
Chapter 1

A Weak Post’s Theorem
and the Deduction
Theorem Retold

This note retells
(1) A weak form of Post’s theorem: If Γ is finite and Γ |=taut A, then

Γ ` A. This is adequate in practice. It also derives as a corollary the Deduction
Theorem:

(2) If Γ, A ` B, then Γ ` A→ B.

1.1. Some tools

We will employ below the following Lemma.

1.1.1 Lemma. ¬A ∨ C,¬B ∨ C ` ¬(A ∨B) ∨ C.

Proof. Here Γ = {¬A ∨ C,¬B ∨ C}.

¬(A ∨B) ∨ C

⇔
〈

Leib: r ∨ C + deMorgan
〉

(¬A ∧ ¬B) ∨ C

⇔
〈

distrib. of ∨ over ∧
〉

(¬A ∨ C) ∧ (¬B ∨ C)

⇔
〈

Leib: r ∧ (¬B ∨ C), and Γ ` ¬A ∨ C ≡ >
〉

> ∧ (¬B ∨ C)

⇔
〈

by ` > ∧X ≡ X
〉
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¬B ∨ C bingo! �

1.1.2 Corollary. ` ¬(A ∨B) ∨ C ≡ (¬A ∨ C) ∧ (¬B ∨ C).

Proof. In the previous proof just use the first five lines (first two ⇔). �

1.1.3 Main Lemma. Suppose that A contains none of the symbols >,⊥,→
,∧,≡. If |=taut A, then ` A.

Proof. Under the assumption, A is an ∨-chain, that is, it has the form

A1 ∨A2 ∨A3 ∨ . . . ∨Ai ∨ . . . ∨An (1)

where none of the Ai has the form B ∨ C.
In (1) we assume without loss of generality that n > 1, due to the axiom

X ∨X ≡ X—that is, in the contrary case we can use A ∨ A instead, which by
virtue of the axiom is a tautology as well. Moreover, (1), that is A, is written
in least parenthesised notation.

Let us call an Ai reducible iff it has the form ¬(C ∨D) or ¬(¬C). Otherwise
it is irreducible. Thus, the only possible irreducible Ai have the form p or ¬p
(where p is a variable). We say that p “occurs positively in . . . ∨ p ∨ . . .”, while
it “occurs negatively in . . . ∨ ¬p ∨ . . .”. In, for example, p ∨ ¬p it occurs both
positively and negatively.

By definition we will say that A is irreducible iff all the Ai are.

We define the reducibility degree, of Ai—in symbols, rd(Ai)—to be the num-
ber of ¬ or ∨ connectives in it, not counting a possible leading ¬. The reducibility
degree of A is the sum of the reducibility degrees of all its Ai.

For example, rd(p) = 0, rd(¬p) = 0, rd(¬(¬p∨ q)) = 2, rd(¬(¬p∨¬q)) = 3,
rd(¬p ∨ q)) = 0.

By induction on rd(A) we now prove the main lemma, on the stated hypoth-
esis that |=taut A.

For the basis, let A be an irreducible tautology (rd(A) = 0). It must be that
A is a string of the form “· · · ∨ p ∨ · · · ¬p ∨ · · · ” for some p, otherwise, if no p
appears both “positively” and “negatively”, then we can find a truth-assignment
that makes A false (f)—a contradiction to its tautologyhood. To see that we
can do this, just assign f to p’s that occur positively only, and t to those that
occur negatively only.

Now

A

⇔
〈

commuting terms of an ∨-chain
〉

p ∨ ¬p ∨B (what is “B”?)
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⇔
〈

Leib: r ∨B + excluded middle, plus Red. > metathm.
〉

> ∨B bingo!

Thus ` A which settles the Basis-case rd(A) = 0.

� We now argue the case where rd(A) = n + 1, on the I.H. that for any formula
Q with rd(Q) ≤ n, we have that |=taut Q implies ` Q. �

By commutativity (symmetry) of “∨”, let us assume without restricting
generality that rd(A1) > 0.

We have two cases:

(1) A1 is the string ¬¬C, hence A has the form ¬¬C∨D. Clearly |=taut C∨D.
Moreover, rd(C ∨D) < rd(¬¬C ∨D), hence

` C ∨D

by the I.H. But,

¬¬C ∨D

⇔
〈

Leib: r ∨D + ` ¬¬X ≡ X
〉

C ∨D bingo!

Hence, ` ¬¬C ∨D, that is, ` A in this case.

One more case to go:

(2) A1 is the string ¬(C ∨D), hence A has the form ¬(C ∨D) ∨ E.

We want: ` ¬(C ∨D) ∨ E (i)

By 1.1.2 and from |=taut ¬(C ∨D)∨E—this says |=taut A—we immediately get
that

|=taut ¬C ∨ E (ii)

and
|=taut ¬D ∨ E (iii)

from the ≡ and ∧ truth tables.
Since the rd of each of (ii) and (iii) is smaller than that of A, by I.H. we

obtain
` ¬C ∨ E

and
` ¬D ∨ E

which by 1.1.1 yield the validity of (i).
We are done, except for one small detail: If we had changed an “original” A

into A∨A (cf. the “without loss of generality” remark below (1)), then we have
proved ` A ∨A. The idempotent axiom and Eqn then yield ` A. �

We are now removing the restriction on A regarding its connectives and
constants:
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4 1. A Weak Post’s Theorem and the Deduction Theorem Retold

1.1.4 Metatheorem. (Post’s Theorem) If |=taut A, then ` A.

Proof. First, we note the following equivalences. The ones to the left of “also”
follow from the ones to the right by soundness. The ones to the right are
known from class (or follow trivially thereof): The first is the Excluded Middle
Axiom augmented by “Redundant >”. The one below it follows from simple
manipulation† and ` ⊥ ≡ ¬>. All the others have been explicitly covered.

|=taut > ≡ ¬p ∨ p, also ` > ≡ ¬p ∨ p

|=taut ⊥ ≡ ¬(¬p ∨ p), also ` ⊥ ≡ ¬(¬p ∨ p)

|=taut C → D ≡ ¬C ∨D, also ` C → D ≡ ¬C ∨D

|=taut C ∧D ≡ ¬(¬C ∨ ¬D), also ` C ∧D ≡ ¬(¬C ∨ ¬D)

|=taut (C ≡ D) ≡ ((C → D) ∧ (D → C)), also ` (C ≡ D) ≡ ((C → D) ∧ (D → C))

(1.1)

Using the I.1 above, we eliminate, in order, all the ≡, then all the ∧, then all
the → and finally all the ⊥ and all the >. Let us assume that our process
eliminates one unwanted symbol at a time. Thus, starting from A we will
generate a sequence of formulae

F1, F2, F3, . . . , Fn

where Fn contains no >,⊥,∧,→,≡. I am using here F1 as an alias for A. We
will also give to Fn the alias A′.

Now in view of the provable equivalences of I.1, each transformation step is
the result of a Leib application, thus we have

F1

⇔
〈

Leib from I.1
〉

F2

⇔
〈

Leib from I.1
〉

F3

⇔
〈

Leib from I.1
〉

F4

...

⇔
〈

Leib from I.1
〉

Fn

Hence,

` A ≡ A′ (1)

†Recall that ` ¬(A ≡ B) ≡ ¬A ≡ B and also ` ¬(A ≡ B) ≡ A ≡ ¬B.
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By soundness, I also get (from (1))

|=taut A ≡ A′ (2)

Now, we are given that |=taut A. By (2) and the fact that Eqn propagates truth
I get |=taut A

′. As A′ is free from >,⊥,∧,→,≡, 1.1.3 yields ` A′. Eqn and (1)
yield ` A. �

� Post’s theorem is often called the “Completeness Theorem”† of Propositional
Calculus. It shows that the syntactic manipulation apparatus completely cap-
tures the notion of “truth” (tautologyhood) in the propositional case. �

1.1.5 Corollary. If A1, . . . , An |=taut B, then A1, . . . , An ` B.

Proof. It is an easy semantic exercise to see that the hypothesis yields (indeed
we have done so in class) that

|=taut A1 → . . .→ An → B.

By 1.1.4,

` A1 → . . .→ An → B

hence (by Hypothesis Strengthening)

A1, . . . , An ` A1 → . . .→ An → B (1)

Applying modus ponens n times to (1) we get

A1, . . . , An ` B �

� The above corollary is very convenient. It says that any (correct) schema
A1, . . . , An |=taut B leads to a derived rule of inference, A1, . . . , An ` B. �

In particular, combining with the “transitivity of `” Metatheorem known
from class and text, we get

1.1.6 Corollary. If Γ ` Ai, for i = 1, . . . , n, and if A1, . . . , An |=taut B, then
Γ ` B.

� Thus—unless otherwise requested!—we can, from now on, rigorously mix syn-
tactic with semantic justifications of our proof steps.

For example, we have at once A ∧B ` A, because (trivially) A ∧B |=taut A
(compare with our earlier, much longer, proof given in class). �

†Which is really a Metatheorem, right?
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1.2. Deduction Theorem,
Proof by Contradiction

1.2.1 Metatheorem. (The Deduction Theorem) If Γ, A ` B, then Γ `
A→ B, where “Γ, A” means “all the assumptions in Γ, plus the assumption A”
(in set notation this would be Γ ∪ {A}).

Proof. Assume then Γ, A ` B. Let

A1, A2, . . . , An

be a Γ, A-proof that contains B. Since it is a finite sequence it can only contain
a subset of Γ: {G1, . . . , Gm} ⊆ Γ.

Thus,
G1, . . . , Gm, A ` B as well (1)

(1) and soundness yield G1, . . . , Gm, A |=taut B. The latter yields

G1, . . . , Gm |=taut A→ B (2)

Indeed, a state v that makes the lhs of (2) t should make the rhs t: If A is f,
then there is no work to do; if A is t, then by (1), B is t, thus A→ B is t. By
1.1.5, G1, . . . , Gm ` A→ B. By Hypothesis Strengthening, Γ ` A→ B. �

It is noteworthy (and very easy to establish) that the opposite implication
of 1.2.1 holds:

1.2.2 Proposition. If Γ ` A→ B, then Γ, A ` B.

Proof. By Hypothesis Strengthening, Γ, A ` A→ B. By MP, we obtain Γ, A `
B. �

� The mathematician, or indeed the mathematics practitioner, uses the Deduction
theorem all the time, without stopping to think about it. Metatheorem 1.2.1
above makes an honest person of such a mathematician or practitioner.

The everyday “style” of applying the Metatheorem goes like this: Say we
have all sorts of assumptions (nonlogical axioms) and we want, under these
assumptions, to “prove” that “if A, then B” (verbose form of “A → B”). We
start by adding A to our assumptions, often with the words, “Assume A”. We
then proceed and prove just B (not A→ B), and at that point we rest our case.

Thus, we may view an application of the Deduction theorem as a simplifi-
cation of the proof-task. It allows us to “split” an implication A → B that we
want to prove, moving its premise to join our other assumptions. We now have
to prove a simpler formula, B, with the help of stronger assumptions (that is,
all we knew so far, plus A). That often makes our task so much easier! �

1.2.3 Definition. A set of formulas Γ is inconsistent or contradictory iff Γ
proves every formula A.
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The following Lemma justifies the term “contradictory” for a Γ such as
described above:

1.2.4 Lemma. Γ is inconsistent iff Γ ` ⊥.

Proof. only if-part. If Γ is as in 1.2.3, then in particular it proves ⊥ since the
latter is a wff.

if-part. Say, conversely, that we have

Γ ` ⊥ (1)

Let now A be any formula whatsoever. We have

⊥ |=taut A (2)

Pause. Do you believe (2)?

By Corollary 1.1.6, Γ ` A follows from (1) and (2). �

� Why “contradictory”? For example, because we know that |=taut ⊥ ≡ A ∧ ¬A,
and hence (1.1.4) ` ⊥ ≡ A ∧ ¬A. �

1.2.5 Metatheorem. (Proof by contradiction) Γ ` A iff Γ,¬A is incon-
sistent.

Proof. By 1.2.4, Γ,¬A is inconsistent iff

Γ,¬A ` ⊥ (1)

By 1.2.1 and 1.2.2, (1) is equivalent to

Γ ` ¬A→ ⊥ (2)

But

¬A→ ⊥
⇔

〈
known thm

〉
¬¬A ∨ ⊥

⇔
〈

known thm
〉

¬¬A
⇔

〈
double neg

〉
A

Thus, (2)—and hence (1)—is equivalent to Γ ` A. �

� Metatheorem 1.2.5 legitimises the tool of “proof by contradiction” that goes
all the way back to the ancient Greek mathematicians: To prove A assume
instead the opposite (¬A). Proceed then to obtain a contradiction. This being
accomplished, it is as good as having proved A. �
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