
A Programming Formalism for PR∗

A brief note that assumes access to [Tou12].

George Tourlakis

February 2, 2014

1 Syntax and Semantics of Loop Programs
Loop programs were introduced by D. Ritchie and A. Meyer ([MR67]) as program-theoretic
counterpart to the number theoretic introduction of the set of primitive recursive functions
PR. This programming formalism among other things connected the definitional (or struc-
tural) complexity of primitive recursive functions with their (run time) computational com-
plexity.

Loop programs are very similar to programs written in FORTRAN, but have a number
of simplifications, notably they lack an unrestricted do-while instruction (equivalently, goto
instruction). What they do have is

(1) Each program references (uses) a finite number of variables that we denote metamath-
ematically by single letter names (upper or lower case is all right) with or without sub-
scripts or primes.1

(2) Instructions are of the following types (X,Y could be any variables below, including the
case of two identical variables):

(i) X ← 0

(ii) X ← Y

(iii) X ← X + 1

(iv) Loop X . . . end, where “. . .” represents a sequence of syntactically valid instruc-
tions (which in 1.1 will be called a “loop program”). The Loop part is matched or
balanced by the end part as it will become evident by the inductive definition below
(1.1).

Informally, the structure of loop programs can be defined by induction:

Definition 1.1 Every instruction of type (i)–(iii) standing by itself is a loop program. If we
already have two loop programs P and Q, then so are
∗Supplementary lecture notes for CS4111/5111; Winter 2014
1The precise syntax of variables will be given shortly, but even after this fact we will continue using signs such

as X , A, Z′, Y ′′34 for variables—i.e., we will continue using metanotation.

1

• P;Q, built by superposition (concatenation) and normally denoted vertically, without
the separator “;”, like this:

P

Q

and, for any variable X (that may or may not be in P),

• Loop X; P ; end, called loop closure (of P), and normally written vertically without
separators “;” like this:

Loop X

P

end

�

Definition 1.2 The set of all loop programs will be denoted by L. �

The informal semantics of loop programs are precisely those given in [Tou12] (and in
class) and will not be repeated here. Similarly, the symbol P

~Xn

Y is as for the URMs: It is the
function computed by loop program P if we use ~Xn = X1, X2, . . . , Xn as the input and Y
as the output variables. Of course, we know from [Tou12], and from class, that all such P

~Xn

Y

are total. Quite a few examples are given in loc. cit.
We defined the set of loop programmable functions, L :

Definition 1.3 The symbol L stands for {P ~Xn

Y : P ∈ L}. �
�

Remark. 1.4 It will be useful for Section 3 to disclose the true nature of loop program vari-
ables and carefully recast the definition of loop programs via a context free grammar (see
your old course materials from CSE2001 3.00!).

The finite alphabet over which loop programs are built is

Σ = {Loop, end, X, 1,←,+, ; , 0}

Bold type in Loop and end signifies that each of these keywords is a single symbol (on the
blackboard we use underlining). We fix the lexicographic (alphabetic) order of the symbols
in Σ as above, thus

Loop < end < X < 1 <←< + < ;< 0 (1)

The variables are strings of the form X1l, where l > 0 and

1l = ll . . . l︸ ︷︷ ︸
l copies

Thus, using the name —or as we say in language theory, nonterminal— 〈var〉 to denote the
set of variables, we know from CSE2001 that we can use the recursive definition below (in
Backus Naur Form (BNF) notation, as it is called) to define the contents of 〈var〉:

〈var〉 ::= X1
∣∣∣〈var〉1

2

read as

“a variable is (symbol ::=) the string ‘X1’ or (symbol
∣∣∣) it is a variable followed by a ‘1’ ”

Thus, using the nonterminal 〈prog〉 to name the set L, our earlier definition re-reads:

〈prog〉 ::=〈var〉 ← 0
∣∣∣

〈var〉 ← 〈var〉
∣∣∣

+〈var〉
∣∣∣

〈prog〉; 〈prog〉
∣∣∣

Loop〈var〉; 〈prog〉; end

Note that “+〈var〉” is used instead of the one we are using informally, “〈var〉 ← 〈var〉 +
1”. This is because context free grammars cannot generate strings of the type z#w where
z = w as strings —that is, they cannot in general compare strings for equality (again, recall
CSE2001 and the pumping lemma for context free languages). �

�

2 PR vs. L

Theorem 2.1 PR ⊆ L .

Proof By induction over PR and brute-force programming:

Basis: λx.x+ 1 is PX
X where P is X ← X + 1. Similarly, λ~xn.xi is P

~Xn

Xi
where P is

X1 ← X1;X2 ← X2; . . . ;Xn ← Xn

The case of λx.0 is as easy.
How does one compute λx.f(g(x)) if g is GX

X and f is FX
X ? One uses(

G′

F

)X

X

where G′ is G modified to avoid side-effects: One must ensure that all the variables of F
other than X —which were referenced in G— are set to 0 upon exit from G because F
expects all these variables to be 0 in order to compute f correctly. G′ does that, if necessary,
by us placing at the end of G several statements of the type Y ← 0.

The general case λ~xm.f
(
g1(~xm), . . . , gn(~xm)

)
is programmed similarly.

Finally, we indicate in pseudo-code how to compute f(x, ~yn) where

f(0, ~yn) = h(~yn)

f(x+ 1, ~yn) = g(x, ~yn, f(x, ~yn))

3

assuming we have loop programs H and G for h and g respectively. The pseudo-code is

z← h(~yn)

i← 0

Loop x
z ← g(i, ~yn, z)

i← i+ 1

end

The pseudo-code above means —for example, by “z ← h(~yn)”— that we rather have placed
the program H in the place of that pseudo-instruction, with input variables ~yn and output
variable z. Similar comment for G.

Once again one has to eliminate side-effects. For example, neither H nor G are allowed
to change ~yn. G must not change i either.2 Any non input variables of G must be explicitly
set to 0 (W ← 0) at the end of G —by a modified G if the original was not doing this— so
that G correctly computes “according to its spec” every time we enter this sub program while
we are looping around the loop x times. Indeed, any non input variables of G that occur in
H must also be set explicitly to 0 at the end of H so that G computes correctly the first time
we enter the loop. �

To handle the converse of the preceding theorem we define

Definition 2.2 For any P ∈ L and any variable Y in P , the symbol PY is an abbreviation of
P

~Xn

Y , where ~Xn are all the variables that occur in P . �

Theorem 2.3 L ⊆PR.

Proof The plan is to use induction over the definition of L (1.1) and prove that for every
P ∈ L and any Y in P , PY ∈PR.

Why is the above plan sufficient, for what we want, which is
to show (1) below?

for all P ∈ L, and any input set ~Xn and output variable Y , all in P , that P
~Xn

Y ∈PR (1)

Because, say we picked a P ∈ L and a Y in P as output variable. Say ~Xn, ~Wm is the set
of all variables of P . But then, if our plan succeeds we have that

PY = P
~Xn, ~Wm

Y ∈PR

If we now set PY = λ ~Xn
~Wm.f(~Xn, ~Wm), we have f ∈ PR, and —by Grzegorczyk

substitution— that also
λ ~Xn.f(~Xn, 0, . . . , 0︸ ︷︷ ︸

m zeros

) ∈PR

2To make any variable “read only”, for example i, it is very easy: Change all occurrences of i in G to a new
variable i′. Add the instruction i′ ← i at the very beginning of the so modified G.

4

But
λ ~Xn.f(~Xn, 0, . . . , 0︸ ︷︷ ︸

m zeros

) = P
~Xn

Y

On to our plan then!

For the basis, we have cases:

• P is X ← 0. Then PX = λx.0 ∈PR.

• P is X ← Y . Then PX = λxy.y ∈PR, while PY = λxy.y ∈PR.

• P is X ← X + 1. Then PX = λx.x+ 1 ∈PR

Let next do the induction step:

(A) P is Q;R.

Pick a variable wj in P . Let ~yn be all the variables of Q, and ~w all those in R.3

Now, in one extreme case none of the yi occur in ~w, in which case Pwj
= Rwj

and we
are done by the I.H.

The interesting case is that some yi are in ~w, and thus we will assume that all are, as this
will not restrict generality as we will explain shortly.

Thus, ~wn+m = ~yn;~zm (1)

where the zj are not in Q. Next, a bit of notation that helps:

We let
λ~yn~zm.gj(~yn, ~zm)

Def
= Rwj

(2)

and
λ~yn.fi(~yn)

Def
= Qyi , for i = 1, . . . , n (3)

By the I.H., the fi and gj are all in PR (4)

Now imagine the computation of P and refer to the figure below as well: Clearly, as
soon as the computation exits Q and enters R in the overall program P , all the yi in R
—that are actually present— will receive the value fi(~yn).

If a yi is not present in R, then the output fi(~yn) of Q will not affect R’s output.

3Recall that in our metanotation, we normally use as variable names x,X, y, Y, z, Z,w,W with or without
primes or subscripts!

5

Thus Pwj = λ~yn~zm.gj
(
f1(~yn), . . . , fn(~yn), ~zm

)
, which is in PR by (4) and substitu-

tion. See also the figure below.

inputs

outputs

inputs

outputs

Q

R

(B) P is Loop x;Q; end.

There are two subcases: X in Q, or not.

We will only work with the first subcase and leave the other as an exercise.

So, let ~yn be all the variables of Q; x is not being one of them.

Let
λx~yn.f0(x, ~yn) denote Px (5)

and, for i = 1, . . . , n,
λx~yn.fi(x, ~yn) denote Pyi (6)

Moreover, let
λ~yn.gi(~yn) denote Qyi (7)

By the I.H., the gi are in PR for i = 1, 2, . . . , n. (8)

We want to prove that the functions in (5) and (6) are also in PR. Since f0 = λx~yn.x
(Why?), we only deal with the fi for i > 0.

The plan is to set up a simultaneous recursion that produces the fi(k + 1, ~yn) from the
gi(~yn) and the fi(k, ~yn).

6

Well, for the basis, fi(0, ~yn) = yi since no yi changes if x = k = 0.

Now, according to the semantics of Loop x;Q; end, fi(k + 1, ~yn) is the output in the
variable yi of the program

k copies

Q
Q
Q
...
Q

Q

while fi(k, ~yn) is the output in the variable yi of the program

k copies

Q
Q
Q
...
Q

(9)

The following figure is a graphical representation of the recurrence equations that we
will propose in (10). The figure is a straightforward adaptation of the superposition case
(A) above, where the top program is that in (9), and the bottom one is Q.

inputs

outputs

inputs

outputs

To sum up, we have a simultaneous recursion from the PR functions gj :

7

• Basis:
f0(0, ~yn) = 0

and
fi(0, ~yn) = yi, for i = 1, . . . , n

•
f0(k + 1, ~yn) = k + 1

and
fj(k + 1, ~yn) = gj

(
f1(k, ~yn), . . . , fn(k, ~yn)

)
, for j = 1, . . . , n (10)

All in all, we have established 2.3, and thus that

PR = L

3 Incompleteness of PR
We can now see that PR cannot possibly contain all the intuitively computable total func-
tions. We see this as follows:

(A) Since the language L is context free, we can decide (algorithmically, intuitively speak-
ing) for any string α whether it belongs to L (i.e., whether α is a well-formed program)
or not.

(B) We can algorithmically build the list, List1, of all strings over Σ: List by length; in each
length group list lexicographically.4

(C) Simultaneously to building List1 build List2 as follows: For every string α generated
in List1, copy it into List2 iff α ∈ L (which we can test algorithmically by (A)).

(D) Simultaneously to building List2 build List3: For every P (program) copied in List2
copy all the finitely many strings PX

Y (for all choices of X and Y in P) alphabetically
(think of the string as “P ;X;Y ”).

At the end of all this we have an algorithmic list of all the functions λx.f(x) of PR, listed
by their aliases, the PX

Y . Let us call this list

f0, f1, f2, . . . , fx, . . .

By Cantor’s “diagonalization method” we define a new function d for all x as follows:

d(x) = fx(x) + 1 (1)

Two observations:

1. d is total (obvious, since each fx is) and intuitively computable. Indeed, to com-
pute d(a) generate the lists long enough until you have the a-th item (counting as
in 0, 1, 2, . . . , a) in List3. This item has the format PX

Y . I.e., we have a loop program
and designated input (one) and output variables. Start this program with input the value
a (in X). On termination add 1 to what Y holds and return. This is d(a).

2. d is not in the list! For otherwise, d = fi for some i ≥ 0. We get a contradiction:

fi(i)
by d=fi

= d(i)
by (1) above

= fi(i) + 1

4Fix the ordering of Σ as listed in (1) on p.2.

8

References
[MR67] A. R. Meyer and D. M. Ritchie, Computational complexity and program structure,

Technical Report RC-1817, IBM, 1967.

[Tou12] Theory of Computation, John Wiley & Sons, Hoboken, NJ, 2012.

9

	Syntax and Semantics of Loop Programs
	PR vs. L
	Incompleteness of PR

