
Chapter 6

Recurrence relations
and their closed-form
solutions

In “divide and conquer” algorithms one usually ends up with a recurrence re-
lation that “defines” the “timing function”, T (n). For example, it might look
like

T (n) =

{
1 if n = 1

T (n/2) + 1 otherwise

In order to assess the “goodness” of the proposed algorithm by comparison
to either our expectations or to another algorithm, we need to know T (n) in
“closed” form in terms of known functions, for example, nr for r > 0, cn for
c > 1, logb n for some integer b > 1.

Often, a preliminary analysis need only worry about the “asymptotic be-
haviour” of the algorithm, i.e., the behaviour for large inputs (n is the input
size). “Big-O” notation is an excellent tool in this case, therefore the solution
of recurrences is often sought in such notation. On occasion one requires an
“exact” solution (this is much harder to achieve in general).

There is a big variety of recurrence relations and an equally big variety of
solution techniques. Some restricted cases are handled well by packages such
as Mathematica or Maple V . For the mathematical reasons that make the so-
lutions tick the best reference is perhaps Knuth et al. “Concrete Mathematics”
(Addison-Wesley).

In this chapter we restrict attention to simple classes of recurrences taken
from both the “additive” and “multiplicative” cases. These characterizations in
quotes refer to the manner of handling the argument of the recurrence. E.g.,
the recurrence above is multiplicative as the recursive call is to an argument
obtained by halving the original argument n. On the other hand, the Fibonacci
recurrence is additive.
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124 6. Recurrence relations and their closed-form solutions

6.1. Big-O, small-o, and the “other” ∼
This notation is due to the mathematician E. Landau and is in wide use in num-
ber theory, but also in computer science in the context of measuring (bounding
above) computational complexity of algorithms for all “very large inputs”.

6.1.1 Definition. Let f and g be two total functions of one variable, where
g(x) > 0, for all x. Then

1. f = O(g) —also written as f(x) = O(g(x))— read “f is big-oh g”, means
that there are positive constants C and K in N such that

x > K implies |f(x)| ≤ Cg(x)

2. f = o(g) —also written as f(x) = o(g(x))— read “f is small-oh g”, means
that

lim
x→∞

f(x)

g(x)
= 0

3. f ∼ g —also written as f(x) ∼ g(x)— read “f is of the same order as g”,
means that

lim
x→∞

f(x)

g(x)
= 1

�

� “∼” between two sets A and B, as in A ∼ B, means that there is a 1-1 corre-
spondence f : A → B. Obviously, the context will protect us from confusing
this ∼ with the one introduced just now, in 6.1.1.

Both definitions 2. and 3. require some elementary understanding of differ-
ential calculus. Case 2. says, intuitively, that as x gets extremely large, then
the fraction f(x)/g(x) gets extremely small, infinitesimally close to 0. Case 3.
says, intuitively, that as x gets extremely large, then the fraction f(x)/g(x) gets
infinitesimally close to 1; that is, the function outputs are infinitesimally close
to each other. �

6.1.2 Example.

1. x = O(x) since x ≤ 1 · x for x ≥ 0.

2. x ∼ x, since x/x = 1, and stays 1 as x gets very large.

3. x = o(x2) since x/x2 = 1/x which trivially goes to 0 as x goes to infinity.

4. 2x2 + 10001000x+ 10350000 = O(x2). Indeed

2x2 + 10001000x+ 10350000

3x2
= 2/3 + 10001000/x+ 10350000/x2 < 1
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6.1. Big-O, small-o, and the “other” ∼ 125

for x > K for some well chosen K. Note that 10001000/x and 10350000/x2

will each be < 1/6 for all sufficiently large x-values: we will have 2/3 +
10001000/x+10350000/x2 < 2/3+1/6+1/6 = 1 for all such x-values. Thus
2x2 + 10001000x+ 10350000 < 3x2 for x > K as claimed.

In many words, in a polynomial, the order of magnitude is determined by
the highest power term. �

The last example motivates

6.1.3 Proposition. Suppose that f(x) ≥ 0 for all x > L, hence |f(x)| = f(x)
for all x > L. Now, if f(x) ∼ g(x), then f(x) = O(g(x)).

Proof. The assumption says that

lim
x→∞

f(x)

g(x)
= 1

From “calculus 1” (1st year differential calculus) we learn that this implies that
for some K, x > K entails ∣∣∣∣f(x)

g(x)
− 1

∣∣∣∣ < 1

hence

−1 <
f(x)

g(x)
− 1 < 1

therefore, x > max(K,L) implies f(x) < 2g(x). �

6.1.4 Proposition. Suppose that f(x) ≥ 0 for all x > L, hence |f(x)| = f(x)
for all x > L. Now, if f(x) = o(g(x)), then f(x) = O(g(x)).

Proof. The assumption says that

lim
x→∞

f(x)

g(x)
= 0

From calculus 1 we learn that this implies that for some K, x > K entails∣∣∣∣f(x)

g(x)

∣∣∣∣ < 1

hence

−1 <
f(x)

g(x)
< 1

therefore, x > max(K,L) implies f(x) < g(x). �
These two propositions add to our toolbox:

6.1.5 Example.
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126 6. Recurrence relations and their closed-form solutions

1. lnx = o(xr) for any positive real r. Here “ln” stands for loge where e is
the Euler constant

2.7182818284590452353602874713526624977572470937 . . .

Seeing that both numerator and denominator

lim
x→∞

lnx

xr

go to ∞, we have here (if we do not do anything to mitigate) an impasse:
We have a “limit” that is indeterminate:

∞
∞

So, we will use “l’Hôpital’s rule” (the limit of the fraction is equal to the
limit of the fraction of the derivatives):

lim
x→∞

lnx

xr
= lim
x→∞

1/x

rxr−1
= lim
x→∞

1

rxr
= 0

2. lnx = O(log10(x)). In fact, you can go from one log-base to the other:

loge(x) =
log10(x)

log10(e)

The claim follows from 6.1.3 since trivially lnx ∼ log10(x)/ log10(e). For
that reason —and since multiplicative constants are hidden in big-O notation—
complexity- and algorithms-practitioners omit the base of the logarithm
and write things like O(log n) and O(n log n). �

6.2. Solving recurrences; the additive case

The general case here is of the form†

T0 = k
snTn= vnTn−1 + f(n) if n > 0

a recurrence defining the sequence Tn, or equivalently, the function T (n) (both
jargons and notations spell out the same thing), in terms of the known functions
(sequences) sn, vn, f(n).

For the general case see Knuth cited above. Here we will restrict attention
to the case sn = 1 for all n and vn = a (a constant) for all n.

Subcase 1. (a = 1) Solve

T0 = k
Tn= Tn−1 + f(n) if n > 0 (1)

†Note the “additivity” in the relation between indices/arguments: n vs. n− 1.
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6.2. Solving recurrences; the additive case 127

From (1), Tn − Tn−1 = f(n), thus

n∑
i=1

(Ti − Ti−1) =

n∑
i=1

f(i)

the lower summation value dictated by the lowest valid value of i− 1 according
to (1).

6.2.1� Remark. The summation in the lhs above is called a “telescoping (finite)
series” because the terms T1, T2, . . . , Tn−1 appear both positively and negatively
and pairwise cancel. Thus the series “contracts” into Tn−T0 like a (hand held)
telescope. � �

Therefore
Tn= T0 +

∑n
i=1 f(i)

= k +
∑n
i=1 f(i) (2)

If we know how to get the sum in (2) in closed form, then we solved the problem!

6.2.2 Example. Solve

pn =

{
2 if n = 1

pn−1 + n otherwise
(3)

Here
n∑
i=2

(pi − pi−1) =

n∑
i=2

i

Note the lower bound of the summation: It is here 2, to allow for the lowest
i− 1 value possible. That is 1 according to 3, hence i = 2.

Thus,

pn = 2 +
(n+ 2)(n− 1)

2

(Where did I get the (n+ 2)(n− 1)/2 from?) The above answer is the same as
(verify!)

pn = 1 +
(n+ 1)n

2

obtained by writing

2 +

n∑
i=2

i = 1 +

n∑
i=1

i

Subcase 2. (a 6= 1) Solve

T0 = k
Tn= aTn−1 + f(n) if n > 0 (4)
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128 6. Recurrence relations and their closed-form solutions

(4) is the same as
Tn
an

=
Tn−1

an−1
+
f(n)

an

To simplify notation, set

tn
Def
=
Tn
an

thus the recurrence (4) becomes

t0 = k

tn= tn−1 +
f(n)
an

if n > 0 (5)

By subcase 1, this yields

tn = k +

n∑
i=1

f(i)

ai

from which

Tn = kan + an
n∑
i=1

f(i)

ai
(6)

6.2.3 Example. As an illustration solve the recurrence below.

Tn =

{
1 if n = 1

2Tn−1 + 1 otherwise
(7)

To avoid trouble, note that the lowest term here is T1, hence its “translation”
to follow the above methodology will be “t1 = T1/2

1 = 1/2”. So, the right hand
side of (6) applied here will have “kan−1” instead of “kan” (Why?) and the
indexing in the summation will start at i = 2 (Why?)

Thus, by (6),

Tn= 2n(1/2) + 2n
∑n
i=2

1
2i

= 2n−1 + 2n( (2−1)n+1−1
2−1−1 − 1− 1

2 )

= 2n−1 + 2n(2− 2−n − 1− 1
2 )

= 2n − 1

In the end you will probably agree that it is easier to redo the work with (7)
directly, first translating it to

tn =

{
1/2 if n = 1

tn−1 + 1/2n if n > 1
(8)

rather than applying (6)!
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6.3. Solving recurrences; the multiplicative case 129

We immediately get from (8)

Tn = 2ntn = 2n
(

1/2 +

n∑
i=2

1/2i
)

= 2n
(

1/2 +
(2−1)n+1 − 1

2−1 − 1
− 1− 1/2

)
etc.

The red terms are subtracted as they are missing from our
∑

. The blue
formula used is for

n∑
i=0

1/2i �

6.3. Solving recurrences; the multiplicative case

Subcase 1.

T (n) =

{
k if n = 1

aT (n/b) + c if n > 1
(1)

were a, b are positive integer constants (b > 1) and k, c any constants. Re-
currences like (1) above arise in divide and conquer solutions to problems.
For example, binary search has timing governed by the above recurrence with
b = 2, a = c = k = 1.

� Why does (1) with the above-mentioned parameters —b = 2, a = c = k = 1—
capture the run time of binary search? First off, regarding “run time” let us be
specific: we mean number of comparisons.

OK, to do such a search on a sorted (ascending order, say) array of length n,
you first check the mid point (for a match with what you are searching for). If
you found what you want, exit. If not, you know (due to the ordering) whether
you should search the left half or the right half. So you call the procedure recur-
sively on an arrow of length about n/2. This decision and call took T (n/2) + 1
comparisons. This equals T (n). If the array has length 1, then you spend just
one comparison, T (1) = 1. �

We seek a general solution in big-O notation.
First convert to an “additive case” problem: To this end, seek a solution in

the restricted set {n ∈ N : n = bm for some m ∈ N}. Next, set

t(m) = T (bm) (2)

so that the recurrence becomes

t(m) =

{
k if m = 0

at(m− 1) + c if m > 0
(3)

hence, from the work in the previous section,

m∑
i=1

(
t(i)

ai
− t(i− 1)

ai−1
) = c

m∑
i=1

a−i
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130 6. Recurrence relations and their closed-form solutions

therefore

t(m) = amk + cam

m if a = 1

a−1 (a−1)m − 1

a−1 − 1
if a 6= 1

or, more simply,

t(m) =

k + cm if a = 1

amk + c
am − 1

a− 1
if a 6= 1

Using O-notation, and going back to T we get:

T (bm) =

{
O(m) if a = 1

O(am) if a 6= 1
(4)

or, provided we remember that this solution relies on the assumption that n has
the form bm:

T (n) =

{
O(log n) if a = 1

O(alogb n) if a 6= 1
=

{
O(log n) if a = 1

O(nlogb a) if a 6= 1
(5)

� If a > b then we get slower than linear “run time” O(nlogb a). If on the other
hand b > a > 1 then we get a sublinear run time, since then logb a < 1. �

� � The symbol �� means “can be omitted with loss of continuity”.

Now an important observation. For functions T (n) that are increasing ,† i.e.,
T (i) ≤ T (j) if i < j the restriction of n to have form bm proves to be irrelevant
in obtaining the solution. The solution is still given by (5) for all n. Here’s
why:

In the general case, n satisfies

bm−1 < n ≤ bm for some m ≥ 0 (6)

Suppose now that a = 1 (upper case in (4)). We want to establish that
T (n) = O(log n) for the general n (of (6)). By monotonicity of T and the
second inequality of (6) we get

T (n)
by (6) right

≤ T (bm)
by (4)

= O(m)
by (6) left

= O(log n)

The last invocation of (6) above used the first inequality therein.

The case where a > 1 is handled similarly. Here we found an answer O(nr)
(where r = logb a > 0) provided n = bm (some m). Relax this proviso, and
assume (6).

Now

T (n)
by (6) right

≤ T (bm)
by (4)

= O(am) = O((bm)r)
Why?

= O((bm−1)r)
by (6) left

= O(nr)

where again the last invocation of (6) above used the first inequality therein. � �

†Such are the “complexity” or “timing” functions of algorithms.
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6.3. Solving recurrences; the multiplicative case 131

Subcase 2.

T (n) =

{
k if n = 1

aT (n/b) + cn if n > 1
(1′)

were a, b are positive integer constants (b > 1) and k, c any constants. Recur-
rences like (1′) above also occur in divide and conquer solutions to problems.
For example, two-way merge sort has timing governed by the above recurrence
with a = b = 2 and c = 1/2. Quicksort has average run time governed, essen-
tially, by the above with a = b = 2 and c = 1. Both lead to O(n log n) solutions.
Also, Karatsuba integer multiplication has a run time recurrence as above with
a = 3, b = 2.

� These examples are named for easy look up, in case the trigger your interest or
curiosity. It is not in the design of this course to expand on them. Merge Sort
and Quicksort you might see in a course on data structures (e.g., EECS 2011)
while Karatsuba’s “fast multiplication” of natural numbers might appear in a
course on algorithms like EECS 3101. �

Setting at first (our famous initial restriction on n) n = bm for some m ∈ N
and using (2) above we end up with a variation on (3):

t(m) =

{
k if m = 0

at(m− 1) + cbm if m > 0
(3′)

thus we need do
m∑
i=1

(
t(i)

ai
− t(i− 1)

ai−1
) = c

m∑
i=1

(b/a)i

therefore

t(m) = amk + cam

m if a = b

(b/a)
(b/a)m − 1

b/a− 1
if a 6= b

Using O-notation, and using cases according as to a < b or a > b we get:

t(m) =


O(bmm) if a = b

amO(1) = O(am) if b < a /* (b/a)m → 0 as m→∞ */

O(bm − am) = O(bm) if b > a

or, in terms of T and n, which is restricted to form bm (using same calculational
“tricks” as before):

T (n) =


O(n log n) if a = b

O(nlogb a) if b < a

O(n) if b > a

(4′)

� � The above solution is valid for any n without restriction, provided T is increas-
ing. The proof is as before, so we will not redo it (you may wish to check the
“new case” O(n log n) as an exercise).
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132 6. Recurrence relations and their closed-form solutions

In terms of complexity of algorithms, the above solution says that in a divide
and conquer algorithm (governed by (1′)) we have the following cases:

• The total size of all subproblems we solve (recursively) is equal to the
original problem’s size. Then we have a O(n log n) algorithm (e.g., merge
sort).

• The total size of all subproblems we solve is more than the original prob-
lem’s size. Then we go worse than linear (logb a > 1 in this case). An
example is Karatsuba multiplication that runs in O(nlog2 3) time.

• The total size of all subproblems we solve is less than the original problem’s
size. Then we go in linear time (e.g., the problem of finding the k-th
smallest in a set of n elements).

� �

6.4. Generating Functions

We saw some simple cases of recurrence relations with additive and multiplica-
tive index structure (we reduced the latter to the former). Now we turn to a
wider class of additive index structure problems where our previous technique
of utilizing a “telescoping sum”

n∑
i=1

(t(i)− t(i− 1))

does not apply because the right hand side still refers to t(i) for some i < n.
Such is the case of the well known Fibonacci sequence Fn given by

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−1 if n > 1

The method of generating functions that solves this harder problem also solves
the previous problems we saw.

Here’s the method in outline. We will then embark on a number of fully
worked out examples.

Given a recurrence relation

tn = . . . tn−1 . . . tn−2 . . . tn−3 . . . (1)

with the appropriate “starting” (initial) conditions. We want tn in “closed form”
in terms of known functions. Here are the steps:
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6.4. Generating Functions 133

1. Define a generating function of the sequence t0, t1, . . . , tn, . . .

G(z)=
∑∞
i=0 tiz

i

= t0 + t1z + t2z
2 + · · ·+ tnz

n + · · · (2)

(2) is a formal power series, where formal means that we only are inter-
ested in the form of the “infinite sum” and not in any issues of conver-
gence† (therefore “meaning”) of the sum. It is stressed that our disinterest
in convergence matters is not a simplifying convenience but it is due to
the fact that convergence issues are irrelevant to the problem at hand.

� In particular, we will never have to consider values of z or make substitu-
tions into z. �

2. Using the recurrence (1), find a closed form of G(z) as a function of z (this
can be done prior to knowing the tn in closed form!)

3. Expand the closed form G(z) back into a power series

G(z)=
∑∞
i=0 aiz

i

= a0 + a1z + a2z
2 + · · ·+ anz

n + · · · (3)

But now we do have the an’s in terms of known functions, because we
know G(z) in closed form! We only need to compare (2) and (3) and
proclaim

tn = an for n = 0, 1, . . .

The problem has been solved.

Steps 2. and 3. embody all the real work. We will illustrate by examples
how this is done in practice, but first we need some “tools”:

From here on we will put our ��in use to advise the reader of
what can be omitted.

The derivation of these formulas is trivial, but really long, so let us
concentrate on 2 or 3 “boxed” results —forgetting the arithmetic!—
that we will be employing!
These will be boxed and provided as aids in, e.g., an exam situation.

� � The Binomial Expansion. For our purposes we will be content with just one
tool, the “binomial expansion theorem” of calculus:

For any real m, (1 + z)m=
∑∞
r=0

(
m
r

)
zr

= · · ·+
(
m
r

)
zr + · · · (4)

†In Calculus one learns that power series converge in an interval like |z| < r for some real
r ≥ 0. The r = 0 case means the series diverges for all z.
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134 6. Recurrence relations and their closed-form solutions

where for any r ∈ N and m ∈ R

(
m

r

)
def
=

1 if r = 0
m(m− 1) · · · (m− [r − 1])

r!
otherwise

(5)

The expansion (4) terminates with last term(
m

m

)
zm

by (5)
= zm

as the “binomial theorem of Algebra says, iff m is a positive integer. In all other
cases (4) is non-terminating (infinitely many terms). As we remarked before,
we will not be concerned with when (4) converges.

Note that (5) gives the familiar

(m
r
)
=
m(m− 1) · · · (m− [r − 1])

r!

=
m(m− 1) · · · (m− [r − 1])(m− r) · · · 2 · 1

r!(m− r)!
= m!
r!(m− r)!

whenm ∈ N. In all other cases we use (5) for ifm /∈ N, then “m!” is meaningless.

Let us record the very useful special case when m is a negative integer, −n
(n > 0).

(1 + z)−n= · · ·+ −n(−n−1)···(−n−[r−1])
r! zr + · · ·

= · · ·+ (−1)r n(n+1)···(n+[r−1])
r! zr + · · ·

= · · ·+ (−1)r (n+[r−1])···(n+1)n
r! zr + · · ·

= · · ·+ (−1)r
(
n+r−1

r

)
zr + · · · (6)

(1− z)−n = · · ·+
(
n+ r − 1

r

)
zr + · · · (7)

� �

Finally, let us record in “boxes” some important special cases of (6) and (7)

(1− z)−1 = 1
1− z= · · ·+

(
r
r

)
zr + · · ·

= · · ·+ zr + · · · (8)

The above is the familiar “converging geometric progression” (converging for
|z| < 1, that is, but this is the last time I’ll raise irrelevant convergence issues).
Two more special cases of (6) will be helpful:

(1− z)−2 = 1
(1−z)2 = · · ·+

(
r+1
r

)
zr + · · ·

= 1 + 2z + · · ·+ (r + 1)zr + · · · (9)
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and

(1− z)−3 = 1
(1−z)3 = · · ·+

(
r+2
r

)
zr + · · ·

= 1 + 3z + · · ·+ (r+2)(r+1)
2 zr + · · · (10)

�

6.4.1 Example. Solve the recurrence

a0 = 1
an= 2an−1 + 1 if n > 0 (i)

Write (i) as
an − 2an−1 = 1 (ii)

Next, form the generating function for an, and a “shifted” copy of it (multiplied
by 2z; z does the shifting) underneath it (this was “inspired” by (ii)):

G(z) = a0 + a1z + a2z
2 + · · · + anz

n + · · ·
2zG(z) = 2a0z + 2a1z

2 + · · · + 2an−1z
n + · · ·

Subtract the above term-by-term to get

G(z)(1− 2z)= 1 + z + z2 + z3 + · · ·
= 1

1− z

Hence

G(z) =
1

(1− 2z)(1− z)
(iii)

(iii) is G(z) in closed form. To expand it back to a (known) power series we
first use the “partial fractions” method (familiar to students of calculus) to write
G(z) as the sum of two fractions with linear denominators. I.e., find constants
A and B such that (iv) below is true for all z:

1

(1− 2z)(1− z)
=

A

(1− 2z)
+

B

(1− z)

or
1 = A(1− z) +B(1− 2z)

Setting in turn z ← 1 and z ← 1/2 we find B = −1 and A = 2, hence

G(z)= 2
1− 2z −

1
1− z

= 2
(
· · · (2z)n · · ·

)
−
(
· · · zn · · ·

)
= · · · (2n+1 − 1)zn · · ·

Comparing this known expansion with the original power series above, we con-
clude that

an = 2n+1 − 1
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Of course, we solved this problem much more easily in Section 6.2. However
due to its simplicity it was worked out here again to illustrate this new method.
Normally, you apply the method of generating functions when there is no other
simpler way to do it.

6.4.2 Example. Solve

p1 = 2
pn= pn−1 + n if n > 1 (i)

Write (i) as
pn − pn−1 = n (ii)

Next, form the generating function for pn, and a “shifted” copy of it underneath
it (this was “inspired” by (ii)).
Note how this sequence starts with p1 (rather than p0). Correspondingly, the
constant term of the generating function is p1.

G(z) = p1 + p2z + p3z
2 + · · · + pn+1z

n + · · ·
zG(z) = p1z + p2z

2 + · · · + pnz
n + · · ·

Subtract the above term-by-term to get

G(z)(1− z)= 2 + 2z + 3z2 + 4z3 + · · ·+ (n+ 1)zn + · · ·
= 1 + 1

(1− z)2 by (9)

Hence

G(z)= 1
1−z + 1

(1−z)3

=
(
· · · zn · · ·

)
+
(
· · · (n+2)(n+1)

2 zn · · ·
)

by (10)

= · · ·
(

1 +
(n+ 2)(n+ 1)

2

)
zn · · ·

Comparing this known expansion with the original power series above, we con-
clude that

pn+1 = 1 +
(n+ 2)(n+ 1)

2
, the coefficient of zn

or

pn = 1 +
(n+ 1)n

2

6.4.3 Example. Here is one that cannot be handled by the techniques of Sec-
tion 6.2.

s0 = 1
s1 = 1
sn= 4sn−1 − 4sn−2 if n > 1 (i)

Write (i) as
sn − 4sn−1 + 4sn−2 = 0 (ii)
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to “inspire”

G(z) = s0 + s1z + s2z
2 + · · · + snz

n + · · ·
4zG(z) = 4s0z + 4s1z

2 + · · · + 4sn−1z
n + · · ·

4z2G(z) = 4s0z
2 + · · · + 4sn−2z

n + · · ·

By (ii),

G(z)(1− 4z + 4z2)= 1 + (1− 4)z
= 1− 3z

Since 1− 4z + 4z2 = (1− 2z)2 we get

G(z)= 1
(1−2z)2 − 3z 1

(1−2z)2

=
(
· · · (n+ 1)(2z)n · · ·

)
− 3z

(
· · · (n+ 1)(2z)n · · ·

)
=
(
· · ·
[
(n+ 1)2n − 3n2n−1

]
zn · · ·

)
Thus,

sn= (n+ 1)2n − 3n2n−1

= 2n−1(2n+ 2− 3n)
= 2n(1− n/2)

6.4.4 Example. Here is another one that cannot be handled by the techniques
of Section 6.2.

s0 = 0
s1 = 8
sn= 2sn−1 + 3sn−2 if n > 1 (i)

Write (i) as
sn − 2sn−1 − 3sn−2 = 0 (ii)

Next,
G(z) = s0 + s1z + s2z

2 + · · · + snz
n + · · ·

2zG(z) = 2s0z + 2s1z
2 + · · · + 2sn−1z

n + · · ·
3z2G(z) = 3s0z

2 + · · · + 3sn−2z
n + · · ·

By (ii),
G(z)(1− 2z − 3z2) = 8z

The roots of 1− 2z − 3z2 = 0 are

z =
−2±

√
4 + 12

6
=
−2± 4

6
=

{
−1

1/3

hence 1− 2z − 3z2 = −3(z + 1)(z − 1/3) = (1− 3z)(1 + z), therefore

G(z) =
8z

(1− 3z)(1 + z)
=

A

1− 3z
+

B

1 + z
splitting into partial fractions
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By a calculation as in the previous example, A = 2 and B = −2, so

G(z)= 2
1−3z −

2
1+z

= 2
(
· · · (3z)n · · ·

)
− 2
(
· · · (−z)n · · ·

)
= (· · · [2 · 3n − 2(−1)n]zn · · · )

hence sn = 2 · 3n − 2(−1)n

6.4.5 Example. The Fibonacci recurrence.

F0 = 0
F1 = 1
Fn= Fn−1 + Fn−2 if n > 1 (i)

Write (i) as

Fn − Fn−1 − Fn−2 = 0 (ii)

Next,
G(z) = F0 + F1z + F2z

2 + · · · + Fnz
n + · · ·

zG(z) = F0z + F1z
2 + · · · + Fn−1z

n + · · ·
z2G(z) = F0z

2 + · · · + Fn−2z
n + · · ·

By (ii),

G(z)(1− z − z2) = z

The roots of 1− z − z2 = 0 are

z =
−1±

√
1 + 4

2
=


−1 +

√
5

2
−1−

√
5

2

For convenience of notation, set

φ1 =
−1 +

√
5

2
, φ2 =

−1−
√

5

2
(iii)

Hence
1− z − z2= −(z − φ1)(z − φ2)

= −(φ1 − z)(φ2 − z) (iv)

therefore

G(z) =
z

1− z − z2
=

A

φ1 − z
+

B

φ2 − z
splitting into partial fractions

from which (after some arithmetic that I will not show),

A =
φ1

φ1 − φ2
, B =

φ2

φ2 − φ1
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so

G(z)= 1
φ1−φ2

[
φ1

φ1−z −
φ2

φ2−z

]
= 1

φ1−φ2

[
1

1−z/φ1
− 1

1−z/φ2

]
= 1

φ1−φ2

((
· · · [ zφ1

]n · · ·
)
−
(
· · · [ zφ2

]n · · ·
))

therefore

Fn =
1

φ1 − φ2

(
1

φn1
− 1

φn2

)
(v)

Let’s simplify (v):
First, by brute force calculation, or by using the “known” relations between

the roots of a 2nd degree equation, we find

φ1φ2 = −1, φ1 − φ2 =
√

5

so that (v) gives

Fn= 1√
5

(
φn
2

(φ1φ2)n −
φn
1

(φ1φ2)n

)
= 1√

5

(
(−1)n

(
(1+
√

5)/2
)n

(−1)n − (−1)n
(

(1−
√

5)/2
)n

(−1)n

)
= 1√

5

([
1+
√

5
2

]n
−
[

1−
√

5
2

]n)
In particular, we find that

Fn = O

([
1 +
√

5

2

]n)

since [
1−
√

5

2

]n
→ 0 as n→∞

since (1−
√

5)/2 is about −0.62.
That is, Fn grows exponentially with n, since |φ2| > 1.
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