Faculty of Science and Engineering
 MATH1090. Problem Set No
 Posted: Sept. 22, 2010

Due: Oct. 6, 2010, by $2: 00 \mathrm{pm}$; in the course assignment box.

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

1. (3 MARKS) Prove that the last symbol of a well-formed-formula cannot be \vee.

Hint. Analyse formula-calculations, or use induction on (the complexity of) formulae.
2. (3 MARKS) Prove that $\perp \top$ is not a mf.

Hint. Analyse formula-calculations.
3. (1 MARK) Prove that $((p \rightarrow \perp) \equiv \top)$ is a whf.
4. (6 MARKS) Recall that a schema is a tautology of all its instances are tautologies.

Which of the following six schemata are tautologies? Show the whole process that led to your answers, including truth tables or equivalent short cuts, and words of explanation.
I note that in the six sub-questions below I am not using all the formally necessary brackets.

- $((A \rightarrow B) \rightarrow A) \rightarrow A$

Page 1

G. Tourlakis

- $A \equiv B \rightarrow A \vee B$
- $(A \equiv B) \rightarrow A \rightarrow B$
- $A \rightarrow B \rightarrow \neg B \rightarrow \neg A$
- $(A \rightarrow B) \rightarrow \neg B \rightarrow \neg A$
- $A \wedge B \rightarrow A \rightarrow B$

5. (5 MARKS) Prove that if we have $A, C \models_{\text {taut }} B$, then we also have $\models_{\text {taut }}$ $A \rightarrow C \rightarrow B$ and conversely. Or as we usually put it: " $A, C \models_{\text {taut }} B$ iff $\models_{\text {taut }} A \rightarrow C \rightarrow B "$.

Here, using truth tables or truth-table tricks, you will show that if you have one side, then you must have the other. There are two directions in your proof!
6. (6 MARKS) By using truth tables, or using related shortcuts, examine whether or not the following tautological implications are correct.
(2) In order to show that a tautological implication that involves meta-variables for formulas -i.e., it is a schema- is incorrect you must consider a special case that is incorrect (since some other special cases might work).

Show the whole process that led to each of your answers.

- $p \vee q \models_{\text {taut }} \perp$
- $p \vee q \models_{\text {taut }} \top$
- $A \models_{\text {taut }} A \wedge B$
- $A, B \rightarrow A \models_{\text {taut }} B$
- $q, p \rightarrow q \models_{\text {taut }} q$
- $p \wedge q \models_{\text {taut }} p \rightarrow q$

7. (6 MARKS) Write down the most simplified result of the following substitutions, whenever the requested substitution makes sense. Whenever a requested substitution does not make sense, explain exactly why it does not.

Show the whole process that led to each of your answers in each case.

Page 2
 G. Tourlakis

(2) Remember the priorities of the various connectives as well as that of I the meta-expression " $[\mathbf{p}:=\ldots]$ "! The following formulae have not been written with all the formally required brackets.

- $p \vee q \rightarrow p[q:=r]$
- $(p \rightarrow q)[p:=\mathbf{t}]$
- $(p \vee q)[p:=\top]$
- $(\perp \vee r \rightarrow q)[\perp:=p]$
- $p \vee q \wedge r[q:=A]$ (where A is some formula)
- $p \vee(q \wedge r)[q:=A]$ (where A is some formula)

