York University

Faculty of Science and Engineering

MATH 1090: Facts-List for the December 2010 Examination (to be held Dec 18, 2010)

The following are the axioms of Propositional Calculus: In what follows, A, B, C stand for arbitrary formulae.

$$
\begin{align*}
& \text { Properties of } \equiv \\
& \text { Associativity of } \equiv \quad((A \equiv B) \equiv C) \equiv(A \equiv(B \equiv C)) \tag{1}\\
& \text { Symmetry of } \equiv \quad(A \equiv B) \equiv(B \equiv A) \tag{2}\\
& \text { Properties of } \perp, \top \\
& \top \text { vs. } \perp \quad \top \equiv \perp \equiv \perp \tag{3}\\
& \underline{\text { Properties of } \neg} \\
& \text { Introduction of } \neg \quad \neg A \equiv A \equiv \perp \tag{4}\\
& \text { Properties of } \vee \tag{5}\\
& \text { Distributivity of } \vee \text { over } \equiv \quad A \vee(B \equiv C) \equiv A \vee B \equiv A \vee C \tag{8}\\
& \text { Excluded Middle } \quad A \vee \neg A \tag{9}\\
& \underline{\text { Properties of } \wedge} \\
& \text { Golden Rule } A \wedge B \equiv A \equiv B \equiv A \vee B \tag{10}\\
& \text { Properties of } \rightarrow \\
& \text { Implication } \quad A \rightarrow B \equiv A \vee B \equiv B \tag{11}
\end{align*}
$$

The Primary Boolean rules are:

$$
\frac{A, A \equiv B}{B}
$$

(Eqn)
and

$$
\begin{equation*}
\frac{A \equiv B}{C[\mathbf{p}:=A] \equiv C[\mathbf{p}:=B]} \tag{Leib}
\end{equation*}
$$

The following are the Predicate Calculus Axioms:
Any partial generalisation of any formula in groups Ax1-Ax6 is an axiom for Predicate Calculus.

Groups Ax1-Ax6 contain the following schemata:

Ax1. Every tautology.
Ax2. $(\forall \mathbf{x}) A \rightarrow A[\mathbf{x}:=t]$, for any term t.
Ax3. $A \rightarrow(\forall \mathbf{x}) A$, provided \mathbf{x} is not free in A.
Ax4. $(\forall \mathbf{x})(A \rightarrow B) \rightarrow(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B$.
Ax5. For each object variable \mathbf{x}, the formula $\mathbf{x}=\mathbf{x}$.
Ax6. For any terms t, s, the schema $t=s \rightarrow(A[\mathbf{x}:=t] \equiv A[\mathbf{x}:=s])$.

The following metatheorems are good for both Propositional and Predicate Calculus:

1. Redundant True. $\Gamma \vdash A$ iff $\Gamma \vdash A \equiv \top$
2. Modus Ponens (MP). $\quad A, A \rightarrow B \vdash B$
3. Cut Rule. $A \vee B, \neg A \vee C \vdash B \vee C$
4. Deduction Theorem. If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$
5. Proof by contradiction. $\Gamma, \neg A \vdash \perp$ iff $\Gamma \vdash A$
6. Post's Theorem. (Also called "tautology theorem", or even "completeness of Propositional Calculus theorem")
If $=_{\text {taut }} A$, then $\vdash A$.
Also: If $\Gamma \models_{\text {taut }} A$, then $\Gamma \vdash A$.
7. Proof by cases. $A \rightarrow B, C \rightarrow D \vdash A \vee C \rightarrow B \vee D$

Also the special case: $A \rightarrow B, C \rightarrow B \vdash A \vee C \rightarrow B$

Translations

$$
\begin{gathered}
(\exists \mathbf{x}) A \text { translates to } \neg(\forall \mathbf{x}) \neg A \\
(\forall \mathbf{x})_{B} A \text { translates to }(\forall \mathbf{x})(B \rightarrow A) \\
(\exists \mathbf{x})_{B} A \text { translates to }(\exists \mathbf{x})(B \wedge A)
\end{gathered}
$$

MATH1090: Facts-List for the December 2009 Examination (to be held Dec 19, 2009)

Useful facts from Predicate Calculus (proved in class-you may use them without proof):

We know that SL and WL are derived rules useful in equational proofs within predicate calculus.

- More "rules" and (meta)theorems.
(i) Dummy renaming.

If \mathbf{z} does not occur in $(\forall \mathbf{x}) A$ as either free or bound, then $\vdash(\forall \mathbf{x}) A \equiv(\forall \mathbf{z})(A[\mathbf{x}:=\mathbf{z}])$
If \mathbf{z} does not occur in $(\exists \mathbf{x}) A$ as either free or bound, then $\vdash(\exists \mathbf{x}) A \equiv(\exists \mathbf{z})(A[\mathbf{x}:=\mathbf{z}])$
(ii) \forall over \circ distribution, where "○" is " \bigvee " or " \rightarrow ".
$\vdash A \circ(\forall \mathbf{x}) B \equiv(\forall \mathbf{x})(A \circ B)$, provided \mathbf{x} is not free in A
\exists over \wedge distribution

$$
\vdash A \wedge(\exists \mathbf{x}) B \equiv(\exists \mathbf{x})(A \wedge B), \text { provided } \mathbf{x} \text { is not free in } A
$$

(iii) \forall over \wedge distribution.

$$
\vdash(\forall \mathbf{x}) A \wedge(\forall \mathbf{x}) B \equiv(\forall \mathbf{x})(A \wedge B)
$$

\exists over \vee distribution.

$$
\vdash(\exists \mathbf{x}) A \vee(\exists \mathbf{x}) B \equiv(\exists \mathbf{x})(A \vee B)
$$

(iv) \forall commutativity (symmetry).

$$
\vdash(\forall \mathbf{x})(\forall \mathbf{y}) A \equiv(\forall \mathbf{y})(\forall \mathbf{x}) A
$$

\exists commutativity (symmetry).

$$
\vdash(\exists \mathbf{x})(\exists \mathbf{y}) A \equiv(\exists \mathbf{y})(\exists \mathbf{x}) A
$$

(v) Specialisation. "Spec" $(\forall \mathbf{x}) A \vdash A[\mathbf{x}:=t]$, for any term t.

Dual of Specialisation. $\quad A[\mathbf{x}:=t] \vdash(\exists \mathbf{x}) A$, for any term t.
(vi) Generalisation. "Gen" If $\Gamma \vdash A$ and if, moreover, the formulae in Γ have no free \mathbf{x} occurrences, then also $\Gamma \vdash(\forall \mathbf{x}) A$.
(vii) \forall Monotonicity. If $\Gamma \vdash A \rightarrow B$ so that the formulae in Γ have no free x occurrences, then we can infer

$$
\Gamma \vdash(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B
$$

(viii) \forall Introduction; a special case of \forall Monotonicity. If $\Gamma \vdash A \rightarrow B$ so that neither the formulae in Γ nor A have any free \mathbf{x} occurrences, then we can infer

$$
\Gamma \vdash A \rightarrow(\forall \mathbf{x}) B
$$

(ix) Finally, the Auxiliary Variable ("witness") Metatheorem. If $\Gamma \vdash(\exists \mathbf{x}) A$, and if \mathbf{y} is a variable that does not occur as either free or bound variable in any of $(\exists \mathbf{x}) A$ or B or the formulae of Γ, then

$$
\Gamma, A[\mathbf{x}:=\mathbf{y}] \vdash B \text { implies } \Gamma \vdash B
$$

Semantics facts

Propositional Calculus	Predicate Calculus
(Boolean Soundness) $\vdash A$ implies $\models_{\text {taut }} A$	$\vdash A$ does NOT imply $\models_{\text {taut }} A$
(Post) $\models_{\text {taut }} A$ implies $\vdash A$	However, (Post) $\models_{\text {taut }} A$ implies $\vdash A$
	(Pred. Calc. Soundness) $\vdash A$ implies $\models A$

CAUTION! The above facts/tools are only a fraction of what we have covered in class. They are very important and very useful, and that is why they are listed for your reference here.

You can also use without proof $\boldsymbol{A} \boldsymbol{L} \boldsymbol{L}$ the things we have covered (such as the absolute theorems known as " \exists-definition", "de Morgan's laws", etc.).

But these - the unlisted ones- are up to you to remember and to correctly state!

Whenever in doubt of whether or not a "tool" you are about to use was indeed covered in class, prove the validity/fitness of the tool before using it!

