work in, perhaps some non-axiom hypotheses Γ, and
(∃x)A[x], and the non-axiom hypothesis A[c].

Do so by using all free (input-) variables of A[c] as constants in your proof!†

The technique of removing an ∃-prefix guarantees that you did better than

Γ, (∃x)A[x], A[c] `T B

that actually you achieved

Γ, (∃x)A[x] `T B

as if you never assumed nor used A[c]!
That is why they call it “auxiliary hypothesis”. Once it helps you prove B

it drops out; it does not stay around to get credit! �

4.1.14 Example. Prove ` (∃y)(∀x)A[x, y]→ (∀x)(∃y)A[x, y].
By the DThm it suffices to prove (∃y)(∀x)A[x, y] ` (∀x)(∃y)A[x, y] instead.

1) (∃y)(∀x)A[x, y] 〈hyp〉
2) (∀x)A[x, c] 〈aux. hyp. caused by 1; for some constant c not in the conclusion〉
3) A[x, c] 〈2 + Spec〉
4) (∃y)A[x, y] 〈3 + Dual Spec〉
5) (∀x)(∃y)A[x, y] 〈4 + Gen; OK, no free x in lines 1 and 2〉

�

4.1.15� Example. Can I also prove the converse of the above? That is `
(∀x)(∃y)A[x, y]→ (∃y)(∀x)A[x, y].

I will try.

By the DThm it suffices to prove (∀x)(∃y)A[x, y] ` (∃y)(∀x)A[x, y] instead.

1) (∀x)(∃y)A[x, y] 〈hyp〉
2) (∃y)A[x, y] 〈1 + spec〉
3) A[x, c] 〈aux. hyp. for 2; c not in the conclusion〉
4) (∀x)A[x, c] 〈3 + Gen; Hmmm!

Illegal: I should treat the free x of aux. hyp. as a constant!〉

Still, can anyone PROVE this even if I cannot?

†This is a side-effect of using the deduction theorem in the proof of correctness of the
technique.
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A question like this, if you are to answer “NO”, must be resolved by offering
a counterexample. That is, a special case of A for which I can clearly see that
the claim is not true.

Here is one such:

(∀x)(∃y)x = y → (∃y)(∀x)x = y (1)

Say we work in N. The lhs of → is true, but the rhs is false as it claims that
there is a number such that all numbers are equal to it. � �

� Another useful principle that can be proved, but we will not do so, is that one
can replace equivalents-by-equivalents. That is, if C is some formula, and if I
have

1. A ≡ B, via proof, or via assumption, and also

2. A is a subformula of C

then I can replace one (or more) occurrence(s) of A in C (as subformula(s)) by
B and call the resulting formula C ′, and be guaranteed the conclusion C ≡ C ′.
That is, from A ≡ B, I can prove C ≡ C ′.

This principle is called the equivalence theorem. �

Let’s do a couple of ad hoc additional examples before we move to the section
on Induction.

4.1.16 Example. A→ B ` (∀x)A→ (∀x)B.
By the DThm it suffices to prove A→ B, (∀x)A ` (∀x)B instead.

1) A→ B 〈hyp〉
2) (∀x)A 〈hyp〉
3) A 〈2 + Spec〉
4) B 〈1 + 3 + MP〉
5) (∀x)B 〈4 + Gen; OK as the DThm hyp. (line 2) has no free x〉

�

4.1.17 Example. Refer to 4.1.6(7). Let us apply it to ¬A for arbitrary A. We
get

` (∃x)¬A ≡ ¬(∀x)¬¬A (1)

Pause. Why “`”?J

Since A ≡ ¬¬A is a tautology, hence a theorem

Pause. Why “hence a theorem”?J

we apply the equivalence theorem above and tautological implication to obtain
from (1):

` (∃x)¬A ≡ ¬(∀x)A (2)
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Applying another tautological implication to (2) we get

` (∀x)A ≡ ¬(∃x)¬A

which is of the same form as 4.1.6(7) with the roles of ∃ and ∀ reversed. �

4.1.18 Example. A ≡ B ` (∀x)A ≡ (∀x)B.
True due to the equivalence theorem! “C” is “(∀x)A”. We replaced (one

occurrence of) A by B in C, and we have assumed as starting point that A ≡ B.

�

4.1.19 Exercise. Prove A ≡ B ` (∀x)A ≡ (∀x)B without relying on the
equivalence theorem. Rather use 4.1.16 in your proof, remembering the ping-
pong tautology (4.1.12). �
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