
Chapter 5

Inductively defined sets;
Structural induction

This chapter looks at a generalisation of the inductive definitions of the last
section. An example of an inductively defined set is the following.

Suppose you want to define by finite means, and define precisely, the set of
all “simple” arithmetical expressions that use the numbers 1, 2, 3, the operations
+ and ×, and round brackets. Then you would do it like this:

The set of said simple arithmetical expressions is the smallest set (⊆-smallest)
that

1. Contains each of 1, 2 and 3.

2. If it contains expressions E and E′, then it also contains (E + E′) and
(E × E′).

Some folks would add a 3rd requirement “nothing else is in the set unless so
demonstrated using 1. 2. above” and omit “smallest”. Really?

How exactly would you so “demonstrate”? In a recursive definition you
ought to be able to make your recursive calls and not have to trace back why
the object you constructed exists!

We will prove in Section 5.2.5 that indeed there is an iterative way to show
that a particular simple arithmetic expression was formed correctly by our re-
cursion, but that defeats the beauty of recursion. Besides, until we reach said
section we don’t know what “nothing else is in the set unless so demonstrated
using 1. 2. above” means or how to “use” 1. and 2. do it! So it is nonsense to stick
such a statement in the bottom of the definition as a (redundant) afterthought.

Before we get to the general definitions, let us finesse our construction and
propose some terminology.

(a) First off, in step 1. above we say that 1, 2 and 3 are the initial objects of our
recursive/inductive definition.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

110 5. Inductively defined sets; Structural induction

(b) In step 2. we say that (E+E′) is obtained by an operation (on strings) that
is available to us, depicted as a “blackbox” below, which we named “+”.

E
−→
−→
E′

+ −→ (E + E′)

In words, the operation concatenates from left to right the strings

“(”, “E”, “+”, “E′”, and “)”

Similar comments for the operation “×”.

(c) Both operations in this example are single-valued, that is, functions. It is
preferable to be slightly more general and allow operations that are just
relations, but not necessarily functions. Such an operation O(x1, . . . , xn, y)
is n-ary —n inputs, x1, . . . , xn— with output variable y.

(d) We say that a set of objects S is closed under a relation (operation) —it
could be a function— O(x1, . . . , xn, y) meaning that for all input values
x1, . . . , xn in S, all the obtained values y are also in S.

We are ready for the general definition:

5.0.1 Definition. Given a set of initial objects I and a set of operations O =
{O1, O2, O2, . . .}, the object Cl(I,O) is called the closure of I under O—or the
set inductively defined by the pair (I,O)— and denotes the ⊆-smallest class†

S that satisfies

1. I ⊆ S.

2. S is closed under all operations in O, or simply, closed under O.

3. The “smallest” part: Any class T that satisfies 1. and 2. also satisfies
S ⊆ T .

The set O may be infinite. Each operation Oi is a set. �

Nice definition, but does Cl(I,O) exist given I and O? Yes. But first,

5.0.2 Theorem. For any choice of I and O, if Cl(I,O) exists, then it is
unique.

Proof. Say S = Cl(I,O) = T . Then, letting S pose as closure, we get S ⊆ T
from 5.0.1. Then, letting T pose as closure, we get T ⊆ S, again from 5.0.1.
Thus S = T . �

†Let’s say “class” until we learn that it is actually a set.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

5.1. Induction over a closure 111

5.0.3 Theorem. For any choice of I and O with the restrictions of Definition
5.0.1 the set Cl(I,O) exists.

Proof. We have to check and note a few things.

1. By 3.1.5, for each Oi, ran(Oi) is a set.

2. The class F = {ran(Oi) : i = 1, 2, 3 . . .} is a set. This is so by Principle 2,
since I can index all members of F by assigning unique indices from N to
each of its members (and N is a set by Principle 0).

3. By 2. above and 2.4.16,
⋃
F is a set, and so is T = I ∪

⋃
F �

4. T contains I as a subset (by the way T was defined) and is O-closed since
any Oi-output —no matter where the inputs come from— is in ran(Oi) ⊆⋃
F .

5. The family G = {S : I ⊆ S & S is O-closed} contains the set T as a
member. Thus (cf. 2.4.17)

C
Def
=
(⋂

G
)
⊆ T

is a set. Since all sets S in G contain I and are O-closed, so is C. But
C ⊆ S for all such sets S the way it is defined. So it is ⊆-smallest.

Thus, C = Cl(I,O). We proved existence. �

5.1. Induction over a closure

5.1.1 Definition. Let a pair (I,O) be given as above.

We say that a property P [x] propagates with O iff for eachOi(x1, . . . , xn, y) ∈
O, if whenever all the inputs in the xi satisfy P [x] (i.e., P [xi] is true for each
argument xi), then all output values returned by y —for said inputs— satisfy
P [x] as well. Recall that for each assignment of values to the inputs x1, . . . , xn
we may have more than one output values in y; for all such values P [y] is true.

�

5.1.2 Lemma. For all (I,O) and a property P [x], if the latter propagates with
O, then the class A = {x : P [x]} is closed under O (is O-closed).

Proof. So let Oi(x1, . . . , xn, y) ∈ O. Let a1, . . . , an be all in A. Thus

P [ai], for all i = 1, . . . , n

By assumption, if Oi(a1, . . . , an, b), then P [b] is true, hence b ∈ A. �

5.1.3 Theorem. Let Cl(I,O) and a property P [x] be given. Suppose we have
done the following steps:

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

112 5. Inductively defined sets; Structural induction

1. We showed that for each a ∈ I, P [a] is true.

2. We showed that P [x] propagates O.

Then every a ∈ Cl(I,O) has property P [x].

� Naturally, the technique encapsulated by 1. and 2. of 5.1.3 is called “induction
over Cl(I,O)” or “structural induction” over Cl(I,O).

Note that for each Oi ∈ O the “propagation of property P [x]” will take the
form of an I.H. followed by an I.S.:

• Assume for the unspecified fixed inputs a1, . . . , an of Oi that all satisfy
P [x]. This is the I.H. for Oi.

• Then prove that any output b of Oi caused by said input also satisfies
the property.

�

Proof. (of 5.1.3) Let us write

ADef
= {x : P [x]}

Thus, 1. in 5.1.3 translates to
I ⊆ A (∗)

2. and 5.1.3 yield
A is O-closed (∗∗)

� If A were a set —a hypothesis we cannot make because of Russell’s paradox—
then (∗) and (∗∗) would immediately yield Cl(I,O) ⊆ A and we would be done.
So we have a tiny bit more work to do: �

By 5.0.3, item 4, the set T built for our I and O contains I and is O-closed.
Thus so is T ∩ A! Moreover the latter is a set, as we know (2.4.2). Hence, by
5.0.1,

Cl(I,O) ⊆ T ∩ A ⊆ A

The last implication immediately translates to

“x ∈ Cl(I,O) implies P [x] is true” �

5.1.4 Example. Let S = Cl(I,O) where I = {0} and O contains just one
operation, x+ 1 = y, where y is the output variable. That is,

n −→ x+ 1 = y −→ n+ 1 (1)

is our only operation. By induction over S, I can show S ⊆ N.
The “P [x]” is “x ∈ N”.
So P [0] is true. I verified the property for I. That the property propagates

with our operation is captured by (1) above (if n ∈ N, then n+ 1 ∈ N). Done!

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

5.2. Closure vs. definition by stages 113

Can we show also N ⊆ Cl(I,O)? Yes: In this direction I do SI over N on
variable n. The property, let’s call it Q[x], now is “x ∈ Cl(I,O)”.

For n = 0, n ∈ Cl(I,O) since 0 ∈ I ⊆ Cl(I,O) by 5.0.1.
Now, say (I.H.) n ∈ Cl(I,O). Since Cl(I,O) is closed under the operation

x+ 1 = y, we have n+ 1 ∈ Cl(I,O) by 5.0.1.
So,

Cl(I,O) = N �

� Thus the induction over a closure generalises SI. �

5.2. Closure vs. definition by stages

We will see in this section that there is also a by-stages or by-steps way to obtain
Cl(I,O).

5.2.1 Definition. (Derivations) An (I,O)-derivation —or just derivation if
we know which (I,O) we are talking about— is a finite sequence of objects

d1, d2, d3, . . . , di, . . . , dn (1)

satisfying:
Each di is

1. A member of I,

or

2. For some j, one of the results of Oj(x1, . . . , xk, y) with inputs a1, . . . , ak
that are found in the derivation (1) to the left of di.

n is called the length of the derivation. Every di is called an (I,O)-derived
object, or just derived, if the (I,O) is understood. �

� Clearly, the concept of a derivation abstracts, thus generalises, the concept of
proof, while a derived object abstracts the concept of a theorem. �

5.2.2 Example. For the (I,O) of 5.1.4, here are some derivations:

0

0, 0, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0

Nothing says we cannot repeat a di in a derivation! Lastly here is an “efficient”
derivation with no redundant steps: 0, 1, 2, 3, 4, 5. �

5.2.3 Proposition. If d1, d2, d3, . . . , di, . . . , dn, dn+1, . . . , dm is a (I,O)-deriva-
tion, then so is d1, d2, d3, . . . , di, . . . , dn.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

114 5. Inductively defined sets; Structural induction

Proof. Each di is validated in a derivation either outright (i.e., is in I) or by
looking to the left! What we may remove to the right of di does not affect the
validity of that entry. �

5.2.4 Proposition. If d1, d2, . . . , dn and e1, e2, . . . , em are (I,O)-derivations,
then so is d1, d2, . . . , dn, e1, e2, . . . , em.

Proof. Traversing d1, d2, . . . , dn and e1, e2, . . . , em in

d1, d2, . . . , dn, e1, e2, . . . , em

from left to right we validate each di and each ej giving precisely the same
validation reason as we would in each sequence d1, d2, . . . , dn and e1, e2, . . . , em
separately. These reasons are local to each sequence. �

We now prove that defining a set S as a (I,O)-closure is equivalent with
defining S as the set of all (I,O)-derived objects.

5.2.5 Theorem. For any initial sets of objects and operations on objects (I
and O) we have that Cl(I,O) = {x : x is (I,O)-derived}.

Proof. Let us write D = {x : x is (I,O)-derived} and prove that Cl(I,O) = D.
We have two directions:

1. Cl(I,O) ⊆ D: By induction over Cl(I,O). The property to prove is
“x ∈ D”.

• Let x ∈ I. Then x is derived via the one-member derivation

x

So x ∈ D. Thus all x ∈ I have the property.

• The property “x ∈ D” propagates with each Ok(~xn, y) ∈ O: So let
each of the xi have a derivation . . . , xi . We show that so does y.

Concatenating all these derivations we get a derivation (5.2.4)

. . . , x1 , . . . , . . . , xi , . . . , . . . , xn (1)

But then so is

. . . , x1 , . . . , . . . , xi , . . . , . . . , xn , y (2)

by 5.2.1, case 2. That is, y is derived, hence y ∈ D is proved (I.S.).

2. D ⊆ Cl(I,O): Let x ∈ D. This time we do good old-fashioned CVI over
N on the length n of a derivation of x, toward showing that x ∈ Cl(I,O)
—this is the “property of x” that we prove.

Basis. n = 1. The only way to have a 1-element derivation is that x ∈ I.

Thus, x ∈ I ⊆ Cl(I,O) by 5.0.1.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

5.2. Closure vs. definition by stages 115

I.H. Assume the claim for x derived with length k < n.

I.S. Prove that the claim holds when x has a derivation of length n.

Consider such a derivation

a1, . . . ai, . . . , ak, . . . ,

an
‖
x

If x ∈ I, then we are done by the Basis. Otherwise, say x is the result
of an operation (relation) Or ∈ O, applied on entries to the left of x, that
is, say that Or(. . . , x) is true —where we did not (have to) specify the
inputs.

By the I.H. the inputs of Or all are in Cl(I,O). Now, since this closure is
closed under Or(. . . , x), we have that the output x is in Cl(I,O) too. �

� So now we have two equivalent (5.2.5) approaches to defining inductively defined
sets S: As S = Cl(I,O) or as S = {x : x is (I,O)-derived}.

The first approach is best when you want to prove properties of all members
of the set S. The second is best when you want to show x ∈ S, for some specific
x. �

5.2.6 Example. Let A = {a, b}. We call A an “alphabet”.
Let I = {λ}, λ being (the name of) the empty string. Let us denote string

concatenations by putting the strings we want to concatenate next to each other.
E.g., concatenate aaa and bbbaa to obtain aaabbbaa. Also, if X denotes a string,
and so does Y , then XY denotes the concatenation of the strings (denoted by)
X and Y in that order. Similarly, Xa means the result of concatenating string
X with the (length-1) string a, in that order. The length of a string over A is
the number of occurrences in the string (with repetitions) of a and b.

We denote by A+ the set of all strings of non zero length formed using the
symbols a and b. A∗ is defined to be A+ ∪ {λ}. Let O consist of the operations
Oa and Ob:

X −→ Oa −→ Xa (1)

and

X −→ Ob −→ Xb (2)

We claim that Cl(I,O) = A∗.

1. For Cl(I,O) ⊆ A∗ we do induction over the closure to prove that any
x ∈ Cl(I,O) satisfies x ∈ A∗ (“the property”).

• Well, if x ∈ I then x = λ. But λ ∈ A∗.
• The property propagates with each of Oa and Ob. For example, if
X ∈ A∗, then since Xa is also a string over the alphabet A, we have
Xa ∈ A∗. Similarly for Ob. Done.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

116 5. Inductively defined sets; Structural induction

2. For Cl(I,O) ⊇ A∗ we do induction over N on n = |Y |—the length of Y—
to prove that any Y ∈ A∗ satisfies Y ∈ Cl(I,O) (“the property”).

• Basis. n = 0. Then Y = λ ∈ I ⊆ Cl(I,O). Done.

• I.H. Assume claim for fixed n.

• I.S. Prove for n + 1. If |Y | = n + 1 then Y = Xa or Y = X ′b for
some X or X ′ of length n. Say, it is Y = Xa. By I.H. X ∈ Cl(I,O).
But since Cl(I,O) is O-closed, we have Y = Xa ∈ Cl(I,O) by (1).
The Y = X ′b case is entirely similar. �

5.2.7 Example. Let A = {a, b} again.
Let I = {λ}, let O consist of one operation R:

X −→ R −→ aXb (3)

We claim that Cl(I,O) = {anbn : n ≥ 0}, where for any string X,

Xn Def
= XX . . .X︸ ︷︷ ︸

n copies of X

If n = 0, “0 copies of X” means λ.

Let us write S = {anbn : n ≥ 0}.

1. For Cl(I,O) ⊆ S we do induction over the closure to prove that any
x ∈ Cl(I,O) satisfies x ∈ S (“the property”).

• Well, if x ∈ I then x = λ = a0b0. Done.

• The property propagates with each of R. For example, say x =
anbn ∈ S. Using (3) we see that the output, axb, is an+1bn+1 ∈ S.
The property does propagate! Done.

2. For Cl(I,O) ⊇ S we do induction over N on n of x = anbn (arbitrary
member of S) to prove that any x ∈ S satisfies x ∈ Cl(I,O) (“the prop-
erty”).

• Basis. n = 0. Then x = λ ∈ I ⊆ Cl(I,O). Done.

• I.H. Assume claim for fixed n.

• I.S. Prove for n + 1. Thus x = an+1bn+1 = aanbnb. By the I.H.,
anbn ∈ Cl(I,O). By (3) —recall that Cl(I,O) is O-closed— we get
the output aanbnb = an+1bn+1 ∈ Cl(I,O). �

5.2.8 Example. (Extended Binary Trees) This is a longish example with
some preliminary discussion up in front. We want to define the term known as
“Tree”. This term refers to a structure, which uses as building blocks —called
nodes— the members of the enumerable set below

A = {©0,©1,©2, . . . ;�0,�1,�2, . . .}

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

5.2. Closure vs. definition by stages 117

Trees look something like this:

1 2 43

1

2 3

1 2 43

1

2 3

4 5

The qualifier “extended” is due to the presence of square nodes. We will not
define simple trees (they have round nodes only).

These nodes are made distinct by the use of subscripts. The symbols in the
set A are distinguished by their type, “round” vs. “square”, and within each type
by their natural number index. Thus, ©i 6=©j iff i 6= j, �i 6= �j iff i 6= j, and
©i 6= �j , for all i, j.

One feature in both of the above drawings is essential to note (blue type
below):

Circular or square nodes are connected by line segments. Walking in the
vertical direction from the top of the page towards the bottom, no nodes are
ever shared. In particular, in all the examples above where we have more
than one node, you will notice that the two sets of nodes that “hang below”
the top node (left and right of it) are disjoint . We need to include this
requirement in our definition.

But clearly these sets of notes have “geometric structure” (position: left/right;
and connections: via line segments)! They are not “flat” sets like {©5,�11}.

And yet, in the mathematical definition below we will need to state the
blue condition: the left and right, when you “forget” the lines and positions,
become disjoint flat sets. This observation is what imposes some complexity in
the definition, which defines the “structure” and the “flat” set that supports
the structure (the set of nodes in the tree) simultaneously.

We define an extended binary tree as a member of the inductively defined
set of E-Trees. It is intended that each e-tree of the inductively defined set of
all trees is an ordered pair :

(flat set of its nodes, geometric tree structure)

The “geometric tree structure” is mathematically given in a one-dimensional
depiction of the trees.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

118 5. Inductively defined sets; Structural induction

For example, the first tree in the figure above is linearly represented by((
�1,©2,�2

)
,©1,

(
�3,©3,�4

))
To appreciate the issue of “structure vs. flat set of nodes” let us first write the
above as ((

a, b, c
)
, d,
(
f, g, h

))
(2)

How easy is to obtain the flat set of nodes a–h? Easy via naked eye for very
small trees, hard for large ones.

� So, why not forget flat structure and just say “left and right parts of a tree must
be disjoint”? Because such parts are not sets (sets do not have “structure”, like
“edges”), and the term “disjoint” refers to sets. �

Here (2) is shorthand for something really complex, namely

(a, b, c) =
{
{a, {a, b}}, {a, c, {a, b}}

}
Suppose now that b = g, but all other letters (a, c, d, f, h) are distinct. Thus

(f, g, h) = (f, b, h) =
{
{f, {f, b}}, {f, h, {f, b}}

}
and hence

(
a, b, c

)
∩
(
f, g, h

)
= ∅ (t)

So test (t) does NOT give me the information I need before I build the tree
in (2). Apparently it is wrong to do so, as b = g.

I do need the information the flat set of nodes gives me, for the decision.
See definition below for the details!

Thus our definition below builds the flat set —called the support of the
tree— of nodes of a tree at the same time as it builds the structure of the tree.

5.2.9 Definition. We define the set of all extended trees —or just trees— ET ,
as Cl(I,O) where:

1. First, chose as the set of initial objects

I =
{

(∅,�0), (∅,�1), (∅,�2), . . .}

2. O has just one rule with a constraint on the input: If FX ∩ FY = ∅ and
©i /∈ FX ∪ FY , then

(FX , X) −→
©i −→

(FY , Y) −→

 form tree −→
(
FX ∪ FY ∪ {©i}, (X,©i, Y)

)

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

5.2. Closure vs. definition by stages 119

3. For each (S, T) ∈ Cl(I,O) we say that T is an extended tree, and S is its
support , that is, the “flat” set nodes from the set A used to build T . We
indicate this relationship by

S = sup(T)†

If T = (X,©i, Y), then we say that ©i is the root of T , while X is its
left and Y is its right subtree. �

Thus, some immediate examples of trees are

1 2 43

1

2 3

Indeed, using 5.2.5, the leftmost example is a tree since it is the right component
of the pair (∅,�1). The next tree is built via the derivation —written linearly,

(∅,�1), (∅,�2),
(

1, (�1,©2,�2)
)

The next derivation builds both the 2nd and 3rd trees:

(∅,�1), (∅,�2),
(

1, (�1,©2,�2)
)
, (∅,�3), (∅,�4),

(
1, (�3,©3,�4)

)
The 4th tree has this as a derivation:‡

(∅,�1), (∅,�2),
(

1, (�1,©2,�2)
)
,(∅,�3), (∅,�4),

(
1, (�3,©3,�4)

)
,(

3,
(

1, (�1,©2,�2)
)
,©1,

(
1, (�3,©3,�4)

))
The support of the 4th tree is the flat set {©1,©2,©3}. �

5.2.10 Example. (Trees —continued) Hmm! Seems like we are not includ-
ing square nodes in the support. See how the support of all nodes in I is ∅ for
each entry. Why so?

In the words of Knuth ([Knu73]) “trees is the most important nonlinear
structure arising in computing algorithms”. The extended tree is an abstraction
of trees that we implement with computer programs, where round nodes are the

†Caution: As for many other symbols, “sup” means something else in the context of
POsets. We will not get into this!
‡Derivations are not unique as is clear from Example 5.2.2.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

120 5. Inductively defined sets; Structural induction

only ones that can carry data. The lines are (implicitly) pointing downwards.
They are pointers, in computer jargon. For example, the topmost leftmost line
in the fourth tree above points to the node ©2. Practically it means that if
your program is processing node ©1, then it can transfer to and process node
©2 if it wishes. It knows the address of ©2. The pointer holds this address as
value.

Which brings me to square nodes! Together with the line planted on them,
they are notation for null pointers! They point nowhere. So square nodes can-
not hold information, that is why they do not contribute to the support of the tree.

The computer scientist calls round nodes “internal” and calls square nodes
“external”.

Finally, how do the lines —called edges— get inserted? We defined “root”
for trees, as well as “left subtree” and “right subtree”. So, to draw lines and
draw a tree that is given mathematically as (X,©r, Y), we call recursively the
process that does it on (inputs) X and Y . Then add two more edges: One from
©r to the root of X and one from ©r to the root of Y .

How does the recursion terminate? Well, if your tree is just �j , then there
is nothing to draw. �j is the root. This is the basis of the recursive procedure:
do nothing. �

Here is something interesting about all extended trees:

5.2.11 Proposition. In any extended tree, the number of square nodes exceeds
by one the number of round nodes.

Proof. Induction over the set of all trees (5.2.9) Cl(I,O).

1. Basis. For any (∅,�i), the tree-part (structure-part) is just �i. One
square node, 0 round nodes. Done.

2. The property propagates with the only tree-builder operation:

(FX , X) −→
©i −→

(FY , Y) −→

 form tree −→
(
FX ∪ FY ∪ {©i}, (X,©i, Y)

)
Indeed, suppose that X has φ internal (round) and ε external (square)
nodes. Let also Y have φ′ internal and ε′ external nodes.

The assumption on the input side is then (I.H.) that

φ+ 1 = ε (1)

and

φ′ + 1 = ε′ (2)

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

5.2. Closure vs. definition by stages 121

The output side of the operation has the tree (X,©i, Y). This has Φ =
φ+ φ′ + 1 internal nodes and E = ε+ ε′ external ones. Using (1) and (2)
we have

Φ = ε+ ε′ − 1 = E − 1

Seeing that this is the property we want to prove on the output side,
indeed the property propagates with the rule. Done. �

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

122 5. Inductively defined sets; Structural induction

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

Bibliography

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, NY, 1965.

[Hin78] P. G. Hinman, Recursion-theoretic hierarchies, Springer-Verlag, New
York, 1978.

[Kle43] S.C. Kleene, Recursive predicates and quantifiers, Transactions of the
Amer. Math. Soc. 53 (1943), 41–73, [Also in [Dav65], 255–287].

[Knu73] Donald E. Knuth, The Art of Computer Programming; Fundamental
Algorithms, 2nd ed., vol. 1, Addison-Wesley, 1973.

[Kur63] A.G. Kurosh, Lectures on General Algebra, Chelsea Publishing Com-
pany, New York, 1963.

[Tou03a] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathe-
matical Logic, Cambridge University Press, Cambridge, 2003.

[Tou03b] , Lectures in Logic and Set Theory, Volume 2: Set Theory,
Cambridge University Press, Cambridge, 2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.

Notes on discrete mathematics; from the EECS 1028 lecture notes c© G. Tourlakis, W 2020.

