0.1. Recursively Enumerable Sets

In this section we explore the rationale behind the alternative name “recursively enumerable” —r.e.— or “computably enumerable” —c.e.— that is used in the literature for the semi-recursive or semi-computable sets/predicates.

To avoid cumbersome codings (of n-tuples, by single numbers) we restrict attention to the one variable case in this section.

That is, our predicates are subsets of \mathbb{N}.

Intro to (un)Computability via URMs—Part II © by George Tourlakis
First we define:

0.1.1 Definition. A set \(A \subseteq \mathbb{N} \) is called *computably enumerable* (c.e.) or *recursively enumerable* (r.e.) precisely if one of the following cases holds:

- \(A = \emptyset \)
- \(A = \text{ran}(f) \), where \(f \in R \).

Thus, the c.e. or r.e. relations are exactly those we can *algorithmically enumerate* as the set of outputs of a (total) recursive function:

\[
A = \{ f(0), f(1), f(2), \ldots, f(x), \ldots \}
\]

Hence the use of the term “c.e.” replaces the non technical term “algorithmically” (in “algorithmically” enumerable) by the technical term “computably”.

Note that we had to hedge and ask that \(A \neq \emptyset \) *for any enumeration to take place*, because no recursive function (remember: these are total) can have an empty range.
Next we prove:

0.1.2 Theorem. ("c.e." or "r.e." vs. semi-recursive)

Any non empty semi-recursive relation \(A (A \subseteq \mathbb{N}) \) is the range of some (emphasis: total) recursive function of one variable.

Conversely, every set \(A \) such that \(A = \text{ran}(f) \) —where \(\lambda x.f(x) \) is recursive— is semi-recursive (and, trivially, nonempty).
Before we prove the theorem, here is an example:

0.1.3 Example. The set \(\{0\} \) is c.e. Indeed, \(f = \lambda x.0 \), our familiar function \(Z \), effects the enumeration *with repetitions (lots of them!)*

\[
\begin{align*}
x &= 0 \ 1 \ 2 \ 3 \ 4 \ \ldots \\
f(x) &= 0 \ 0 \ 0 \ 0 \ 0 \ \ldots
\end{align*}
\]

\[\square\]

Proof. of Theorem 0.1.2.

(I) **We prove the first sentence of the theorem.**

So, let \(A \neq \emptyset \) be *semi-recursive*.

By the **projection theorem** (see Notes #7) there is a *recursive* relation \(Q(y,x) \) such that

\[
x \in A \equiv (\exists y)Q(y,x), \text{ for all } x \quad (1)
\]

Thus, the totality of the \(x \) in \(A \) are the 2nd coordinates of ALL pairs \((y,x) \) that satisfy \(Q(y,x) \).

So, to enumerate all \(x \in A \) **just enumerate all pairs** \((y,x) \), and **OUTPUT** \(x \) **just in case** \((y,x) \in Q \).
We enumerate *all POSSIBLE PAIRS* \(y, x \) by

\[
(y = (z)_0, \quad x = (z)_1)
\]

for each \(z = 0, 1, 2, 3, \ldots \).

Recall that \(A \neq \emptyset \). So fix an \(a \in A \). \(f \) below does the enumeration!

\[
f(z) = \begin{cases}
(z)_1 & \text{if } Q((z)_0, (z)_1) \\
 a & \text{othw}
\end{cases}
\]

The above is a definition by recursive cases hence \(f \) is a recursive function, and the values \(x = (z)_1 \) that it outputs for each \(z = 0, 1, 2, 3, \ldots \) *enumerate* \(A \).
(II) **Proof of the second sentence of the theorem.**

So, let $A = \text{ran}(f)$ —where f is recursive.

Thus,

$$x \in A \equiv (\exists y) f(y) = x \quad (1)$$

By Grz-Ops, plus the facts that $z = x$ is in \mathcal{R}_* and the assumption $f \in \mathcal{R}$,

the relation $f(y) = x$ is **recursive**.

By (1) we are done by the Projection Theorem. □
0.1.4 Corollary. An $A \subseteq \mathbb{N}$ is semi-recursion iff it is r.e. (c.e.)

Proof. For nonempty A this is Theorem 0.1.2. For empty A we note that this is r.e. by Definition 0.1.1 but is also semi-recursive by $\emptyset \in \mathcal{P}\mathcal{R}_* \subseteq \mathcal{R}_* \subseteq \mathcal{P}_*$.

Corollary 0.1.4 allows us to prove some non-semi-recursiveness results by good old-fashioned Cantor diagonalisation.

See below.
0.1.5 Theorem. The complete index set \(A = \{ x : \phi_x \in \mathcal{R} \} \) is not semi-recursive.

This sharpens the undecidability result for \(A \) that we established in Note #7.

Proof. Since c.e. = semi-recursive, we will prove instead that \(A \) is not c.e.

If not, note first that \(A \neq \emptyset \) —e.g., \(S \in \mathcal{R} \) and thus all \(\phi \)-indices of \(A \) are in \(A \).

Thus, theorem 0.1.2 applies and there is an \(f \in \mathcal{R} \) that enumerates \(A \):

\[
A = \{ f(0), f(1), f(2), f(3), \ldots \}
\]

The above says: ALL programs for unary \(\mathcal{R} \)-functions are \(f(i) \)'s.

Define now

\[
d = \lambda x.1 + \phi_{f(x)}(x)
\]

(1)

Seeing that \(\phi_{f(x)}(x) = U^{(P)}(f(x), x) \) —you remember \(U^{(P)} \)?— we obtain \(d \in \mathcal{P} \).

But \(\phi_{f(x)} \) is total since all the \(f(x) \) are \(\phi \)-indices of total functions by the underlined blue comment above.

By the same comment,

\[
d = \phi_{f(i)}, \text{ for some } i
\]

(2)
Let us compute $d(i)$: $d(i) = 1 + \phi_{f(i)}(i)$ by (1).

Also, $d(i) = \phi_{f(i)}(i)$ by (2),

thus

$$1 + \phi_{f(i)}(i) = \phi_{f(i)}(i)$$

which is a contradiction since both sides of “=” are defined.

One can take as d different functions, for example, either of $d = \lambda x.42 + \phi_{f(x)}(x)$ or $d = \lambda x.1 - \phi_{f(x)}(x)$ works. And infinitely many other choices do!
0.2. Some closure properties of decidable and semi-decidable relations

We already know that

0.2.1 Theorem. \(\mathcal{R}_\ast \) is closed under all Boolean operations, \(\neg, \land, \lor, \to, \equiv \), as well as under \((\exists y)_<z \) and \((\forall y)_<z \).

How about closure properties of \(\mathcal{P}_\ast \)?
0.2.2 Theorem. \mathcal{P}_\ast is closed under \wedge and \vee. It is also closed under $(\exists y)$, or, as we say, “under projection”.

Moreover it is closed under $(\exists y <_z)$ and $(\forall y <_z)$.

It is not closed under negation (complement), nor under $(\forall y)$.

Proof.

1. Let $Q(x_n)$ be semi-decided by a URM M, and $S(y_m)$ be semi-decided by a URM N.

 Here is how to semi-decide $Q(x_n) \lor S(y_m)$:

 Given input x_n, y_m, we call machine M with input x_n, and machine N with input y_m and let them crank simultaneously (as “co-routines”).

 If either one halts, then halt everything! This is the case of “yes” (input verified).

2. For \wedge it is almost the same, but our halting criterion is different:

 Here is how to semi-decide $Q(x_n) \land S(y_m)$:

 Given input x_n, y_m, we call machine M with input x_n, and machine N with input y_m and let them crank simultaneously (“co-routines”).

 If both halt, then halt everything!
3. The \((\exists y)\) is very interesting as it relies on the Projection Theorem:

Let \(Q(y, \vec{x}_n)\) be semi-decidable. Then, by Projection Theorem, a \textbf{decidable} \(P(z, y, \vec{x}_n)\) exists such that

\[
Q(y, \vec{x}_n) \equiv (\exists z) P(z, y, \vec{x}_n) \quad (1)
\]

It follows that

\[
(\exists y)Q(y, \vec{x}_n) \equiv (\exists y)(\exists z) P(z, y, \vec{x}_n) \quad (2)
\]

This does \textit{not} settle the story, as I cannot readily conclude that \((\exists y)(\exists z) P(z, y, \vec{x}_n)\) is semi-decidable because the Projection Theorem requires a \textit{single} \((\exists y)\) in front of a decidable predicate!

Well, instead of saying that there are \textbf{two} values \(z\) and \(y\) that verify (along with \(\vec{x}_n\)) the predicate \(P(z, y, \vec{x}_n)\), \textit{I can say there is a PAIR of values \((z, y)\).}

\textit{In fact I can CODE the pair as \(w = (z, y)\) and say there is ONE value, \(w\):}

\[
(\exists w) P((w)_0, (w)_1, \vec{x}_n)
\]

and thus I have —by (2) and the above—

\[
(\exists y)Q(y, \vec{x}_n) \equiv (\exists w) P((w)_0, (w)_1, \vec{x}_n) \quad (3)
\]
But since $P((w)_0, (w)_1, x_n)$ is recursive by the decidability of P and Grz-Ops, we end up in (3) quantifying the decidable $P((w)_0, (w)_1, x_n)$ with just one $(\exists w)$. The Projection Theorem now applies!

4. For $(\exists y)_< Q(y, x)$, where $Q(y, x)$ is semi-recursive, we first note that

\[(\exists y)_< Q(y, x) \equiv (\exists y) \left(y < z \land Q(y, x) \right) \quad (\ast)\]

By $\mathcal{P}_* \subseteq \mathcal{R}_* \subseteq \mathcal{P}_*$, $y < z$ is semi-recursive. By closure properties established so far in this proof, the rhs of \equiv in (\ast) is semi-recursive, thus so is the lhs.
5. For \((\forall y)_<zQ(y, \vec{x}) \), where \(Q(y, \vec{x}) \) is semi-recursive, we first note that (by Strong Projection) a **decidable** \(P \) exists such that

\[
Q(y, \vec{x}) \equiv (\exists w)P(w, y, \vec{x})
\]

By the above equivalence, we need to prove that

\[
(\forall y)_<z(\exists w)P(w, y, \vec{x}) \text{ is semi-recursive} \quad (**)\]

(\(** \)) says that

for each \(y = 0, 1, 2, \ldots, z - 1 \) there is a \(w \)-value \(w_y \) so that \(P(w_y, y, \vec{x}) \) holds

Since all those \(w_y \) are **finitely many** (\(z \) many!) there is a value \(u \) bigger than all of them (for example, take \(u = \max(w_0, \ldots, w_{z-1}) + 1 \)). Thus (\(** \)) says (i.e., is equivalent to)

\[
(\exists u)(\forall y)_<z(\exists w)_<uP(w, y, \vec{x})
\]

The blue part of the above is **decidable** (by closure properties of \(R_* \), since \(P \in R_* \) — you may peek at 0.2.1). We are done by **strong projection**.
6. Why is P_* not closed under negation (complement)?
Because we know that $K \in P_*$, but also know that $\overline{K} \notin P_*$.

7. Why is P_* not closed under $(\forall y)$?

Well,

$$x \in K \equiv (\exists y)Q(y, x) \quad (1)$$

for some recursive Q (Projection Theorem) and by the known fact (quoted again above) that $K \in P_*$.

(1) is equivalent to

$$x \in \overline{K} \equiv \neg (\exists y)Q(y, x)$$

which in turn is equivalent to

$$x \in \overline{K} \equiv (\forall y)\neg Q(y, x) \quad (2)$$

Now, by closure properties of \mathcal{R}_* See 0.2.1), $\neg Q(y, x)$ is recursive, hence also is in P_* since $\mathcal{R}_* \subseteq P_*$.

Therefore, if P_* were closed under $(\forall y)$, then the above $(\forall y)\neg Q(y, x)$ would be semi-recursive.

But that is $x \in \overline{K}$! \hfill \square
0.3. Some tricky reductions

This section highlights a more sophisticated reduction scheme that *improves our ability to effect reductions of the type $\overline{K} \leq A$.*
0.3.1 Example. Prove that \(A = \{ x : \phi_x \text{ is a constant} \} \) is \textit{not semi-recursive}. This is not amenable to the technique of saying “OK, if \(A \) is semi-recursive, then it is r.e. Let me show that it is not so by diagonalisation”. This worked for \(B = \{ x : \phi_x \text{ is total} \} \) but no obvious diagonalisation comes to mind for \(A \).

\[g(x, y) = \begin{cases} 0 & \text{if } x \in \overline{K} \\ \uparrow & \text{othw} \end{cases} \]

The problem is that if we plan next to say “by CT \(g \) is partial recursive \textit{hence by S-m-n, etc.”, we shouldn’t!”

The underlined part is wrong: \(g \not\in \mathcal{P} \), provably!

\[g(x, x) \downarrow \text{ iff we have the top case, iff } x \in \overline{K} \]

In short, \[x \in \overline{K} \equiv g(x, x) \downarrow \]

which proves that \(\overline{K} \in \mathcal{P}_* \) using the verifier for “\(g(x, x) \downarrow \)”.

\textbf{Contradiction.}
0.3.2 Example. (0.3.1 continued) Now, “Plan B” is to “approximate” the top condition $\phi_x(x) \uparrow$ (same as $x \in K$).

The idea is that, “practically”, if the computation $\phi_x(x)$ after a “huge” number of steps y has still not hit stop, this situation approximates —let me say once more— “practically”, the situation $\phi_x(x) \uparrow$. This fuzzy thinking suggests that we try next

$$f(x, y) = \begin{cases} 0 & \text{if } \phi_x(x) \text{ did not return in } \leq y \text{ steps} \\ \uparrow & \text{othw} \end{cases}$$

If the top condition is true for a given x it means that at step y the URM that we picked to compute $\phi_x(x)$ has not hit stop yet.

The “othw” says, of course, that the computation of the call $\phi_x(x)$ —or $U^{(P)}(x, x)$— did return in y steps or fewer.

Next step is to invoke an S-m-n theorem application, so we must show that f defined above is computable. Well here is an informal algorithm:

(0) proc $f(x, y)$
(1) Call $\phi_x(x)$; keep count of computation steps
(2) Return 0 if $\phi_x(x)$ did not hit stop in y steps
(3) Loop if $\phi_x(x)$ halted in $\leq y$ steps
Of course, the “command” Loop means

“transfer to the subprogram” while 1=1 do {}

By CT, the pseudo algorithm (0)–(3) is implementable as a URM. That is, $f \in \mathcal{P}$.

By S-m-n applied to f there is a recursive k such that

$$
\phi_k(x)(y) = \begin{cases}
0 & \text{if } \phi_x(x) \text{ did not return in } \leq y \text{ steps} \\
\uparrow & \text{othw}
\end{cases}
$$

(1)

Analysis of (1) in terms of the “key” conditions $\phi_x(x) \uparrow$ and $\phi_x(x) \downarrow$:

(A) Case where $\phi_x(x) \uparrow$.

Then, $\phi_x(x)$ did not halt in y steps, for any y!

Thus, by (1), we have $\phi_k(x)(y) = 0$, for all y, that is,

$$
\phi_x(x) \uparrow \implies \phi_k(x) = \lambda y.0
$$

(2)
(B) Case where $\phi_x(x) \downarrow$. Let $m =$ smallest y such that the call $\phi_x(x)$ ended in m steps. Therefore,

- for step counts $y = 0, 1, 2, \ldots, m - 1$ the computation of $U(P)(x, x)$ has not yet hit stop, so the top case of definition (1) holds. We get

$$\phi_{k(x)}(y) = 0, 0, \ldots, 0$$

for $y = 0, 1, \ldots, m - 1$

- for step counts $y = m, m + 1, m + 2, \ldots$ the computation of $U(P)(x, x)$ has already halted (it hit stop), so the bottom case of definition (1) holds. We get

$$\phi_{k(x)}(y) = \uparrow, \uparrow, \uparrow, \ldots$$

for short:

$$\phi_x(x) \downarrow \implies \phi_{k(x)} = (0, 0, \ldots, 0) \quad (3)$$

In

$$\phi_{k(x)} = (0, 0, \ldots, 0)$$

we depict the function $\phi_{k(x)}$ as an array of m output values.
Two things: One, in English, when $\phi_x(x) \downarrow$, the function $\phi_{k(x)}$ is NOT a constant! Not even total!

Two, m depends on x, of course, when said x brings us to case (B) —that is $\phi_x(x) \downarrow$.

Regardless, the non constant / nontotal nature of $\phi_{k(x)}$ —in this case— is still a fact; just the length m of the finite array $(0, 0, \ldots, 0)$ changes.

Our analysis yielded:

$$\phi_{k(x)} = \begin{cases}
\lambda y. 0 & \text{if } \phi_x(x) \uparrow \\
\text{not a constant function} & \text{if } \phi_x(x) \downarrow
\end{cases} \quad (4)$$

We conclude now as follows for $A = \{x : \phi_x \text{ is a constant}\}$:

$$k(x) \in A \text{ iff } \phi_{k(x)} \text{ is a constant iff the top case of (4) applies}$$

$$\text{iff } \phi_x(x) \uparrow$$

That is, $x \in \overline{K} \equiv k(x) \in A$, hence $\overline{K} \leq A$. \square
0.3.3 Example. Prove (again) that \(B = \{x : \phi_x \in \mathcal{R}\} = \{x : \phi_x \text{ is total}\} \) is not semi-recursive.

We piggy back on the previous example and the same \(f \) through which we found a \(k \in \mathcal{R} \) such that

\[
\phi_k(x) = \begin{cases}
\lambda y.0 & \text{if } \phi_x(x) \uparrow \\
\text{length } m & \text{if } \phi_x(x) \downarrow \\
(0,0,\ldots,0) & \text{if } \phi_x(x) \downarrow
\end{cases}
\]

The above is (4) of the previous example, but we will use different words now for the bottom case, which we displayed explicitly in (5). Note that \((0,0,\ldots,0)\) is a non-recursive (nontotal) function listed as a finite array of outputs. Thus we have

\[
\phi_k(x) = \begin{cases}
\lambda y.0 & \text{if } \phi_x(x) \uparrow \\
nontotal \text{ function} & \text{if } \phi_x(x) \downarrow
\end{cases}
\]

and therefore

\(k(x) \in B \) iff \(\phi_k(x) \) is total iff the top case of (6) applies iff \(\phi_x(x) \uparrow \)

That is, \(x \in \overline{K} \equiv k(x) \in B, \) hence \(\overline{K} \leq B. \) \(\square \)
0.3.4 Example. We will prove that \(D = \{ x : \text{ran}(\phi_x) \text{ is infinite} \} \) is \textit{not semi-recursive}.

We (heavily) piggy back on Example 0.3.2 above.

We want to find \(j \in \mathcal{R} \) such that

\[
\phi_{j(x)} = \begin{cases}
\inf \text{ range} & \text{if } \phi_x(x) \uparrow \\
\text{finite range} & \text{if } \phi_x(x) \downarrow
\end{cases} \tag{\ast}
\]

OK, define \(\psi \) (almost) like \(f \) of Example 0.3.2 by

\[
\psi(x, y) = \begin{cases}
y & \text{if the call } \phi_x(x) \text{ did not return in } \leq y \text{ steps} \\
\uparrow & \text{othw}
\end{cases}
\]

Other than the trivial difference (function name) the important difference is that we force infinite range in the top case by outputting the input \(y \).

The argument that \(\psi \in \mathcal{P} \) goes as the one for \(f \) in Example 0.3.2. The only difference is that in the algorithm (0)–(3) we change “\textbf{Return 0}“ to “\textbf{Return y}“.

The question \(\psi \in \mathcal{P} \) settled, by S-m-n there is a \(j \in \mathcal{R} \) such that

\[
\phi_{j(x)}(y) = \begin{cases}
y & \text{if the call } \phi_x(x) \text{ returns within } \leq y \text{ steps} \\
\uparrow & \text{othw}
\end{cases} \tag{\dagger}
\]
Analysis of (†) in terms of the “key” conditions $\phi_x(x) \uparrow$ and $\phi_x(x) \downarrow$:

(I) Case where $\phi_x(x) \uparrow$.

Then, for all input values y, $\phi_x(x)$ is still not at stop after y steps. Thus by (†), we have $\phi_j(x)(y) = y$, for all y, that is,

$$\phi_x(x) \uparrow \implies \phi_j(x) = \lambda y.y \quad (1)$$

(II) Case where $\phi_x(x) \downarrow$. Let $m = \text{smallest } y$ such that the call $\phi_x(x)$ returned in m steps.

As before we find that for $y = 0, 1, \ldots, m - 1$ we have $\phi_j(x)(y) = y$, that is,

for $y = 0, 1, \ldots, m - 1$

$\phi_j(x)(y) = 0, 1, \ldots, m - 1$

and as before,

for $y = m, m + 1, m + 2, \ldots$

$\phi_j(x)(y) = \uparrow, \uparrow, \uparrow, \ldots$

that is,

$\phi_x(x) \downarrow \implies \phi_j(x) = (0, 1, \ldots, m-1) —\text{finite range} \quad (2)$

(1) and (2) say that we got (*) —p.23— above. Thus

$j(x) \in D \text{ iff } \text{ran}(\phi_j(x)) \text{ infinite iff top case holds, iff } \phi_x(x) \uparrow$

Thus $\overline{K} \leq D$ via j. \qed

Intro to (un)Computability via URM{s}—Part II © by George Tourlakis