York University

Faculty of Science and Engineering

MATH 1090: Facts-List for the December 2007 Examination

The following are the axioms of Propositional Calculus: In what follows, A,B,C stand for arbitrary formulae.

Properties of \equiv

 $((A \equiv B) \equiv C) \equiv (A \equiv (B \equiv C))$ Associativity of \equiv (1) $(A \equiv B) \equiv (B \equiv A)$ Symmetry of \equiv (2)Properties of \bot , \top $\top \equiv \bot \equiv \bot$ \top vs. \bot (3)Properties of \neg Introduction of \neg $\neg A \equiv A \equiv \bot$ (4)Properties of \vee $(A \lor B) \lor C \equiv A \lor (B \lor C)$ **Associativity of** ∨ (5)Symmetry of \lor $A \lor B \equiv B \lor A$ (6)Idempotency of \lor $A \lor A \equiv A$ (7) $A \lor (B \equiv C) \equiv A \lor B \equiv A \lor C$ Distributivity of \lor over \equiv (8)**Excluded Middle** $A \vee \neg A$ (9)Properties of \wedge $A \wedge B \equiv A \equiv B \equiv A \vee B$ Golden Rule (10)Properties of \rightarrow $A \to B \equiv A \vee B \equiv B$ Implication (11)

The **Primary** Boolean rules are:

$$\frac{A, A \equiv B}{B} \tag{Eqn}$$

and

$$\frac{A \equiv B}{C[p := A] \equiv C[p := B]} \tag{Leib}$$

The following are the Predicate Calculus Axioms:

Any partial generalisation of any formula in groups Ax1-Ax6 is an axiom for Predicate Calculus.

Groups Ax1-Ax6 contain the following schemata:

Ax1. Every tautology.

Ax2. $(\forall \mathbf{x})A \to A[\mathbf{x} := t]$, for any term t.

Ax3. $(\forall \mathbf{x})(A \to B) \to (\forall \mathbf{x})A \to (\forall \mathbf{x})B$.

Ax4. $A \to (\forall \mathbf{x}) A$, provided \mathbf{x} is not free in A.

Ax5. For each object variable \mathbf{x} , the formula $\mathbf{x} = \mathbf{x}$.

Ax6. For any terms t, s, the schema $t = s \rightarrow (A[\mathbf{x} := t] \equiv A[\mathbf{x} := s])$.

The following metatheorems are good for **both** Propositional and Predicate Calculus:

- 1. Redundant True. $\Gamma \vdash A \text{ iff } \Gamma \vdash A \equiv \top$
- 2. Modus Ponens (MP). $A, A \rightarrow B \vdash B$
- 3. Cut Rule. $A \lor B, \neg A \lor C \vdash B \lor C$
- 4. Deduction Theorem. If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$
- 5. Proof by contradiction. $\Gamma, \neg A \vdash \bot \text{ iff } \Gamma \vdash A$
- 6. Post's Theorem. (Also called "tautology theorem", or even "completeness of Propositional Calculus theorem")

If $\models_{\text{taut}} A$, then $\vdash A$.

Also: If $\Gamma \models_{\text{taut}} A$, then $\Gamma \vdash A$.

7. Proof by cases. $A \rightarrow B, C \rightarrow D \vdash A \lor C \rightarrow B \lor D$

Also the special case: $A \rightarrow B, C \rightarrow B \vdash A \lor C \rightarrow B$

Translations

$$(\exists \mathbf{x}) A \text{ translates to } \neg (\forall \mathbf{x}) \neg A$$

 $(\forall \mathbf{x})_B A$ translates to $(\forall \mathbf{x})(B \to A)$

 $(\exists \mathbf{x})_B A$ translates to $(\exists \mathbf{x})(B \wedge A)$

Useful facts from Predicate Calculus (proved in class—you may use them without proof):

We know that SL and WL are derived rules useful in equational proofs within predicate calculus.

- \blacktriangleright More "rules" and (meta) theorems.
- (i) Dummy renaming.

If **z** does not occur in $(\forall \mathbf{x})A$ as either free or bound, then $\vdash (\forall \mathbf{x})A \equiv (\forall \mathbf{z})(A[\mathbf{x} := \mathbf{z}])$

If z does not occur in $(\exists x)A$ as either free or bound, then $\vdash (\exists x)A \equiv (\exists z)(A[x:=z])$

(ii) \forall over \circ distribution, where " \circ " is " \vee " or " \rightarrow ".

$$\vdash A \circ (\forall \mathbf{x})B \equiv (\forall \mathbf{x})(A \circ B)$$
, **provided** \mathbf{x} is not free in A

 $\exists over \land distribution$

$$\vdash A \land (\exists \mathbf{x})B \equiv (\exists \mathbf{x})(A \land B)$$
, **provided** \mathbf{x} is not free in A

(iii) $\forall over \land distribution$.

$$\vdash (\forall \mathbf{x}) A \land (\forall \mathbf{x}) B \equiv (\forall \mathbf{x}) (A \land B)$$

 $\exists over \lor distribution.$

$$\vdash (\exists \mathbf{x}) A \lor (\exists \mathbf{x}) B \equiv (\exists \mathbf{x}) (A \lor B)$$

(iv) \forall commutativity (symmetry).

$$\vdash (\forall \mathbf{x})(\forall \mathbf{y})A \equiv (\forall \mathbf{y})(\forall \mathbf{x})A$$

 \exists commutativity (symmetry).

$$\vdash (\exists \mathbf{x})(\exists \mathbf{y})A \equiv (\exists \mathbf{y})(\exists \mathbf{x})A$$

- (v) Specialisation. $(\forall \mathbf{x})A \vdash A[\mathbf{x} := t]$, for any term t. Dual of Specialisation. $A[\mathbf{x} := t] \vdash (\exists \mathbf{x})A$, for any term t.
- (vi) Generalisation. If $\Gamma \vdash A$ and if, moreover, the formulae in Γ have **no** free **x** occurrences, then also $\Gamma \vdash (\forall \mathbf{x})A$.
- (vii) \forall *Monotonicity*. If $\Gamma \vdash A \rightarrow B$ so that the formulae in Γ have **no free x occurrences**, then we can infer

$$\Gamma \vdash (\forall \mathbf{x}) A \to (\forall \mathbf{x}) B$$

(viii) \forall Introduction; a special case of \forall Monotonicity that uses (i) above. If $\Gamma \vdash A \rightarrow B$ so that neither the formulae in Γ nor A have **any free x** occurrences, then we can infer

$$\Gamma \vdash A \to (\forall \mathbf{x})B$$

(ix) Finally, the Auxiliary Variable ("witness") Metatheorem. If $\Gamma \vdash (\exists \mathbf{x}) A$, and if \mathbf{y} is a variable that **does not** occur as either free or bound variable in any of A or B or the formulae of Γ , then

$$\Gamma, A[\mathbf{x} := \mathbf{y}] \vdash B \text{ implies } \Gamma \vdash B$$

Semantics facts

Propositional Calculus	Predicate Calculus
(Boolean Soundness) $\vdash A \text{ implies } \models_{\text{taut }} A$	$\vdash A \text{ does } \mathbf{NOT} \text{ imply } \models_{\mathbf{taut}} A$
$(Post) \models_{taut} A \text{ implies} \vdash A$	However, (Post) $\models_{\text{taut}} A \text{ implies} \vdash A$
	(Pred. Calc. Soundness) $\vdash A$ implies $\models A$
	(Gödel Completeness) $\models A \text{ implies } \vdash A$

CAUTION! The above facts/tools are only a fraction of what we have covered in class. They are *very important and very useful*, and that is why they are listed for your reference here.

You can also use without proof \boldsymbol{ALL} the things we have covered (such as "one-point-rule", "de Morgan's laws", etc.).

But these —the unlisted ones— are up to you to remember and to correctly state!

Whenever in doubt of whether or not a "tool" you are about to use \underline{was} covered in class, prove the validity/fitness of the tool before $using\ it!$

