A Programming Formalism for $\mathcal{P} \mathcal{R}^{*}$

A brief note that assumes access to [Tou12].

George Tourlakis

February 2, 2014

1 Syntax and Semantics of Loop Programs

Loop programs were introduced by D. Ritchie and A. Meyer ([MR67]) as program-theoretic counterpart to the number theoretic introduction of the set of primitive recursive functions $\mathcal{P} \mathcal{R}$. This programming formalism among other things connected the definitional (or structural) complexity of primitive recursive functions with their (run time) computational complexity.

Loop programs are very similar to programs written in FORTRAN, but have a number of simplifications, notably they lack an unrestricted do-while instruction (equivalently, goto instruction). What they do have is
(1) Each program references (uses) a finite number of variables that we denote metamathematically by single letter names (upper or lower case is all right) with or without subscripts or primes ${ }^{1}$
(2) Instructions are of the following types (X, Y could be any variables below, including the case of two identical variables):
(i) $X \leftarrow 0$
(ii) $X \leftarrow Y$
(iii) $X \leftarrow X+1$
(iv) Loop $X \ldots$...end, where ". .." represents a sequence of syntactically valid instructions (which in 1.1 will be called a "loop program"). The Loop part is matched or balanced by the end part as it will become evident by the inductive definition below (1.1).

Informally, the structure of loop programs can be defined by induction:
Definition 1.1 Every instruction of type (i)-(iii) standing by itself is a loop program. If we already have two loop programs P and Q, then so are

[^0]- P;Q, built by superposition (concatenation) and normally denoted vertically, without the separator ";", like this:

$$
P
$$

Q
and, for any variable X (that may or may not be in P),

- Loop X; P; end, called loop closure (of P), and normally written vertically without separators ";" like this:

Loop X
 P

end

Definition 1.2 The set of all loop programs will be denoted by L.
The informal semantics of loop programs are precisely those given in [Tou12] (and in class) and will not be repeated here. Similarly, the symbol $P_{Y}^{\vec{X}_{n}}$ is as for the URMs: It is the function computed by loop program P if we use $\vec{X}_{n}=X_{1}, X_{2}, \ldots, X_{n}$ as the input and Y as the output variables. Of course, we know from [Tou12], and from class, that all such $P_{Y}^{\vec{X}_{n}}$ are total. Quite a few examples are given in loc. cit.

We defined the set of loop programmable functions, \mathscr{L} :
Definition 1.3 The symbol \mathscr{L} stands for $\left\{P_{Y}^{\vec{X}_{n}}: P \in L\right\}$.
Remark. 1.4 It will be useful for Section 3 to disclose the true nature of loop program variables and carefully recast the definition of loop programs via a context free grammar (see your old course materials from CSE2001 3.00!).

The finite alphabet over which loop programs are built is

$$
\Sigma=\{\text { Loop }, \text { end }, X, 1, \leftarrow,+, ;, 0\}
$$

Bold type in Loop and end signifies that each of these keywords is a single symbol (on the blackboard we use underlining). We fix the lexicographic (alphabetic) order of the symbols in Σ as above, thus

$$
\begin{equation*}
\mathbf{L o o p}<\mathbf{e n d}<X<1<\leftarrow<+<;<0 \tag{1}
\end{equation*}
$$

The variables are strings of the form $X 1^{l}$, where $l>0$ and

$$
1^{l}=\underbrace{l l \ldots l}_{l \text { copies }}
$$

Thus, using the name -or as we say in language theory, nonterminal- $\langle v a r\rangle$ to denote the set of variables, we know from CSE2001 that we can use the recursive definition below (in Backus Naur Form (BNF) notation, as it is called) to define the contents of $\langle v a r\rangle$:

$$
\langle v a r\rangle::=X 1 \mid\langle v a r\rangle 1
$$

read as
"a variable is (symbol $::=$) the string ' $X 1$ ' or (symbol \mid) it is a variable followed by a ' 1 ' ",
Thus, using the nonterminal $\langle p r o g\rangle$ to name the set L, our earlier definition re-reads:

$$
\begin{aligned}
\langle p r o g\rangle::= & \langle v a r\rangle \leftarrow 0 \mid \\
& \langle v a r\rangle \leftarrow\langle v a r\rangle \mid \\
& +\langle v a r\rangle \mid \\
& \langle p r o g\rangle ;\langle p r o g\rangle \mid \\
& \mathbf{L o o p}\langle v a r\rangle ;\langle p r o g\rangle ; \text { end }
\end{aligned}
$$

Note that " $+\langle v a r\rangle$ " is used instead of the one we are using informally, " $v v a r\rangle \leftarrow\langle v a r\rangle+$ $1 "$. This is because context free grammars cannot generate strings of the type $z \# w$ where $z=w$ as strings - that is, they cannot in general compare strings for equality (again, recall CSE2001 and the pumping lemma for context free languages).

$2 \mathscr{P} \mathscr{R}$ vs. \mathscr{L}

Theorem 2.1 $\mathscr{P} \mathscr{R} \subseteq \mathscr{L}$.
Proof By induction over $\mathscr{P} \mathscr{R}$ and brute-force programming:
Basis: $\lambda x . x+1$ is P_{X}^{X} where P is $X \leftarrow X+1$. Similarly, $\lambda \vec{x}_{n} . x_{i}$ is $P_{X_{i}}^{\vec{X}_{n}}$ where P is

$$
X_{1} \leftarrow X_{1} ; X_{2} \leftarrow X_{2} ; \ldots ; X_{n} \leftarrow X_{n}
$$

The case of $\lambda x .0$ is as easy.
How does one compute $\lambda x . f(g(x))$ if g is G_{X}^{X} and f is F_{X}^{X} ? One uses

$$
\binom{G^{\prime}}{F}_{X}^{X}
$$

where G^{\prime} is G modified to avoid side-effects: One must ensure that all the variables of F other than X-which were referenced in G - are set to 0 upon exit from G because F expects all these variables to be 0 in order to compute f correctly. G^{\prime} does that, if necessary, by us placing at the end of G several statements of the type $Y \leftarrow 0$.

The general case $\lambda \vec{x}_{m} . f\left(g_{1}\left(\vec{x}_{m}\right), \ldots, g_{n}\left(\vec{x}_{m}\right)\right)$ is programmed similarly.
Finally, we indicate in pseudo-code how to compute $f\left(x, \vec{y}_{n}\right)$ where

$$
\begin{aligned}
f\left(0, \vec{y}_{n}\right) & =h\left(\vec{y}_{n}\right) \\
f\left(x+1, \vec{y}_{n}\right) & =g\left(x, \vec{y}_{n}, f\left(x, \vec{y}_{n}\right)\right)
\end{aligned}
$$

assuming we have loop programs H and G for h and g respectively. The pseudo-code is

```
\(z \leftarrow h\left(\vec{y}_{n}\right)\)
\(i \leftarrow 0\)
    Loop \(x\)
    \(z \leftarrow g\left(i, \vec{y}_{n}, z\right)\)
    \(i \leftarrow i+1\)
    end
```

The pseudo-code above means - for example, by " $z \leftarrow h\left(\vec{y}_{n}\right)$ "— that we rather have placed the program H in the place of that pseudo-instruction, with input variables \vec{y}_{n} and output variable z. Similar comment for G.

Once again one has to eliminate side-effects. For example, neither H nor G are allowed to change \vec{y}_{n}. G must not change i either $\left[^{2}\right.$ Any non input variables of G must be explicitly set to $0(W \leftarrow 0)$ at the end of G-by a modified G if the original was not doing this- so that G correctly computes "according to its spec" every time we enter this sub program while we are looping around the loop x times. Indeed, any non input variables of G that occur in H must also be set explicitly to 0 at the end of H so that G computes correctly the first time we enter the loop.

To handle the converse of the preceding theorem we define
Definition 2.2 For any $P \in L$ and any variable Y in P, the symbol P_{Y} is an abbreviation of $P_{Y}^{\vec{X}_{n}}$, where \vec{X}_{n} are all the variables that occur in P.

Theorem $2.3 \mathscr{L} \subseteq \mathscr{P} \mathscr{R}$.
Proof The plan is to use induction over the definition of L 1.1) and prove that for every $P \in L$ and any Y in $P, P_{Y} \in \mathscr{P} \mathscr{R}$.

Why is the above plan sufficient, for what we want, which is to show (1) below?

for all $P \in L$, and any input set \vec{X}_{n} and output variable Y, all in P, that $P_{Y}^{\vec{X}_{n}} \in \mathscr{P} \mathscr{R}$ (1)
Because, say we picked a $P \in L$ and a Y in P as output variable. Say \vec{X}_{n}, \vec{W}_{m} is the set of all variables of P. But then, if our plan succeeds we have that

$$
P_{Y}=P_{Y}^{\vec{X}_{n}, \vec{W}_{m}} \in \mathscr{P} \mathscr{R}
$$

If we now set $P_{Y}=\lambda \vec{X}_{n} \vec{W}_{m} \cdot f\left(\vec{X}_{n}, \vec{W}_{m}\right)$, we have $f \in \mathscr{P} \mathscr{R}$, and -by Grzegorczyk substitution- that also

$$
\lambda \vec{X}_{n} \cdot f(\vec{X}_{n}, \underbrace{0, \ldots, 0}_{m \text { zeros }}) \in \mathscr{P} \mathscr{R}
$$

[^1]But

$$
\lambda \vec{X}_{n} \cdot f(\vec{X}_{n}, \underbrace{0, \ldots, 0}_{m \text { zeros }})=P_{Y}^{\vec{X}_{n}}
$$

On to our plan then!

For the basis, we have cases:

- P is $X \leftarrow 0$. Then $P_{X}=\lambda x .0 \in \mathscr{P} \mathscr{R}$.
- P is $X \leftarrow Y$. Then $P_{X}=\lambda x y . y \in \mathscr{P} \mathscr{R}$, while $P_{Y}=\lambda x y . y \in \mathscr{P} \mathscr{R}$.
- P is $X \leftarrow X+1$. Then $P_{X}=\lambda x . x+1 \in \mathscr{P} \mathscr{R}$

Let next do the induction step:
(A) P is $Q ; R$.

Pick a variable w_{j} in P. Let \vec{y}_{n} be all the variables of Q, and \vec{w} all those in $R r^{3}$

Now, in one extreme case none of the y_{i} occur in \vec{w}, in which case $P_{w_{j}}=R_{w_{j}}$ and we are done by the I.H.

The interesting case is that some y_{i} are in \vec{w}, and thus we will assume that all are, as this will not restrict generality as we will explain shortly.

$$
\begin{equation*}
\text { Thus, } \vec{w}_{n+m}=\vec{y}_{n} ; \vec{z}_{m} \tag{1}
\end{equation*}
$$

where the z_{j} are not in Q. Next, a bit of notation that helps:

We let

$$
\begin{equation*}
\lambda \vec{y}_{n} \vec{z}_{m} \cdot g_{j}\left(\vec{y}_{n}, \vec{z}_{m}\right) \stackrel{\text { Def }}{=} R_{w_{j}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \vec{y}_{n} \cdot f_{i}\left(\vec{y}_{n}\right) \stackrel{D e f}{=} Q_{y_{i}}, \text { for } i=1, \ldots, n \tag{3}
\end{equation*}
$$

By the I.H., the f_{i} and g_{j} are all in $\mathscr{P} \mathscr{R}$
Now imagine the computation of P and refer to the figure below as well: Clearly, as soon as the computation exits Q and enters R in the overall program P, all the y_{i} in R -that are actually present- will receive the value $f_{i}\left(\vec{y}_{n}\right)$.

If a y_{i} is not present in R, then the output $f_{i}\left(\vec{y}_{n}\right)$ of Q will not affect R 's output.

[^2]Thus $P_{w_{j}}=\lambda \vec{y}_{n} \vec{z}_{m} \cdot g_{j}\left(f_{1}\left(\vec{y}_{n}\right), \ldots, f_{n}\left(\vec{y}_{n}\right), \vec{z}_{m}\right)$, which is in $\mathscr{P} \mathscr{R}$ by (4) and substitution. See also the figure below.

(B) P is Loop $x ; Q ;$ end.

There are two subcases: X in Q, or not.
We will only work with the first subcase and leave the other as an exercise.
So, let \vec{y}_{n} be all the variables of $Q ; x$ is not being one of them.
Let

$$
\begin{equation*}
\lambda x \vec{y}_{n} \cdot f_{0}\left(x, \vec{y}_{n}\right) \text { denote } P_{x} \tag{5}
\end{equation*}
$$

and, for $i=1, \ldots, n$,

$$
\begin{equation*}
\lambda x \vec{y}_{n} . f_{i}\left(x, \vec{y}_{n}\right) \text { denote } P_{y_{i}} \tag{6}
\end{equation*}
$$

Moreover, let

$$
\begin{equation*}
\lambda \vec{y}_{n} \cdot g_{i}\left(\vec{y}_{n}\right) \text { denote } Q_{y_{i}} \tag{7}
\end{equation*}
$$

By the I.H., the g_{i} are in $\mathcal{P} \mathcal{R}$ for $i=1,2, \ldots, n$.
We want to prove that the functions in (5) and (6) are also in $\mathcal{P} \mathcal{R}$. Since $f_{0}=\lambda x \vec{y}_{n} \cdot x$ (Why?), we only deal with the f_{i} for $i>0$.

The plan is to set up a simultaneous recursion that produces the $f_{i}\left(k+1, \vec{y}_{n}\right)$ from the $g_{i}\left(\vec{y}_{n}\right)$ and the $f_{i}\left(k, \vec{y}_{n}\right)$.

Well, for the basis, $f_{i}\left(0, \vec{y}_{n}\right)=y_{i}$ since no y_{i} changes if $x=k=0$.
Now, according to the semantics of Loop $x ; Q ;$ end, $f_{i}\left(k+1, \vec{y}_{n}\right)$ is the output in the variable y_{i} of the program

$$
k \text { copies }\left\{\begin{array}{c}
Q \\
Q \\
Q \\
\vdots \\
Q \\
Q
\end{array}\right.
$$

while $f_{i}\left(k, \vec{y}_{n}\right)$ is the output in the variable y_{i} of the program

$$
k \text { copies }\left\{\begin{array}{c}
Q \tag{9}\\
Q \\
Q \\
\vdots \\
Q
\end{array}\right.
$$

The following figure is a graphical representation of the recurrence equations that we will propose in (10). The figure is a straightforward adaptation of the superposition case (A) above, where the top program is that in (9), and the bottom one is Q.

To sum up, we have a simultaneous recursion from the $\mathcal{P} \mathcal{R}$ functions g_{j} :

- Basis:

$$
f_{0}\left(0, \vec{y}_{n}\right)=0
$$

and

$$
f_{i}\left(0, \vec{y}_{n}\right)=y_{i}, \text { for } i=1, \ldots, n
$$

$$
f_{0}\left(k+1, \vec{y}_{n}\right)=k+1
$$

and

$$
\begin{equation*}
f_{j}\left(k+1, \vec{y}_{n}\right)=g_{j}\left(f_{1}\left(k, \vec{y}_{n}\right), \ldots, f_{n}\left(k, \vec{y}_{n}\right)\right), \text { for } j=1, \ldots, n \tag{10}
\end{equation*}
$$

All in all, we have established 2.3, and thus that

$$
\mathscr{P} \mathscr{R}=\mathscr{L}
$$

3 Incompleteness of $\mathcal{P} \mathcal{R}$

We can now see that $\mathcal{P} \mathcal{R}$ cannot possibly contain all the intuitively computable total functions. We see this as follows:
(A) Since the language L is context free, we can decide (algorithmically, intuitively speaking) for any string α whether it belongs to L (i.e., whether α is a well-formed program) or not.
(B) We can algorithmically build the list, $L i s t_{1}$, of all strings over Σ : List by length; in each length group list lexicographically 4^{4}
(C) Simultaneously to building List $_{1}$ build List $_{2}$ as follows: For every string α generated in $L i s t_{1}$, copy it into $L i s t_{2}$ iff $\alpha \in L$ (which we can test algorithmically by A).
(D) Simultaneously to building List $_{2}$ build List $_{3}$: For every P (program) copied in List $_{2}$ copy all the finitely many strings P_{Y}^{X} (for all choices of X and Y in P) alphabetically (think of the string as " $P ; X ; Y$ ").
At the end of all this we have an algorithmic list of all the functions $\lambda x . f(x)$ of $\mathcal{P} \mathcal{R}$, listed by their aliases, the P_{Y}^{X}. Let us call this list

$$
f_{0}, f_{1}, f_{2}, \ldots, f_{x}, \ldots
$$

By Cantor's "diagonalization method" we define a new function d for all x as follows:

$$
\begin{equation*}
d(x)=f_{x}(x)+1 \tag{1}
\end{equation*}
$$

Two observations:

1. d is total (obvious, since each f_{x} is) and intuitively computable. Indeed, to compute $d(a)$ generate the lists long enough until you have the a-th item (counting as in $0,1,2, \ldots, a$) in List_{3}. This item has the format P_{Y}^{X}. I.e., we have a loop program and designated input (one) and output variables. Start this program with input the value a (in X). On termination add 1 to what Y holds and return. This is $d(a)$.
2. d is not in the list! For otherwise, $d=f_{i}$ for some $i \geq 0$. We get a contradiction:

$$
f_{i}(i) \stackrel{\text { by }}{\stackrel{d=f_{i}}{=}} d(i) \stackrel{\text { by }(1) \text { above }}{=} f_{i}(i)+1
$$

[^3]
References

[MR67] A. R. Meyer and D. M. Ritchie, Computational complexity and program structure, Technical Report RC-1817, IBM, 1967.
[Tou12] Theory of Computation, John Wiley \& Sons, Hoboken, NJ, 2012.

[^0]: *Supplementary lecture notes for CS4111/5111; Winter 2014
 ${ }^{1}$ The precise syntax of variables will be given shortly, but even after this fact we will continue using signs such as $X, A, Z^{\prime}, Y_{34}^{\prime \prime}$ for variables-i.e., we will continue using metanotation.

[^1]: ${ }^{2}$ To make any variable "read only", for example i, it is very easy: Change all occurrences of i in G to a new variable i^{\prime}. Add the instruction $i^{\prime} \leftarrow i$ at the very beginning of the so modified G.

[^2]: ${ }^{3}$ Recall that in our metanotation, we normally use as variable names x, X, y, Y, z, Z, w, W with or without primes or subscripts!

[^3]: ${ }^{4}$ Fix the ordering of Σ as listed in (1) on p 2

