Chapter 1

A Weak Post's Theorem and the Deduction Theorem Retold

This note retells
(1) A weak form of Post's theorem: If Γ is finite and $\Gamma \models_{\text {taut }} A$, then $\Gamma \vdash A$. This is adequate in practice. It also derives as a corollary the Deduction Theorem:
(2) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$.

1.1. Some tools

We will employ below the following Lemma.
1.1.1 Lemma. $\neg A \vee C, \neg B \vee C \vdash \neg(A \vee B) \vee C$.

Proof. Here $\Gamma=\{\neg A \vee C, \neg B \vee C\}$.

$$
\begin{aligned}
& \neg(A \vee B) \vee C \\
\Leftrightarrow & \langle\text { Leib: } r \vee C+\text { deMorgan }\rangle \\
& (\neg A \wedge \neg B) \vee C \\
\Leftrightarrow & \langle\text { distrib. of } \vee \text { over } \wedge\rangle \\
& (\neg A \vee C) \wedge(\neg B \vee C) \\
\Leftrightarrow & \langle\text { Leib: } r \wedge(\neg B \vee C), \text { and } \Gamma \vdash \neg A \vee C \equiv \top\rangle \\
& \top \wedge(\neg B \vee C) \\
\Leftrightarrow & \langle\text { by } \vdash \top \wedge X \equiv X\rangle
\end{aligned}
$$

$$
\neg B \vee C \text { bingo! }
$$

1.1.2 Corollary. $\vdash \neg(A \vee B) \vee C \equiv(\neg A \vee C) \wedge(\neg B \vee C)$.

Proof. In the previous proof just use the first five lines (first two \Leftrightarrow).
1.1.3 Main Lemma. Suppose that A contains none of the symbols \top, \perp, \rightarrow $, \wedge, \equiv$ If $\models_{\text {taut }} A$, then $\vdash A$.

Proof. Under the assumption, A is an \vee-chain, that is, it has the form

$$
\begin{equation*}
A_{1} \vee A_{2} \vee A_{3} \vee \ldots \vee A_{i} \vee \ldots \vee A_{n} \tag{1}
\end{equation*}
$$

where none of the A_{i} has the form $B \vee C$.
In (1) we assume without loss of generality that $n>1$, due to the axiom $X \vee X \equiv \overline{X \text {-that is, in the contrary case we can use } A \vee A \text { instead, which by }}$ virtue of the axiom is a tautology as well. Moreover, (1), that is A, is written in least parenthesised notation.

Let us call an A_{i} reducible iff it has the form $\neg(C \vee D)$ or $\neg(\neg C)$. Otherwise it is irreducible. Thus, the only possible irreducible A_{i} have the form p or $\neg p$ (where p is a variable). We say that p "occurs positively in $\ldots \vee p \vee \ldots$ ", while it "occurs negatively in $\ldots \vee \neg p \vee \ldots$ ". In, for example, $p \vee \neg p$ it occurs both positively and negatively.

By definition we will say that A is irreducible iff all the A_{i} are.
We define the reducibility degree, of A_{i}-in symbols, $r d\left(A_{i}\right)$ - to be the number of \neg or \vee connectives in it, not counting a possible leading \neg. The reducibility degree of A is the sum of the reducibility degrees of all its A_{i}.

For example, $r d(p)=0, r d(\neg p)=0, r d(\neg(\neg p \vee q))=2, r d(\neg(\neg p \vee \neg q))=3$, $r d(\neg p \vee q))=0$.

By induction on $r d(A)$ we now prove the main lemma, on the stated hypothesis that $\models_{\text {taut }} A$.

For the basis, let A be an irreducible tautology $(r d(A)=0)$. It must be that A is a string of the form " $\cdots \vee p \vee \cdots \neg p \vee \cdots$ " for some p, otherwise, if no p appears both "positively" and "negatively", then we can find a truth-assignment that makes A false (f)-a contradiction to its tautologyhood. To see that we can do this, just assign \mathbf{f} to p 's that occur positively only, and \mathbf{t} to those that occur negatively only.

Now

$$
\begin{aligned}
& A \\
\Leftrightarrow & \langle\text { commuting terms of an } \vee \text {-chain }\rangle \\
& p \vee \neg p \vee B \quad(\text { what is " } B \text { "?) }
\end{aligned}
$$

A "Weak" Post's Theorem and the Deduction Theorem(c) by George Tourlakis

$$
\begin{aligned}
\Leftrightarrow & \langle\text { Leib: } r \vee B+\text { excluded middle, plus Red. } \top \text { metathm. }\rangle \\
& \top \vee B \text { bingo! }
\end{aligned}
$$

Thus $\vdash A$ which settles the Basis-case $r d(A)=0$.
(2) We now argue the case where $r d(A)=n+1$, on the I.H. that for any formula Q with $r d(Q) \leq n$, we have that $\models_{\text {taut }} Q$ implies $\vdash Q$.

By commutativity (symmetry) of " \vee ", let us assume without restricting generality that $r d\left(A_{1}\right)>0$.

We have two cases:
(1) A_{1} is the string $\neg \neg C$, hence A has the form $\neg \neg C \vee D$. Clearly $\models_{\text {taut }} C \vee D$. Moreover, $r d(C \vee D)<r d(\neg \neg C \vee D)$, hence

$$
\vdash C \vee D
$$

by the I.H. But,

$$
\begin{aligned}
& \neg \neg C \vee D \\
\Leftrightarrow & \langle\text { Leib: } r \vee D+\vdash \neg \neg X \equiv X\rangle \\
& C \vee D \text { bingo! }
\end{aligned}
$$

Hence, $\vdash \neg \neg C \vee D$, that is, $\vdash A$ in this case.
One more case to go:
(2) A_{1} is the string $\neg(C \vee D)$, hence A has the form $\neg(C \vee D) \vee E$.

$$
\begin{equation*}
\text { We want: } \vdash \neg(C \vee D) \vee E \tag{i}
\end{equation*}
$$

By 1.1.2 and from $\models_{\text {taut }} \neg(C \vee D) \vee E$-this says $\models_{\text {taut }} A$-we immediately get that

$$
\begin{equation*}
\models_{\text {taut }} \neg C \vee E \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
\models_{\text {taut }} \neg D \vee E \tag{iii}
\end{equation*}
$$

from the \equiv and \wedge truth tables.
Since the $r d$ of each of $(i i)$ and (iii) is smaller than that of A, by I.H. we obtain

$$
\vdash \neg C \vee E
$$

and

$$
\vdash \neg D \vee E
$$

which by 1.1.1 yield the validity of (i).
We are done, except for one small detail: If we had changed an "original" A into $A \vee A$ (cf. the "without loss of generality" remark below (1)), then we have proved $\vdash A \vee A$. The idempotent axiom and Eqn then yield $\vdash A$.

We are now removing the restriction on A regarding its connectives and constants:
1.1.4 Metatheorem. (Post's Theorem) If $\models_{\text {taut }} A$, then $\vdash A$.

Proof. First, we note the following equivalences. The ones to the left of "also" follow from the ones to the right by soundness. The ones to the right are known from class (or follow trivially thereof): The first is the Excluded Middle Axiom augmented by "Redundant T ". The one below it follows from simple manipulation ${ }^{\dagger}$ and $\vdash \perp \equiv \neg \top$. All the others have been explicitly covered.

$$
\begin{gather*}
\models_{\text {taut }} \top \equiv \neg p \vee p, \text { also } \vdash \top \equiv \neg p \vee p \\
\models_{\text {taut }} \perp \equiv \neg(\neg p \vee p), \text { also } \vdash \perp \equiv \neg(\neg p \vee p) \\
\models_{\text {taut }} C \rightarrow D \equiv \neg C \vee D, \text { also } \vdash C \rightarrow D \equiv \neg C \vee D \\
\models_{\text {taut }} C \wedge D \equiv \neg(\neg C \vee \neg D), \text { also } \vdash C \wedge D \equiv \neg(\neg C \vee \neg D) \\
\models_{\text {taut }}(C \equiv D) \equiv((C \rightarrow D) \wedge(D \rightarrow C)), \text { also } \vdash(C \equiv D) \equiv((C \rightarrow D) \wedge(D \rightarrow C)) \tag{1.1}
\end{gather*}
$$

Using the I. 1 above, we eliminate, in order, all the \equiv, then all the \wedge, then all the \rightarrow and finally all the \perp and all the T. Let us assume that our process eliminates one unwanted symbol at a time. Thus, starting from A we will generate a sequence of formulae

$$
F_{1}, F_{2}, F_{3}, \ldots, F_{n}
$$

where F_{n} contains no $\top, \perp, \wedge, \rightarrow, \equiv$. I am using here F_{1} as an alias for A. We will also give to F_{n} the alias A^{\prime}.

Now in view of the provable equivalences of I.1, each transformation step is the result of a Leib application, thus we have

$$
\begin{aligned}
& F_{1} \\
\Leftrightarrow & \langle\text { Leib from I.1 }\rangle \\
& F_{2} \\
\Leftrightarrow & \langle\text { Leib from I.1 }\rangle \\
& F_{3} \\
\Leftrightarrow & \langle\text { Leib from I.1 }\rangle \\
& F_{4} \\
& \vdots \\
\Leftrightarrow & \langle\text { Leib from I.1 }\rangle \\
& F_{n}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\vdash A \equiv A^{\prime} \tag{1}
\end{equation*}
$$

[^0]By soundness, I also get (from (1))

$$
\begin{equation*}
\models_{t a u t} A \equiv A^{\prime} \tag{2}
\end{equation*}
$$

Now, we are given that $\models_{\text {taut }} A$. By (2) and the fact that Eqn propagates truth I get $\models_{\text {taut }} A^{\prime}$. As A^{\prime} is free from $\top, \perp, \wedge, \rightarrow, \equiv, 1.1 .3$ yields $\vdash A^{\prime}$. Eqn and (1) yield $\vdash A$.

Post's theorem is often called the "Completeness Theorem" \dagger of Propositional Calculus. It shows that the syntactic manipulation apparatus completely captures the notion of "truth" (tautologyhood) in the propositional case.
1.1.5 Corollary. If $A_{1}, \ldots, A_{n} \models_{\text {taut }} B$, then $A_{1}, \ldots, A_{n} \vdash B$.

Proof. It is an easy semantic exercise to see that the hypothesis yields (indeed we have done so in class) that

$$
\models_{t a u t} A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B .
$$

By 1.1.4,

$$
\vdash A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B
$$

hence (by Hypothesis Strengthening)

$$
\begin{equation*}
A_{1}, \ldots, A_{n} \vdash A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B \tag{1}
\end{equation*}
$$

Applying modus ponens n times to (1) we get

$$
A_{1}, \ldots, A_{n} \vdash B
$$

< The above corollary is very convenient. It says that any (correct) schema $A_{1}, \ldots, A_{n} \models_{\text {taut }} B$ leads to a derived rule of inference, $A_{1}, \ldots, A_{n} \vdash B$.

In particular, combining with the "transitivity of \vdash " Metatheorem known from class and text, we get
1.1.6 Corollary. If $\Gamma \vdash A_{i}$, for $i=1, \ldots, n$, and if $A_{1}, \ldots, A_{n} \models_{\text {taut }} B$, then $\Gamma \vdash B$.

Thus-unless otherwise requested!-we can, from now on, rigorously mix syntactic with semantic justifications of our proof steps.

For example, we have at once $A \wedge B \vdash A$, because (trivially) $A \wedge B \models_{\text {taut }} A$ (compare with our earlier, much longer, proof given in class).

[^1]
1.2. Deduction Theorem, Proof by Contradiction

1.2.1 Metatheorem. (The Deduction Theorem) If $\Gamma, A \vdash B$, then $\Gamma \vdash$ $A \rightarrow B$, where " Γ, A " means "all the assumptions in Γ, plus the assumption A " (in set notation this would be $\Gamma \cup\{A\}$).

Proof. Assume then $\Gamma, A \vdash B$. Let

$$
A_{1}, A_{2}, \ldots, A_{n}
$$

be a Γ, A-proof that contains B. Since it is a finite sequence it can only contain a subset of $\Gamma:\left\{G_{1}, \ldots, G_{m}\right\} \subseteq \Gamma$.

Thus,

$$
\begin{equation*}
G_{1}, \ldots, G_{m}, A \vdash B \text { as well } \tag{1}
\end{equation*}
$$

(1) and soundness yield $G_{1}, \ldots, G_{m}, A \models_{\text {taut }} B$. The latter yields

$$
\begin{equation*}
G_{1}, \ldots, G_{m} \neq_{t a u t} A \rightarrow B \tag{2}
\end{equation*}
$$

Indeed, a state v that makes the hs of (2) \mathbf{t} should make the ohs \mathbf{t} : If A is \mathbf{f}, then there is no work to do; if A is \mathbf{t}, then by (1), B is \mathbf{t}, thus $A \rightarrow B$ is \mathbf{t}. By 1.1.5, $G_{1}, \ldots, G_{m} \vdash A \rightarrow B$. By Hypothesis Strengthening, $\Gamma \vdash A \rightarrow B$.

It is noteworthy (and very easy to establish) that the opposite implication of 1.2 .1 holds:
1.2.2 Proposition. If $\Gamma \vdash A \rightarrow B$, then $\Gamma, A \vdash B$.

Proof. By Hypothesis Strengthening, $\Gamma, A \vdash A \rightarrow B$. By MP, we obtain $\Gamma, A \vdash$ B.

The mathematician, or indeed the mathematics practitioner, uses the Deduction theorem all the time, without stopping to think about it. Metatheorem 1.2.1 above makes an honest person of such a mathematician or practitioner.

The everyday "style" of applying the Metatheorem goes like this: Say we have all sorts of assumptions (nonlogical axioms) and we want, under these assumptions, to "prove" that "if A, then B " (verbose form of " $A \rightarrow B$ "). We start by adding A to our assumptions, often with the words, "Assume A ". We then proceed and prove just B (not $A \rightarrow B$), and at that point we rest our case.

Thus, we may view an application of the Deduction theorem as a simplification of the proof-task. It allows us to "split" an implication $A \rightarrow B$ that we want to prove, moving its premise to join our other assumptions. We now have to prove a simpler formula, B, with the help of stronger assumptions (that is, all we knew so far, plus A). That often makes our task so much easier!
1.2.3 Definition. A set of formulas Γ is inconsistent or contradictory af Γ proves every formula A.

A "Weak" Post's Theorem and the Deduction Theorem (c) by George Tourlakis

The following Lemma justifies the term "contradictory" for a Γ such as described above:
1.2.4 Lemma. Γ is inconsistent iff $\Gamma \vdash \perp$.

Proof. only if-part. If Γ is as in 1.2.3, then in particular it proves \perp since the latter is a wff.
if-part. Say, conversely, that we have

$$
\begin{equation*}
\Gamma \vdash \perp \tag{1}
\end{equation*}
$$

Let now A be any formula whatsoever. We have

$$
\begin{equation*}
\perp \models_{t a u t} A \tag{2}
\end{equation*}
$$

Pause. Do you believe (2)?
By Corollary 1.1.6, $\Gamma \vdash A$ follows from (1) and (2).
(2) Why "contradictory"? For example, because we know that $\models_{\text {taut }} \perp \equiv A \wedge \neg A$, II and hence (1.1.4) $\vdash \perp \equiv A \wedge \neg A$.

1.2.5 Metatheorem. (Proof by contradiction) $\Gamma \vdash A$ iff $\Gamma, \neg A$ is inconsistent.

Proof. By 1.2.4, $\Gamma, \neg A$ is inconsistent iff

$$
\begin{equation*}
\Gamma, \neg A \vdash \perp \tag{1}
\end{equation*}
$$

By 1.2.1 and 1.2.2, (1) is equivalent to

$$
\begin{equation*}
\Gamma \vdash \neg A \rightarrow \perp \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
& \neg A \rightarrow \perp \\
\Leftrightarrow & \langle\text { known thm }\rangle \\
& \neg \neg A \vee \perp \\
\Leftrightarrow & \langle\text { known thm }\rangle \\
& \neg \neg A \\
\Leftrightarrow & \langle\text { double neg }\rangle \\
& A
\end{aligned}
$$

Thus, (2)—and hence (1)—is equivalent to $\Gamma \vdash A$.
(2) Metatheorem 1.2.5 legitimises the tool of "proof by contradiction" that goes all the way back to the ancient Greek mathematicians: To prove A assume instead the opposite $(\neg A)$. Proceed then to obtain a contradiction. This being accomplished, it is as good as having proved A.

[^0]: ${ }^{\dagger}$ Recall that $\vdash \neg(A \equiv B) \equiv \neg A \equiv B$ and also $\vdash \neg(A \equiv B) \equiv A \equiv \neg B$.

 A "Weak" Post's Theorem and the Deduction Theorem(c) by George Tourlakis

[^1]: \dagger Which is really a Metatheorem, right?

 A"Weak" Post's Theorem and the Deduction Theoremⓒ by George Tourlakis

