Chapter 1

A Weak Post's Theorem and the Deduction Theorem Retold

This note retells

(1) A weak form of Post's theorem: If $\underline{\Gamma}$ is finite and $\Gamma \models_{\text{taut}} A$, then $\Gamma \vdash A$. This is adequate in practice. It also derives as a corollary the Deduction Theorem:

(2) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$.

1.1. Some tools

We will employ below the following Lemma.

1.1.1 Lemma. $\neg A \lor C, \neg B \lor C \vdash \neg (A \lor B) \lor C.$

Proof. Here $\Gamma = \{\neg A \lor C, \neg B \lor C\}.$

$$\begin{array}{l} \neg (A \lor B) \lor C \\ \Leftrightarrow \left< \text{Leib: } r \lor C + \text{deMorgan} \right> \\ (\neg A \land \neg B) \lor C \\ \Leftrightarrow \left< \text{distrib. of } \lor \text{ over } \land \right> \\ (\neg A \lor C) \land (\neg B \lor C) \\ \Leftrightarrow \left< \text{Leib: } r \land (\neg B \lor C), \text{ and } \Gamma \vdash \neg A \lor C \equiv \top \right> \\ \top \land (\neg B \lor C) \\ \Leftrightarrow \left< \text{by} \vdash \top \land X \equiv X \right> \end{array}$$

A "Weak" Post's Theorem and the Deduction Theorem© by George Tourlakis

2 1. A Weak Post's Theorem and the Deduction Theorem Retold

$$\neg B \lor C$$
 bingo!

1.1.2 Corollary. $\vdash \neg (A \lor B) \lor C \equiv (\neg A \lor C) \land (\neg B \lor C).$

Proof. In the previous proof just use the first five lines (first two \Leftrightarrow).

1.1.3 Main Lemma. Suppose that A contains none of the symbols \top, \bot, \rightarrow , \land, \equiv . If $\models_{taut} A$, then $\vdash A$.

Proof. Under the assumption, A is an \lor -chain, that is, it has the form

$$A_1 \lor A_2 \lor A_3 \lor \ldots \lor A_i \lor \ldots \lor A_n \tag{1}$$

where none of the A_i has the form $B \vee C$.

In (1) we assume without loss of generality that n > 1, due to the axiom $X \vee X \equiv \overline{X}$ —that is, in the contrary case we can use $A \vee A$ instead, which by virtue of the axiom is a tautology as well. Moreover, (1), that is A, is written in least parenthesised notation.

Let us call an A_i reducible iff it has the form $\neg(C \lor D)$ or $\neg(\neg C)$. Otherwise it is *irreducible*. Thus, the only possible irreducible A_i have the form p or $\neg p$ (where p is a variable). We say that p "occurs positively in $\ldots \lor p \lor \ldots$ ", while it "occurs negatively in $\ldots \lor \neg p \lor \ldots$ ". In, for example, $p \lor \neg p$ it occurs both positively and negatively.

By definition we will say that A is irreducible iff all the A_i are.

We define the *reducibility degree*, of A_i —in symbols, $rd(A_i)$ —to be the number of \neg or \lor connectives in it, *not counting a possible leading* \neg . The reducibility degree of A is the sum of the reducibility degrees of all its A_i .

For example, rd(p) = 0, $rd(\neg p) = 0$, $rd(\neg(\neg p \lor q)) = 2$, $rd(\neg(\neg p \lor \neg q)) = 3$, $rd(\neg p \lor q)) = 0$.

By induction on rd(A) we now prove the main lemma, on the stated hypothesis that $\models_{taut} A$.

For the basis, let A be an irreducible tautology (rd(A) = 0). It must be that A is a string of the form " $\cdots \lor p \lor \cdots \lnot p \lor \cdots$ " for some p, otherwise, <u>if no p</u> appears both "positively" and "negatively", then we can find a truth-assignment that makes A false (f)—a contradiction to its tautologyhood. To see that we can do this, just assign f to p's that occur **positively only**, and t to those that occur **negatively only**.

Now

$$\begin{array}{l} A \\ \Leftrightarrow \left< \text{commuting terms of an } \lor \text{-chain} \right> \\ p \lor \neg p \lor B \quad (\text{what is "}B"?) \end{array}$$

A "Weak" Post's Theorem and the Deduction Theorem[®] by George Tourlakis

1.1. Some tools

$$\Leftrightarrow \left\langle \text{Leib: } r \lor B + \text{excluded middle, plus Red. } \top \text{ metathm.} \right\rangle$$
$$\top \lor B \quad \text{bingo!}$$

Thus $\vdash A$ which settles the *Basis*-case rd(A) = 0.

By commutativity (symmetry) of " \vee ", let us assume without restricting generality that $rd(A_1) > 0$.

We have two cases:

(1) A_1 is the string $\neg \neg C$, hence A has the form $\neg \neg C \lor D$. Clearly $\models_{taut} C \lor D$. Moreover, $rd(C \lor D) < rd(\neg \neg C \lor D)$, hence

$$\vdash C \lor D$$

by the I.H. But,

$$\neg \neg C \lor D$$

$$\Leftrightarrow \left\langle \text{Leib: } r \lor D + \vdash \neg \neg X \equiv X \right\rangle$$

$$C \lor D \quad \text{bingo!}$$

Hence, $\vdash \neg \neg C \lor D$, that is, $\vdash A$ in this case.

One more case to go:

(2) A_1 is the string $\neg(C \lor D)$, hence A has the form $\neg(C \lor D) \lor E$.

We want:
$$\vdash \neg (C \lor D) \lor E$$
 (i)

By 1.1.2 and from $\models_{taut} \neg (C \lor D) \lor E$ —this says $\models_{taut} A$ —we immediately get that

$$\models_{taut} \neg C \lor E \tag{ii}$$

and

$$\models_{taut} \neg D \lor E \tag{iii}$$

from the \equiv and \wedge truth tables.

Since the rd of each of (ii) and (iii) is smaller than that of A, by I.H. we obtain

 $\vdash \neg C \lor E$

and

$$\neg D \lor E$$

which by 1.1.1 yield the validity of (i).

We are done, except for one small detail: If we had changed an "original" A into $A \lor A$ (cf. the "without loss of generality" remark below (1)), then we have proved $\vdash A \lor A$. The idempotent axiom and Eqn then yield $\vdash A$.

We are now removing the restriction on ${\cal A}$ regarding its connectives and constants:

A "Weak" Post's Theorem and the Deduction Theorem© by George Tourlakis

⊢

Ş

4 1. A Weak Post's Theorem and the Deduction Theorem Retold

1.1.4 Metatheorem. (Post's Theorem) If $\models_{taut} A$, then $\vdash A$.

Proof. First, we note the following equivalences. The ones to the left of "also" follow from the ones to the right by <u>soundness</u>. The ones to the right are known from class (or follow trivially thereof): The first is the Excluded Middle Axiom augmented by "Redundant \top ". The one below it follows from simple manipulation[†] and $\vdash \bot \equiv \neg \top$. All the others have been explicitly covered.

$$\models_{taut} \top \equiv \neg p \lor p, \text{ also } \vdash \top \equiv \neg p \lor p$$

$$\models_{taut} \bot \equiv \neg (\neg p \lor p), \text{ also } \vdash \bot \equiv \neg (\neg p \lor p)$$

$$\models_{taut} C \to D \equiv \neg C \lor D, \text{ also } \vdash C \to D \equiv \neg C \lor D$$

$$\models_{taut} C \land D \equiv \neg (\neg C \lor \neg D), \text{ also } \vdash C \land D \equiv \neg (\neg C \lor \neg D)$$

$$\models_{taut} (C \equiv D) \equiv ((C \to D) \land (D \to C)), \text{ also } \vdash (C \equiv D) \equiv ((C \to D) \land (D \to C))$$

$$(1.1)$$

Using the I.1 above, we eliminate, *in order*, all the \equiv , then all the \wedge , then all the \rightarrow and finally all the \perp and all the \top . Let us assume that our process eliminates *one* unwanted symbol at a time. Thus, starting from A we will generate a sequence of formulae

$$F_1, F_2, F_3, \ldots, F_n$$

where F_n contains no $\top, \bot, \land, \rightarrow, \equiv$. I am using here F_1 as an alias for A. We will also give to F_n the alias A'.

Now in view of the provable equivalences of I.1, each transformation step is the result of a Leib application, thus we have

$$F_{1} \\ \Leftrightarrow \left\langle \text{Leib from I.1} \right\rangle \\ F_{2} \\ \Leftrightarrow \left\langle \text{Leib from I.1} \right\rangle \\ F_{3} \\ \Leftrightarrow \left\langle \text{Leib from I.1} \right\rangle \\ F_{4} \\ \vdots \\ \Leftrightarrow \left\langle \text{Leib from I.1} \right\rangle \\ F_{n} \end{cases}$$

Hence,

$$\vdash A \equiv A' \tag{1}$$

[†]Recall that $\vdash \neg (A \equiv B) \equiv \neg A \equiv B$ and also $\vdash \neg (A \equiv B) \equiv A \equiv \neg B$.

A "Weak" Post's Theorem and the Deduction Theorem[®] by George Tourlakis

1.1. Some tools

By soundness, I also get (from (1))

$$\models_{taut} A \equiv A' \tag{2}$$

Now, we are given that $\models_{taut} A$. By (2) and the fact that Eqn propagates truth I get $\models_{taut} A'$. As A' is free from $\top, \bot, \land, \rightarrow, \equiv, 1.1.3$ yields $\vdash A'$. Eqn and (1) vield $\vdash A$.

Post's theorem is often called the "Completeness Theorem"[†] of Propositional 2 Calculus. It shows that the syntactic manipulation apparatus completely captures the notion of "truth" (tautologyhood) in the propositional case.

1.1.5 Corollary. If $A_1, \ldots, A_n \models_{taut} B$, then $A_1, \ldots, A_n \vdash B$.

Proof. It is an easy semantic exercise to see that the hypothesis yields (indeed we have done so in class) that

$$\models_{taut} A_1 \to \ldots \to A_n \to B$$

By 1.1.4,

$$\vdash A_1 \to \ldots \to A_n \to B$$

hence (by Hypothesis Strengthening)

$$A_1, \dots, A_n \vdash A_1 \to \dots \to A_n \to B \tag{1}$$

Applying modus ponens n times to (1) we get

$$A_1, \ldots, A_n \vdash B$$

The above corollary is very convenient. It says that any (correct) schema $A_1, \dots, A_n \models \dots \models B$ loads to a diminical distribution of the first field of the first field of the first field of the field $A_1, \ldots, A_n \models_{taut} B$ leads to a derived rule of inference, $A_1, \ldots, A_n \vdash B$.

In particular, combining with the "transitivity of \vdash " Metatheorem known from class and text, we get

1.1.6 Corollary. If $\Gamma \vdash A_i$, for i = 1, ..., n, and if $A_1, ..., A_n \models_{taut} B$, then $\Gamma \vdash B$.

Thus—unless otherwise requested!—we can, from now on, rigorously mix syn-tactic with semantic justifications of the former of t tactic with semantic justifications of our proof steps.

For example, we have at once $A \wedge B \vdash A$, because (trivially) $A \wedge B \models_{taut} A$ (compare with our earlier, much longer, proof given in class).

A "Weak" Post's Theorem and the Deduction Theorem^(C) by George Tourlakis

Ş

Ş

Ş

[†]Which is really a *Metatheorem*, right?

1.2. Deduction Theorem, Proof by Contradiction

1.2.1 Metatheorem. (The Deduction Theorem) If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$, where " Γ, A " means "all the assumptions in Γ , plus the assumption A" (in set notation this would be $\Gamma \cup \{A\}$).

Proof. Assume then $\Gamma, A \vdash B$. Let

$$A_1, A_2, \ldots, A_n$$

be a Γ , A-proof that contains B. Since it is a finite sequence it can only contain a subset of Γ : $\{G_1, \ldots, G_m\} \subseteq \Gamma$.

Thus,

$$G_1, \ldots, G_m, A \vdash B \text{ as well}$$
 (1)

(1) and soundness yield $G_1, \ldots, G_m, A \models_{taut} B$. The latter yields

$$G_1, \dots, G_m \models_{taut} A \to B$$
 (2)

Ş

Indeed, a state v that makes the lhs of (2) **t** should make the rhs **t**: If A is **f**, then there is no work to do; if A is **t**, then by (1), B is **t**, thus $A \to B$ is **t**. By 1.1.5, $G_1, \ldots, G_m \vdash A \to B$. By Hypothesis Strengthening, $\Gamma \vdash A \to B$. It is noteworthy (and very easy to establish) that the opposite implication

of 1.2.1 holds:

1.2.2 Proposition. If
$$\Gamma \vdash A \rightarrow B$$
, then $\Gamma, A \vdash B$.

Proof. By Hypothesis Strengthening, $\Gamma, A \vdash A \rightarrow B$. By MP, we obtain $\Gamma, A \vdash B$.

The mathematician, or indeed the mathematics practitioner, uses the Deduction theorem all the time, without stopping to think about it. Metatheorem 1.2.1 above makes an honest person of such a mathematician or practitioner.

The everyday "style" of applying the Metatheorem goes like this: Say we have all sorts of assumptions (nonlogical axioms) and we want, *under these assumptions*, to "prove" that "if A, then B" (verbose form of " $A \to B$ "). We start by **adding** A to our assumptions, often with the words, "Assume A". We then proceed and prove just B (not $A \to B$), and at that point we rest our case.

Thus, we may view an application of the Deduction theorem as a simplification of the proof-task. It allows us to "split" an implication $A \to B$ that we want to prove, moving its premise to join our other assumptions. We now have to prove a *simpler formula*, B, with the help of *stronger* assumptions (that is, all we knew so far, plus A). That often makes our task so much easier!

1.2.3 Definition. A set of formulas Γ is *inconsistent* or *contradictory* iff Γ proves every formula A.

A "Weak" Post's Theorem and the Deduction Theorem[®] by George Tourlakis

The following Lemma justifies the term "contradictory" for a Γ such as described above:

1.2.4 Lemma. Γ is inconsistent iff $\Gamma \vdash \bot$.

Proof. only if-part. If Γ is as in 1.2.3, then in particular it proves \perp since the latter is a wff.

if-part. Say, conversely, that we have

$$\Gamma \vdash \bot$$
 (1)

Let now A be any formula whatsoever. We have

$$\perp \models_{taut} A \tag{2}$$

Pause. Do you believe (2)?

By Corollary 1.1.6, $\Gamma \vdash A$ follows from (1) and (2).

Why "contradictory"? For example, because we know that $\models_{taut} \bot \equiv A \land \neg A$, and hence $(1.1.4) \vdash \bot \equiv A \land \neg A$.

1.2.5 Metatheorem. (Proof by contradiction) $\Gamma \vdash A$ *iff* $\Gamma, \neg A$ *is inconsistent.*

Proof. By 1.2.4, Γ , $\neg A$ is inconsistent iff

$$\Gamma, \neg A \vdash \bot \tag{1}$$

By 1.2.1 and 1.2.2, (1) is equivalent to

$$\Gamma \vdash \neg A \to \bot \tag{2}$$

But

$$\begin{array}{l} \neg A \to \bot \\ \Leftrightarrow \left< \text{known thm} \right> \\ \neg \neg A \lor \bot \\ \Leftrightarrow \left< \text{known thm} \right> \\ \begin{array}{l} \neg \neg A \\ \Leftrightarrow \left< \text{double neg} \right> \\ A \end{array}$$

Thus, (2)—and hence (1)—is equivalent to $\Gamma \vdash A$.

Metatheorem 1.2.5 legitimises the tool of "proof by contradiction" that goes all the way back to the ancient Greek mathematicians: To prove A assume instead the opposite ($\neg A$). Proceed then to obtain a contradiction. This being accomplished, it is as good as having proved A.

A "Weak" Post's Theorem and the Deduction Theorem© by George Tourlakis

Ś

Ş