FLEXOR TECHNOLOGY SERIES
FlexOr Frame Structure
2006 June
Gunnar Gotshalks

Table of Contents

Ta oo [0 Tex i o] o IR PP PP PPPP TP
THE gIODAI STTUCTUIE .ottt e e e ottt e e e s ah b et e e e o bbbt e e e e sabb e e e e e abbee e e e s sanneeeeean
LIS 0T [PP PPTTPPRRPN
1O [=t o 11T OO PUTPPT PP
SUMMATY OF FIEXOT TAGS .eiiiitiiiiieiiiie ittt ettt et e e e e bt e e s e bbb et e e o s b b et e e e e ab b et e e e e nbn e e e e e nbbeeeeeannneas
List of some useful POSISCHPt COMMANAS uvviiiiiiiiiee e e e e e e s s e e e e e e e e e e s s s snr e eeeeaeeeeeeannnnnns
Including encapsulated POSISCHPt IAQIAMS ..cooiiiiiiiii ettt e e e e e et e e e e e e e e e s nnnbeeeeees
= Vo £ T o 1= 1101 (o] o <SP
Using mathematiCal NOTALION oiiiiiiee i s s e e e e e e e e s s s s r e et e eaeeesassnnssnrnenreeeeeeeeesanannns

1 Introduction

This document describes the structure of a FlexOr Frame based on HTML/XML type of tagging structure.
Many of the standard HTML tags are used with similar meanings as in HTML documents. Additional tags
are introduced to meet the needs of the FlexOr processes. This is the XML-like part, although the

syntax is less rigid than in XML to make frames easier to tag and read.

2 The global structure

Shows the tags with comments written in Postscript style using "% ..."

<FLEXOR> % Start of document
<Prologue for the frame 2.1>

<BODY> % Start of document contents
<Sections : the contents of the document 2.2>
</BODY> % End of document contents
</FLEXOR> % End of document

2.1 Prologue for the frame

The prolog for a frame defines, using tag parameters and Postscript commands, global processing
parameters and definitions for the title page and heading line information for the document.
The following example is the prolog for this document.

<FLEXOR tocLevel =0 maxl i ne=100 | evel map=2>
% Set general FlexOr parameters.
% tocLevel = n prints table of contents for section levels 0 ... n.
% If tocLevel is not used, then there is no table of contents.
% levelmap = n sets the base section level to n and current level to 0.
% An actual section level for typesetting is baseLevel + sectionLevel.
% maxline = ccc sets the number of characters per line for fill. This
% is only an approximation that works most of the time. If the
% occasional line gets to long, a
 tag can be inserted.

2006 June 27 FlexOr Frame Structure

<I NCLUDE pat h=/ cs/ dept/ww/ j ava/ bi n/ Fl exCOr/ franes
files=Fl exOr Ps. header fil e=Mat hSynmbol s. header >
% Files to include as is. In this case various Postscript definitions.
% The path is in effect for all included files until the path is changed
% in the same or later include tag.

<PS>
% Start Postscript mode. Until the end tag output as is.
% Usually all that need be done is to edit the "obvious" strings within ().

% Defi ne the custom constants.

/ PageNurmber 2 def

/ Date (2006 June) def % Date for title.

/ Header Dat e (2006 June 27) def % Header date on each page

/HeadTitle (FlexOr Frame Structure) def % Header line title on each page
% Can be changed using Postscript node
% later in the docunent

% Title page information

/Helvetica-Bold findfont 12 scal efont setfont

% Font name and size are the paraneters on this line
(FLEXOR TECHNOLOGY SERI ES) center Text

% Al so have rightJustifyText
16 vtab (FlexOr Frame Structure) centerText

% "nn vtab" noves vertically nn points down the page

/ Helvetica findfont 10 scal ef ont setfont
16 vtab Date center Text
16 vtab (Gunnar Cotshal ks) center Text

20 vtab
N L
% Qut put the frame itself.

</ PS> % Exit from Postscript mode.

2.2 Sections : the contents of the document

After the <BODY> tag the rest of the document is a sequence of sections.

Each section begins with a <SECTION>Name of the section</SECTION> tag. For example this section,
the one you are currently reading, has the following section tag.

<SECTION>Sections: the contents of the document</SECTION>

The section tag has a level attribute that is used to set the level of the section and all
succeeding sections until the level is changed in another section tag. Changing the level of a
section affects the font size and type used to display the section header. Section level numbering
has the pattern 1.1.1. Level 0 is the leftmost section number.

For example the following level attribute sets the level of the section to 3. It will use the

2006 June 27 FlexOr Frame Structure

font size forl evel = | evel map + 3;where levelmap is defined in a FLEXOR tag or is 0 by default.

<SECTION level=3>Name of the section</SECTION>

3 Text modes

Within a section, text is partitioned into a sequence of five disjoint modes (they are not nested
within each other) representing different semantics. Each text mode has its own start tag and
optional end tag. The assumption is that the mode remains in effect until either the corresponding
end tag is reached, whereupon the mode reverts to documentation mode, or another tag occurs that
changes to the mode defined by the tag.

The default mode on entry to a section is documentation mode.

3.1 Documentation mode

Write your documentation in English. Include encapsulated Postscript diagrams using the tag.
See the following section for instructions on how to include diagrams.

<Including encapsulated Postscript diagrams 7>
The mode tags are <P> ... </P>.

Text is filled from succeeding lines until the maximum output line length is reached. Lines are
ragged right (no justification).

3.2 Postscript mode

The contents are emitted to the Postscript output without further interpretation or processing.
This enables you to insert any Postscript command into a document; which is how the prologue is
handled. For a summary of the more useful Postscript commands, see the following section.

<List of some useful Postscript commands 6>

The header files give a complete definition of the Postscript commands. If you know Postscript
you can create your own custom header files to typeset FlexOr frames in any desired style.
The mode tags are <PS> ... </PS>.

3.3 Program mode

The contents are considered to be program text. It is output in program text font and the left
margin is indented. Otherwise the contents are output as they are typed including new lines. If a
valid language is selected (see tag attributes), then keywords in that language are output in a bold
—face font.

The tags <REF>...</REF> tag are used within program mode as their main purpose is to support
literate programming with its references to subparts of a program. Although the section reference
facility can be used in general as illustrated in this document; in documentation mode, however, it
takes additional Postscript tags to get good looking spacing.

The mode tags are <PT> ... </PT>.

2006 June 27 FlexOr Frame Structure

3.4 Math mode

The contents are scanned for math entities and math keywords, with the remaining text output as is
in math font. New lines in the output occur where they appear in the document. See the following
section for more information about writing mathematics in FlexOr frames.

<Using mathematical notation 9>

The mode tags are the following:

e <M>.. </M> -are used to introduce short mathematical expressions within documention
text. Such as the expression A < B within this sentence.

e <MB>.. </MB> -are used to introduce blocks of mathematical text between paragraphs.
The end tag is required.

3.5Z mode

The mode tags are <Z> ... </Z>. The end tag is required.

Z mode is used by the "Z check" process, which extracts all of the text between <Z> and </Z>
tags from the input file and stores the result in the file *.szc by default.

The command to use the Z type checker on Prismis f uzz- Z- t ypecheck frane- name. szc.
errors in the file, the offending line number and a comment are output to the terminal. Sufficient
extra newlines are output to the *.szc file so the line number for a line of Z text in the input
file corresponds with the line number in the *.szc file, so the error can be easily found and
corrected in the source *.sfx file.

The following are vagaries of the fuzz checker.

* Global variables must be defined within :axdef. ... :eaxdef. If there is no constraint the
left hand vertical line is not drawn.

« If you use functions that you define, then you must suffix the name with ~. Functions pre—
defined in Z do not have the ~ suffix. For example, if you have defined the function double,
which multiplies its argument by 2, you would type the use of double as follows. Note
that the ~ is not shown in weaved output, as the ~ is only needed for the fuzz type—checker.

<Z>double~4=8</Z>

* When errors are reported always check the names of variables and schemas to the left of
the reported error location correspond to defined names.

e For the symbol I use &sproj for schema projection, and use &sres; for sequence
restriction (filtering).

e For the symbol ; use &fcmp; for forward composition of relations and use &scmp; for
forward composition of schemas.

« | have not figured out how to get fuzz to type check user defined infix functions.
» For the hide operation you cannot use the schema name as an abbreviation; you must give
the list of components.

Z mode is identical to math mode with respect to the Weave operation, which produces the
Postscript display format.

4 On Entities

Entities are names for special symbols that do not occur in the type font or they must be included
without their normal interpretation. For example the symbol < is used to denote the start of an
HTML tag so you can not simply write <, instead it is necessary to use its name, &It;. All FlexOr

If there are

entities have the standard HTML entity name structure of &entity _name;. If the characters following

2006 June 27

FlexOr Frame Structure 5

the symbol < do not form a valid tag name, then you may type the symbol < directly. Also if the
symbol occurs within a quote such as, "<" or '<’, then it does not need to be named.

5 Summary of FlexOr tags

The following tags have the described effect. To make it easier to type FlexOr frames with lines
that do not wrap, a newline character that immediately follows a tag is not printed, which in some
cases is not what is desired. If the newline is needed then insert a space between the tag and the
newline, or use a double newline.

<ADAPT>

<BODY>

<CENTER>

<COPY>

<FLEXOR>

<I>

Description

The end "tag", "——>", is required. Enter and leave a meta comment. The tags and the text

between the start and end tags are not processed or output by any FlexOr processor. Itis a

convenient method of temporarily removing text from view. Meta comments can be nested. The outer
most comment hides the inner comments.

Adapt and include another FlexOr frame. Macros in an adapted frame are used, by the Tangle
process, only in the adapted frame. File attributes are file=filename and path=pathname. The last
named path for the adapt tag remains in effect until changed by the occurrence of another path
attribute—value pair in an adapt tag. The end tag is required.

The body of the FlexOr frame. The end tag is required.
Use in documentation mode. Changes font to bold. The end tag is required.

Inserts a new line for every occurrence. Text begins at the current left margin. Has no end
tag.

Text is centered between the left and right margins. The end tag is required.

Include the contents of a FlexOr frame at tangle time. It is used to physically split large

frames into smaller frames, in particular, to be able to reuse frames in different contexts without
change (the adapt tag provides for change). Macros in a copied frame are used, by the Tangle
process, in the parent frame from the point of the copy. File attributes are file=filename and path
=pathname. The last named path for the copy tag remains in effect until changed by the occurrence
of another path attribute—value pair in a copy tag. Has no end tag.

Defines a flexor frame and to set attributes for the weave program. Attributes are levelmap
=n, maxline=nnn, slideOutput=yes/no, secNum=nn, tocLevel=n, tocPage=yes/no,
sectionlndex=yes/no and variablelndex=yes/no. The end tag is required.

Use in documentation mode. Changes font to italic. The end tag is required.

Include, at weave time, a diagram encoded in encapsulated Postscript (an eps file). Attributes

to change the size and location of the diagram are xShift=+nn, yShift=tnn, xScale=nn and yScale=nn.
File attributes are file=filename and path=pathname. The last named path for the image tag remains
in effect until changed by the occurrence of another path attribute—value pair in an image tag. Has

no end tag. .

<INCLUDE> Include, at weave time, the contents of a file. Use to include Postscript files such as

the header files. The text is included exactly as it without any processing, unlike the copy and
adapt tags which process the "included" text. Attributes are file=filename and path=pathname. The

2006 June 27 FlexOr Frame Structure 6

last named path for the include tag remains in effect until changed by the occurrence of another
path attribute—value pair in an include tag. Has no end tag.

 Indicate the start of another list element. See OL and UL tags. The end tag is optional.

<INSERT> Use in the context of adapting a FlexOr frame to insert a new section into an adapted FlexOr
frame. The attribute section=sectionName is the name of the section to insert. The end tag is
optional.

<M> Enter and leave math mode. Use this mode when mathematical notation is written within paragraphs.
The end tag is optional.

<MB> Enter and leave math block mode. Use this mode when blocks of mathematical text is written
between paragraphs. THe end tag is required.

<MACRO> Define a macro. Macros, used by the tangle process, make it easier to write program text.
The end tag is optional.

 Ordered list. List items, indicated with the LI tag, are numbered from 1 up. The end tag is
regired.

<OUTPUT> Change the output file for Tangle. This tag permits the contents of a frame go to different
output files. Useful when different versions of a program are the same frame, or when a program
consists of parts written in different languages, which are processed by different compilers.
Attributes are file=filename and path=pathname. The last named path for the output tag remains in
effect until changed by the occurrence of another path attribute—value pair in an output tag. Has
no end tag.

<p> Designates the start of a paragarph. Inserts a new line for every occurrence. Text begins at
the current left margin (margin changes with ordered and bulleted lists) plus a paragraph indent
amount. Text is filled from succeeding lines. New lines are inserted only when the weave program
detects the right margin is being approached. The end tag is optional.

<PRE> Preformatted text. Similar to Program text except that the text is not processed as a program
fragment. Font is changed to program font (usually Courier). Text, including new lines is output
exactly as it appears in the input. This can be used for simple tables. For programs it is best to
use the PT tag. The end tag is required.

<PREFIX> Use in the context of an adaptation to prefix a section in an adapted FlexOr frame. The
attribute section=sectionName is the name of the section to prefix. The end tag is optional.

<PS> Use for Postscript mode to output Postscript commands to fine tune the output or handle special
cases that weave is not programmed to do. Text is output as is without interpretation. The end tag
is optional.

<PT> Program text mode. Use this mode to write programs. Tangle knows about this mode and outputs

the text to a program file. The Weave process uses a monospace font such as Courier and the text is
indented. Newlines are output as they are encountered. The only attribute is language=[C, C++,
Java, Eiffel, None]. The default value is Java. The end tag is required.

<REF> Reference a section. Use in literate programming in program mode to reference another section.
It is similar to a parameterless macro but automatically creates cross—references in the weaved
output. Can also be used to reference sections in documentation mode but extra work is needed to
adjust the spacing and fonts, as Weave assumes the reference tag is used in program mode. The end

2006 June 27 FlexOr Frame Structure 7

tag is required.

<REPLACE> Use in the context of an adaptation to replace a section in an adapted FlexOr frame. The

attribute section=sectionName is the name of the section to replace. The end tag is optional.

<SECTION> Denotes a section of a FlexOr frame. Attributes are| evel and prefi x. The end is required,

but occurs at the end of the section name that is given at the beginning of each section. The end
of a section is detected by the start of another section or the end body tag.

<SLn> Slide header tag. Use only to make overhead slides but that is now obsolescent by using a

laptop for display. The n is the level number where level=0 is the slide title. The end tag is
required.

<SUFFIX> Use in the context of an adaptation to suffix a section of an adapted FlexOr frame. The

attribute section=sectionName is the name of the section to suffix. The end tag is optional.

<TT> Output in a fixed width font. Use to insert snippets of program text into a sentence. For

blocks of program text you should use the program text tag. The end tag is required.

 Unordered bulleted list. A bullet is used at all list levels at the start of each list item.

The end tag is required.

<V> Verbatim mode. Use to bracket sections of FlexOr frames to be emitted without interpreting the

tags for documentation and tutorials. The end tag is required.

<zZ> Z mode. Weaves like Math block mode. Use to indicate items that should be output for the Z type

checker (Z check button). The end tag is required.

5.1 Tag attribute-value pairs

This section describes the attribute—value pairs that can be used within both start and end tags.
See each tag for the attributes that are meaningful for the tag. Multiple attribute—value pairs are
written in a space or newline separated list that is terminated by the tag end delimiter ">’

The value must written within double quotes if it contains a space, otherwise the use of double

guotes is optional. For example, you can write either file=mainName.eps or file="mainName.eps" but
you must write format="-5 vtab", since the space between the 5 and vtab is a part of the value.

color=colorName — Use to change the color of the current font, where predefined colour
names are white, black, lightgray, darkgray, blue, brown, cyan, green, greendark, magenta,
yellow; for example, col or =gr een. The attribute is used most frequently with the tags
,
<M><P> and <SL>.

file=filename — Use in tags that read from or write to files.

format="...Postscript commands..." — The most common use is to change the vertical spacing
between components. For example f or mat =newpage and f ormat =" -5 vt ab". For a start tag the
format takes place before the default formatting for the tag. For an end tag the format

takes place after the default formatting for the tag.

language=[C, C++, Java, Eiffel, None] - If the language attribute is used in a PT tag,

then keywords for C, C++, Java or Eiffel can be differentiated from variables so keywords
are not put into the variable index. The default language is Java, as a consequence Java
keywords are excluded from the variable index, which will exclude valid variable names for
programs in other languages, thus the value "None" is available to indicate that keywords
are not to be looked for and all variables will be put into the variable index. Use in

the PT tag.

leaderStyle - If the Leaderstyle value is yes, then the table of contents appears as

2006 June 27 FlexOr Frame Structure

follows
sectionName leader section—level
whereas, a value of no causes the table of contents to be the style
section—level sectionName
Note that the leaderStyle attribute must be defined before the tocLevel attribute in a
FlexOr tag.

* level=n - Use to indicate the level of a section within a document. Level 0 is the
highest level, level=1 is the next lowest, etc. The attribute is only meaningful in a SECTI ON
tag. The level is retained until explictily changed, so you do not have use the attribute
until a change in level is needed.

* levelmap=n - Use to map section level 0 to a different typesetting level. For example, | evel map
=2 means that section level=0 is mapped to head font 2, and section | evel =1 is mapped to
head font 3, etc. It is only meaningful in the FLEXOR tag.

« maxline=nnn — Use to set the maximum line length for fill operations. For example, for
the the text font size defined in FI exOr . header a line length of approximately 100
characters fits between the left and right margins, so max| i ne=100 is used. For slides,
however the font size is larger thus fewer characters fit on a line, so nax| i ne=50 may be
appropriate. This attribute decouples the defintions of font size in the Postscript
header files and the algorithm used by the Weave operation.

« path=pathname — Use to define the path from the root to the filename for input and output
tags; for example, path=/ cs/ dept / ww/ j ava/ bi n/ Fl exOr/ f r ames. The pathname is retained
until it is explicitly changed, so you do not have to use the attribute until a change in
pathname is needed.

e prefix="... astring ..." — Define a prefix for the succeeding section names. Useful, for
example, for appendices where you may want to have every section beginning with "A-1"in
the weaved output. The value remains until redefined. Default is the empty string. Only
meaningful for the SECTI ONtag.

« sectionlndex=yes/no — Use yes to have a section index in the weaved output. Only valid
for the FLEXOR tag.

* secNum=nn - Use to set the number to use at level zero of a section number. The attribute
is only meaningful in the SECTI ONtag. Use in the first section of a FlexOr frame that is
a part of a larger logical document. For example, a large logical frame may be
partitioned into a set of physical frames, where each physical frame corresponds to a
different section in the logical frame. In such a case, each physical frame needs to
encode its section number using this attribute.

« slideOutput=yes/no — Set to yes if output is to produce overhead slides. Default is no.
Only meaningful for the FLEXOR tag. This attribute is obsolescent and may not work
correctly with the latest changes made to FlexOr. Slides have been replaced by direct
display from a laptop.

e tocLevel=n s- Sets the maximum section level to include in the table of contents. Using
the attribute causes the table of contents to be output after the Prolog and before the
first section. If the attribute is not used, then no table of contents is output. The
attribute is only meaningful in a FLEXOR tag.

« variableIndex=yes/no — Use yes to have a variable index in the weaved output. For the
languages C, C++, Eiffel and Java the index excludes keywords if you use the language
attribute in the first PT tag in the frame. Only valid for the FLEXOR tag.

e XxShift=tpoints, yShift=tpoints, xScale=factor, yScale=factor — Use in the | MGtag when
including eps files (Encapsulated Postscript). Use xScale and yScale to scale the size of
the included diagram, where 100, the default value does not change the size of the object.
Larger values increase the size of the object, thus yscal e=150 increases the size by 50%
in the y direction. Use xShift and yShift to shift the diagram with respect to the origin
by the number of specified points; positive values are to the right (x) and down (y),

2006 June 27 FlexOr Frame Structure

negative values to the left (x) and up (y).

Due to the properties of the current algorithm, you have to use shift whenever scale
is used, as scaling causes the left and bottom edges of the diagram to extend to the left
and the bottom. Currently, the shift amount is found by trial and error, and experience.
The following is an example.

6 List of some useful Postscript commands

One can view the various header files and find the available commands. They have the following
structure

[/ commandName { definition } def

You can recognize them with the /... def combination. Most of the commands are documented with
comments (begin with % and extend to the end of the line).

Postscript is a stack interpreter, which means that all the operands for a command are on the
stack (in the order expected by the command). The command takes its operands from the stack, does
its work and leaves its results (if any) on the stack for the next command.

Strings are written within (), as in (This is a string). Backslash ,\, is the escape character —
need to escape \, (and); for example the string "(/)" in Postscript is written as (\(\\ \)).

Command Description

;h_o_v:/___ gt_ri_n_g_i;_o_n_t;l; stack, display the string on the page at the current point

nl Go the beginning of the next line in the document

hr Draw a horizontal rule from the current point for a length that is on the stack.

There is a fixed default width of the rule line.

vtab Move up or down by a vertical tab distance in points that is on the stack.
Positive is down the page, negative is up the page.

tab Move left or right a horizontal tab distance in points that is on the stack.
Distance moved is from the last defined value of hpos (horizontal position).
Positive input moves to the right, negative input moves to the left.
atab Move left or right a horizontal tab distance in points that is on the stack.
Distance moved is from the left margin.
Positive input moves to the right, negative input moves to the left.
centerText String on the stack is centered on the current line between the left and right margins.

rightJustifyText String on stack is right justified on the current line with respect to the right
margin.

newpage Show the current page and start a new page.

Program text is not referenced

2006 June 27 FlexOr Frame Structure

7 Including encapsulated Postscript diagrams

Instructions for including an Encapsulated Postscript diagrams in FlexOr frames. Each diagram must
be a separate file.
In your FlexOr frame insert the following command to include the diagram where you want it.

<I M5 pat h="thePath/" file=the file_nane. eps>

For the following diagram, | used the following command sequence.

<PS>10 vtab </ PS>
<I M5 pat h="/cs/ dept/ ww/ j ava/ bi n/ Fl exCOr / exanpl es”
file=lInstrDi agl nFl exOr. xfig. eps>

Character
group channel

Character +%

group EOF
Space O Executable O Comment O
EOL group group group

As you can see the diagram appears as expected.

If multiple images are included in sequence from the same directory, then the path only needs to
be specified for the first image, as that path will be used by default for succeeding images until
the path is explicitly changed.
Attributes to change the size and location of the image are xShift=tnn, yShift=tnn, xScale=nn
and yScale=nn.
Program text is not referenced

8 Macro definitions

A modest macro definition facility is available in FlexOr to simplify writing program text. The
macro facility does not have choice or looping constructs. However macros can be used within macro
definitions as long as there is no loop in calls, including no recursion.

A simplified grammar definition of a macro is the following. Spaces and newlines can be in the
macro header but are not a part of the definition and are skipped over in matching the header to a
call sequence. Spaces and newlines are a part of the program text in the macro body.

Macro ::= MacroHeader = MacroBody ;
Macr oHeader ::= MacroNane +[Noi seWrds , Paraneters | ;
Macr oBody ::= +(Progranifext , Paraneters) ;

Macr oNane ::= Program dentifier ;

10

2006 June 27 FlexOr Frame Structure 11

Noi seWbrds ::= any programtext, excluding spaces, new ines and paraneters ;
Parameter ::="'# Programdentifier

Macros can be used with no parameters to name constants, as in the following, which defines the
length of lines for section names printed in various contexts.

<MACRO format="6 vtab">LEN_ADAPT_CMD_LINE = 80</MACRO>
<MACRO>LEN_SECTION_LINE = 40</MACRO>
<MACRO>LEN_REFERENCE_LINE = 80</MACRO>

weaves to look like the following.
DEFINE LEN_ADAPT_CMD LINE := 80
DEFINE LEN_SECTI ON_LI NE := 40
DEFINE LEN_REFERENCE LI NE := 80

The following example shows how noise words can be used to make a macro more readable. In this
case the program text that decides if the current component contents should be put on the current
line or at the beginning of a new line.

<MACRO format="6 vtab">output_contents on current or next line =
if (lineLength + component.theContents.length() > MaxLineLn) {
outputOutputStr(SHOW_NEWLINE); }
addToOutputStr(component.theContents);</MACRO>

weaves to look like the following.

DEFINE out put _contents on current or next line
if (lineLength + conponent.theContents.|ength() > MaxLinelLn) {
out put Qut put St r (SHONV. NEW.I NE) ; }
addToCQut put St r (conponent . t heCont ent s) ;

The following example shows the use parameters. The example is taken from the FlexOr Weave
process to construct custom versions of visit routines for the adaptation commands | nsert, Pref i x, Repl ace,
and Suf f i x have the same semantic actiions. The differences are in the routine name and in the
output keyword.

<MACRO format="6 vtab">output_adaptation command #cmd using #keyword =
public void visit#cmd(#cmd component) {
outputOutputStr(NO_NEWLINE); lineLength = 0;
processAttributes(component);
output.write("\n" + #keyword);
sectionNameOutput(component.section, LEN_ADAPT_CMD_LINE, " 18 tab ");
addToOutputStr(" >>");
outputOutputStr(SHOW_NEWLINE);
output.write("ProgFont \n");
processComponentList(component.theChildren);
processAttributes(component.theEndTag);
}</MACRO>

weaves to look like the following.

DEFINE out put _adapt ati on command #cnd usi ng #keyword :=
public void visit#cnmd(#cnmd component) {
out put Qut put Str (NO_NEW.I NE) ; |ineLength = O;
processAttri butes(conponent);
output.wite("\n" + #keyword);

2006 June 27 FlexOr Frame Structure 12

sect i onNaneCQut put (component . secti on, LEN ADAPT CMVMD LINE, " 18 tab ");
addToQut put Str (" >>");
out put Qut put St r (SHON NEW.I NE) ;
output.wite("ProgFont \n");
pr ocessConponent Li st (conponent . t heChi | dren);
processAttri but es(conponent.theEndTag);
}

The following example was used in a tag based version of FlexOr to create the text files for the
leaf components.

<MACRO format="6 vtab"> programText #component #additionalText =
package FlexOr.sgmICB;
public class #component extends LeafComponent {
public #component(int theCharNumber, int theLineNumber, String theContents) {
super(theCharNumber, theLineNumber, theContents);

public void accept(SGMLuvisitor visitor) { visitor.visit#component(this); }
#additional Text
}</MACRO>

weaves to look like the following.

DEFINE pr ogr aniText #conponent #additi onal Text :=
package Fl exOr. sgm CB;

public class #component extends Leaf Conponent {

publ i c #conponent (i nt theCharNunber, int theLi neNunber, String theContents) {
super (t heChar Nurber, theLi neNunber, theContents);

}

public void accept (SGWvisitor visitor) { visitor.visit#conmponent(this); }
#addi t i onal Text
}
The following shows how the macro pr ogr anifext can be used. Notice the used of [] to define the
program text that corresponds to the parameter #additionalText. Any of () [] and {} can be used
delimit an arbitrary sequence of program text to correspond with a parameter. The enclosing () []
and {} are not a part of the argument.

progr amrext Mat hKeyword [
public String argunment = null;

public String toString() {

if (argument == null) return theContents;
el se return theContents + argunent;

}H

The following shows how a null sequence can be passed as an argument to a macro. In this case the
parameter #additionalText is the null sequence of characters.

progranlext Word []

Program text is not referenced

2006 June 27

FlexOr Frame Structure

9 Using mathematical notation

This section describes and is an example of how to embed mathematical symbols into FlexOr frames.
Use a Postscript Weave.

9.1 Simple example

All mathematical notation should appear within the <M> and </M> tags. For example the following

commands

<M> &all;x,y : &Nat; &cbar; x &It; y &bul; x&sup?2; < y²</M>

create the following mathematical expression. Note the lead spaces to get indentation.

Oxy:N I x<yex?<y?

This sentence contains the math snippet Ox,y : N | x <y * X2 < y2, where the lead spaces are not
typed as the spacing is not needed.

All mathematical notation that you want to appear as a block of consecutive lines should appear
within the <MB> and </MB> tags, they simplify the formatting before and after the block of math text.
The following commands

<MB>
double_somelntegers

double_somelntegers_
double_somelntegers__.

== {i: ∬ &cbar; i =1 ∨i=3 ∨i=15 ∨ somelntegers == {1, 3, 15, -5, 0}
1 == {i: ∬ &cbar; i &mem; somelntegers &bul; 2*i}
2 == {i:somelntegers &bul; 2*i}i=-5∨i=0 &bul; 2*i}

</MB>

create the following math block.
double_somelntegers == {i:Z | i=10i=30i=15 Osomelntegers == {1, 3, 15, -5, 0}
double_somelntegers 1 == {i:Z | i somelntegers » 2*i}
double_somelntegers 2 == {i:somelntegers ¢« 2*i}

i=-500=0+ 2*i}

9.2 Z Schemas

FlexOr math mode has math keywords that begin with colon and end with period that process the
subparts of the Z constructs. For schemas and axioms you must make sure the entire structure fits
on one page or else the vertical line is not created corrected by :eschema. and :eaxdef.

:schema.
:zwhere.
.eschema.
‘generic.
‘egeneric.
:axdef.
.eaxdef.

Description

Start of a schema with the given name

Separate the data part from the predicate part of a schema or axiom.
Terminate a schema

Start a generic schema with the given paramters

Terminate a generic schema

Start of an axiomatic definition

Terminate an axiomatic definition

13

2006 June 27 FlexOr Frame Structure

The schema shown below is created with the following commands.
<Z>
:schema.Student
name : &seq; CHAR
number : &Nat;
studying : &pset; SUBJECT
:zwhere.
3 ≤ #studying ≤ 6
:eschema.
</Z>

—— Student

name : seqg CHAR
number : N
studying : P SUBJECT

3 < #studying < 6

The axiom definition shown below is created with the following commands.
<Z7Z>
-axdef.
max_patients : &Nat;
:zwhere.
(max_patients ≥ 1000) ∧ (max_patients ≤ 9999)
-eaxdef.
</Z>

max_patients : N

(max_patients = 1000) O (max_patients < 9999)

14

2006 June 27 FlexOr Frame Structure 15

The generic defintion shown below is created with the following commands.

<Z>
:generic.[FromSet, ToSet]
&dom; : (FromSet &rel; ToSet) &tfun; &pset; FromSet
&ran; : (FromSet &rel; ToSet) &tfun; &pset; ToSet
:zwhere.
&all; R : FromSet &rel; ToSet &bul;
&dom; R ={from : FromSet; to : ToSet &cbar; (from, to) &mem; R &bul; from}
∧
&ran; R ={from : FromSet; to : ToSet &cbar; (from, to) &mem; R &bul; to}
‘:egeneric.
</Z>

—— [FromSet, ToSet]

dom : (FromSet -~ ToSet) — P FromSet
ran : (FromSet - ToSet) — P ToSet

UR: FromSet - ToSet e
dom R = {from : FromSet; to : ToSet | (from,to) OR « from}
a
ran R ={from : FromSet; to: ToSet | (from,t0) OR « to}

2006 June 27

FlexOr Frame Structure

9.3 Mathematical symbols and SGML notation

<Set notation 9.4>

<Sequence and Bag notation 9.5>
<Relational notation 9.6>

<Function notation 9.7>

<Natural numbers 9.8>

<Logic notation 9.9>

<Schema notation 9.10>

<Guarded command language notation 9.11>
<CSP special events notation 9.12>

<CSP processes notation 9.13>
<Miscellaneous symbols 9.14>
<Miscellaneous combination symbols 9.15>

9.4 Set notation

equal = &eq;
member 0 &mem;
power set P &pset;
product O ∏
not equal Fa &neq;
intersection n ∫
union O &uni;
difference \ &diff;
subset O &subs;
superset g &sups;
left set { &lset;
9.5 Sequence and Bag notation
sequence seq &seq;
non empty sequence Seqq &seql;
items items &items;
count count &count;
first first &first;
front front &front;
last last &last;
head head &head;
tail tail &tail;
reverse rev &rev;
squash squash &squash;
concatenation n &cat;
left sequence O &lseq;
left bag [&lbag;
prefix of < ≤
S repeated n times s" s:ups. n
nil sequence m &nseq;

proper subset

not member
distributed intersection
distributed union
finite set

finite set, not empty
power set, not empty
null set

bar

proper superset

right set

distributed override
distributed composition
distributed concatenation
index restriction

rear

sequence restriction

bag

in bag

union plus

disjoint

partition

injective sequence

right sequence

right bag

symbol count

like - n symbols removed

A OO OO

1

~ o —0O %

o/

i
N

1

rear

)
bag
in
i
disjoint
partition
iseq

0

|

N>«

16

&psubs;
&nem;
&dint;
&duni;
&fset;
&fsetl;
&psetl,
&null;
&cbhar;
&psups;
&rset;

&dovr;
&demp;
&dcat;
&ires;
&rear,
&sres;
&bag;
&inbag;
⊎
&disjoint;
&partition;
&iseq;
&rseq;
&rbag;
&arrd;
Jlike. n

2006 June 27

9.6 Relational notation

relation

identity

domain

range

forward composition
composition
domain restriction
domain subtraction
range restriction
iterate

second

9.7 Function notation

partial function
total function
finite function
partial injection
total injection

9.8 Natural numbers

natural numbers
natural numbers, >0
integers

successor
predecessor
minimum

maximum

times

number of

9.9 Logic notation

for all

there exists one
true

and

equal

implies

bullet

second

1T ¢ 1 ¢

FlexOr Frame Structure

&rel;
&id;
&dom;
&ran;
&fcmp;
&cmp;
&dres;
&dsub;
&rres;
&iter;
&second;

&pfun;
&tfun;
&ffun;
&pinj;
&tinj;

&Nat;
&Natl,;
&lnt;
&sucgc;
&pred;
&min;
&max;
×
#

&all;
&exil;
&true;
∧
&eq;
&imp;
&bul;

range anti-restriction
function override
left image

right image

inverse

inverse tie

reflexive transitive closure

transitive closure
map
first

finite injection
partial surjection
total surjection
bijection

division

modulus

reals

greater than or equal to
less than or equal to
greater than

less than

minus

plus

there exists
not

false

or

not equal

if and only if
end proof

v

A

+ OO

first

Pyt 3

mod

ANV INIV F

17

&rsub;
&fovr;
&limg;
&rimg;
&inv;
&invti;
&rtcl;
&tcl;
↦
&first;

&finj;
&psur;
&tsur;
&bij;

÷
&mod;
&Real,
≥
≤
>

<
−
+

&exi;
¬
&false;
∨
&neq;
⇔
&qed;

2006 June 27 FlexOr Frame Structure 18

9.10 Schema notation

Delta A Δ Xi = Ξ
pre pre ⪯ zfor / &zfor;
schema definition 2 &sdef; for all 0 &all;
there exists O &exi; there exists one b &exil;
not - ¬ and O ∧
or g ∨ implies O &imp;
if and only if = ⇔ projection) &sproj;
hide \ &hide; compose 8 &scmp;
override g &zovr; pipe > &zpipe;
9.11 Guarded command language notation
refer by < &refby; skip skip &skip;
abort abort &abort; assignment = &ass;
if if &gif; end if fi &gfi;
gbar | &gbar; guards > &guards;
do do &gdo; end do od &god;
wdef L &wdef; choice [&choice;
9.12 CSP special events notation
success v &success; catastrophe 7 &catas;
exchange O &xch; checkpoint O &chkpt;
acquire acquire &acquire; release release &release;
9.13 CSP processes notation
alphabet of a α then > &then;
choice bar | &cbar; mu u μ
after / &after; in parallel with I &parwth;
or [&cspor; choice [&choice;
without \ &wthout; interleave Il &intlve;
chained to > &chnto; subordinate 1 &subord,;
but on catastrophe % &butcat; restartable P P P&restart;
P alternating Q POQ P &xch; Q repeat P Lp &repeat;P
if < &cspif; else > &cspelse;
satisfies sat &sat; traces traces &tr;
accessible(P) acc (P) &acc;(P) as good as, as much as O &subs;
e is defined De &def;e final value of x X’ X'
interrupt A\ &intrpt; interrupt on catastrophe Yy &intcat;
refusals refusals &ref; assignable variables var (P) &var;(P)
diverges diverges &divrgs; divergences divergences &divgen;
interleaves interleaves &intlvs; chaos 4 &chaos;

failures failures &fail;

2006 June 27

left square bracket

lambda
subscript 0-9
turn

datatype definition
left angle

left parenthesis
left arrow

up arrow

double left arrow
double up arrow
both way arrow
angle

registered
equivalent
summation
underscore
similar

second

infinity

plus minus
partial differential
ellipsis

radical

lozenge

then

colon

Raise +

superscript a string

str over prev symbol

timeout interrupt

9.14 Miscellaneous symbols

[

A
0”9
'_

Y N

gl M gogy Oog-

U+ g

v
o
then

A+

abde
de

ab

time

v

FlexOr Frame Structure

[
λ
&sub0;-&sub9;
&turn;
&ddef;
⟨
&lp;
&arrl;
&arru;
&darrl;
&darru;
&arrb;
∠
®ter;
&equi;
σ
&unscr;
∼
&sec;
&inf;
&plumin;
&pdiff;
ℓ
&rad;
◊
&pthen;
:

9.15 Miscellaneous combination symbols

Aé&rplus;
ab:ups. de

ab:ovrs. de

timeout. time

right square bracket
mu

superscript 0-9
abbreviation

theta

right angle

right parenthesis
right arrow

down arrow
double right arrow
double down arrow
double both way arrow
gradient

copyright
congruent
perpendicular

Pi

minute

degree

florin

proportional
approximation
product

dot in math

such

else

multiply

Raise *
subscript a string

string under prev symbol

o —
©

lv\Y/G)”

O O <

S O000agg

in

3

0= °

OooOogu

else

abde

ab
de

19

]
μ
&sup0;-&sup9;
&tdef;
&theta,;
⟩
&rp;
&arrr;
&arrd;
&darrr;
&darrd;
&darrb;
&grade;
&cpyrt;
&cgrnt;
&pdic;
π
&min;
°ree;
&florin;
∝
&apequ;
&dprod;
˙
&such;
&pelse;
&mul;

A&rast;
ab:dns. de

ab:unds. de

