York University

Faculty of Pure and Applied Science, Faculty of Arts, Atkinson Faculty

MATH 1090: Facts-List for the December 2005 Examination

Sections A (Tourlakis) and B (Farah)

NAME (print in ink):			
	(Family)	(First)	
SIGNATURE (in ink):			

SECTION (in ink): STUDENT NUMBER(in ink)

This handout must be filled in (name, etc.) as required above, and handed in along with your exam paper. It is <u>NOT</u> allowed to write anything on these pages beyond the information we are asking above.

Here is a list of some tools/facts covered in MATH1090, which you may use "off the shelf", without proof.

The following are the axioms of Propositional Calculus: In what follows, A, B, C stand for arbitrary formulae.

$$\begin{array}{ll} \underline{\text{Properties of} \equiv} \\ \textbf{Associativity of} \equiv & ((A \equiv B) \equiv C) \equiv (A \equiv (B \equiv C)) \\ \textbf{Symmetry of} \equiv & (A \equiv B) \equiv (B \equiv A) \end{array} \tag{1}$$

$$\begin{array}{c} \text{Properties of } false, true \end{array}$$

true **vs.** false
$$true \equiv false \equiv false$$
 (3)
Properties of \neg

Introduction of
$$\neg \neg A \equiv A \equiv false$$
 (4)
Properties of \lor

Associativity of \lor	$(A \lor B) \lor C \equiv A \lor (B \lor C)$	(5)
$\mathbf{Symmetry} \mathbf{of} \lor $	$A \lor B \equiv B \lor A$	(6)
Idempotency of \lor	$A \lor A \equiv A$	(7)
Distributivity of \lor over \equiv	$A \lor (B \equiv C) \equiv A \lor B \equiv A \lor C$	(8)
Excluded Middle	$A \vee \neg A$	(9)
Pro	perties of \wedge	

Golden Rule
$$A \wedge B \equiv A \equiv B \equiv A \vee B$$
 (10)

$$\frac{\text{Properties of }\Rightarrow}{4}$$

$$Implication \qquad A \Rightarrow B \equiv A \lor B \equiv B \tag{11}$$

The **Primary** Boolean rules are:

$$\frac{A, A \equiv B}{B} \tag{Eqn}$$

and

$$\frac{A \equiv B}{C[p := A] \equiv C[p := B]}$$
(Leib)

The following are the Predicate Calculus Axioms:

Any partial generalisation of any formula in groups Ax1-Ax6 is an axiom for Predicate Calculus.

Groups Ax1–Ax6 contain:

- **Ax1.** The schemata (1)–(11) above (from the Boolean case).
- **Ax2.** For every formula A, $(\forall x)A \Rightarrow A[x := t]$, for any term t.
- **Ax3.** For every formula A and variable x not free in A, the formula $A \Rightarrow (\forall x)A$.
- **Ax4.** For every formulae A and B, $(\forall x)(A \Rightarrow B) \Rightarrow (\forall x)A \Rightarrow (\forall x)B$.
- **Ax5.** For *each* object variable x, the formula x = x.
- **Ax6.** For any formula A, any object variable x and any terms t, s, the formula $t = s \Rightarrow (A[x := t] \equiv A[x := s]).$

Primary rules of inference are **the same** as for the Boolean Case, namely, **Equanimity** and **Leibniz**. The fact that Leibniz is applied to the Boolean abstraction of formulae is reflected by its name —Boolean Leibniz or "BL"— and the restriction on where p may occur (see below).

 $A \equiv B$ $\overline{C[p:=A]} \equiv C[p:=B]$, provided p is **not** in the scope of a quantifier. (BL)

The following metatheorems are good for **both** Propositional and Predicate Calculus:

- 1. Redundant True. $\Gamma \vdash A$ iff $\Gamma \vdash A \equiv true$
- 2. Modus Ponens (MP). $A, A \Rightarrow B \vdash B$
- 3. Cut Rule. $A \lor B, \neg A \lor C \vdash B \lor C$
- 4. Deduction Theorem. If $\Gamma, A \vdash B$, then $\Gamma \vdash A \Rightarrow B$
- 5. Proof by contradiction. $\Gamma, \neg A \vdash false \text{ iff } \Gamma \vdash A$
- 6. *Post's Theorem.* (Also called "tautology theorem", or even "completeness of Propositional Calculus theorem")

If $\models_{\text{taut}} A$, then $\vdash A$.

Also: If $\Gamma \models_{\text{taut}} A$, then $\Gamma \vdash A$.

7. *Proof by cases.* $A \Rightarrow B, C \Rightarrow D \vdash A \lor C \Rightarrow B \lor D$ Also the special case: $A \Rightarrow B, C \Rightarrow B \vdash A \lor C \Rightarrow B$

Translations

 $(\exists x)A$ translates to $\neg(\forall x)\neg A$

 $(\forall x | A : B)$ translates to $(\forall x)(A \Rightarrow B)$ ("Range trading with \forall ")

 $(\exists x | A : B)$ translates to $(\exists x)(A \land B)$ ("Range trading with \exists ")

Useful facts from Predicate Calculus (proved in class—you may use them without proof):

We **know** that SL and WL (as well as GS-Leibniz "8.12(a)" and "8.12(b)") are **derived rules**. These are the following ("GS"-notation is used in 8.12(a-b) below):

Same as BL, without the condition:
$$A \equiv B \vdash C[p := A] \equiv C[p := B]$$
 (SL)
if $\vdash A \equiv B$, then $\vdash C[p \setminus A] \equiv C[p \setminus B]$ (WL)

if $\vdash A \equiv B$, then $\vdash (*x|C[p:=A]:D) \equiv (*x|C[p:=B]:D)$ (8.12(a))

if
$$\vdash D \Rightarrow (A \equiv B)$$
, then $\vdash (*x|D:C[p:=A]) \equiv (*x|D:C[p:=B])$ (8.12(b))

where in 8.12 (a–b) "*" stands everywhere for the symbol " \forall ", or the symbol " \exists ".

▶ More "rules" and (meta)theorems.

(i)

 $\vdash A \equiv (\forall x)A$, provided x is not free in A $\vdash A \equiv (\exists x)A$, provided x is not free in A

(ii) Dummy renaming.

If z does not occur in $(\forall x)A$ as either free or bound, then $\vdash (\forall x)A \equiv (\forall z)(A[x := z])$

If z does not occur in $(\exists x)A$ as either free or bound, then $\vdash (\exists x)A \equiv (\exists z)(A[x := z])$

(iii) \forall over \circ distribution, where " \circ " is " \vee " or " \Rightarrow ".

 $\vdash A \circ (\forall x) B \equiv (\forall x) (A \circ B)$, provided x is not free in A

 $\exists over \land distribution$

 $\vdash A \land (\exists x)B \equiv (\exists x)(A \land B)$, provided x is not free in A

(iv) \forall over \land distribution.

$$\vdash (\forall x)A \land (\forall x)B \equiv (\forall x)(A \land B)$$

 $\exists over \lor distribution.$

$$\vdash (\exists x)A \lor (\exists x)B \equiv (\exists x)(A \lor B)$$

(v) \forall commutativity (symmetry).

$$\vdash (\forall x)(\forall y)A \equiv (\forall y)(\forall x)A$$

 \exists commutativity (symmetry).

$$\vdash (\exists x)(\exists y)A \equiv (\exists y)(\exists x)A$$

- (vi) Specialisation. $(\forall x)A \vdash A[x := t]$, for any term t. Dual of Specialisation. $A[x := t] \vdash (\exists x)A$, for any term t.
- (vii) Generalisation. If $\Gamma \vdash A$ and if, moreover, the formulae in Γ have no free x occurrences, then also $\Gamma \vdash (\forall x)A$.
- (viii) \forall Monotonicity. If $\Gamma \vdash A \Rightarrow B$ so that the formulae in Γ have **no free** x **occurrences**, then we can infer

$$\Gamma \vdash (\forall x)A \Rightarrow (\forall x)B$$

 \exists Monotonicity. If $\Gamma \vdash A \Rightarrow B$ so that the formulae in Γ have **no free** x **occurrences**, then we can infer

$$\Gamma \vdash (\exists x)A \Rightarrow (\exists x)B$$

(ix) \forall Introduction; a special case of \forall Monotonicity that uses (i) above. If $\Gamma \vdash A \Rightarrow B$ so that neither the formulae in Γ nor A have **any free** x **occurrences**, then we can infer

$$\Gamma \vdash A \Rightarrow (\forall x)B$$

 \exists Introduction; a special case of \exists Monotonicity that uses (i) above. If $\Gamma \vdash A \Rightarrow B$ so that neither the formulae in Γ nor B have **any free** x **occurrences**, then we can infer

$$\Gamma \vdash (\exists x) A \Rightarrow B$$

(x) (Equals-for-equals in terms) For any terms t, s, t' and variable x,

$$\vdash t = t' \Rightarrow s[x := t] = s[x := t']$$

(xi) Finally, the Auxiliary Variable ("witness") Metatheorem. If $\Gamma \vdash (\exists x)A$, and if y is a variable that **does not** occur as either free or bound variable in any of A or B or the formulae of Γ , then

$$\Gamma, A[x := y] \vdash B \text{ implies } \Gamma \vdash B$$

Semantics facts

Propositional Calculus	Predicate Calculus
(Boolean Soundness) $\vdash A$ implies $\models_{\text{taut}} A$	$\vdash A \text{ does } \mathbf{NOT} \text{ imply } \models_{\text{taut}} A$
$(Post) \models_{taut} A \text{ implies} \vdash A$	However, (Post) $\models_{taut} A \text{ implies} \vdash A$
	(Pred. Calc. Soundness) $\vdash A$ implies $\models A$
	$(\text{G\"odel Completeness}) \models A \text{ implies} \vdash A$

CAUTION! The above facts/tools are only a fraction of what we have covered in class. They are *very important and very useful*, and that is why they are listed for your reference here.

You can also use *without proof* **ALL** the things we have covered (such as "one-point-rule", "de Morgan's laws", etc.).

But these —the unlisted ones— are up to you to remember and to correctly state!

Whenever in doubt of whether or not a "tool" you are about to use was covered in class, **prove** the validity/fitness of the tool before using it!