
On PDAs

1. Definitions of acceptance

1.1 Definition. (PDA) A pushdown automaton or PDA, M , is essentially an
NFA with a “stack”. Yes, the term “PDA” implies non determinism.

That is,
M = (Σ, Γ, Q, δ, q0, F )

Γ is new: A finite alphabet of stack symbols. It is allowed to have Σ ∩ Γ 6= ∅.
All the other ingredients of M have the same connotation as in NFAs.

The set of instructions is “coded” into the relation δ. We have only four

types of instructions, given below in flow-diagram form:

Semantics

On PDAs c© by George Tourlakis



2

where, generically, an “A” denotes a member of Γ and an “a” denotes a mem-
ber of the “tape (or “input”) alphabet”, Σ. The first and third are “mixed”
instructions (both input and stack activity), while the second and fourth are
“pure” (stack activity only). The 2nd is a “pure push instruction”.

Mixed instructions “consume input” thus entailing a head move (to the
right). Pure instructions do not entail (an input) head move. �

One realizes that the above “semantics” are just stated intentions, no more.
Once we define “computations” the above semantics will become formal.

1.2 Example. In “the theory” (that is, when we study properties or limitations
of PDAs, connections with CFGs, etc.) we will stick to the above four types of
moves. In practice (i.e., when we are posturing as PDA programmers) we will
allow the following two additional types of moves (really, 4 types, since we let
a ∈ Σ ∪ {ε} below):

The first is an “ignore-the-stack” move (and also ignore the input, if a = ε).
In the simulation, A is a new stack symbol and q̂ a new state. This means that
if I “program” a PDA, M , with a “macro” like a, ε → ε, then the expansion
(implementation) of the macro is done by adding a new state q̂ and a new stack
symbol A to the respective alphabets (Q and Γ) of my original M .

Simulated by

The next is also very useful when “programming” PDAs (i.e., constructing
examples). The suggested implementation takes care of the general case in a
compact (recursive) manner. It says that “if you know how to macro-expand
(simulate) ‘a, A → γ’, then here is how to do ‘a, A → Bγ’ ”. The “basis”, when
γ = ε, is one of our basic moves (Def. 1.1).

On PDAs c© by George Tourlakis



1. Definitions of acceptance 3

Simulated by

�

There are a number of concepts we need towards defining a computation of
a pushdown automaton, and eventually string acceptance.

1.3 Definition. (Configurations) A configuration (or “snapshot” or instan-

taneous description—in short ID) of a PDA computation† is a triple (q, w, γ)
where q denotes the current state, w is the unspent (“unexpended” or unpro-
cessed, or, unread-so-far) input and γ is the total contents of the stack, read
from top to bottom (that is, the leftmost symbol of γ is the topmost symbol of
the stack).

The input head is at the first symbol of w, but that symbol has not been

read yet! �

1.4 Definition. (Moves) If I and J are configurations of a PDA M , then
I ` J—pronounced “I yields J”—means that there is a “move”‡ of M that
transforms the ID I into J , in one step. The foregoing is “English” for the
mathematically precise:

For all a ∈ Σ ∪ {ε}, y ∈ Σ∗ and γ ∈ Γ∗,

(q, ay, Aγ) ` (q′, y, γ)

iff instruction 3 (Def. 1.1, case a ∈ Σ), or 4 (Def. 1.1, case a = ε) is available.

For all a ∈ Σ ∪ {ε}, y ∈ Σ∗ and γ ∈ Γ∗,

(q, ay, γ) ` (q′, y, Aγ)

iff instruction 1 (Def. 1.1, case a ∈ Σ), or 2 (Def. 1.1, case a = ε) is available.

�

†You will not miss the fact that we do not need to know what a “computation” is before
we know what an “ID” is. Indeed we will define a computation as an appropriate sequence of
IDs.

‡Note: there is. I am not saying that it is the only move, or that I uniquely determines J .

On PDAs c© by George Tourlakis



4

1.5 Definition. (Initial, Terminal IDs) A configuration is initial iff it has
the form (q0, x, ε). This captures the intended semantics that computations
with input x start at state “q0” (generic initial state) and with an empty stack.

A configuration (q, ε, γ) is terminal or final (I did not say “accepting!) iff
there is no defined next move. That is,

¬(∃J)
(
(q, ε, γ) ` J

)

�

1.6 Definition. (PDA computations) A PDA computation is a sequence of
IDs, I0, . . . , In such that

(1) I0 is initial

(2) In is terminal (final)

(3) For i = 0, . . . , n− 1, Ii ` Ii+1.

As usual, we write I0 `∗ In (denoting 0 or more occurrences of “`”) and
say “ I0 `∗ In is a computation”, which is a slight abuse of language: We
should have said—if we do not want to mention I1, . . . , In−1—that “there is a
computation with I0 as initial and In as terminal IDs”. �

1.7� Remark. Thus, we require our computations to be terminating. This is
implicit in PDA models that one sees in the literature. For example, in the
approach taken in Hopcroft and Ullman, a stack move ε → A (push) is not

allowed. Instead, the only stack moves allowed are A → γ (in English, “the
stack must always be consulted before moving ahead”).

Thus, in particular, Hopcroft and Ullman PDAs that accept by “empty
stack” end up in a terminating configuration, since no move is permitted without
consulting the stack.† �

1.8 Definition. (ES, FS, and ES+FS acceptance)
The string x is ES-accepted ‡ by a PDA, M , iff there is a computation
(q0, x, ε) `∗ (q, ε, ε) for some q ∈ Q.

For ES acceptance, the set F of final states is irrelevant, and is

often taken to be ∅.
The string x is FS-accepted § by a PDA, M , iff there is a computation

(q0, x, ε) `∗ (q, ε, γ) for some q ∈ F . The stack contents, γ, at computation’s
end is irrelevant to FS-acceptance.

†To allow such PDAs to begin a computation, the stack is “externally”—i.e., not by a PDA
instruction—initialized with a special “bottom of the stack ‘initial’ symbol”. Kozen—a book
I used a few sessions back—has similar conventions.

‡By Empty Stack.
§By Final State.

On PDAs c© by George Tourlakis



2. ES vs FS vs ES+FS 5

The string x is ES+FS-accepted † by a PDA, M , iff there is a computation
(q0, x, ε) `∗ (q, ε, ε) for some q ∈ F . This is the way Sipser, and Lewis

and Papadimitriou—two other books that I have used for the course in the
past—want their PDA accept a string.

If the context helps, we may simply say M accepts x, without having to say
in what mode (ES, FS, or ES+FS). �

1.9 Definition. (Recognition of Languages) If M is a PDA, then L(M)
denotes the set {x ∈ Σ∗ : x is accepted by M} (by ES, FS, or ES+FS acceptance,
as the case may be).

“L is ES- (FS-, or ES+FS-) recognized”, if there is a PDA M that accepts
by ES (respectively, FS or ES+FS) such that L = L(M). �

2. ES vs FS vs ES+FS

2.1 Theorem. (FS can simulate ES) If M is a PDA accepting by ES, then

we can construct a PDA N that accepts by FS, so that L(M) = L(N).

Proof. We refer to the figure below. Let

M = (Σ, Γ, Q, δ, q0, F )

where F = ∅, be our ES-PDA. We build N as it is (partially) suggested in the
figure below.

N = (Σ, Γ, Q, δ, q0, F )

where Q = Q ∪ {q0, q}, F = {q}, and Γ = Γ ∪ {$}. δ is δ, augmented by the
new instructions pictured below. The one involving q0 is self explanatory. The
“pure pop” instructions that lead to q

are only defined on states q that have no pure push moves (1)

†By Empty Stack and Final State. We may also say “FS+ES accepted”

On PDAs c© by George Tourlakis



6

M accepts by ES (empty stack)

N accepts by FS (final state)

We now proceed to prove that

L(M) = L(N) (2)

For ⊆: Let x ∈ L(M). Then

(q0, x, ε) `∗ (q, ε, ε) is an M -computation†

Thus,

(q0, x, ε) ` (q0, x, $) `∗ (q, ε, $) ` (q, ε, ε) is an N -computation

Clearly the last ID is terminating, since, by construction of N , q has no moves
at all.

Let us justify the last “`”: Since (q, ε, ε) is terminal in M , q cannot have
pure push moves (else the computation could continue from (q, ε, ε)—the latter
ID would not then be terminal!) Thus, this q is connected to q as shown in the
figure above.

In short, x ∈ L(N).

For ⊇: Let x ∈ L(N). Then

(q0, x, ε) `∗ (q, ε, γ) is an N -computation (3)

The only way to reach q is to reach it—in one move—from some q (of the
original M) that has no pure push moves (in M) (see figure above). Thus, (3),

†This includes the assertion that (q, ε, ε) is terminal—see Def. 1.5.

On PDAs c© by George Tourlakis



2. ES vs FS vs ES+FS 7

in some more detail, is the N -computation below, where the first step is obvious
(and inevitable) due to the construction of N :

(q0, x, ε) ` (q0, x, $) `∗ (q, ε, γ′) ` (q, ε, γ) (4)

Now, the only way for the last ` to be valid (see Def. 1.4 and the construction
of N) is that γ′ = $γ. Moreover, since N can only write $ once, in the very

first move (and the M -part cannot write $ at all), we conclude that γ = ε.

Now we see (4) more clearly:

(q0, x, ε) ` (q0, x, $) `∗ (q, ε, $) ` (q, ε, ε)

Thus, forgetting first and last moves, (q0, x, $) `∗ (q, ε, $) and hence†

(q0, x, ε) `∗ (q, ε, ε) is an M -computation (5)

Note that ID (q, ε, ε) is terminal in M . Thus, since M is an ES machine,
x ∈ L(M). �

2.2 Theorem. (ES can simulate FS) If M is a PDA accepting by FS, then

we can construct a PDA N that accepts by ES, so that L(M) = L(N).

Proof. We refer to the figure below. Let

M = (Σ, Γ, Q, δ, q0, F )

be our FS-PDA. Without loss of generality we assume that F = {q} and that q

has no moves. Indeed, if it is not so designed, then do:

(i) Add new a state q and make it final.

(ii) For each (original) final state q′ add a move “ε, ε → ε” (recall our
macros!) from q′ to q.

(iii) Give no moves to q.

We build N as it is (partially) suggested in the figure below.

N = (Σ, Γ, Q, δ, q0, F )

where Q = Q ∪ {q0, q}, F = ∅ (thus, we have removed accept-status from q),
and Γ = Γ ∪ {$}. δ is δ, augmented by the new instructions pictured below.

†In (q0, x, $) `∗ (q, ε, $), that is, in (q0, x, $) ` I1 ` I2 ` · · · ` Ir ` (q, ε, $) each Ii has $ at
the bottom of its stack. In (5) we left all else the same, but we removed all the $’s.

On PDAs c© by George Tourlakis



8

N accepts by ES (empty stack)

M accepts by FS (final state)

We now prove that L(M) = L(N).

For ⊆: Let x ∈ L(M). Then

(q0, x, ε) `∗ (q, ε, γ) is an M -computation†

Then, trivially,

(q0, x, ε) ` (q0, x, $) `∗ (q, ε, γ$) `∗ (q, ε, ε) is an N -computation‡

Thus, x ∈ L(N).

For ⊇: Let x ∈ L(N). Then

(q0, x, ε) `∗ (q, ε, ε) is an N -computation (1)

Pause. Wait a minute! Why is q the state in the last ID of (1)? Well, because
no other state can ponder an empty stack. The only states that can erase $
are q and q, each by a move that leads to q.

As in the proof of the previous theorem, let us work back from the end:
q consumes no input and is only accessible from state q (see figure). Thus,
when q sent the computation to q (by popping once), the input must have

†(q, ε, γ) is terminal, as required, due to the “without loss of generality” discussion above.
‡Terminating, since q has no pure push moves.

On PDAs c© by George Tourlakis



2. ES vs FS vs ES+FS 9

been already consumed. This, coupled with the inevitable first move that
places a $ in the stack—a symbol which cannot be erased by “internal”

M-moves—gives a more “detailed picture” of (1), below:

(q0, x, ε) ` (q0, x, $) `∗ (q, ε, γ$) `∗ (q, ε, ε)

Now the part (q0, x, $) `∗ (q, ε, γ$), stripped, throughout, of the bottom $ stack
symbol becomes the (terminating—remember the fact that q has no moves in
M !) computation

(q0, x, ε) `∗ (q, ε, γ)

Since q ∈ F , it follows that x ∈ L(M). �

2.3 Corollary. All three acceptance modes are equivalent.

Proof. By Theorems 2.1 and 2.2, ES and FS acceptance modes are equivalent.
What about ES+FS?

Well, if M is ES, then an N that accepts by ES+FS can be build that
simulates M . We achieved this (without fanfare, until now) in the proof of
Theorem 2.1.

Conversely, let M accept by ES+FS. I can then build an ES-PDA simulator,
N . The construction and proof is exactly as in Theorem 2.2 since neither the
construction nor the proof there made any assumptions whatsoever on what
the γ (that was left in the stack at the end of the computation) was. �

On PDAs c© by George Tourlakis


