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Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) addressesitierelated problems in mobile robotics
concurrently. The first is localization; answering the diwes“Where am 1?” given knowledge of the
environment. The second problem is mapping; answeringukstopn “What does the world look like?”
At first glance, solving these two problems concurrentlyesgup intractable sinc@appingrequires the
solution to localization but solvingpcalization requires the solution to mapping. To estimate a map,
the robot receives sensor measurements, possibly rethsitances to particular landmarks relative to its
position. Thus in order to determine a map of the environiriigise measurements must be converted
into a globally consistent world frame thus requiring thiablocation within the world frame. Similarly,
estimating the robot’s position requires a map simply bseatihas to be defined in relation to some
consistent world frame, the map. This ‘chicken-and-eglg#trenship can be addressed by thinking of the
problem in terms of uncertainties or probabilities. Withiprobabilistic framework the above questions
are combined into the single question “Where am | likely torbané most likely version of the world that |
have sensed so far?” Answering this question involves asitig the map while simultaneously estimating
the robot location. Absolute knowledge of the world is utigtia in practice, thus uncertainty plays a key

role and must be modeled appropriately. Developing a swiwtithin a probabilistic framework provides



a way to solve SLAM in the presence of noisy sensors and arrtamncevorld model.

This report provides a survey of techniques that have beed tssolve SLAM, and an overview
of open problems in this area of research. A short introduactd the necessary Bayesian framework is
presented followed by a derivation of SLAM in probabilistexms. Particle filters and FastSLAM are
highly active research topics and are described in dethi. fihal section of this report presents a survey

of some open problems and issues with existing SLAM solgtion

1.1 Whyis SLAM necessary?

Robot autonomy is perhaps the ‘holy grail’ of mobile robatibgveloping fully automatic robot platforms
to operate in dangerous environments such as active or abadanines, volcanos, underwater reefs, or
even nuclear power plants, would be beneficial for humaRigplacing humans in such dangerous situa-
tions is a common application of robotic technology sin@ldws humans to work in a safer environment.
A commonality to such robotic applications is the necedsitythe robot to collect sensorial data about
its environment and present this material to a human-operaan easy-to-understand manner. Types of
information that might be collected include air temperatand quality, and the physical appearance of
particular locations. If the air quality is insufficient cairardous, unprotected humans should not be placed
in this environment. The robot might present the data to thredn as a map, or model of the environment
along with a path representing the robot’s trajectory. @yeng sensor information on the map allows a
human to understand the sensor data more easily. Removihgt&n from dangerous environments has
provided the impetus to solve the SLAM problem effectivetyl @fficiently. The difficulty of manually
constructing a highly accurate map has motivated the relsesmmmunity to develop autonomous and
inexpensive solutions for robotic mapping.

Tracking the position and orientation (pose) of a robot hasiBtitude of applications. The robot needs
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Figure 1.1: Mapping without Localization. The algorithrkéa inputs from sensors and known robot pose
and generates a detailed map of the environment.

to have some representation of its pose within the worlddocessful navigation. Absolute pose in world
coordinates is not always necessary, however an accursg¢erplative to the starting location is required
for many applications. It becomes possible to navigate awkrnterrain by enabling the robot to estimate
its pose. This notion has been popularized with the Mars Ravem NASA which are equipped with
sensing technologies and algorithms capable of trackiagdbot's pose relative to known landmarks.
Navigation through unknown terrain presents many probl@mobotic systems. The robot must be able
to not only estimate its own pose but also the orientatiare and position of potential obstacles in its
path. This is not an easy task. Also, in order to re-traceté@gssif necessary the robot should keep track
of its trajectory as well as other sensor readings (possibtiie form of a map) to allow accurate path
planning. Mapping the environment allows the robokmow where it igelative to where it began its trek.

It also enables the robot to recalibrate its sensors whewisgits the same area multiple times.

1.2 A Brief History of SLAM

When mapping and localization were introduced by reseaschéie early '80s, the work focused on solv-
ing the two problems of mapping and localization indepetigieithis section provides a brief overview
of the literature and how it relates to current work in SLAMh Axcellent review of the area can also be

found in [75] and [76].



(a) Initial Occupancy Grid. (b) Robot Sensor reading. The (c) Each cell is updated appro-
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Figure 1.2: Principle of the Occupancy Grid

1.2.1 Mapping without Localization

Robotic mapping is the problem of constructing an accuraggahthe environment given accurate knowl-
edge of the robot position and motion (see Figir®. The early work in robotic mapping typically as-
sumed that the robot location in the environment was knowh %00% certainty and focused mainly on
incorporating sensor measurements into different magesgmtations of the environment. Metric maps,
such as the occupancy grid introduced by Elfes and Moraygcl, 18], allowed for the creation of
geometrically accurate maps of the environment. In thig@gugh, they represented the world as a fine-
grained grid where each cell is in an occupied, empty, or anknstate. In his thesid §], Elfes describes

the process of updating the occupancy grid as going thrdugfotlowing stages
1. The sensor reading is converted into a probability distron using the stochastic sensor model
2. Bayes rule is applied to update the cell probabilities

3. If desired, the Maximum a posteriori (MAP) decision rideapplied to label the cell as being either

occupied, empty, or unknown



Each cell maintains the degree of certainty that it is oedipiAs range data is gathered from the sonar
sensors, empty and occupied areas in the grid represengagadentified. The cells between the current
robot location and the sensed range are set teraptystate due to the line-of-sight properties of sonar
technology. Similarly, the cells at the sensed range aratepdo aroccupiedstate (see Figure.2). Most
robotic tasks are capable of using the probabilistic ocoapayrid representation, so it is rare that the
occupied, empty, or unknown labels are used. This approastrdteived much success in the robotic
community B, 35, 4, 77, 49] and is still used at the core of new algorithms such as DP3L20, 21]
which is discussed in more detail later in383.3 The topological map was another popular approach
[43, 69, 7, 74]. Topological maps represent the environment as a gragh avitonnected set of nodes
and edges. Each node represents significant locations entheonment and the set of edges represent
traversable paths between nodes. 468][ a node is defined as a place that is locally distinctive with
its immediate neighbourhood. For instance corners in lasans are distinctive. They also define a
signatureof a distinctive place to be a subset of features that distely define the particular location.
This signature is then used to recognize distinctive plasethe robot moves. For example, a set of
corners and planar surfaces could be a possible signatueepfarticular location. As the robot explores
the world using some exploration strategy, distinctive esodre identified and the signatures are added
to the topological map. The map defines traversibility betwéhe nodes and can be used as part of a
high-level control scheme later on. A geometric map can eaeted if other data information is stored
within the nodes and links, i.e. if the odometry is store@ntlapproximate registration between range

information can be extracted in a post-processing scheme.

1.2.2 Localization without Mapping

Much work has also been done to estimate and maintain the polsdion and orientation with an existing

complete representation of the environment. In this sinatt is typically assumed that the map is known
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Figure 1.3: Localization without Mapping. The algorithrkeéa sensor measurements of known landmarks
in the environment and estimates the robot’s current pose.

with 100% certainty and is usually assumed to be static (farmle, chairs and doors do not move or
change state). These algorithms requireamiori map of the environment to define the reference frame
and the structure of the world. Generally, localizatioroaitnms take as input (i) a geometric map of the
environment, (i) initial estimate of the robot pose, (dlometry, and (iv) sensor readings. A successful
algorithm uses these inputs and generates the best estintdte robot pose within the environment
(see Figurel.3). Knowledge of the environment can be in many forms, eithéullageometric map
representation of the world, or the knowledge of particldadmarks and their locations. Typically, the
sensors used can measure distance from the robot to anydakdnits line-of-sight.

Leonard and Durrant-Whyte “solved” SLAM using an Extendednkan Filter (EKF) framework in
[44]. They used an EKF for robot pose estimation through theroasen of known geometric-beacons in
the environment. Coxg] used range data from sonars and matched sensor readinga twiari map with
an iterative process. This allowed the robot to align itsiaer of the world with the known environment,
thus determining its position and orientation. Map-matghjor scan matching) is a widely used iterative
algorithm in robotics for global-localization. This tecgue was made popular by Lu and Milios iag
and Scheile§6] used map matching on edge segments within an occupancyogsalf-localize.

More recent approaches to localization involve Monteacadmpling techniques, such as Particle-

filtering made popular by Fox and Thrun i24] and [79)].



1.2.3 The Beginnings of Simultaneity

Chatila and Laumond irg] first developed the principle of localizing a robot whileating a topological
map of entities. This solution did not provide a probaligistamework but rather the two problems were
interleaved. Building on these principles, Smith, Self, &fkeseman7, 71, 72] along with Csorba
[10] introduced the idea of solving both of the above problemsalization and mapping, simultaneously.
They developed a probabilistic method of explicitly modglthe spatial-relationships between landmarks
in an environment while simultaneously estimating the tsljmose. The map was represented as a set of
landmark positions and a covariance matrix was used to mbédelncertainty. The framework utilized a
Kalman filter to estimate the mean position of each landmamifsensor readings. This constituted the
first use of a probabilistic framework for estimatingséochastic Maf the environment with modeled
uncertainty, while simultaneously estimating the robeskon. The introduction of probabilistic methods
for robot localization and map creation stimulated a cagrsille amount of research in this area. The
method was coine8LAMor Simultaneous Localization And Mappibg Durrant-Whyte and colleagues
[45] and CML or Concurrent Mapping and Localizatidir8] by others. Csorball0] examined the theo-
retical framework surrounding solutions to the SLAM prahleThis work detailed how correlations arise
between errors in the map estimates and the vehicle unugre@hnich he argues are of fundamental impor-
tance in SLAM. Csorba proved theoretically that it is posstl build a map of an unknown environment
accurately through the simultaneous estimation of theti®pose and the map.

Since the early days of SLAM, a probabilistic approach hasbe the de-facto standard way of mod-
eling the SLAM problem. The different ways in which the prbbiatic density functions are represented
constitute the differences in each approach. Many issusceded with the Kalman filtering approach
have been identified and improved upon using Particleifigetrechniques and a theoretical analysis of

the SLAM problem has also been performed. Probabalisti®oust are fundamental to solving SLAM



because of the inherent uncertainty in the sensor measaotermed robot odometry. The next chapter
introduces and explores the mathematical preliminariegssary for solving SLAM in a probabilistic

framework.



Chapter 2

Mathematical Preliminaries

Dealing with uncertainty is fundamental to any SLAM algbnit. Sensors never provide perfect data.
Sensor measurements are corrupted by noise and haveimtir@sacteristics that must be appropriately
modeled. For instance, laser range sensors provide highlyrate data in one direction for a single point
in space, whereas a sonar sensor provides range data oftayithin a cone of uncertainty. Odometry
sensors provide a good estimate of robot motion, howeveeldtippage and external forces in the envi-
ronment can cause the estimate to drift increasing the anafwmcertainty in the robot pose. Different
sensors have different accuracy and noise characterieitsnust be taken into account. This can be
accomplished by using stochastic, or probabilistic, m®deld Bayesian inference mechanisms.

The following sections introduce the reader to probabdityl probabilistic estimation techniques in
the context of SLAM. The notion of a random variable, priod @onditional probabilities, and functions
to manipulate entire distributions are described. Bayes isuiscussed and the derivation of Bayesian
estimation through recursive filtering leads into the erptaon of the Kalman filter; a popular tool used
in the SLAM literature. Patrticle filtering techniques fobaiic mapping have gained popularity in favour
of Kalman filtering approaches and their implementation nogherties are discussed.

Note that the following sections provide a review of consemtd techniques that are important for



SLAM. An exhaustive review of Probability theory is beyori tscope of this report and the interested
reader should look ap, 73]. See Kalman’'s seminal papet]] or Welch and Bishop’s introductory
paper B3] (available electronically at http://www.cs.unc.edwelch/kalman) for a complete theoretical
and practical explanation of Kalman filtering. Also, sé&g|[for a good introduction to Monte Carlo and

Particle Filtering techniques.

2.1 Probability

The notion of probability began in the sixteenth century tlmematicians Blaise Pascal and Pierre de
Fermat. Since then, probability theory has formed a larga af mathematics used in many applications
including game theory, quantum mechanics, computer viarahrobotics. As discussed previously, the
use of a Stochastic framework to address the SLAM problerhf@remost importance. It is with the use
of probabilitistic techniques that simultaneously estingaa map of the environment and the pose of the
robot is possible. Thus, the notion of probability must bérekel. Much of the discussion in this section
can be found in any introductory textbook on probability atatistics such as/B] or [28]. This section
will briefly introduce the constructs necessary to derive 8LAM problem from a stochastic point of

view.

2.1.1 Discrete Probability Distributions

In order to discuss probabilities, a Random Variable (RV) tmhes defined. Imagine that you roll a
die. The possible outcomes of rolling the die are 1,2,34depending on which side of the die turns
up. A mathematical expression for expressing this is ptesip representing each outcome as one of
X1, X2, X3, X4, X5, Xg OF X, i = 1...6. EachX; is called aRandom Variablend represents a particular out-

come of an experiment. More importantly, we need a functigh;) of the variable that lets us assign
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probabilities to each possible outcome. This function lkedahedistribution function For the example
of a roll of a die, we would assign the same value to each of tissiple outcomes of the roll. Then, the
distribution would be uniform and each outcome would havecdability of %. Now, you could ask the
guestion "What is the probability of rolling a number less toarqual to 4?". This could be computed
using the notation

P(X <4) =P(X1) + P(X2) + P(X3) + P(Xa) = (2.1)

wIN

meaning that the probability that a number less than 4 witheeoutcome of the experiment of rolling a
single die would be two-thirds.

More formally, the set of possible outcomes is called the @ar8pace denoted & Any experiment
must produce an outcome that is contained wifinin a discrete sense, we consider only experiments
that have finitely many possible outcomes, or fQas finite.

Given an experiment with an outcome that is random (depepds ghance), the outcome of the
experiment is denoted with a capital letter suchXasalled a random variable. The sample speces
the set of all possible outcomes of the experiement. Anatbénition that is used is the idea of ament

which is any subset of outcomes@f Wikipedia defines a Random Variable as:

A random variable can be thought of as the numeric result efaipg a non-deterministic
mechanism or performing a non-deterministic experimergenerate a random result. For
example, a random variable can be used to describe the protealling a fair die and the
possible outcomes 1, 2, 3, 4, 5, 6 . Another random variabgghtrdescribe the possible

outcomes of picking a random person and measuring theihheig

and it is important to note that a RV is not a variable in thelitranal sense of the word. You cannot

define the value of the random variable, it is a statisticalstmct used to denote the possible outcomes

Lhttp://en.wikipedia.org/wiki/Random_variable
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of some event in terms of real numbers. More formally, thenitedn of a random variable paraphrased

from PlanetMatR is

Let A be ac-algebra and be the sample space or space of events related to an experimen
we wish to discuss. A functioX : (Q,.A) — R is a random variable if for each subggt=

{w: X(w) <r},r € R the conditionA; € A is satisfied. A random variablé is discreteif

the set{ X(w) : w € Q} is finite or countable. A random variab}is continuous if it has a

cumulative distribution function which is continuous.

A distribution function for the random variabk is a real-valued functiom(-) whose domain i€

and satisfies

m(w) >0,Vwe Q (2.2)

ZQ mw) =1 (2.3)
we

For any evenE (a subset of2), the probability ofg, P(E), is defined as

P(E) = EEm(w) (2.4)

The properties or discrete probability rules can be staged a
1. P(E) > 0 for everyE € Q

2. P(Q) =1

3. P(E) <P(F)whereECF C Q

4. P(AUB) = P(A) +P(B) if and only if AandB are disjoint subsets @2

2http://planetmath.org/?op=getobj&from=objects&id548
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5. P(A) =1—P(A) for everyAC Q

A uniform distribution on sample spa€ewith n elements is the function

m(w) = % , Ve Q (2.5)

2.1.2 Continuous Probability Distributions

For many applications, such as SLAM, we require that the exy@ats can take on an entire range of
possible outcomes as opposed to a particular set of diseleteents. Generally, if the sample space
Q is a general subset @" thenQ is called acontinuous sample spac&hus, any random variabhé
representing the outcome of an experiment defined Qvisrconsidered &ontinuous Random Variable

Itis interesting to note that as before, the probability paaicular event occurring is the sum of values
in a particular range defined over some real-valued functioa continuous space, this sum becomes an
integral and the function being integrated is called deeasity functiorsince it represents the density of
probabilities over the sample space. The defining propdraydensity function is that the area under the
curve and over an interval corresponds to a probability ofesevent occurring.

Thus, the probabilistic density function (pdf),x) can be defined as a real-valued function that satisfies
b
P(a< X <b) = /f x)dx, Va,be R (2.6)
a

Note that the density function contains all probabilityamhation since the probability of any event
can be computed from it but that the valuefgk) for outcomex is not the probability ok occurring and
generally the value of the density for the function is not@bability at all. The density function however
does allow us to determine which events are more likely tarmocé/here the density is large, the events

are more likely to occur, and where the density is smallergifents are less likely to occur.
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Another important function for using probabilities is tBeimulative Distribution Functiomr com-
monly just called thelistribution functionand are closely related to the density functions above.

Let X be a real-valued continuous random variable, then thallisimn function is defined as

Fx(x) = P(X <X) (2.7)

F(x) = / F(t)dt (2.8)

—Fx(X) = fx(X) (2.9)

It is useful to note the following properties of the cumulatdistribution function
e Boundary case$ik(c0) = 1,Fx(—o0) =0

e Fx(x) is a Non-decreasing functiomj < X, — Fx(x1) < Fx(X2)

e Fx(x) is continuous, namely th& (x) = ,!;iLnOFX<X+ €) wheree >0

e The value at any point in the distribution is the cumulativenof all previous probabilities,
X

Fx(X) = P(X < X) = / i (X)dx (2.10)

—0o0

14



e The probability of the random variable taking on a value iragtipular rangeéa, bj is

b
Fx([a,b]) =P(a<X < b)/ fx (x)dx (2.11)

a

2.1.3 Manipulating Probabilities

Now that the notion of a probability is given, we can discusw o manipulate them and the very impor-
tant idea of joint and conditional probability.

The joint probability of two events describes the probability of betlents occuring and is denoted
P(X,Y) orP(XNY). If X andY are independent event$ (1Y = ()) then the joint probability i®(X,Y) =
P(X)P(Y).

The conditional probability is the probability of one event occurring giviemowledge that another
event has already occurred. This is dend®€d|Y) and is the probability of even conditional on event
Y happening. If both events are independent of each othertkigeconditional probability i®(X|Y) =
P(X). If X andY are not independent events, then the joint probability @addfined using the notion of
conditional probabilities aB(X,Y) = P(X|Y)P(Y) or equivalentlyP(X,Y) = P(Y|X)P(X).

The theorem of total probability is defined in terms of maadiprobabilities for Discrete random

variables

P(A,C) = P(A|B1,C)P(B1,C) +P(A|B2,C)p(B2,C) + - - - + P(A|Bp,C) (2.12)

n
= zOP(A|Bi,C)P(Bi,C) , WhereU; B = Q, Bj,i = 1...n partitionQ (2.13)
i=

Generally, given two random variables, X and Y, we define thigon of conditional probability as

P(X|Y) meaning that we wish to compute the probability of X with tmewledge of Y’s state. Following

15



from the definition of joint probability, the following aregjaivalent

P(XNY) =P(X[Y)P(Y) (2.14)

P(XNY) = P(Y|X)P(X) (2.15)

the conditional probability term can be solved for and theagigpn is rearranged to form

P(XNY)

PIXIY) = PY) ,P(Y)#0 (2.16)
PIYIX) =Ty L+ PIX) 70 @247

Note thatP(X NY) is also written a®(X,Y).

The equation above forms the basis of Bayes for discrete €vele22, 73).

P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X) (2.18)
P(X|Y) = %\)g(x) JP(Y)#£0 (2.19)

The denomenator can be re-written using the marginal bigtan ofY over the variabl&, then Bayes

rule becomes

P(Y[Xj)P(Xj)

P(XjlY) = n
3 PIVXOP(X)

(2.20)

Similarly, Bayes rule can be defined for over continuous podita densities. Lex,y denote random

16



variables and (x) be a density function. Then Bayes rule is described as

(Y (X 221)

f(xly) = fly)

and using the total probability theorem gives the followiogn

fum:+gwmﬂm (2.22)
T

The probabilityP(X|) in Equation2.200r f(x) in Equation??is known as therior probability (or a
priori density) of the evenX occurring. A prior probability represents the degree ofaiaty in a random
variable before any evidence is gathered about the stat@b¥ariable. If no knowledge is available about
the process being estimated, then typically the varialdssggned a uniform prior probability; each event
is assigned an equal prior probability.

Bayes rule (also known as Bayes Theorem) is the basis of matstistd inference techniques (also
known as Bayesian Inference). It provides a method for calityy a conditional probability given some
evidence about the world and the prior probability disttidms. The conditional probability after applying
Bayes rule is also calledmsterior, or a posterioriprobability. For robot localization, Bayes rule supplies
an inference mechanism for calculating a probability of ribieot location given information about the
world in the form of sensor measurements.

For the remainder of this report, we will be using the notatibcapitalP(X) as a discrete probability
of the random variablX and we will use lowercasp(x) as the continuous probability density function of

the random variablz.
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2.2 Expected Value and Moments

When large sets of values are to be considered, we are geneodlinterested in any particular value
but would rather like to look at certain quantities that desethe distribution fully. This is also true
for probabilities since if we had to evaluate each outcoma obntinuous pdf, it would take an infinite
amount of time to do so. Two such descriptive quantities laed&kpected valuand thevarianceof the
distribution.

Estimating theexpected valuer meanof a probability density function is fundamental to usinglpr
ability in any state estimation algorithm. The standard whigalculating the sample mean Hfnumbers

is statisically
1 N
X=—3S X (2.23)
N2,

For probability density functions, each valuéas an associated probability dengiix). With no prior
knowledge about the pdf of a random variable, a uniform pdypscally assumed. That is, the random
variablex can take on any value in the sample space with equal protyahit this case, the expected
value is simply the mean) of the distribution. In a situation where we have obtainadwledge about
the probability distribution, we need to weight each eveithwis associated probability. The mean can

be defined as thExpected valueof the random variable. For continous domains, the expeake is
E[x = / Xp(x)dx (2.24)
and for discrete random variables, the mean is denoted

E[x = Z}xP(x)dx (2.25)

18



The expected value is also sometimes called the first monie¢hé alistribution. Every random vari-
able can be described by a set of moments that describe thgibehof the pdf. A moment represents a
particular characteristic of the density function. Givermegh knowledge of these moments, the pdf can
be fully reconstructed.

In general, the-th momentg,, of a probability distribution function is given by
& £ 3 XP() (2.26)
and its central moment (centered around the mean) can belssbas
E[x—E[X]'] = IZ(Xi —EX)'P(x) (2.27)

These notions are expressed similarly for continuous dasnai

+00

E[x—ENX] = /(X—E[x])rp(x)dx (2.28)

—00

For instance the equation of the normal (Gaussian) digioibus

—(x=p?

e 27 (2.29)

N(x;p,0°%) =

21102

This can be fully represented by its first moment, the meaah jitarsecond central moment, the variance.
More generally, a Gaussian with dimensionalitys represented by its mean vecjoand a covariance

matrix 2.

. 1 1 g o Ts—lg o
Ng(X L Z) = (2n)d|z| 2g 2 2 () (2.30)

To manipulate expected values of random variables, thererdy a few simple rules that have to be
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used
1. E[c] = cwherec s a constant.

2. E[cxX = cE[x] wherec is a constant.

4. E[x+y] =E[X +Ey].

5. E[xy] = E[x|E]y] if and only if x andy are independent random variables.

2.3 Bayes Filters

Bayes Rule provides a framework for inferring a new probabdinsity function as new evidence in the
form of sensor measurements becomes available. A Bayesisileeprobabilistic tool for computing a
posterior probability density in a computationally trddtaform. Bayesian filtering is the basis of all suc-
cessful SLAM algorithms and thus must be introduced apyeitgdy. First the notion of a Markov-Chain
process and the Markov assumption is introduced which ledds$he explanation of Recursive Bayesian
Filtering. This type of filter is implemented, with some asgions about the probability distributions,
in the Kalman filtering framework which is discussed in detginally, the Particle-filter is an important

recursive Bayes filtering technique that has recently bequopelar in the robotics community.

2.3.1 Markov-Chain Processes

A Markov-chain process is defined In a Markov-chain procleestirrent state is dependent only upon the
previous state42, 39, 15]. This allows for a huge reduction in complexity, both in &rand space, and

provides a computationally feasible way to approach maoplpms. This can be described notationally
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as

p<Xt+l‘X07Xla"'7Xt—l7Xt) - p(Xt+1‘Xt) (231)

A consequence of the Markov-chain assumption is that thieginitity of the variable at timé+ 1 can

be computed as

PO+2) = [ Plx1lx) Pl (2.32)

2.3.2 Recursive Bayesian Filtering

Using Bayesian updating rules at each step of a Markov-chaicegs is calledecursive Bayesian fil-

tering. Recursive Bayesian filtering addresses the problem of estigna random vector using sensor
measurements or other data pertaining to the state. Basitaktimates the posterior probability density
function of the state conditioned by the data collected solfathe robot localization scenario, we are
given some measurements of the world (i.e. range from that totknown landmarks) as the robot moves

and we wish to estimate the pose of the robot. Thus, we neestitoate

p(&|ztaut) ’Zt = {217227"'7Zt} ) u' = {U]_,Uz,...,U[} (233)

wheres; is the robot’s pose at timig 2 are the measurements until now, aniére the control inputs (i.e.

commanded motion of the robot) until now. This can be desdrilising Bayes rule as

p(z|s, 7 1 u)p(s |21 u)

- =n1 -1 —1 ¢
= Tpas.2 Thps A Lddg ~ " PEIsZTEp(sZ ) (2.34)

p(s|Z,u")

wheren™! = [ p(z|s,Z2 1, u)p(s|Z271,u')dg is usually viewed as a normalizing constant that ensures
the result is a probability density function.

The first term,p(z|s, 2%, u!), can be simplified by assuming that each measurement iséndept
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of each other and only dependent upon the robot pose, opthék, 21, u) = p(z|s).

p(z|s) is known as the probabilistic measurement model. The setemd, p(s|Z2~1,u"), is the
prior pdf of the robot pose given all measurements and cbimpaits until now. Since the robot pose is
dependent only upon the pose and control inputs but not cadtual measurements (i.e. the measurement
itself does not influence how the pose changes over time) g2 1, u') = p(s|u!) and Equatior2.34
may be simplified to

p(slZ,u)=n  pzls) pu) (2.35)
~—— ~——
Measurement ModePose Prior

Using the Markov assumption (see28.1), we marginalize the pose prior distribution on the presiou

robot position, namely we can writgs|u!) = [ p(s|s_1, U)p(s_1|/u"1)ds_1 to get

p(sZ, ) =np(als) [ plalsi—u) plsslu~)ds 1 (2:36)
—_———
Motion Model

The simplest way to think about a recursive Bayesian filtey isvaluating Equatio.36in two stages.
In order to estimate the posterior density given sensor areagents, first a prediction stage is performed

which estimates the pdf~(s|u') defined as

P (sl = [ plsls-2,u)p(s ou s 1 @237)

This describes a process of predicting what the state sHmailat the current time step given that we
know how the system evolves and the value of the state théometime step. The terrp(s|s—1,Ut)
represents the system motion model. In a moving robot exaritgk could be a linear function that uses
the current velocity of the robot to predict where it shoudd dr the function could very well be a nonlinear
function that integrates angular and linear velocitiesrtajzt the next pose. The terpis_1|u'™?!) is the

probability of being in the previous stage 1 given the control inputs until time— 1.

22



The second stage of recursive Bayesian filtering is to ingatpdhe measurement and probabilistic
measurement model into the estimate of the posterior pdg Stage is typically known as the measure-

ment update and is described in notation as

p*(su) — p(zls)p~ (s|u) (2.38)

p* is then re-normalized to become a proper pdf

p(s|u) = nep*(s|u) (2.39)

p'(slu) = [ plsli)p(s)ds (2.40)

This equation describes how to correct the probability gfisnction for the current timep(s|ut), using
the predicted density functioo (s|u') and the measurement data.

Of course, the above formulation provides a very genemlprebabilistic framework. To implement
such a scheme requires the specification of a system dynamisip(s|s-_1, U ), a sensor modgl(z|s),
and the representation of the density functjis |u'). This is non-trivial and highly problem specific. It
is in the differences in the representation of these questitat differentiate the various Bayesian filtering

schemes in the literature.

2.4 Kalman Filtering

Perhaps the most common application of Bayesian filteringi@ign2.36) is the Kalman filter 41, 83).
This is a recursive Bayes filter for linear systems. The assompithin the Kalman filter is that the un-
derlying probability density function for each of the abalistributions can be modeled using a Gaussian

distribution. This provides a simple way of estimating tlk gince a Gaussian can be fully represented in
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closed-form by its variancey?, and meany. In a multi-dimensional situation, this is easily genered
by using a mean vect@rand a covariance matriR that represents how each element of the state vector
varies with every other element.

The Kalman filter is used as a state or parameter estimatosel the Bayesian framework to update
the mean and covariance of a Gaussian probability distobutThe state to be estimated,iS a multi-
dimensional vector of random variables that we wish to emtiem The derivation of the Kalman filter
equations is beyond the scope of this report but is includede Appendix for the interested reader. The

final Kalman filtering algorithm can be stated (see Tablefor the notation used).

Time Update Step
%, = AR_1-+Bu (2.41)
P, =AR_1AT +Q (2.42)

Measurement Update Step

K =P HT(HR HT +R)™* (2.43)
X=X+ Ki(z—HX) (2.44)
Pc= (1 — KeH)P¢ (2.45)

2.4.1 Extended Kalman Filtering

The linear Kalman filter formulated as above has been pravéal], in a least squares sense, to be an
optimal estimation filter for discrete linear systems. Itase in computer vision, graphics and robotics,
that the system dynamics of the process to be estimatedastitiiear. Most systems do not exhibit linear

system dynamics. Adding a rotation term to the system dycsu@.g. if the robot rotates in the plane)
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Notation| Size | Description
X nx 1 | State vector of variables, estimated at time $#tep
Z mx 1 | Measurement vector at time stkp
A nxn | System dynamics matrix
Uy | x 1 | Optional control input at time stdp
B nx| | Matrix that relates control input to the state
Pk nxn | State covariance matrix at time stiep
Q nxn | Process noise covariance matrix
R mx m | Measurement noise covariance matrix
K nx m | Kalman gain matrix
H mx n | Matrix relating state to measurement
I nxn | Identity matrix
X nx1 | Predicted state
P nxn | Predicted covariance

Table 2.1: The notation used in the form of the Kalman Filiscdssed here. Note thats the dimension

of the state vectom is the dimension of the measurement vector, lhrgdthe dimension of the control
input.

adds an inherent non-linearity to the system. Severalrdiftetechniques have been employed to model
the non-linearity in the Kalman filtering framework. The mpspular implementations of Kalman filters
for nonlinear systems are the extended Kalman filter (E8B) &nd the Unscented Kalman filter (UKF)
[40, 81].

The EKF assumes that the system dynamics model

X = fx (X—1,U—1,Vt—1) (2.46)

is governed by a nonlinear process with additive zero-meauns&an noise. Similarly, the measurement

model is also nonlinear

2 = h(x, %) (2.47)

The EKF solution to using nonlinear system and measuremedéls involves truncating the Taylor series
of the nonlinear systems model. It linearizes the nonlimeadel by using only the first two terms of the

Taylor series.
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The notation used in the extended Kalman filter is summaiizddble2.2.

Notation| Size | Description
Xt nx 1 | State vector of variables, estimated at time $tep
Z mx 1 | Measurement vector at time step
U | x 1 | Optional control input at time stdp
R nxn | State covariance matrix at time step
Q nxn | Process noise covariance matrix
R mx m | Measurement noise covariance matrix
K nx m | Kalman gain matrix
I nxn | ldentity matrix
f(-) The motion model.
h(-) The measurement model.
A nxn | Jacobian Matrix of Partial derivatives 6f-) with respect tox
af[i] ~
Ajij = ax_m(xt—bu'[vo)
w nx n | Jacobian Matrix of Partial derivatives 6f-) with respect to noise
af[i] A~
VV[i,j] = aTm(Xt—LUhO)
H mx n | Jacobian Matrix of Partial derivatives bf-) with respect tox
6h[i] ~
Hii.j) = 3%, (%,0)
Vv mx m | Jacobian Matrix of Partial derivatives bf-) with respect to noise
Hii.j) = av, (%,0)
X nx 1 | Predicted state
P nxn | Predicted Covariance
Table 2.2: The notation used in the form of the extended Kalfii@r discussed here.

Thetime-updateequations in this framework now become

% = f(%-1,u,0)

P~ = AR_1A +WQ_ W'
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and themeasurement-updagguations are now

Ki = P H (HePH + VRV 1 (2.50)
% =%_;+Ki(z —h(X,0)) (2.51)
R =(I—KH)R" (2.52)

Note that the Jacobias W,H,V are different at each timestep and must be recalculated Jaé¢e
bianH; is important since it propagates only the relevant compbaktine measurement information. It

magnifies only the portion of the residual that affects tlagest

Time Update Step

)’{[7 - f()’zt—lv Ut,O)

P~ = AR_1A +WQ— W'

Measurement Update Step

Ki = P H (HPTH + ViRV 1
% =%X_;+Ki(z —h(%,0))

R = (I —-KiH)R~

Table 2.3: Summary of the Extended Kalman Filter Equations

2.4.2 Extended Information Filters

The Extended Information Filter (EIFB(, 80] is highly related to the EKF. It is essentially the EKF
framework re-expressed information form The difference is that the EKF maintains a covariance matri
while the EIF maintains the inverse of the covariance matypically called theinformation matrix

[58, 50]. The EKF formulation above represents the estimated postdensity function as a multivariate
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GaussiaN (X : L, 2t):

p(xt|zt,ut) x e_%(XI—IJI)th(XI_UI) (253)

Ts—1 Ts—1 Te—1
— o X I I e S S T (2.54)

The last term does not contain the random variaplethus it can be subsumed into the normalizing

constant and we get

p(¢/Z,u)xe . (2.55)
H =21 (2.56)
b = W = (2.57)

whereH:; is defined to be the information matrix abgdis the information vector. The EIF maintains the

following posterior density function

P(x |2, U) o @ 2X Hoerhox (2.58)

Solutions in information space have advantages over gtateesvhen using multiple robots to explore
the space. The total map or information of the state is sirtifdysum of the contributions from each robot
and the cross information between robots is zero. This cde msimplifications when designing SLAM-
like algorithms. However, the main disadvantage of infaioraspace versus state-space algorithms is that
the state is typically required for making decisions abbetworld. In the information formulation, the
state is hidden through a matrix inversion. In SLAM, the mfation matrix represents links between map

features, however if a geometric map is required, the in&tion matrix must be inverted which incurs a
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high computational cost.

2.4.3 Unscented Kalman Filtering

The Unscented Kalman filter (UKFXD, 81] addresses the issue of nonlinearity in the system model
by using the non-linear system motion model directly indte& approximating it with Jacobians. It
must be noted that the UKF overcomes the issues with nomiiped the Kalman filter, however it still
assumes the models are fully represented by a unimodal @awusistribution (as oppposed to a mixture
of Gaussians) with additive zero-mean Gaussian noise. &t Bme-update step, the UKF samples the
state around the current mean estimate. The number of sauspleterministic and provably requires at
most 2.+ 1 samples wherk is the dimension of the state vector. Each sample is tempgnadpagated
with the actual non-linear dynamics model and a new meanicsileded. This new mean is considered
to be the predicted state at that time in the future. Sinceacohlans are calculated as in the EKF, the
computational cost of the UKF algorithm is of the same ordeth@ EKF B1]. The UKF requires very
few samples in comparison to Monte-Carlo Particle Filtetexhniques (see next section) which typically
requires hundreds if not thousands of particles to reptabendistribution properly (depending on the
complexity of the distribution). The UKF requires far fewambers of samples than a Particle filter since
it samples in a deterministic fashion around the covariarats current estimate correctly. It has been
shown in B1] that the UKF approximation is accurate to the third ordethef Taylor series for Gaussian

motion models, and also accurate to the second order foQaussian motions.

2.5 Particle Filtering

The Kalman filter is provably optimal in a least squares séas@nly for a system with linear dynamics,

linear measurement models, and both processes are adggaptesented by a unimodal Gaussian den-
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sity function and have additive zero-mean Gaussian ndife This is restrictive as such constraints are
unrealistic for many applications. The EKF and UKF addressmlinear system models, however these
algorithms still are only applicable to problems with unihab Gaussian distributions. When the system
dynamics are highly nonlinear, or the sample rate is too thesEKF gives a poor approximation to the
dynamics and has a tendency to diverge. This is because th@iXides only a first-order approximation
to the nonlinear function being estimated. The UKF performgh better than the EKF and is accurate
to the second order of nonlinearity in general but is aceu@the third order for Gaussian systems. The
UKF is still not-applicable to systems that exhibit non-Gsian noise or have multi-modal dynamics.

Particle filters have become a popular solution to the isstiKalman filtering and have recently been
applied to robot localization2pb, 64]. At the core of the particle filtering algorithm is a collext of
samples (particles) rather than assuming a closed-formeseptation of the pdf (i.e. representing the pdf
via a Gaussian). Each individual particle represents desisgmple of the pdf. If enough samples are
used, the distribution is represented in full. For the ie$éed reader, an excellent discussion and tutorial
on Particle filters can be found i6%].

Particle-filtering algorithms represent a probability sigynthrough a weighted set &f samplesp(x)
is represented ag(x) = {x),wl)}i_1 n. Here,x(V) is a particle that samples the pdfx) andw() is
a weighting orimportance factordenoting the importance of each particle (typice@yv(i) =1). The
initial set of samples of the pdf is drawn according to a umifqrior probability density; each particle is
assigned an equal weighting éf

The particle update procedure can be described by five stages

1. Sample a state_1 from the pdfp(x_1) by randomly drawing a sampiefrom the set of particles

according to the importance distribution (determined @ikeights).

2. Use the samplg_; and the control inputy_; to sample a new pdf, namefy(%|%—1,U—1). This
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is described as predicting the motion of the vehicle usiregniotion model. The predicted pdf can

be described by(x[% 1, U 1)p(%_1).

3. Compute the new weight for the particle given a measurearahthe predicted motion probability
density. This is accomplished by computing the likelihobthe sample&1 given the measurement
z. Weight the particle by the non-normalized likelihood ttia# measurement could produce this
sample using the measurement mopethQl). These three steps must be performed on a per

particle basis for each time step.

4. Re-normalize the weightg!). This is done after aM particles have been sampled and re-weighted.

After this step the particles represent a probability dgrfsnction. Note that this procedure imple-

ments the posterign(x) = np(z|%) / P(%|%—1,U—1)P(%—1)d%_1.

5. Re-sample the posterior. The goal is to sample the posgerithat only the most important particles

remain in the set for the next iteration.

There are many ways to implement the resampling stage buti@ywised method is described by
Liu in [46]. The process (replacing stages 4. and 5. above) is dedanbgeneral as given a set of
random sample§, = {x(),w()1N the set§ is treated as a discrete set of samples and another discrete

set,§ = {0, wiIN  is produced as follows
e Fori=1...N

— computea!) = vw(l)
—ifal >1
« retaink; = |a")| copies of the sampbe)

« assign new weighv™ = %') to each copy

—ifald <1
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+ Remove the sample with probability proportional te- &")
« assign new weighy™ = “% if sample survives
Liu notes that resampling is necessary for several readttably that

1. resampling can prune away bad samples

2. resampling can produce multiple copies of good sampleéshnddlow the next sampling stage to

produce better future samples.

Grisetti et al 9] demonstrate that the effective number of partidligs; can be used as an indication

on how well the particle system estimates the posterior ptiferobot location. This is computed as

1

S (2.59)
> (wh)?
i=1

Neff =

and if Ngf ¢ falls below a specified threshold, then this measure ineléctitat the variance of the weights
is high and thus the particles are dispersed too much andethgheuld be resampled. By resampling
only when necessary, the particle filter has a much improeepnance which is necessary for real-time

applications.

2.6 Summary

In this section we have explored the necessary mathematttsn@chanisms that make it possible to
“solve” SLAM in a probabilistic framework. We first introdad the notion of probabilities which led

into the idea of Bayesian estimation. Most algorithms worktlo® assumption that the current state
estimate subsumes the history of its past states hence weuetd the Markov assumption. This was

followed by a definition of Recursive estimation which brirthese notions into a framework that can
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be subsequently implemented. The Kalman filter and some efitants were discussed in detail which
aids in the understanding of typical SLAM schemes (sincentbet common implementations of SLAM
use Kalman filtering at their core). Finally, Particle-filtey was introduced which provides a way of
estimating any generalized probability density functiosteéad of the assumption that the density functions
can be fully described by a Gaussian. The next chapter showsHis mathematics can be used to solve

SLAM and how it has been done in the literature.
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Chapter 3

Solutions to the SLAM problem

To date, the most common solution to SLAM has been with theotiaa extended Kalman filter formula-
tion. However, there has recently been a shift of interagatds the use of Monte-Carlo patrticle filtering
techniques for computing the SLAM posterior to overcomelitmgations of the EKF approach. These
approaches constitute the most successful solutions tdvStoAdate, however many other approaches
exist. This chapter will first place SLAM into a probabilsframework by using the tools described in
the previous chapter to derive a Bayesian formulation. Tdnis@ilation serves as the basis of the solutions
to SLAM and the remainder of the chapter will discuss the cami@pproaches to estimating the SLAM

posterior.

3.1 Probabilistic derivation of SLAM

The goal of SLAM is to simulataneously localize a robot antedaine an accurate map of the environ-
ment. This can be formalized in a Bayesian probabilistic &ark by representing each of the robot
position and map locations as probabilistic density fuordi In essence, it is necessary to estimate the

posterior density of map® and poses given that you know the observatiods= {z,2,...,z}, the
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control inputu = {uy, Uy, ..., W} and data associatioms = {ny,ny,...,n} which represent the mapping

between map points i® and observations id. The SLAM posterior, as defined in MontemeBd], is

p(s, 0|2, u",nt) (3.1)

The system dynamics motion model assumes the Markov pyopert

p(st|s-1,W) (3.2)

and the perceptual measurement model is

p(z|s,0,n") (3.3)

The derivation of the above posterior is detailed 5] [but it is worthwhile to repeat here in detail
since it provides insight into the SLAM problem and how ssstel solutions are modeled.
The first step in deriving the SLAM posterior is to apply Bayealer Remembering Equati¢h2( the

posterior probability can be defined as:

P(A|B,C) =np(BJA,C)p(A,C) (3.4)

and by using the substitutiods= {s,0}, B =z, andC = {Z~,u!,n'}, Equation3.1becomes

p(s, 0|2, ;) =np(z|s,0,2 7L U, n)p(s, 021Ut n) (3.5)

The first termm is a normalizing value that ensures the posterior is a piibtyadind is within the range
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[0,1]. The second term can be simplified since each measuremes#limad to be independent of each
other, thusz is independent og_1 and all other measurements. The measurement at this tinigois a

independent of the control input. Thus, the term can be siieglto
p(zls, 0,27 u',n") — p(z|s,0,n") (3.6)
and the SLAM posterior (Equatidh5) can be re-written as

p(s,0/Z,u,n") =n p(zls,0,n") p(s,0/Z % u,n) (3.7)
—_——

Measurement Model

The next step is to evaluate the last factor in EquaBidh p(s, ©|2%,ut,nt). Using the theorem of
total probability (Equatior2.13 along with the Markov Assumption enables us to conditiom pldf on

the previous statg
p(s,0Z2 LU, nh) —>/p(st,@|s[_1,ztl,ut,nt)p(st_1|z‘1,u‘,n‘)da_1 (3.8)
and the SLAM posterior can now be re-written as
pls 012, = np(als, O.) [ p(s.Ols- 1.2 Lk )pls ol Lhit)ds s (39

If the map is allowed to be dynamic then a new map is possibéaeah time step as well which is

denoted with the subscriptéd. Thus, the SLAM posterior to be estimated would then be

Pls Ol ) =np(zis, O,1F) [ Plse O, 1,00 1,M)p(s-1,0- 12U L0 Y)dg 100y

(3.10)
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This is computationally very difficult, so the most commoswasaption in SLAM algorithms is a static
map and EquatioB.9is used.

Using the definition of conditional probability, the firstiein the integral of EquatioB.9can be split
into

P(s,0ls-1,7 4 u',n") — p(@s—1,2 7 U n)p(sst-1,0,2 74 U, ') (3.11)

and the SLAM posterior becomes

p(s,©/Z.u',n') =np(z|s. O, n‘)/p(Glst_l,zt‘l,ut,n‘)p(stlst_l,@,zt‘l,ut,n‘)p(st_llzt‘laut,nt)ds_l
(3.12)

Using the Markov assumption, the robot pose at tinfg) can be assumed to be independent upon all

variables except its own pose in the previous time stepand the control input given at tim&uw). Thus,

the following substitution is used

p(st|si—1,0,27 1 u,nt) — p(s|s—1,U') (3.13)

which is our motion model. Thus SLAM can be re-expressed as

p(st,elf,u‘,nt>:np(zt\st,@,n‘)/p(st\st_l,@p(®!st_1,z“1,ut,nt)p(st_llf‘l,ut,n‘>ds_1 (3.14)
—_——
Motion Model

The final two terms in the integral can be combined into a sitgyim using the definition of conditional

probability
P(Ols—1,2 U n)p(s—1]Z~H ') — p(s-1,0/27 4 U ) (3.15)

Also, note that since! = {upt_1,u} andn' = {npz_1,n} andu,n, do not influence the previous mea-
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surement and posa&, 1,51, they can be eliminated. Finally the Bayesian filtering eiguetor SLAM

can be written as

P(s,0/Z,u,n")=n p(zls,0.n") / p(s/s—1.U) P(s-1,0/Z2 Ut n " )ds 4 (3.16)

Measurement Model Motion Model

As can be seen in Equati®16 it incorporates the perceptual modglz|s, ©,n') and the system
dynamics motion modgd(s|s_1,Uut) of the system into a single expression.
It is in the evaluation of this posterior that differentist@e various SLAM algorithms. The following

sections explore a number of these algorithms in detail.

3.2 Kalman filtering approaches

Kalman filtering approaches to SLAM go back to the seminalepdyy Smith, Self, and Cheeseman
[70, 71, 72]. They estimated the spatial-relationships between lansusing an EKF framework. Much
work using an EKF framework can be found #5] 13, 17].

In order to implement EquatioB.16in the Bayes filter framework, the representation of the measu
ment model, the motion model and the posterior pdf must beelefiin the EKF approach, all probability
density functions are assumed to be Gaussian and can thubybepresented with a multivariate Gaus-

sian distribution.
p(s,0Z,u',nt) ~ N(p, %) (3.17)

Since the Gaussian distribution can be fully reconstrubteds mean and covariance, this is what is

required to be estimated. The mean vegtarf the Gaussian represents the current state of the waeld, i.
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the current robot pose and the current positions of the nepesgits. Thus,

X= [5[,60,91,...,9n] (3.18)

wheres represents the robot pose in vector form, and the map positigas are represented &s=
{60,01,...,6n}. An uncertain spatial relationship can be represented theerandom variablex as
P(x) = p(x)dx where p(x) is the probability density function that assigns a proligbtb x. To esti-
mate this probability distribution function using a Gaassiequires us to define the estimated meand’

covariance(x) of the distribution, thus we define

%= E[x] (3.19)
g=x—X (3.20)
(x) = E[%K"] (3.21)

The two steps in the Bayes filter, namely prediction followsdcbrrection (observation), can be
implemented by updating the mean and covariance of a Gaudisiaibution.
The prediction stage predicts the new probability distidougiven knowledge of the previous proba-

bility distribution, namely it needs to implement

/D(St\St—l,Ut)p(St—l,@|Zt_17Ut_l,nt_l)di—l (3.22)
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This is implemented through the Extended Kalman filter up@guations for prediction or time update:

% = f(%-1,u,0)

(3.23)
P = AR1A +WQ W' (3.24)

Equivalently we can note the following:
/ p(stls—1,U)p(s-1,0Z2 1 Ut nhdsg 1 ~ N(®%,P) (3.25)

Similarly, the next step in the Bayes filter is to perform a eotion or measurement update, thus
we need to represent the probability density functiga|s,®,nt), or rather provide a mechanism to

update the Gaussian distribution using the current meaitigggsmap, and data associations. This is

accomplished using the EKF measurement update equations

Ki = P H (HPTH + VRV ™

(3.26)
% =%_1+Ki(z —h(X,0)) (3.27)
R =(I—KH)R" (3.28)

This actually does two steps, it uses the measurement ninggiel0) as an error metric for the least

squares formulation, then it uses this to weight the prediatean hence correcting it appropriately. The

EKF measurement update equations implement the Bayes fé{es s

p(z|s,0,n")p (s, 0[u",n) (3.29)

After a succession of time-update and measurement updagesstthe current mean and covariance
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reflect the parameters of the posterior probability derfaitgtion over robot pose and map point positions.

The disadvantages of the EKF formulation are threefold

e Linearized motion model. The assumption that the motion of the vehicle is close tealircan
become fatal for all EKF formulations. If the system exhsliighly non-linear motions, then the
EKF can diverge. However, if the motion is close to beingdiner the time step between filter

updates is small then this is a good assumption and worksnwelany situations.

e Quadratic Complexity. The filter update procedure requires a quadratic (in thebauraf land-
marks) number of operations. The covariance ma¥iis size(2N + M) x (2N + M) whereM is
the number of variables being estimated for the robot posenpDeationally, the most number of

operations occur when computing the Kalman gain

Ki = Pt H, (HPHT + RVt (3.30)

The measurement jacobiéh is of size(2N + M) x L where L is the dimension of the measurement
vector. The ternH P H," requires that the covariance matrix be first inverted (tiawtally matrix
inversion is arO(N?3) algorithm, strictly speacking theoretically the time cdexity of matrix in-
version isO(N'°%7)[63], either way it is cubic or quadratic (at best)’\) and then multiplied by

a matrix of size(2N + M) x L. Thus, computing the Kalman gain requires a quadratic nurmbe
multiplications in the number of landmarks. This makes impaitationally difficult to estimate an

increasing number of landmarks within the EKF itself.

e Single-Hypothesis Data Association When a sensor reading of the environment is available, it
must be associated with a map point to update the EKF appttefyi This is typically done through

a maximum likelihood heuristic. The problem with this hetig, is that if the data association is
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incorrect, the filter is updated incorrectly. If this happdor too many map features often, the EKF

will diverge since the effect can never be corrected (3dp.[

A useful extension to the extended Kalman filtering framdwsrthe Compressed Extended Kalman
Filter (CEKF) introduced by Guivant3[l, 32, 30]. This is essentially a hierarchical approach to Kalman
filtering implementing a very local update scheme with a glalpdate once in a while. The CEKF
exploits the fact that not all landmarks need to be presethigistate update equations. The filter produces
an identical state estimate to the EKF but at a lower comjamaltcost. This algorithm works well when
the robot is exploring a very local area but when the vehi@aditions to a different area a full SLAM
update must be done; practically this happens infrequentlg idea of the CEKF algorithm is to run the
standard EKF algorithm on a smaller set of data in a local af¢he map. This allows for an increase
in performance since the entire state and covariance nadoenased. However, to be consistent when
the robot moves outside of this local area, the entire stadecavariance must be updated to reflect the
changes that have been made locally. To do this, an additsehaf state and covariance matrices are

maintained during the local updates and are used in the gostiglobal system update.

3.3 Particle filtering approaches

3.3.1 Rao-Blackwellised Particle Filters

The Rao-Blackwell theorem [] shows how to improve on any edtimander every convex loss function
[5]. This theorem has been extended to Markov chain Monte Caethads by Gelfand and Smite ]
and Liu, Wong and Kong][]. Using this to improve variance akahe algorithm to integrate out ancillary
variables and create an estimator provably superior torigjghal estimator. A Rao-Blackwellised particle
filter provides a method of simplifying a probability estitiea scheme by partitioning the state space into
independent variables and marginalizing out one or moreed€bmponents of the partition, s&16] for
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further discussion on the topic of Rao-Blackwellisation andBtackwellised Particle Filters (RBPFs).
The most common realisation of Rao-Blackwellisation for iekrtiltering is outlined by Murphy in36,

57]. Here, they use Dynamic Bayesian Network theory to showithatpossible to separate the SLAM
posterior into estimating two independent posteriors. @osterior over maps, and the other posterior
over robotpathsor entiretrajectoriesinstead of pose. FastSLAMZP] is a popular implementation of
this type of Rao-Blackwellised Particle Filter framework. iggtti showed improvements in the basic
RBPF framework in29] by estimating an improved proposal distribution (sangpline predictive motion
model), however this work assumes a normalized Gaussiaiomuotodel but seems to work well in

practice.

3.3.2 FastSLAM

Most solutions to SLAM attempt to estimate the posterioreebotpose a single pose of the robot. The
FastSLAM approach, introduced by Montemerlo &2} takes a slightly different approach to solving

SLAM. FastSLAM estimates a different posterior

p(s,0|Z,u,n) (3.31)

wheres = s, %, ..., is a robot path or trajectory. The algorithm estimates trstqr@r over maps and
robot paths As shown in §1], this allows the SLAM problem to be factored into a produtsinpler

terms. By using ideas from Dynamic Bayes Network theory, Moo observed that if the robot path
is known then the observation of each landmark does not geowiformation about other landmarks.

Thus, given the robot path, each landmark is independent fhe rest of the landmarks. This enabled
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Montemerlo to factor the SLAM posterior into the followingrfn

N
p(s,0|Z,u,nt) = p(d|Z,u,n) [ p(Onls,Z,ut,nh) (3.32)

n=1

This states that SLAM can be decomposed into estimatingritaupt of a posterior over robot paths and
N landmark posteriors given knowledge of the robot’s path.

Due to the separation between the pose and the landmarksstingtion can be slightly decoupled
into a filter that estimates the robot pose, followed\Nbyandmark estimators (1 per landmark). Bi],
Montemerlo describes his implementation as partitionirgSLAM problem into a localization problem
and a mapping problem. He solves localization through tkeofia particle filter and the construction of a
map is performed using a set of independent EKFs, one pemlarkd The original papebp)], describes
the algorithm assuming that the data association is knolis. Becomes an issue in practice since the data
association is almost never known. B0O[, Nieto shows how the data association problem for FastSLAM
can be handled usingultiple Hypothesis TrackingVIHT) algorithms. This is implemented by splitting
each particle in the FastSLAM filter into+ 2 particles, whera is the number of hypotheses to be tracked.
Thus, there ar@ hypothesis particles containing a different data associdor the observation, there is
1 additional particle for the non-association hypotheses (to ensure that it is possible to not have a
data association at all) and another particle for a new lamkirypothesis. As new measurements are
incorporated into the filter, the wrong data associatiorsless likely to effectively describe the robot

motion and will thus be pruned out in the particle resampéitage.

3.3.3 DP-SLAM

DP-SLAM [20, 21] is a pure particle-filtering approach to solving SLAM. ltessa particle filter to main-

tain a joint probability density over robot positions as Mad the possible map configurations. This
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approach removes the need to maintain separate EKFs foatloenbrks as in FastSLAM. DP stands
for Distributed Particlemapping and allows for efficient maintenance of hundredswaticlate maps and
robot poses. The data structure used in DP-SLAM plays a keynrehe efficiency of this algorithm. Each
particle in essence keeps its own version of the map repexsas an occupancy grid. In each grid-cell, a
balanced tree is kept of all of the particles that have upbhtis cell. A second data structure called the
ancestry tree per patrticle is also maintained which dessribe relationships between particles at ttme
and the sampled particles at time 1. Instead of associating maps with particles, the algoraissociates
particles with maps. An update consists of the followingewla particle makes an observation about a
particular grid cell, the ID of that particle is insertedarthe balanced data structure stored in the cell. In
order to check the occupancy state of that cell, the patbdls into its ancestry tree and finds an ancestor
that has updated this cell previously. If no ancestor is foilnen the state of the cell is currently unknown
to this particle. In this way, each patrticle is able to efiatig maintain its own version of the map (i.e. thus
multiple maps are estimated). An important advantage sfatgorithm over most SLAM solutions is that
there is no need for explicit data association or exterrggdddosing (8.5). Since the algorithm maintains
multiple maps and robot locations the proper data assonmare estimated and loops are automatically
closed. The algorithmic complexity of this algorithm wasbaed to be log-quadratic in the number of
particles.

Subsequently, an addendum to the original DP-SLAM algoritialled DP-SLAM 2.021] was devel-
oped. The new algorithm makes improvements in the lasemrtaicty model. In the original algorithm
there was an inconsistency with the laser model since thaynaesd it was perfect for the mapping prob-
lem, but assumed it was noisy for the localization problerR-ELAM 2.0 addressed this issue by using
a probabilistic laser penetration model that is dependpahuhe distance the laser has traveled through
each grid cell. Using this method, the occupancy grid wasavgd from storing binary statesccupied

or empty to a more stochastic representation. Each cell has a piibpalssociated with the laser pene-
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tration model, the higher the probability the more likelg ttell is to be occupied. The search method for
the localization stage was also improved. For each partidien an update occurs it is required to search
through its ancestry to determine if any of its ancestorehadated this cell before. The new method
uses a more efficient search method using a batch searchaoicaibtors at the same time. Simplifications
can then be made to the algorithm using sorting methods anolvtirall time complexity is reduced from

log-quadratic to simply quadratic in the number of parscle

3.4 Other notable approaches

3.4.1 Sparse Extended Information Filters

Recently, there has been a thrust in developing SLAM solatiging information theory. Most notably
is the work by Nettletong0, 58] using Extended Information Filters. The use of informatidters in
SLAM was proposed by Frese i26], implemented by Thrun ing0], and related to the work of Lu and
Milios [49]. The idea of using information filters for SLAM is to represenaps of the environment
by a graphical network of locally interconnected featurBsch link in the network represents relative
information between pairs of features in a local neighboadh The link also encodes information of the
robot pose relative to the map. At each step, weak off-diagelements are removed from the information
matrix to guarantee sparsity. An interesting result of Ffgwvork is that by exploiting the sparsity of the
information matrix, the algorithm complexity is reducedrfr the EKF'sO(n®) to O(n), the most important
update equations can be performed in constant time; In oibits, the time complexity for each update is
independent of the number of landmarks being estimateceimidgp. However, even though the algorithm
requires constant time for a measurement update, the telayarocess used introduces small errors in

the resulting map that negatively affects the overall maglifid
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3.4.2 Thin Junction Tree Filters

Paskin p1, 62] proposed th& hin Junction Tree Filteto solve SLAM. The idea here is to view the SLAM
problem as a graphical problem and notice that if a node aggmthe graph into two partitions, these
partitions are conditionally independent of one anotheewgjithat you have an estimate for the nodes
that create the partitions. The junction tree of these s¢ipar nodes is maintained which grows with
the measurement and motion updates. To keep the compuatiatiomplexity to a minimum, the tree is
thinned, or equivalently weak edges are removed from thehgeal model. This is essentially the same

goal as the Sparse Extended Information Filter above andsspmmise for solving SLAM in practice.

3.4.3 Submap Approaches

Submap approaches are another popular approach to solvikig.3n this paradigm, small independent
maps are estimated. This allows the algorithm to work onha@mall amount of data at a time, thus an
update can take constant time. The issue with these algwitk that it is difficult to align the submaps
together.

One implementation of the submap approach is that of ABhAtlas merges the ideas of metric and
topological map building into a single framework. The alon maintains a graph where each node in
the graph represents a local coordinate frame and each epgsents the transformation between these
frames. A metric map is maintained per node thus mergingdidas of metric and topological mapping.
Each submap is small and of constant size and is estimategl agialman filter, thus covariance estimates
of each map point are also estimated along with the robot paagve to this local frame. This allows
for a constant time updating scheme. However, even thougdhatuqm a submap can be performed in
constant time, a map matching algorithm must be employebtbsedoops and identify submaps that have

been visited before. Even though an efficient algorithm leembmplemented, the time complexity of the

47



Map Matching is stillO(n?logn). During the Map Matching process, edges are created betsudenaps
that areclose This enables the algorithm to identify possible loops i& ghaph. One issue with Atlas’
approach is that since only local submaps are maintainddbalgpose estimate is unavailable. Plus, since
the map matching process adds edges between nodes, thdredsepancy between the global pose of this
submap determined through different paths through thehngrépobtain a global map of the envrironment
from the topological map requires the estimation of thi€idipancy. This is posed as a non-linear least
squares optimization problem to find the global arrangeraemtap poses of all frames that minimize the
discrepancy error over all edges.

Another approach related to submap algorithms is the Hylettic Maps (HYMMSs) algorithm from
Nieto and colleaguesp]. Their solution uses an occupancy grid as their map reptasen and com-
bines feature maps with other sensory information. Theufeathaps are used to partition the explored
environment into smaller regions. Each feature positicimde a coordinate frame for this region and
a global dense map consists of many smaller submaps defiltedo the coordinate frame in their
region. When the position estimate of the features changeleghse representation of the area is automat-
ically updated since they are defined relative to the loggibreframe. This algorithm is similar to Atlas’
described above in that it uses a hybrid mapping approadfkctimbines metric information (the dense

sensory information) with topological information (retatships between salient features).

3.5 Summary

This chapter introduced different approaches to solviegShAM problem. The most standard approach
is the Kalman filter based approach where both the map andgresencoded in the state vector. The
state is defined to be the mean of the unimodal Gaussian plibpdistribution and a covariance matrix

encodes the interactions between elements in the statarvect
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Lately, Particle-filtering based approaches have becommessful in solving SLAM and it seems that
the research community is leaning towards these types ofieont rather than the Kalman filter based
approach. This is due to the fact that Particle-filter-bas@dtions address the core issues in the Kalman
filter, namely that a Gaussian model does not necessariheflbt AM problem well. Particle-filtering can
represent any probability distribution given enough sasplA popular algorithm in use is FastSLAM,
and not just for its catchy name, but also because it workgwetl in practice. FastSLAM estimates the
posterior distribution over robot paths (trajectoriesyl samdmarks. The FastSLAM algorithm utilizes a
separate Extended Kalman Filter per landmark and a pafiliglethat samples the robot trajectory. The
novelty of the FastSLAM algorithm is that Montemerlo showibdt it was possible to accurately solve
SLAM using Particle-filters and that it was possible to safmathe two problems of mapping and localiza-
tion. Subsequently, FastSLAM has data association isshehwieto solved using a multiple hypothesis
tracking algorithm that exploited the particle-resamglphase to pick the proper data association.

FastSLAM works well in practice, however there are drawlsaickthis approach. As Paskin points
out in [62] and [6]], since the data association problem must be solved on @gé&cle basis, each
particle contains a different representation of the emvitent. Merging these multiple maps is nontrivial
and computationally expensive. Also, if landmarks are spar measurements have high amounts of
noise then the FastSLAM algorithm is prone to diverge. Thusuos because of the dimensionality of
the problem. Since the probability distribution that isirestted is the posterior over robpaths as
time progresses the dimensionality increases linearlg ude of particle-filters requires that the particle
population is large enough to sample the region of “highbphality” in the sample space. If too-few
particles exist, then the filter essentially ignores hype#s in the hidden state. Thus, to avoid divergence,
FastSLAM requires frequent updates with informative obstons, i.e. when closing a loop. As a loop is
closed, the particles that represent this change are vegightich higher than other particles and are less-

likely to be pruned out in the resampling phase. Thus, orgyprticles that are consistent with closing
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the loop remain. From that point onwards, the particlesrbemspread out until another loop is closed.
Thus, in situations where extremely large loops exist dnéiré are no loops at all, then the particles will
continue to diverge and spread out from one another. Effegtithis is the core issue of FastSLAM. In
order to maintain a high degree of accuracy, many more pestare required to sample the robot path
space which increases the computational requiremente @gorithm.

FastSLAM is a hybrid particle-filtering and Kalman filteriatgorithm and contains elements of both
including their strengths and weaknesses. A full Partitiering SLAM algorithm known as DP-SLAM
was discussed which shows promise in solving SLAM effebtiirepractice. Since it is a particle-filtering
approach, it suffers from the need to sample the space wippropriate number of particles, however
unlike FastSLAM the dimensionality of the problem is constaver time since it estimates the posterior
over robotposesnstead of paths. One issue with DP-SLAM is that even thooglsiinple environments
the algorithm can function well with in near-real time witb@® patrticles, the results shown in their paper
required around 24 hours of computation time since they weiremely complex environments.

Other approaches to solving SLAM were also discussed inctigpter. These involve submap ap-
proaches such as Atlas which separates the problem of ngapgma very local problem that can be
updated in a constant amount of time. This is an interestipgaach which is capable of mapping very
large areas effectively. The drawback to this approachadabk of a good mechanism to merge local
maps into a global world representation. This is a complgerihm that requires computational time
guadratic in the number of local maps. In related work, thal gbthe Hybrid Metric Maps algorithm is
to acquire a dense representation of the environment. Taaytlimit themselves to a particular type
of sensor. Many local feature maps are used to partition tke@ment into smaller regions. A topo-
logical map of coordinate frames are estimated and a dengeapeesentation is attached to each frame.
This approach seems promising in acquiring a dense repegsenof the environment however a full

computational complexity examination of this algorithns met yet been produced.
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Recently, the Sparse Extended Information Filter (SEBB),[approach is gaining in popularity. It uses
the EKF framework to maintain an Information matrix, namilg inverse of the covariance matrix. The
fundamental assumption in this algorithm is that if the ec@mrece matrix is dense, then the information
matrix will be sparse or very close to being sparse. This ig@gpropriate assumption since work of
Newman and Csorba proved how as time progresses the covanaatcx becomes dense, that is errors
in each landmark become fully correlated with each othee ifiteresting point about the SEIF approach
is that the computational complexity of the update procedsiconstant. The sparsity of the information
matrix is exploited allowing the algorithm to update onlg theighbouring nodes. However, even though
the algorithm update requires constant time, the map iis@ffaccessible at any point in the algorithm.
In order to extract a map from the information filter, the mh@tion matrix must be inverted which is
typically aO(n®) algorithm, quadratic at best.

Thin Junction Tree Filters (TJTF) were also discussed. $bistion seems promising and addresses
some issues in the FastSLAM approach. Initial experimemdate that the TITF algorithm seems to
work well in closing large loops, something that FastSLAM kigficulty with. The authors state that the
algorithm is expected to be less susceptible to divergdmae FastSLAM however a proof of this is not

given. However, as Thrun points out i8] this method presently does not address the data associatio

problem efficiently.
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Chapter 4

Key Issues and Open Problems

In this chapter, | will discuss some issues with developisglation to SLAM, i.e. things that one must
take into account when developing a SLAM algorithm. Idesmtifj the core issues reveals areas that are

still immmature and some of the open problems become appdentissues in SLAM include

e Representational issues

Unstructured 3D Environments

Dynamic Environments

Data Association issues

Loop Closing

4.1 Representational issues

One of the key issues in developing any solution to SLAM igespntation. That is, there are questions
that need to be asked about the representation of the magp, pobe, and the probability distributions.
Should the map be composed of a sparse set of landmarks dlientamage features), or should it be
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composed of a dense set of data (i.e. dense laser scan daasa depth from stereo imagery)? What
form of the probability distribution functions should be eloyed?

In an EKF-based solution, a Gaussian form is assumed fordfk.p This has its limitations but
provides a relatively simple way of proving optimality anghgergence properties. Particle-filter based
approaches do not use a closed-form but rather use samplesjitnate a generalized pdf. This is useful
in the sense that it can represent any pdf, however many sarap required for more general pdf’s. Are

other representation formalisms more effective or usefusblving SLAM?

4.2 Unstructured 3D Environments

A mostly unexplored area is large unstructured 3D envirarisieMany applications require a robot to
operate autonomously for hours, possibly even days whaleliing many kilometers from its starting
position. Underwater exploration applications, for exéanmay require the robot to collect 3D data for
large sections of ocean-floors or the entire lake-bed. Cipfogation, i.e. being able to accurately and
automatically construct a 3D map of an entire city could bedbeial for urban planning applications.

There have been several papers on SLAM in large unstruceimé@cbnments, (e.g3B, 82]), however
these results still provide a two dimensional map of the remvhent as output and are tested only on
standard datasets from fairly structured environmentmieSoork has been done in 3D EKF-based SLAM
using a single camerd.]] and also using a wide-angle camefiZ][ Davison uses a single camera and
an EKF to estimate the pose of the camera with respect t@ $eatiures that are tracked in real-time.
Here, the static world assumption is abundant and the #hgorfails if too many features are improperly
tracked, i.e. the object moves while other features stdiostay.

One interesting approach to 3D SLAM is presentedoiry 8]. Here, a stereo camera is used to ex-

tract a dense 3D mesh of the world, and scale-invariantifea(SIF T featuresi[7]) are used to estimate
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the camera’s ego-motion. The SIFT features are used asitissfaetween the 3D mesh sets to compute
the registration between point clouds. The dense 3D defamiation is registered using the computed
transformation and a 3D surface model is extracted. Thisrdlgn seems to work well in unstructured
6DOF domains, however it assumes the presence of valid Si&flres in the environment. These are
typically locally planar patches that have high gradiespanse in multiple levels in an image pyramid.
Their algorithm does not exploit the dense data in the negdish process and thus errors can be accu-
mulated. Also, there is no automatic method of closing loops8e estimating the pose. This algorithm
treats the SLAM problem as two interleaved independentlprog, estimating a map from known pose

and then estimating a pose from known map points.

4.3 Dynamic Environments

It is important to address the issue of dynamic environmeshiisn developing a solution to the SLAM
problem. The world we live in, and the one in which a robot Wil navigating, is not static. The state
of the world is constantly changing, objects are moved armtslare opened. Moving objects or animals
move in and out of the navigated area constantly in a realdaagpplication. In an indoor environment
typically people move in front of the robot, underwater aggtions have fish swimming around the scene.
These play havoc on most algorithms since each frame isaenesi individually and assumed static. The
effect that this has on the global map is tremendous. Fhstpbssibility of divergence increases since
map registration is highly dependent upon data associalibe accuracy of the registration is degraded
when spurious dynamic objects are improperly treated &s stgects since their motion will be estimated
and not just the motion of the robot. Second, even if the mgjstration converges the accuracy of the
map will contain elongated objects due to their motion.

SLAM within highly dynamic environments have not been addeal fully in the literature. There is
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currently no fully encompassing framework that solves SL&Mhe presence of dynamic environments.
There has been work in this field however. Current work in natig in the presence of moving objects
has been looked at irbf}, 4, 37, 38, 84]. In [38], an expectation maximization algorithm has been devel-
oped which uses laser range data as input and updates tte¢ gilap of the world in two steps. The first
step (Expectation step) estimates probabilistically Wmeasurements are associated with static objects
and which ones are associated with dynamically moving ¢®jethe second step (Maximization step)
uses these estimates to localize the robot within the mayallfzi these steps are iterated until no improve-
ment in the map is made. The results from this algorithm apengsing and is capable of extracting 3D
information of people walking in a static environment.

In another approach to dynamic environmer@d] two occupancy grids are estimated, one for the
static portions of the map and the other models the dynanmitopo A complete representation of the
environment can be produced through the union of both grAishird map is also maintained which
represents static landmarks detected in the environmeichvginovides the robot with a way to localize
itself. A probabilistic framework is used to update the quaucy grids based upon range data. In this
context, “dynamic” denotes areas that change occupanyistéheir static grid. Thus, if it sees an area
which is occupied and we had previously observed that it weigesnoments prior, then this is designated
as a dynamic portion in the environment and the dynamic aetypgrid is updated appropriately. The
features used to localize the robot are corners in the raatge ahd are separately found and used to
estimate the robot pose. This method provides anotherdteunethod of coping and identifying dynamic

portions of the environment.

55



4.4 Data Association issues

Data association is the problem of associating obsen&from sensors to a particular landmark or area of
the map being estimated within the SLAM algorithm. Robusadessociation is necessary for any SLAM
algorithm. In an EKF SLAM algorithm, it is necessary to hawgrect data associations, if not then the
filter will diverge. FastSLAM also requires good data asabens but is more tolerant to spurious data due
to the particle resampling phase. However, if too many spusrimeasurements are associated improperly,
then the filter will not produce a correct map/pose estimadtieto [60] proposed a multi-hypothesis
scheme to solve the data association problem with FastSLAMsIng the particle resampling phase as
the mechanism to prune incorrect associations. A reviewatistical techniques for data association for
motion correspondence has been looked at by Ca3]irAnother highly used algorithm for fitting models
to data is RANSAC 23] which could be used to determine a set of samples that fit amalmmodel well.
This algorithm could be used to help in robustness for deteng data associations.

Difficulties for associating measurements with map elesermtludes imprecision, noise and clutter.
If the sensor is not precise or noisy, then the probabilitgssociating each measurement with an incorrect
map measurement is high. Some sensors produce very ordaieedeats (such as laser scanners) which
have low clutter and are precise. Other sensors such a® stisien produce a tremendous amount of
data points but are highly cluttered. High clutter increatbee probability of incorrect association with-
out another mechanism. Using features, or small sets adrdadibservations, is useful for determining
matches.

A typical approach to matching multiple sets of 3D pointshis iterative closest point algorithri][
In this algorithm, it is assumed that the point sets are appihg. The distance between closest points are
minimized by determining the “best” (in a least squares sger@ation matrix and translation vector. The

final rotation and translation are considered to be the tragisn transformation between the two point
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clouds that aligns them properly.

Some issues concerning the data association problem are:

1. Noisy measurements.

Each sensor has noise characteristics that must be mod€ghesl.is typically done offline but is
necessary for the system to converge appropriately. Agditbise to the measurements makes
it much more difficult to associate measurements since tiree satic point in the world is not

sampled identically due to noisy sensors.

2. Precision of the sensors.

Cameras have a limited resolution. Sonars are precise wattknown distance range. Sensor
characteristics limit the precision of the generated liaeéibn and map. Each sensor used must
be carefully modeled and the precision must be taken intowatc Sampling intervals must be
monitored and the algorithm should not attempt to generaw@a@el that is more precise than the
data given by the sensors. As Nyquist said, you can only atelyrreconstruct a signal with a
sampling rate of twice the highest frequency which alsothrthie precision of the reconstruction or

map that theoretically can be generated with a particulasfsgensors.

3. Dynamically moving objects.

Typically SLAM implementations use a static world assumptio avoid having to deal with data
association issues caused by moving objects. This is higlyictive in a real setting since almost
all real-world applications exist in a highly dynamic emnment. If this issue is not carefully

addressed the accuracy of the localization and map may ladksty or the filter may not converge

properly.

4. Sparse Data.
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Figure 4.1: Before and after closing a loop. Courtesyadf.[

Many types of sensors (e.g. sonar or a single laser poinefantlgr), provide sparse amounts of
data fast while acquiring a more dense amount of data usggjlyires several seconds. This impacts
the map building process since it is usually advantageowbtain a multitude of points for data
association. More points equals more possible featureide wparse data sets allows only a sparse

reconstruction and hinders the point matching processalthestlack of features.

In order to accomodate these issues with data associdimnse of statistics is typically employed to
determine outliers and to find the *best’ match to the datargsets of noisy measurements.

Most SLAM algorithms cannot cope with a failure to propersaciate measurements to map fea-
tures. For instance, in a Kalman filter based SLAM algoritifrtgo many measurements are incorrectly
assigned, the filter will diverge. Hahn@g] explicitly addresses this problem and constructs a ttieale
framework for performing a “lazy” data association. Thigdlves maintaining a tree that represents the

possible data associations at each update. The log-ldaiffior each association is stored in the tree.
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4.5 Loop Closing

As a robot moves through the environment, the estimate gfasstion suffers from accumulated error.
Thus, the map quality is degraded and does not necessdhdgtresality. In order to overcome this error,
the robot must sense places that it has been before, unatkthtt this position has been already visited
and then correct its version of the map accordingly. Thisgss is calledlosing the loopn SLAM since

it involves the robot moving in a loop and associating neweokrstions with the existing map. The effect
of this can be seen visually in Figufel In this scenario from Konolige and Gutmann 8¥], the robot
relies on odometry for its pose information. As can be sees robot's map before the loop is closed
has drifted quite far from reality. The next image shows tfiecé of using a map matching algorithm
to close the loop and propagate the error throughout theoféee map positions. The resulting map is
much closer to reality and the robot can now explore the relieomap properly. Loop closing is an
important part of the SLAM process and greatly influencesettoration strategy. A successful SLAM
algorithm should be able to close loops properly with littenputational cost since the map may be very
large and the algorithm should have close to real-time pedoce. If uncertainty is handled properly
within the SLAM framework, then the map will deform itself@ppriately when loops are closed in order
to maintain consistency. Loop closing can also be seen affébet of correct data association.

Lu and Milios[49] call this global consistencyi.e. two landmarks are adjacent if and only if the robot
sensed this relationship. They use scan matching andiveeratnimization techniques to align multiple
laser range scans. This allows for a reduction of unceptamtie global map estimate.

In the FastSLAM algorithmg3], since it is a particle filter loops are closed automaticdllring the
particle resampling phase. The particle resampling siyapeunes out particles that do not explain the
environment properly. As the robot moves, the particlegaprout due to uncertainty in the robot pose

and sensors. When it visits already seen areas, the errag obllot pose estimated with the particles that
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close the loop is significantly smaller than the error of theeo particles. Thus in the resampling stage,
the particles that close the loop are chosen more often taireim the particle set. This provides a huge
advantage over other SLAM approaches since closing loopside effect of the algorithm itself. Thus,
no additional computation needs to be involved to close doopimilarly, DP-SLAMPR]] is a patrticle
filtering algorithm which addresses the loop closing effewgilicitly as part of the algorithm.

EKF-based SLAM algorithms suffer from the inability to inmptly close loops. Thus, an expensive
data association computation must be performed to takeslmdp account. If the loops are large enough,
then each map point must be matched with every other map @i@fn?) solution). However, if the
exploration strategy can gurantee that loops can be indesdhll, efficient solutions using Quad-tree or

Octree representations can be developed that reducesrtipritational complexity.

4.6 Other Open Problems

Coupling sensing in closed loop with SLAM has not been lookiegea to the best of my knowledge.
That is, how can you fully incorporate the system dynamictegative model with the SLAM estimation
scheme. Is it possible to have a probabilistic framework taam modify the generative model as the
robot moves? As an example, consider a stereo sensor sy&tetihe robot maps an environment it will
begin to view areas that have been previously sensed. Thid adorm the sensing process as one has
a good estimate of what should be sensed at this time. To alatensing paradigms treat the sensors
as a black-box, they assume that the parameters can be midugleot modified. With stereo imagery,
for example, the matching process could be guided with dali@stimate, and the errors of this process
could be used to improve the map. The question arises, dssddked loop between sensing and SLAM
improve performance?

The type of sensor to be used in SLAM is typically a laser rafimpter. There has been some work
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using stereo visionZ/7], and the early work focused on sonar range data. Howeveglgarithm is
able to use the information from multiple different typessehsors simultaneously. The issue of sensor
representation within SLAM has not yet been addressed.iigshe use of multiple different types of
sensors can aid in mapping. The map itself may not necessaritlefined solely by range information
to points in space, but rather a collection of sensorialrmgttion. It is possible that the mapping process
could be made more robust by using visual information, ranfggmation, electromagnetic field strength
information, or even sound information from microphonegpically a robot does not have all different
types of sensors for monetary reasons, but the algoritheinsSLAM have focused primarily on range
information.

Another issue in SLAM is which posterior should be estimat&dth appropriate assumptions, Fast-
SLAM estimates the posterior over robot paths (trajec8)rehereas most other implementations estimate

the posterior over robot pose. It is unclear as to which da$ehs a better choice.

4.7 Summary

Simultaneous localization and mapping is a highly activiel fad research. Applications of SLAM in

autonomous robotics include active exploration of unkn@mironments which is of major concern for
underwater and planetary exploration. The basis of all esgfal SLAM algorithms is a probabilistic
framework which is appropriate since uncertainty is inhene any robotic system.

There is a multitude of algorithms that have developed teestlis problem and have been discussed
in this report. The open problems that require more researeimainly that of representation, full 3D
unknown environments, and dynamic environments. For atrabfully understand the world, it will be
required to identify dynamic changes in the world and undeigthe consequences of these changes. For

instance, if the goal is autonomous navigation and exptoraif unknown environments, then the robot
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should be able to create a map in the presence of moving slgach as people or other vehicles, and
identify existing areas of its map that has changed state asidoors that have closed, or chairs that have
moved. Work has been performed to accomodate such chamyesyér to date no general framework for
SLAM in dynamic environments exists.

Other issues such as the coupling of dynamic sensor modilsn&LAM has not yet been addressed.
Itis possible that the sensor used to observe the world @satgparameters over time. Or that the current
environment map and robot pose could influence either thectaistics of the sensor or aid in extracting
information from the sensor itself. In a sonar scenariostiresor provides poor or noisy information when
close to angled planar walls. As the robot moves closer th places, this could inform the sensor module
that it should evaluate the sonar reading differently ot Veaiger than usual for a return echo. Itis possible
that this closed-loop between SLAM and sensor parameterseisl for solving SLAM more efficiently
or accurately.

This report has provided an overview of the necessary pititiadbmechanisms used in the state-of-
the-art algorithms for solving SLAM. A review of current algthms has been presented and a discussion

on the core issues still to be solved in SLAM has been given.
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Appendix A

Kalman Filter Derivation

The expected value of a random variaklat timet is denoted a&[x| = % and its covariance matrix is
R. The predicted state at tinte- 1 is written as¢’ , and the predicted covarianceHs ;.

In general, the Kalman filter models the state dynamics aseatifunction of the previous state
(Markov assumption), the control input and the system dyoszero-mean Gaussian noise.

X1 = (X, U, W) = Acxe + Brug + W (A.1)

Here, the system dynamics is modeled as a linear combinaitibie previous states, the control inputy

and the system nois&. The matrixA is the state transition matrix and the matBiis the transition matrix

for the control input, i.e. how to relate the control to thatst The state is assumed to be hidden and can
only be estimated through observations from some uncgrainy) sensor. Thus, the measurements must
be modeled as well. This is accomplished in the standard &alfitter as a linear function of the state
plus some noise associated with the sensor.

z = h(x, ) = Hx +W (A.2)

Here,z is the measurement; is the state at timg v is the measurement noise and the makttirelates
the state to the sensor.
In the above, the noise models are assumed to be Gaussiaaranchean, or that

Wi ~ N(O7 Q) y Vi~ N(07 R) (A3)
whereQ andR are the covariances of the noise models
Q=E[ww], R=EMwV] (A.4)

Also note that the noise is not correlated with the state aasueements, thus the following are true

E[xv[]=0,Vi,j (A.5)
Efxw]]=0,i <] (A.6)
Elzv]]=0,i<j-1 (A.7)
Elzw]]=0,i <] (A.8)
Evw]]=0,Vi, ] (A.9)
EWv]]=0,i#],EMV]]=R,i=] (A.10)
Eww[]=0,i%j,Ewmw]]=Q,i=] (A.11)
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The objective of the Kalman filter is to estimate the postesicthe statex, at timet + 1 given mea-
surements, the previous state, and control inputs, nameldy 1|%,Z,u’) to optimally reduce the error
covariance in the state. The derivation that follows is Hasethat found in41] and the interested reader
should refer to this as well a8 for more information.

Given the above state dynamics model, the expected valle ctate at time+ 1 is

%1 = EX 1] (A.12)
= E [Ax + Bty +w (A.13)
= E[Ax] + E [Bru] + E [w] (A.14)
E [wt] = 0 since it is zero-mean noise

= E [Ax] + E [Biu] (A.15)

E [u:] = W since it is not a random variable
= AE %] + Bl (A.16)
Substitutingg [x| = % gives (A.17)
%11 = Ak + Bl (A.18)

Now, the expected value of the covariance at ttmel must be estimated. To do so, an error metric
for the state must be contrived. Given an estimate of the s&dtorx, let an error function be denoted as

a=f(%)=1f(x—%) (A.19)

The functionf (%) is implementation specific however it is useful to have thecfion be positive and
increase monotonically. The mean squared error is a typiahple,

a=x—%ef = (% —%)? (A.20)
or more importantly, the expected value of the above ernoction can be computed as

e(t) = E[ef] = E[ae]] = R (A.21)
E[(%—%)(x —%)"] (A.22)

t)
R

whereR is the state error covariance matrix at titmdt is the goal of the Kalman filter to estimate the
statex;, 1 given the measuremerds= 7,7, ...,z that minimizes the expected covariarige
The expected error covariance of the state at timé can be computed as follows

€1 =%+1— %41 (A.23)
= (A% +Bu +W) — (A% +Bu) (A.24)
= Al — %) +W (A.25)
= Ag +W (A.26)
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Therefore, the expected covariance at ttmel can be estimated as

P1=Ele 8] (A.27)
=E[(Aa +Wt)(Aq +w)T] (A.28)

E [Aa(Aa)" +2Aaw] +ww | (A.29)

=E [Aa(A ] +2E [Aaw] | +E [ww ] (A.30)
=E[Aa(Aa)"] +E [ww | (A.31)

= E [Aqq] AT] +Q (A.32)
=AE[aq |AT+Q (A.33)

P, 1=ARAT+Q (A.34)

The above so far contains a theoretical framework for ptedjdhe state and covariance forward in
time. Now sensor measurements must be taken into account.
Rearranging EquatioA.2 and solving for the state at tinte- 1 gives

Z1 = HypaXea+ Vi (A.35)
Zi1—Vey1 = Hepaxen (A.36)
Hi bz — Vesn) = H Heaxen (A.37)
X1 = Ht:Lll(ZtJrl —Vty1) (A.38)
And the expected value of the above is
X%+1=E[X1] =E [Htlll(zwl - Vt+1)] (A.39)
- E [Ht:—]izt""l} —E [Ht:LlthJrl)] (A.40)
= E[H 12 (A41)
Rer1=H iz (A.42)

The covariance matrix;;. 1, of this result can be computed (note that in the followingssuipts are
removed for the derivation)

%41 =E [@116]4] (A.43)
=E[(x-R(x=9"] (A.44)

Substitutingx = H1(z—v) andX= H 1z gives
=E[H z-v)-H ')(H 1 (z—v)-H 12)T] (A.45)
=E[H'z-Hv-H 1(H 'z-H v-H12)T] (A.46)
=E[(-H )(-H )] (A.47)
=E[H 'V)(H v)T] (A.48)
=E[H 'WHT] (A.49)
=HE[W]HT (A.50)

Noting thatE[w'] = R

i1 =HARH ] (A.51)
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Here we have described two versions of covariance for thee statimet + 1. NamelyZ;,; =
H,; 1R+1H, | which incorporates the measurement model and the prediotediance?, ; = ARAT +Q
which incorporates the system dynamics. The best estinfidkee @ombined state is a weighted average
of the two. In a least-squares scenario, we wish to estirhatstate which minimizes the following error

function

(A.52)

In order to find the minimum value of We take the derivative with respectxpset it to zero and solve
for X. It is simpler to see the case of two values, since this is rmosimonly used in the derivation to
follow. Thus, given two values of the statg andxy, and their variances, ando, respectively, we wish

to estimate the best estimatéhat minimizes the function

2 — (x1—%)?%  (x2—X)?
= 2 >
03 03

First, take the derivative and set it to zero

d |:(X1—)2)2 (X2—)’2)2
= 5 5 =0
dx 05 05
d [(xa—%)? d (xo—X)? 0
dx 0% dx 0%
2 .. d . d .
;%(xl—x)&(xl—x)+0—%(x2—x)&(x2—x)=O
A—Xl A—X2
2 +2 =0
o} a3

X X X X
2( -+ 53 5) =0
1 1 2 2

Finally, the expression for ¢an be given as

X X _
2T [(x x\/1 1\*!
i1 \o2 2) " 2
2T a2 1 03 1 03

1 2

x>
I

(A.53)

(A.54)

(A.55)
(A.56)

(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

This is the value ok that minimizes the chi-squared cost function and thus mzesithe error given two
estimates of the same state with different variances. Imdasivain, we want to find an estimate of the
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variance that minimizes the error as well. Thus we wish tomate the following

L 1
E(R-W=E|| T 7 K77 (A62)
A I
i 2
X1—l |, Xo—H
7 T o
—E L (A.63)
7"
2
-1 E (X1_2“+X2_2“> (A.64)
<i+i> 01 03
ol ' 03
, 1
DefineN = 5
1,1
(%+3)
X1 — W 2 X1 — UX — W Xo — W 2
:NE(12> +2E{12 22%5(22) (A.65)
07 01 03 02
Since we are talking about errors, the secBrid term disappears
and also, we notice thék; — )? = o1 and (% — W)2 = 02
03 03
=N (E {—ﬂ +0+E [—ZD (A.66)
01 ep
1 1
07 02
1 1 1
_ i (_2+_2> (A.68)
<i+i> 01 032
o = 0
1
op 03
-1 1\ 1
= () "+ () ) (A.70)

In general, Equatio’\.70 is the “best” estimate (in a least squares sense) of thengarigiven two
variance estimates. This can also be written more compattiyiultidimensional form using matrix
notation; given two covariance matrices; (2,) the best covariance estimate is therefore

1 eyl _
(5 =0 (i+3) i (A.71)

Hence, we now wish to combine the two estimates of the cavegithat we have already computed above;
namely; 1 = HjR1H ; andR ; = ARAT + Q. We will denote the “best” estimate using these
matrices . 1, i.e. the corrected version of the covariance matrix at timé since it will incorporate the

measurement model uncertainty and the system dynamicstaimtg For simplicity of the derivation, we
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drop thet + 1 subscripts since they are on each term.

P=P (P +3) 'z (A.72)
—P (P +HIRHT) "HIRHT (A.73)
Inserting Identity Matrix:l = H1H
—P (P +HRH ) "H IHH RH T (A.74)
Using the matrix identity(AB) "1 = (B~1A™1)
=P (H(P"+HRHT)) 'RHT (A.75)
=P (HP" +HH RH ) 'RHT (A.76)
—P (HP +RH ") 'RHT (A.77)
Inserting Identity Matrix1 = HTH™"
—P HTHT (HP—-|-RH‘T)_1RH_T (A.78)
Using the matrix identityB~*A~1 = (AB) 1
=P HT (HP™ +RH T)HT) 'RHT (A.79)
— P HT (HP"HT +RHTHT) 'RHT (A.80)
P=P HT(HPHT+R) 'RHT (A.81)

Now, we can define the Kalman gain to be

Kern =P qHG s (HeaRo H g +Re) o (A.82)
finally, the covariance update equation can be expresskydaful
Re1=KeaRHL ] (A.83)
This can also be expressed differently through some mataixijpulation as

Pi1=P ;1 — KisaHiaPo g (A.84)
= (I =KeraHer1)P (A.85)

EquationA.61 allows us to estimate the “best” estimate of two states guagrance weightings. This
for simpler notation can be expressed in matrix notation as

50 (e + 5 ) (A.86)

Using a similar approach, a correction to the state can beeraexde we have the estimate of the state
from measurements and the estimate of the predicted states, We need to combine the estimates of
EquationA.42 (%1 = Htflztﬂ) and Equatioi\.18 (%1 = A% + Biur) The best estimate of the combined
states can be simplified into the final form

K41 = %41 T Ker1(zr1 — Hepa%eia) (A.87)
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