York University

Faculty of Pure and Applied Science, Faculty of Arts, Atkinson Faculty

MATH 1090: Facts-List for the December 2005 Examination

Sections A (Tourlakis) and B (Farah)

NAME (print in ink): \qquad

SIGNATURE (in ink): \qquad

SECTION (in ink): \square STUDENT NUMBER(in ink) \qquad

This handout must be filled in (name, etc.) as required above, and handed in along with your exam paper. It is NOT allowed to write anything on these pages beyond the information we are asking above.

Here is a list of some tools/facts covered in MATH1090, which you may use "off the shelf", without proof.

The following are the axioms of Propositional Calculus: In what follows, $A, \overline{B, C}$ stand for arbitrary formulae.

$$
\begin{align*}
& \underline{\text { Properties of } \equiv} \\
& \text { Associativity of } \equiv \quad((A \equiv B) \equiv C) \equiv(A \equiv(B \equiv C)) \tag{1}\\
& \text { Symmetry of } \equiv \quad(A \equiv B) \equiv(B \equiv A) \tag{2}\\
& \text { Properties of false, true } \\
& \text { true vs. false } \quad \text { true } \equiv \text { false } \equiv \text { false } \tag{3}\\
& \underline{\text { Properties of } \neg} \\
& \text { Introduction of } \neg \quad \neg A \equiv A \equiv \text { false } \tag{4}\\
& \xrightarrow{\text { Properties of } \vee}
\end{align*}
$$

$$
\begin{align*}
& \text { Associativity of } \vee \quad(A \vee B) \vee C \equiv A \vee(B \vee C) \tag{5}\\
& \text { Symmetry of } \vee \quad A \vee B \equiv B \vee A \tag{6}\\
& \text { Idempotency of } \vee \quad A \vee A \equiv A \tag{7}\\
& \text { Distributivity of } \vee \text { over } \equiv \quad A \vee(B \equiv C) \equiv A \vee B \equiv A \vee C \tag{8}\\
& \text { Excluded Middle } \quad A \vee \neg A \tag{9}\\
& \underline{\text { Properties of } \wedge} \\
& \text { Golden Rule } \quad A \wedge B \equiv A \equiv B \equiv A \vee B \tag{10}\\
& \underline{\text { Properties of } \Rightarrow} \\
& \text { Implication } \quad A \Rightarrow B \equiv A \vee B \equiv B \tag{11}
\end{align*}
$$

The Primary Boolean rules are:

$$
\frac{A, A \equiv B}{B}
$$

(Eqn)
and

$$
\begin{equation*}
\frac{A \equiv B}{C[p:=A] \equiv C[p:=B]} \tag{Leib}
\end{equation*}
$$

The following are the Predicate Calculus Axioms:
Any partial generalisation of any formula in groups Ax1-Ax6 is an axiom for Predicate Calculus.

Groups Ax1-Ax6 contain:
Ax1. The schemata (1)-(11) above (from the Boolean case).
Ax2. For every formula $A,(\forall x) A \Rightarrow A[x:=t]$, for any term t.
Ax3. For every formula A and variable x not free in A, the formula $A \Rightarrow(\forall x) A$.
Ax4. For every formulae A and $B,(\forall x)(A \Rightarrow B) \Rightarrow(\forall x) A \Rightarrow(\forall x) B$.
Ax5. For each object variable x, the formula $x=x$.
Ax6. For any formula A, any object variable x and any terms t, s, the formula $t=s \Rightarrow(A[x:=t] \equiv A[x:=s])$.

Primary rules of inference are the same as for the Boolean Case, namely, Equanimity and Leibniz. The fact that Leibniz is applied to the Boolean abstraction of formulae is reflected by its name -Boolean Leibniz or "BL"and the restriction on where p may occur (see below).

$$
\frac{A \equiv B}{C[p:=A] \equiv C[p:=B]} \text {, provided } p \text { is not in the scope of a quantifier. }(B L)
$$

The following metatheorems are good for $\boldsymbol{b o t h}$ Propositional and Predicate Calculus:

1. Redundant True. $\Gamma \vdash A$ iff $\Gamma \vdash A \equiv$ true
2. Modus Ponens (MP). $A, A \Rightarrow B \vdash B$
3. Cut Rule. $A \vee B, \neg A \vee C \vdash B \vee C$
4. Deduction Theorem. If $\Gamma, A \vdash B$, then $\Gamma \vdash A \Rightarrow B$
5. Proof by contradiction. $\Gamma, \neg A \vdash$ false iff $\Gamma \vdash A$
6. Post's Theorem. (Also called "tautology theorem", or even "completeness of Propositional Calculus theorem")
If $\models_{\text {taut }} A$, then $\vdash A$.
Also: If $\Gamma \models_{\text {taut }} A$, then $\Gamma \vdash A$.
7. Proof by cases. $A \Rightarrow B, C \Rightarrow D \vdash A \vee C \Rightarrow B \vee D$

Also the special case: $A \Rightarrow B, C \Rightarrow B \vdash A \vee C \Rightarrow B$

Translations

$(\exists x) A$ translates to $\neg(\forall x) \neg A$
$(\forall x \mid A: B)$ translates to $(\forall x)(A \Rightarrow B)$ ("Range trading with \forall ")
$(\exists x \mid A: B)$ translates to $(\exists x)(A \wedge B)$ ("Range trading with \exists ")
Useful facts from Predicate Calculus (proved in class-you may use them without proof):

We $\boldsymbol{k n o w}$ that SL and WL (as well as GS-Leibniz "8.12(a)" and "8.12(b)") are derived rules. These are the following ("GS" -notation is used in 8.12(a-b) below):

Same as BL, without the condition: $A \equiv B \vdash C[p:=A] \equiv C[p:=B]$

$$
\begin{equation*}
\text { if } \vdash A \equiv B \text {, then } \vdash C[p \backslash A] \equiv C[p \backslash B] \tag{SL}
\end{equation*}
$$

if $\vdash A \equiv B$, then $\vdash(* x \mid C[p:=A]: D) \equiv(* x \mid C[p:=B]: D)$
if $\vdash D \Rightarrow(A \equiv B)$, then $\vdash(* x \mid D: C[p:=A]) \equiv(* x \mid D: C[p:=B])$
where in $8.12(\mathrm{a}-\mathrm{b})$ " $*$ " stands everywhere for the symbol " \forall ", or the symbol " \exists ".

- More "rules" and (meta)theorems.
(i)
$\vdash A \equiv(\forall x) A$, provided x is not free in A
$\vdash A \equiv(\exists x) A$, provided x is not free in A
(ii) Dummy renaming.

If z does not occur in $(\forall x) A$ as either free or bound, then $\vdash(\forall x) A \equiv(\forall z)(A[x:=z])$
If z does not occur in $(\exists x) A$ as either free or bound, then $\vdash(\exists x) A \equiv(\exists z)(A[x:=z])$
(iii) \forall over \circ distribution, where " 0 is " \vee " or " \Rightarrow ".

$$
\vdash A \circ(\forall x) B \equiv(\forall x)(A \circ B), \text { provided } x \text { is not free in } A
$$

\exists over \wedge distribution

$$
\vdash A \wedge(\exists x) B \equiv(\exists x)(A \wedge B), \text { provided } x \text { is not free in } A
$$

(iv) \forall over \wedge distribution.

$$
\vdash(\forall x) A \wedge(\forall x) B \equiv(\forall x)(A \wedge B)
$$

\exists over \vee distribution.

$$
\vdash(\exists x) A \vee(\exists x) B \equiv(\exists x)(A \vee B)
$$

(v) \forall commutativity (symmetry).

$$
\vdash(\forall x)(\forall y) A \equiv(\forall y)(\forall x) A
$$

\exists commutativity (symmetry).

$$
\vdash(\exists x)(\exists y) A \equiv(\exists y)(\exists x) A
$$

(vi) Specialisation. $\quad(\forall x) A \vdash A[x:=t]$, for any term t.

Dual of Specialisation. $\quad A[x:=t] \vdash(\exists x) A$, for any term t.
(vii) Generalisation. If $\Gamma \vdash A$ and if, moreover, the formulae in Γ have no free x occurrences, then also $\Gamma \vdash(\forall x) A$.
(viii) \forall Monotonicity. If $\Gamma \vdash A \Rightarrow B$ so that the formulae in Γ have no free x occurrences, then we can infer

$$
\Gamma \vdash(\forall x) A \Rightarrow(\forall x) B
$$

\exists Monotonicity. If $\Gamma \vdash A \Rightarrow B$ so that the formulae in Γ have no free x occurrences, then we can infer

$$
\Gamma \vdash(\exists x) A \Rightarrow(\exists x) B
$$

(ix) \forall Introduction; a special case of \forall Monotonicity that uses (i) above. If $\Gamma \vdash A \Rightarrow B$ so that neither the formulae in Γ nor A have any free x occurrences, then we can infer

$$
\Gamma \vdash A \Rightarrow(\forall x) B
$$

\exists Introduction; a special case of \exists Monotonicity that uses (i) above. If $\Gamma \vdash A \Rightarrow B$ so that neither the formulae in Γ nor B have any free x occurrences, then we can infer

$$
\Gamma \vdash(\exists x) A \Rightarrow B
$$

(x) (Equals-for-equals in terms) For any terms t, s, t^{\prime} and variable x,

$$
\vdash t=t^{\prime} \Rightarrow s[x:=t]=s\left[x:=t^{\prime}\right]
$$

(xi) Finally, the Auxiliary Variable ("witness") Metatheorem. If $\Gamma \vdash(\exists x) A$, and if y is a variable that does not occur as either free or bound variable in any of A or B or the formulae of Γ, then

$$
\Gamma, A[x:=y] \vdash B \text { implies } \Gamma \vdash B
$$

Semantics facts

Propositional Calculus	Predicate Calculus
(Boolean Soundness) $\vdash A$ implies $\models_{\text {taut }} A$	$\vdash A$ does NOT imply $\models_{\text {taut }} A$
(Post) $\models_{\text {taut }} A$ implies $\vdash A$	However, (Post) $\models_{\text {taut }} A$ implies $\vdash A$
	(Pred. Calc. Soundness) $\vdash A$ implies $\models A$
	(Gödel Completeness) $\models A$ implies $\vdash A$

CAUTION! The above facts/tools are only a fraction of what we have covered in class. They are very important and very useful, and that is why they are listed for your reference here.

You can also use without proof $\boldsymbol{A} \boldsymbol{L} \boldsymbol{L}$ the things we have covered (such as "one-point-rule", "de Morgan's laws", etc.).

But these - the unlisted ones- are up to you to remember and to correctly state!

Whenever in doubt of whether or not a "tool" you are about to use was covered in class, prove the validity/fitness of the tool before using it!

