March 197

0.0.1 Reducibility via the S-m-n Theorem

We now turn to the development of the technique of reductions, using the S-m-n
theorem.

0.0.1 Definition. (Strong Reducibility) We say that the set A (subset of
N) is strongly reducible to set B, in symbols A <,, B, iff there is a recursive
function f such that for all z, we have x € A iff f(x) € B. We say that f effects
the reducibility. 0

0.0.2 Remark. Several remarks are in order:

(1) The m in the reducibility symbol reflects the fact that f is not required
to be 1-1. So, strong reducibility, by default, is a many-one reducibility or
m-reducibility.

We also have 1-1 reducibility or 1-reducibility. This is when f is 1-1.

(2) The condition € A iff f(z) € B says that if we know how to decide z € B
and also know how to compute f(z) for all z, then we know how to decide
x € A. Thus, the symbol <,,, is apt: Intuitively A is “more solvable” than B
since we can decide it if we can decide B. Conversely, B is more unsolvable
than A.

We express this technically in the proposition below.

(3) By definition, A <,, Biff A= {x: f(z) € B}. Thatis, iff A= f_(B). O

0.0.3 Proposition. Suppose that A <,,, B. Then

(1) A is recursive if B is. Contrapositively, B ¢ R, if A ¢ R,.

(2) A is semi-computable if B is. Contrapositively, B is not c.e. if A is not c.e.
Proof.

(1) If z € B is recursive, then so is f(z) € B by the assumption on f and by
the theorem on substitution of function calls into recursive predicates.

(2) If z € B is semi-recursive, then so is f(z) € B by the assumption on f
and by the theorem on substitution of function calls into semi-recursive
predicates. 0

CSE 4111/5111. George Tourlakis. Winter 2018

0.0.4 Definition. (Complete Index Sets) Given a subset C C P, we call
{z : ¢4 € C} a complete index set (defined by C). 0

0.0.5 Remark. That is, a complete index set A = {z : ¢, € C} is the set of all
(codes of) URM programs that compute the functions of some given subset C
of P. Indeed say f € C. As this is computable, take any program i for f, that
is, f = ¢;. Now ¢; € C yields ¢ € A by the definition of A. O

This subsection deals with the undecidability of membership in several com-
plete index sets. Indeed, “several” is an understatement. We will conclude with
the rather surprising Theorem of Rice, according to which the only decidable
such problems involve the two trivial cases: C = @) or C = P.

0.0.6 Remark. (The General Technique) The technique in general outline
goes like this: We want to show that some A given as {z : ¢, € C}, for some
C C P, is not recursive.

Equipped with we attempt to show either K <,, A or K <,, A —
whichever is easier. The latter, of course, yields more information (a stronger
result): that A is not c.e.

To this end,iwe need to demonstrate that there is an A € R that effects one
of K <,, Aor K <,, A.

To execute this plan, we utilize the S-m-n theorem so that we come up with
a primitive recursive h such that

Case of K <,,, A:

s) some specific f € C if ¢, (z) |
M® 7 some specific g ¢ C if ¢ (x) T

Thus, h(z) € A iff the top case holds, iff € K—that is, ¢,(z) J. For short,
K <, A via h.

Case of K <,,, A:

{ some specific f € ¢ if ¢, (z) T
Oh(x) =

some specific g ¢ C if ¢, (z) |

Thus, h(z) € A iff the top case holds, iff z € K—that is, ¢, (z) 1. For short,
K <,, A via h. Il

CSE 4111/5111. George Tourlakis. Winter 2018

¢

¢

The following theorem is important both in content and in regards to learning
the technique employed for its proof.

0.0.7 Theorem. The following sets are not recursive.
(1) A={z: ¢, is a constant function}

(2) B={z: ¢, is total} = {z : ¢, € R}
(3) C = {(wy) : y € ran(6,)}
(4) D ={(2,52) : 2 = duly)}
(5) B = {a: dom(¢,) = 0}
(6) F = {w: dom(@,) is finite}
(7) G ={z: dom(¢,) is infinite}
(8) H = {x: ran(,) = 0}

(9) I = {x:ran(6,) is finite}
(10) J = {w : ran(@,) is infinitc}
Proof.

(1) A={z: ¢, is a constant function}.

We will be more expansive in just this first case. Following we want
to find an h € R such that

()

s { some specific constant function if ()
h(z) =

some specific non constant function if ¢, (x)

Well, the simplest solution is probably this: Define, for all z and y

o i@y .
V@) {T if () 1 *)

We see first at the intuitive level that ¢ is computable: Given z,y. We
ignore y. Next, we fetch the URM M of code = and call it on input . If
it ever halts, then we print “0” and halt everything. If M never halts, then
our process will never return from the call, which is the correct behavior for
¥(x, y)—bottom case.

Intuitively, we cannot expect to yield some output in the bottom case, since,
at least in the process described above, the call to M for input = will never
halt to give us an opportunity to print anything.

Pause. Do you have a reason as to why defining ¢ so that, say, it —
mathematically speaking— yields 42 in the bottom case renders i non
computable (i.e., not in P)7«

CSE 4111/5111. George Tourlakis. Winter 2018

1) € P via definition by positive cases. The last (bottom) case is the “oth-
erwise” case.

By the S-m-n theorem, there is an A € PR such that, for all z and y,

BORTEON .

This can be rewritten as
M0 if a(x) |
Oh(z) = .
0 if ¢p(z) T

where () is the empty function —clearly not a constant function! We have
achieved the setup (1) and we conclude by directly invoking

B ={x: ¢, is total} = {z : ¢, € R}.

Note that (x x %) can be recast as

(* %)

5] aspecific total f if ¢ ()
L I specific nontotal g if ¢, (z) 1

Thus, K <,,, B and therefore B ¢ R, as in

This result says less than what we already proved earlier, that is, B is
not c.e., however, it is important to see this alternative technique even if
(seemingly) achieves less. Seemingly. We will refine the technique in the
next theorem, to redidcover the non semi-recursiveness of B.

C={(z,y) 1y €ran(¢z)}.

Let us use the present technique. If C| i.e., y € ran(¢,), is recursive, then
s0 is 0 € ran(¢y(s)) by Grzegorczyk Ops, where h is the same as above. Let
us set Cop = {z : 0 € ran(dp(a))}-

But x € Cj is true iff we are in the top case of (xxx), which is the case x € K.

Thus K = Cp; not in R, as we know.

D = {(xvyvz) 1E= (bz(y)}

If D is recursive, then so is Dy = {z : 0 = ¢p;)(0)}. The predicate
0 = ¢n(x)(0) is equivalent to x € K as above, so it is not in R..

E = {z : dom(¢,) = 0}.

We can still mine diverse unsolvability results from the very same setup
(* * %) above. We rewrite this as

p) a g with a non-empty domain if ¢, (z) |
M@ 7) an f with an empty domain if ¢o(z) T

CSE 4111/5111. George Tourlakis. Winter 2018

Thus, as in h(z) € E iff we are in the bottom case; iff z € K. That
is, K <,, E via h. We have proved more than what we were asked to: E is
not even semi-recursive, let alone decidable.

F ={z : dom(¢,) is finite}.

We rewrite (x % *) as

iy = a g with an infinite domain if ¢, (z) |
M=) 7) an f with a finite domain if ¢p(z) T

Thus, h(z) € F iff we are in the bottom case; iff x € K. That is K <, F
via h. Once again we have proved more than we were asked to: F' is not
semi-recursive.

G = {z : dom(¢,) is infinite}.

Yet again, we rely on (* x). Indeed, see the argument for F' above. We
have that h(z) € G iff we are in the top case; iff z € K. That is, K <,,, G
via h and thus G is not recursive.

H = {x :ran(¢,) = 0}.

One last time we mine (* x *), rewriting it as

s _) a g with a non-empty range if ¢,(v) |
M@ 7) an f with an empty range if ¢ () 1

Thus, h(z) € H iff we are in the bottom case; iff x € K. Thus K <,, H
and H is not semi-recursive.
I = {z : ran(¢,) is finite}.

This case needs a fresh start, since neither Ay.0 nor) have an infinite range,
as needed for the “dichotomy” infinite vs. finite (range), toward applying
the technique of [0.0.6] So, we define a new function, for all z and y, by

@g) = {y if ¢ () |

1 otherwise

X is computable. Intuitively, given = and y we decode z to get the URM M
that it codes. We then call M on input x. If it ever halts, we print y and
halt all; otherwise we keep going.

Mathematically, x is defined by positive cases, since ¢ (x) | is c.e. Thus it
is in P. The S-m-n theorem guarantees the existence of a k € R, such that,

for all z and y,
D) (y) = {T otherwise

CSE 4111/5111. George Tourlakis. Winter 2018

(10)

Put more conveniently, with no reference to inputs,

g if ¢y
%w_{wy if ¢z () 4

o otherwise

(1)

Note that k(x) € I iff we are in the bottom case of (}); iff z € K. Thus
K <,, I via k, rendering I non c.e., which says more than what we set out
to prove.

J = {z : ran(¢,) is infinite}.

We reuse (1). Here k(z) € J iff we are in the top case of (}); iff x € K.
Thus K <,,, J via k, rendering = € J undecidable. O

CSE 4111/5111. George Tourlakis. Winter 2018

Worth stating. Since the h and k utilized above are S-m-n functions, they are
1-1. Therefore all reducibilities that we have effected above are 1-reducibilities,
<i1.

0.0.8 Theorem. None of the sets in[0.0.7 are semi-recursive, except C and D.

Proof. D is semi-recursive by the P-graphs theorem and substitution. As for C,
we see that y € ran(¢,) = (32)¢.(z) = y. Its semi-recursiveness follows from
the same theorem via closure properties of P,.

We now turn to those sets listed in [0.0.7] which we have not already proved
to be non c.e. in the proof of said theorem.

(1) A={z: ¢, is a constant function}.

The obvious approach, that is, badly imitating and modifying (*) to

read
o if gg(x) 1
W’”‘{T if () |

will not work. The intuitive reason is that if we try to compute this new
1 in the obvious way, given x and y we will ignore y, and will decode x
to obtain the machine it denotes, M. We will run M on input x and will
output and stop everything precisely if M is in an infinite loop, which is
precisely if ¢, (x) 1.

Otherwise (¢4 (x) J) we will ensure that the overall computation never halts
by getting into a deliberate-loop.

The catch is that this “obvious” way is doomed, for our program—indeed,
no program—can test, or even just verify that ¢, (z) 1.

The definitive reason that this v is not computable is this: If it
were, then so would be Az.¢)(z, z). But the domain of the latter
is K. Impossible, because this set is not the domain of any partial
recursive function.

Pause. Why “definitive”? Isn’t the intuitive reason (of the uncomputability
of ¥) enough?«

No. The intuition only warns and guides; it does not prove. After all,
the suggested “program that did not work” was just ome suggested, and
“obvious”, program to compute .

Why can it not be the case that a future programmer might come up with
a really clever and non obvious URM that computes 7

Precisely because we got the definitive answer mathematically: There can
be no such a URM, now or ever; it does not exist.

CSE 4111/5111. George Tourlakis. Winter 2018

OK, here is how to do it right: We want to build a partial recursive 1 such
that

0 if oo (z) 1

not a constant result if ¢, (z) |

1?(%9) = {

In view of the above remarks, we cannot use the condition “¢,(z) 1” outright
as the top condition, so we will approzimate it with “¢,.(x) does not converge
—synonymous for “halt”— in < y steps”.

Note that for a “large” (number of steps) y, the casual (and impatient)
observer will consider a computation for ¢,(z), which is still going, as di-
vergent.

So we finally define

0 if ¢, (x) does not converge in < y steps

b aa)))

Y(x,y) = {

This 1 is computable! Let us see why, intuitively at first. We program as
follows: Given inputs x and y. We call the URM M, coded by x, on input
z. If M has not stopped after y steps of its computation, then we print 0
and stop everything. In the contrary case—that is, the call to M with input
x stopped within < y steps—we deliberately enter an infinite loop.

Mathematically, (i) can be rewritten as

oy {Z<y> if @,(z) >y (i)

Oy) ifPu(z) =<y

where Z = Ay.0. Since the conditions are recursive, we have, by Exercise 27
of Problem Set #1, that ¢ € P[]

By the S-m-n theorem, we have a primitive recursive o such that, for all x

and v,
_ Z(y) if@x(x)>y
¢0(x) (y) = {@(y) if @, () <y (”2)

Let us now consider the two cases below for any fixed z:

Case 1: ¢,(x) T. Then ®,(z) > y is true, for this = and all y. The top
case applies. That is:

¢g(m) =)\y.O (w)
Case 2: ¢,(z) . Let yo be smallest such that ®,(z) < yo. That is

Fory=0,1,...,y0 — 1, we have =®,(z) <y

*One is normally less pedantic and rather than explicit function calls Z(y) and 0(y) writes
0 and 1 respectively.

CSE 4111/5111. George Tourlakis. Winter 2018

In this case
Yo zeros

—
d)a(x) = (07 0,... 70) (U)
where in (v) we have denoted the finite function
flyy=ifze=0vae=1V---Va=yo— 1 then 0 else O(y)

as the finite sequence of its outputs. Of course, f € P.

We summarize what cases 1 and 2 say in (iv) and (v):

A0 if o () 1
(Z)a(z) = (07 0,... 70) if (bw(x) { (T)
———
Yo zeros

Given that the function in the bottom case is not a constant function, we
immediately have o(z) € Aiff x € K, or K <;;, A as needed.

(2) B={z: ¢, is total} = {x: ¢, € R}.

We may reuse (f) immediately above, since the top case is total while the
bottom case is nontotal. Thus, o(z) € B iff z € K, or K <,,, B as needed.

(3) G = {x : dom(¢,) is infinite}.

We may reuse (f) since the top case has infinite domain while the bottom
case has finite domain. Thus, o(z) € G iff x € K, or K <,,, G as needed.

(4) J = {x : ran(¢,) is infinite}.

We cannot reuse (f) here as both the top and bottom cases have finite
ranges. We work entirely analogously to (ii) above, and define, for all z,y,

)= Y if ®,(z) >y
xy) {my) it ®, () < y

As x is defined from partial recursive functions by recursive cases, it is in
P. By S-m-n we have a primitive recursive 7 such that, for all x,y,

y if &, (x) >y
e () = ()
O(y) if Pu(z) <y
A similar analysis as above shows readily that
If ¢o(z) T, then ¢, () = Ay.y, while if ¢, () |, then
¢T(a:) = (Ovla"'vyo - 1)

a finite function displayed as a sequence of outputs, where yq is smallest y
such that ®,(z) <y.

Thus,
@@Z{My if g (2) 1
(0,1,...,90— 1) if ¢(z) |
and therefore 7(z) € J iff 2 € K, or K <,, J as needed. 0

CSE 4111/5111. George Tourlakis. Winter 2018

10

The techniques used so far are unified in the results that we develop below.
First an extension of the technique we used directly above (and in the case
{z : ¢, is a constant }.) The following theorem is the contribution of several
people (Rice, Myhill, Shapiro, McNaughton). First a definition.

0.0.9 Definition. (Finite Functions) A number theoretic function f is finite
iff dom(f) is a finite set. O

0.0.10 Theorem. Given A = {x : ¢, € C}, where C CP. Suppose that some
f € C has no finite subfunction { —i.e., { C f— that is a member of C.
Then K <,, A.

Proof. The idea is to find, using the S-m-n theorem, an h € PR such that

if ¢ (z) 1

{5 (some finite subfunction of f) if ¢.(x) | 1)

() =

If this succeeds, then

h(z) € A+— ¢p) €C <T> Onzy=f—z€K.

£¢cC

Thus, K <, A.
Now to justify (1) we straightforwardly generalize the technique from
case (4)). Thus we define, for all z,y,

i) i) >y
X b@ it @, (x) < y

This is a definition by recursive cases, thus x € P. By the S-m-n theorem we
have an h € PR such that

(2)

WMM=V@ if @, (z) > y

T D) <y
Let us now consider the two cases:

(a) ¢z(x) 1. Then the top condition of (2) is true for all y, thus ¢y = f in
this case.

(b) ¢=(z) |. Let yo be the smallest y-value such that the bottom condi-
tion in (2) holds. Assume first that yo > 1. Thus, fory =0,1,...,y0— 1,
we have that ®,(x) > y holds, and therefore

®n(x) is the finite array & (subfunction of f): f(0),..., f(yo — 1)

If yo = 0, then the bottom condition holds for all y, thus ¢p) = 0. We
take £ =0 C f.

We have verified (1). O

CSE 4111/5111. George Tourlakis. Winter 2018

11

0.0.11 Theorem. (The Rice Lemma) Given a complete index set A = {x :
¢r € C}—where C CP. If some f € C has an extension g € P —C, then
K <, A.

Proof. Let ¢, € C and ¢,, ¢ C, where ¢, C qbnm The plan is to prove that a
primitive recursive h exists such that

A fm i pula)t
d’h(m’_{m if ¢, (z) | @

As we have already observed, to avail ourselves of the “definition by positive
cases” technique, the top case must be the “otherwise”. But if so, we cannot
allow, in general, an “output” other than “1”.

Thus, once again, we will approximate the condition ¢, (x) 1.

(z.y) = om(y) if ¢, (x) does not converge before ¢,,(y) does
ALY = on(y) if ¢, (x) converges before ¢, (y) does

Is x computable? Intuitively, it is. Here is how: Let H be a URM for verifying
¢(z) J, M a URM that computes ¢,,, and N a URM for ¢,. Let x and y be
given.

We run H on input x, and M on input y in parallel. If M halts but H is
still running, then we print ¢,,(y) and stop everything.

Worth noting. If each of H and M loops for ever, then the top condition is
valid; we correctly output ¢,,(y) in this case (we “output” nothing, which is
precisely what the call ¢,,(y) outputs).

If, on the other hand, H halts before M does, then we abort M and call N
on input y in order to (if convergence is achieved) output ¢, (y).

The mathematical reason for the computability of y is based on the above
informal description.

The content of the above @—commen‘c is the “otherwise”; thus we achieve
a definition by positive cases:

¢m(y) if (EIZ) ((bm(y) =zA (I)l(x) >z
X (@,y) = duly) if (32)(Pul@) = 2 A Piu(y) >
0 otherwise

z

~— —

Since the above is a definition by positive cases—recall that ®;(z) = w, ®;(x) >
w, and ®,(z) > w are (primitive) recursive—x’ € P.
Pause. But is x = x'7«

Yes. The top condition for y’ says “¢.(z) does not converge before ¢,,(y)
does”—this is the case of ¢.,(y) |, where ¢, () may or may not converge. The

TCf. p. 27.

CSE 4111/5111. George Tourlakis. Winter 2018

12

case of ¢, (y) T and ¢, (z) 1 is covered by the “otherwise” as we already have
remarked, noticing that both the top and middle cases now fail. The middle
condition says “¢,(x) converges before ¢, (y) does”.

By the S-m-n theorem there is an A € PR such that, for all = and y,

dm(y) if (32) (@m(y) =zAD,(z) > z)
T otherwise

We can now verify that we have (1) above. So, fix an x:

e Let ¢ (x)T. Then ®,(x) > z is true for all z, hence the middle case
cannot apply.

(a) If we have ¢, (y) J, then (32)®,,(y) = z, thus the top condition is
true and ¢p(z) (y) = dm (y)-
(b) If we have ¢, (y) T, then @,,(y) = z is false for all z, thus only the
“otherwise” applies. We have, once more ¢y ;)(y) = ¢m(y).
For short, ¢p(x) = ¢m in this case.

e Let ¢, (x) |. Let z be smallest such that ®,(z) = z. Now fix a y.

(i) If @,,(y) < z, then the top case holds, thus ¢y (y) = ¢m(y). But
bm(y) 4 (why?), thus, by ¢, C ¢n, we have ¢m(y) = ¢n(y).
Therefore ¢, 2)(y) = dn(y).

(ii) If =®,,(y) < 2z, then the middle case holds, and again ¢4 (y) =

For short, ¢p(y) = ¢n in this case.

This establishes (1), and hence the equivalences h(x) € A iff ¢y, € C iff (recall:
On & C) Onz) = Om iff € K. That is, K <,,, A via h. O

0.0.12 Corollary. Given a complete index set A = {x : ¢, € C}—where
C CP. If some f € C has an extension g € P —C, then A is not c.e.

CSE 4111/5111. George Tourlakis. Winter 2018

N4

13

0.0.13 Corollary. (The Theorem of Rice) A compete index set A = {x :
¢ € C} is recursive iff it is trivial, meaning that either A =10 or A=N.

Proof. The if part is immediate since, in fact, () and N are primitive recursive.
As for the only if, say A is recursive. Then A and N — A (or A), that is,

{z:¢,€eP—-C}

are both c.e.

We consider two cases. First, let ﬂﬂ € C. Since A is semi-recursive, [0.0.12
yields that every computable extension of @) is in C. Thus C = P and hence
A=N.

Second, let € P —C. As above, since N — A is c.e., [0.0.12] yields that
every computable extension of () is in P —C. That is, P —C = P and hence
N — A = N. Therefore, A = (. 0

0.0.14 Corollary. Let the complete index set A = {z : ¢, € C} be c.e. Then
f € C iff some finite subfunction of f is in C.

Proof. The only if is by [0.0.10, for otherwise K <,, A, contradicting the as-
sumption. The if is by [0.0.11] for if C 5 £ C f, then f € C. O

0.0.15 Example. We look back to We see at once by application of
Rice’s theorem that each of the sets A, B, and E—J are not recursive.

Each of them is a nontrivial complete index set. For example, the set of
constants C is not equal to either () or P, for, on one hand, computable constant
functions exist (!), such as Ax.380, or Az.0, and, on the other hand, not every
computable function is a constant; for example, Axy.x + y, Az.x, etc. Thus,
0+£A£N.

Similarly one shows all of E—J to be nontrivial.

The sets C and D are not complete index sets so the theorem of Rice does
not help. One can employ either the technique of[0.0.7]or direct diagonalization.

O

0.0.16 Example. We have seen already that every computable function has
infinitely many ¢-indices by arguing the case via URM programs. Here is a
“high level” approach: Let f € P. Then 0 # {z : ¢, = f} # N. By Rice’s
theorem, {x : ¢, = f} is not recursive, hence must be infinite (every finite set
is primitive recursive). O

0.0.17 Example. But how about K? Is K = {z : ¢,(z) |} a complete index
set? That is, is there a C C P such that K = {z : ¢, € C}? We will answer this
negatively later. O

The Rice Lemmal0.0.11|can help in easily establishing non semi-recursiveness.
Let us revisit [0.0.8]

fThe empty function in this context

CSE 4111/5111. George Tourlakis. Winter 2018

LA

14

0.0.18 Example. Look at E = {z : dom(¢,) = (}}. For convenience let us set

Def

C={feP:dom(f)=0}

Note that dom()) =). However, Az.0 extends @ but is not in C—its domain is
N. By [0.0.12] E is not c.e. 0

CSE 4111/5111. George Tourlakis. Winter 2018

15

0.0.19 Example. {z : W, = (}} is not c.e. Indeed, This is {z : dom(¢,) = 0}.
This sends us to the previous example.

{z : W, is infinite} is not c.e. by the finite subfunction test. Indeed, {z :
W, is infinite} = {x : dom(¢,) is infinite}. No finite subfunction of an infinite
domain function is in the implied C. O

CSE 4111/5111. George Tourlakis. Winter 2018

16

CSE 4111/5111. George Tourlakis. Winter 2018

Bibliography

CSE 4111/5111. George Tourlakis. Winter 2018

17

	Reducibility via the S-m-n Theorem

