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Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) addresses two interelated problems in mobile robotics

concurrently. The first is localization; answering the question “Where am I?” given knowledge of the

environment. The second problem is mapping; answering the question “What does the world look like?”

At first glance, solving these two problems concurrently appears intractable sincemappingrequires the

solution to localization but solvinglocalization requires the solution to mapping. To estimate a map,

the robot receives sensor measurements, possibly relativedistances to particular landmarks relative to its

position. Thus in order to determine a map of the environment, these measurements must be converted

into a globally consistent world frame thus requiring the robot location within the world frame. Similarly,

estimating the robot’s position requires a map simply because it has to be defined in relation to some

consistent world frame, the map. This ‘chicken-and-egg’ relationship can be addressed by thinking of the

problem in terms of uncertainties or probabilities. Withina probabilistic framework the above questions

are combined into the single question “Where am I likely to be in the most likely version of the world that I

have sensed so far?” Answering this question involves estimating the map while simultaneously estimating

the robot location. Absolute knowledge of the world is unrealistic in practice, thus uncertainty plays a key

role and must be modeled appropriately. Developing a solution within a probabilistic framework provides
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a way to solve SLAM in the presence of noisy sensors and an uncertain world model.

This report provides a survey of techniques that have been used to solve SLAM, and an overview

of open problems in this area of research. A short introduction to the necessary Bayesian framework is

presented followed by a derivation of SLAM in probabilisticterms. Particle filters and FastSLAM are

highly active research topics and are described in detail. The final section of this report presents a survey

of some open problems and issues with existing SLAM solutions.

1.1 Why is SLAM necessary?

Robot autonomy is perhaps the ‘holy grail’ of mobile robotics. Developing fully automatic robot platforms

to operate in dangerous environments such as active or abandoned mines, volcanos, underwater reefs, or

even nuclear power plants, would be beneficial for humanity.Replacing humans in such dangerous situa-

tions is a common application of robotic technology since itallows humans to work in a safer environment.

A commonality to such robotic applications is the necessityfor the robot to collect sensorial data about

its environment and present this material to a human-operator in an easy-to-understand manner. Types of

information that might be collected include air temperature and quality, and the physical appearance of

particular locations. If the air quality is insufficient or hazardous, unprotected humans should not be placed

in this environment. The robot might present the data to the human as a map, or model of the environment

along with a path representing the robot’s trajectory. Overlaying sensor information on the map allows a

human to understand the sensor data more easily. Removing thehuman from dangerous environments has

provided the impetus to solve the SLAM problem effectively and efficiently. The difficulty of manually

constructing a highly accurate map has motivated the research community to develop autonomous and

inexpensive solutions for robotic mapping.

Tracking the position and orientation (pose) of a robot has amulititude of applications. The robot needs
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Figure 1.1: Mapping without Localization. The algorithm takes inputs from sensors and known robot pose
and generates a detailed map of the environment.

to have some representation of its pose within the world for successful navigation. Absolute pose in world

coordinates is not always necessary, however an accurate pose relative to the starting location is required

for many applications. It becomes possible to navigate unknown terrain by enabling the robot to estimate

its pose. This notion has been popularized with the Mars Rovers from NASA which are equipped with

sensing technologies and algorithms capable of tracking the robot’s pose relative to known landmarks.

Navigation through unknown terrain presents many problemsfor robotic systems. The robot must be able

to not only estimate its own pose but also the orientation, size and position of potential obstacles in its

path. This is not an easy task. Also, in order to re-trace its steps if necessary the robot should keep track

of its trajectory as well as other sensor readings (possiblyin the form of a map) to allow accurate path

planning. Mapping the environment allows the robot toknow where it isrelative to where it began its trek.

It also enables the robot to recalibrate its sensors when it revisits the same area multiple times.

1.2 A Brief History of SLAM

When mapping and localization were introduced by researchers in the early ’80s, the work focused on solv-

ing the two problems of mapping and localization independently. This section provides a brief overview

of the literature and how it relates to current work in SLAM. An excellent review of the area can also be

found in [75] and [76].
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(a) Initial Occupancy Grid.
Each cell is initialized with
equal probability, i.e. Un-
known state

(b) Robot Sensor reading. The
range to a particular cell is
sensed.

(c) Each cell is updated appro-
priately. The white cells are
set to empty state (low proba-
bility), the black cell is a high
probability or occupied state,
the rest of the cells are still un-
known and not updated.

Figure 1.2: Principle of the Occupancy Grid

1.2.1 Mapping without Localization

Robotic mapping is the problem of constructing an accurate map of the environment given accurate knowl-

edge of the robot position and motion (see Figure1.1). The early work in robotic mapping typically as-

sumed that the robot location in the environment was known with 100% certainty and focused mainly on

incorporating sensor measurements into different map representations of the environment. Metric maps,

such as the occupancy grid introduced by Elfes and Moravec [55, 19, 18], allowed for the creation of

geometrically accurate maps of the environment. In this approach, they represented the world as a fine-

grained grid where each cell is in an occupied, empty, or unknown state. In his thesis [18], Elfes describes

the process of updating the occupancy grid as going through the following stages

1. The sensor reading is converted into a probability distribution using the stochastic sensor model

2. Bayes rule is applied to update the cell probabilities

3. If desired, the Maximum a posteriori (MAP) decision rule is applied to label the cell as being either

occupied, empty, or unknown
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Each cell maintains the degree of certainty that it is occupied. As range data is gathered from the sonar

sensors, empty and occupied areas in the grid representation are identified. The cells between the current

robot location and the sensed range are set to anemptystate due to the line-of-sight properties of sonar

technology. Similarly, the cells at the sensed range are updated to anoccupiedstate (see Figure1.2). Most

robotic tasks are capable of using the probabilistic occupancy grid representation, so it is rare that the

occupied, empty, or unknown labels are used. This approach has received much success in the robotic

community [3, 35, 4, 77, 49] and is still used at the core of new algorithms such as DP-SLAM [20, 21]

which is discussed in more detail later in §3.3.3. The topological map was another popular approach

[43, 69, 7, 74]. Topological maps represent the environment as a graph with a connected set of nodes

and edges. Each node represents significant locations in theenvironment and the set of edges represent

traversable paths between nodes. In [43], a node is defined as a place that is locally distinctive within

its immediate neighbourhood. For instance corners in laserscans are distinctive. They also define a

signatureof a distinctive place to be a subset of features that distinctively define the particular location.

This signature is then used to recognize distinctive placesas the robot moves. For example, a set of

corners and planar surfaces could be a possible signature for a particular location. As the robot explores

the world using some exploration strategy, distinctive nodes are identified and the signatures are added

to the topological map. The map defines traversibility between the nodes and can be used as part of a

high-level control scheme later on. A geometric map can be extracted if other data information is stored

within the nodes and links, i.e. if the odometry is stored, then approximate registration between range

information can be extracted in a post-processing scheme.

1.2.2 Localization without Mapping

Much work has also been done to estimate and maintain the robot position and orientation with an existing

complete representation of the environment. In this situation, it is typically assumed that the map is known
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Figure 1.3: Localization without Mapping. The algorithm takes sensor measurements of known landmarks
in the environment and estimates the robot’s current pose.

with 100% certainty and is usually assumed to be static (for example, chairs and doors do not move or

change state). These algorithms require ana priori map of the environment to define the reference frame

and the structure of the world. Generally, localization algorithms take as input (i) a geometric map of the

environment, (ii) initial estimate of the robot pose, (iii)odometry, and (iv) sensor readings. A successful

algorithm uses these inputs and generates the best estimateof the robot pose within the environment

(see Figure1.3). Knowledge of the environment can be in many forms, either afull geometric map

representation of the world, or the knowledge of particularlandmarks and their locations. Typically, the

sensors used can measure distance from the robot to any landmark in its line-of-sight.

Leonard and Durrant-Whyte “solved” SLAM using an Extended Kalman Filter (EKF) framework in

[44]. They used an EKF for robot pose estimation through the observation of known geometric-beacons in

the environment. Cox [8] used range data from sonars and matched sensor readings to an a priori map with

an iterative process. This allowed the robot to align its version of the world with the known environment,

thus determining its position and orientation. Map-matching (or scan matching) is a widely used iterative

algorithm in robotics for global-localization. This technique was made popular by Lu and Milios in [48]

and Scheile [66] used map matching on edge segments within an occupancy gridto self-localize.

More recent approaches to localization involve Monte-carlo sampling techniques, such as Particle-

filtering made popular by Fox and Thrun in [24] and [79].
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1.2.3 The Beginnings of Simultaneity

Chatila and Laumond in [6] first developed the principle of localizing a robot while creating a topological

map of entities. This solution did not provide a probabilistic framework but rather the two problems were

interleaved. Building on these principles, Smith, Self, andCheeseman [70, 71, 72] along with Csorba

[10] introduced the idea of solving both of the above problems, localization and mapping, simultaneously.

They developed a probabilistic method of explicitly modeling the spatial-relationships between landmarks

in an environment while simultaneously estimating the robot’s pose. The map was represented as a set of

landmark positions and a covariance matrix was used to modelthe uncertainty. The framework utilized a

Kalman filter to estimate the mean position of each landmark from sensor readings. This constituted the

first use of a probabilistic framework for estimating aStochastic Mapof the environment with modeled

uncertainty, while simultaneously estimating the robot location. The introduction of probabilistic methods

for robot localization and map creation stimulated a considerable amount of research in this area. The

method was coinedSLAMor Simultaneous Localization And Mappingby Durrant-Whyte and colleagues

[45] andCML or Concurrent Mapping and Localization[78] by others. Csorba [10] examined the theo-

retical framework surrounding solutions to the SLAM problem. This work detailed how correlations arise

between errors in the map estimates and the vehicle uncertainty which he argues are of fundamental impor-

tance in SLAM. Csorba proved theoretically that it is possible to build a map of an unknown environment

accurately through the simultaneous estimation of the robot’s pose and the map.

Since the early days of SLAM, a probabilistic approach has become the de-facto standard way of mod-

eling the SLAM problem. The different ways in which the probabilistic density functions are represented

constitute the differences in each approach. Many issues associated with the Kalman filtering approach

have been identified and improved upon using Particle-filtering techniques and a theoretical analysis of

the SLAM problem has also been performed. Probabalistic methods are fundamental to solving SLAM
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because of the inherent uncertainty in the sensor measurements and robot odometry. The next chapter

introduces and explores the mathematical preliminaries necessary for solving SLAM in a probabilistic

framework.
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Chapter 2

Mathematical Preliminaries

Dealing with uncertainty is fundamental to any SLAM algorithm. Sensors never provide perfect data.

Sensor measurements are corrupted by noise and have intrinsic characteristics that must be appropriately

modeled. For instance, laser range sensors provide highly accurate data in one direction for a single point

in space, whereas a sonar sensor provides range data of a point within a cone of uncertainty. Odometry

sensors provide a good estimate of robot motion, however wheel slippage and external forces in the envi-

ronment can cause the estimate to drift increasing the amount of uncertainty in the robot pose. Different

sensors have different accuracy and noise characteristicsthat must be taken into account. This can be

accomplished by using stochastic, or probabilistic, models and Bayesian inference mechanisms.

The following sections introduce the reader to probabilityand probabilistic estimation techniques in

the context of SLAM. The notion of a random variable, prior and conditional probabilities, and functions

to manipulate entire distributions are described. Bayes rule is discussed and the derivation of Bayesian

estimation through recursive filtering leads into the explanation of the Kalman filter; a popular tool used

in the SLAM literature. Particle filtering techniques for robotic mapping have gained popularity in favour

of Kalman filtering approaches and their implementation andproperties are discussed.

Note that the following sections provide a review of concepts and techniques that are important for
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SLAM. An exhaustive review of Probability theory is beyond the scope of this report and the interested

reader should look at [22, 73]. See Kalman’s seminal paper [41] or Welch and Bishop’s introductory

paper [83] (available electronically at http://www.cs.unc.edu/∼welch/kalman) for a complete theoretical

and practical explanation of Kalman filtering. Also, see [15] for a good introduction to Monte Carlo and

Particle Filtering techniques.

2.1 Probability

The notion of probability began in the sixteenth century by mathematicians Blaise Pascal and Pierre de

Fermat. Since then, probability theory has formed a large area of mathematics used in many applications

including game theory, quantum mechanics, computer visionand robotics. As discussed previously, the

use of a Stochastic framework to address the SLAM problem is of foremost importance. It is with the use

of probabilitistic techniques that simultaneously estimating a map of the environment and the pose of the

robot is possible. Thus, the notion of probability must be defined. Much of the discussion in this section

can be found in any introductory textbook on probability andstatistics such as [73] or [28]. This section

will briefly introduce the constructs necessary to derive the SLAM problem from a stochastic point of

view.

2.1.1 Discrete Probability Distributions

In order to discuss probabilities, a Random Variable (RV) must be defined. Imagine that you roll a

die. The possible outcomes of rolling the die are 1,2,3,4,5,6 depending on which side of the die turns

up. A mathematical expression for expressing this is possible by representing each outcome as one of

X1,X2,X3,X4,X5,X6 or Xi, i = 1. . .6. EachXi is called aRandom Variableand represents a particular out-

come of an experiment. More importantly, we need a functionm(Xi) of the variable that lets us assign
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probabilities to each possible outcome. This function is called thedistribution function. For the example

of a roll of a die, we would assign the same value to each of the possible outcomes of the roll. Then, the

distribution would be uniform and each outcome would have a probability of 1
6. Now, you could ask the

question "What is the probability of rolling a number less thanor equal to 4?". This could be computed

using the notation

P(X ≤ 4) = P(X1)+P(X2)+P(X3)+P(X4) =
2
3

(2.1)

meaning that the probability that a number less than 4 will bethe outcome of the experiment of rolling a

single die would be two-thirds.

More formally, the set of possible outcomes is called the Sample Space denoted asΩ. Any experiment

must produce an outcome that is contained withinΩ. In a discrete sense, we consider only experiments

that have finitely many possible outcomes, or thatΩ is finite.

Given an experiment with an outcome that is random (depends upon chance), the outcome of the

experiment is denoted with a capital letter such asX called a random variable. The sample spaceΩ is

the set of all possible outcomes of the experiement. Anotherdefinition that is used is the idea of anevent

which is any subset of outcomes ofΩ. Wikipedia1 defines a Random Variable as:

A random variable can be thought of as the numeric result of operating a non-deterministic

mechanism or performing a non-deterministic experiment togenerate a random result. For

example, a random variable can be used to describe the process of rolling a fair die and the

possible outcomes 1, 2, 3, 4, 5, 6 . Another random variable might describe the possible

outcomes of picking a random person and measuring their height.

and it is important to note that a RV is not a variable in the traditional sense of the word. You cannot

define the value of the random variable, it is a statistical construct used to denote the possible outcomes

1http://en.wikipedia.org/wiki/Random_variable
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of some event in terms of real numbers. More formally, the definition of a random variable paraphrased

from PlanetMath2 is

LetA be aσ-algebra andΩ be the sample space or space of events related to an experiment

we wish to discuss. A functionX : (Ω,A)→ℜ is a random variable if for each subsetAr =

{ω : X(ω) ≤ r}, r ∈ ℜ the conditionAr ∈ A is satisfied. A random variableX is discreteif

the set{X(ω) : ω ∈ Ω} is finite or countable. A random variableX is continuous if it has a

cumulative distribution function which is continuous.

A distribution function for the random variableX is a real-valued functionm(·) whose domain isΩ

and satisfies

m(ω)≥ 0 ,∀ω ∈Ω (2.2)

∑
w∈Ω

m(ω) = 1 (2.3)

For any eventE (a subset ofΩ), the probability ofE, P(E), is defined as

P(E) = ∑
ω∈E

m(ω) (2.4)

The properties or discrete probability rules can be stated as

1. P(E)≥ 0 for everyE ∈Ω

2. P(Ω) = 1

3. P(E)≤ P(F) whereE ⊂ F ⊂Ω

4. P(A∪B) = P(A)+P(B) if and only if A andB are disjoint subsets ofΩ
2http://planetmath.org/?op=getobj&from=objects&id=485
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5. P(Ā) = 1−P(A) for everyA⊂Ω

A uniform distribution on sample spaceΩ with n elements is the function

m(ω) =
1
n

, ∀ω ∈Ω (2.5)

2.1.2 Continuous Probability Distributions

For many applications, such as SLAM, we require that the experiments can take on an entire range of

possible outcomes as opposed to a particular set of discreteelements. Generally, if the sample space

Ω is a general subset ofRn thenΩ is called acontinuous sample space. Thus, any random variableX

representing the outcome of an experiment defined overΩ is considered aContinuous Random Variable.

It is interesting to note that as before, the probability of aparticular event occurring is the sum of values

in a particular range defined over some real-valued function. In a continuous space, this sum becomes an

integral and the function being integrated is called thedensity functionsince it represents the density of

probabilities over the sample space. The defining property of a density function is that the area under the

curve and over an interval corresponds to a probability of some event occurring.

Thus, the probabilistic density function (pdf),f (x) can be defined as a real-valued function that satisfies

P(a≤ X ≤ b) =

b
Z

a

f (x)dx , ∀a,b∈ R (2.6)

Note that the density function contains all probability information since the probability of any event

can be computed from it but that the value off (x) for outcomex is not the probability ofx occurring and

generally the value of the density for the function is not a probability at all. The density function however

does allow us to determine which events are more likely to occur. Where the density is large, the events

are more likely to occur, and where the density is smaller, the events are less likely to occur.
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Another important function for using probabilities is theCumulative Distribution Functionor com-

monly just called thedistribution functionand are closely related to the density functions above.

Let X be a real-valued continuous random variable, then the distribution function is defined as

FX(x) = P(X ≤ x) (2.7)

or more concretely iff (x) is the density function of random variableX then

F(x) =

x
Z

−∞

f (t)dt (2.8)

is the cumulative distribution function ofX. This by definition means that

d
dx

FX(x) = fX(x) (2.9)

It is useful to note the following properties of the cumulative distribution function

• Boundary cases:FX(∞) = 1,FX(−∞) = 0

• FX(x) is a Non-decreasing function:x1≤ x2→ FX(x1)≤ FX(x2)

• FX(x) is continuous, namely thatFX(x) = lim
ε→0

FX(x+ ε) whereε > 0

• The value at any point in the distribution is the cumulative sum of all previous probabilities,

FX(x) = P(X < x) =

x
Z

−∞

fX(x)dx (2.10)
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• The probability of the random variable taking on a value in a particular range[a,b] is

FX([a,b]) = P(a≤ X ≤ b)

b
Z

a

fX(x)dx (2.11)

2.1.3 Manipulating Probabilities

Now that the notion of a probability is given, we can discuss how to manipulate them and the very impor-

tant idea of joint and conditional probability.

The joint probability of two events describes the probability of bothevents occuring and is denoted

P(X,Y) or P(X∩Y). If X andY are independent events (X∩Y = ∅) then the joint probability isP(X,Y) =

P(X)P(Y).

The conditional probability is the probability of one event occurring givenknowledge that another

event has already occurred. This is denotedP(X|Y) and is the probability of eventX conditional on event

Y happening. If both events are independent of each other thenthe conditional probability isP(X|Y) =

P(X). If X andY are not independent events, then the joint probability can be defined using the notion of

conditional probabilities asP(X,Y) = P(X|Y)P(Y) or equivalentlyP(X,Y) = P(Y|X)P(X).

The theorem of total probability is defined in terms of marginal probabilities for Discrete random

variables

P(A,C) = P(A|B1,C)P(B1,C)+P(A|B2,C)p(B2,C)+ · · ·+P(A|Bn,C) (2.12)

=
n

∑
i=0

P(A|Bi,C)P(Bi,C) , where∪i Bi = Ω , Bi, i = 1. . .n partitionΩ (2.13)

Generally, given two random variables, X and Y, we define the notion of conditional probability as

P(X|Y) meaning that we wish to compute the probability of X with the knowledge of Y’s state. Following
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from the definition of joint probability, the following are equivalent

P(X∩Y) = P(X|Y)P(Y) (2.14)

P(X∩Y) = P(Y|X)P(X) (2.15)

the conditional probability term can be solved for and the equation is rearranged to form

P(X|Y) =
P(X∩Y)

P(Y)
, P(Y) 6= 0 (2.16)

P(Y|X) =
P(X∩Y)

P(X)
, P(X) 6= 0 (2.17)

Note thatP(X∩Y) is also written asP(X,Y).

The equation above forms the basis of Bayes for discrete events rule[22, 73].

P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X) (2.18)

P(X|Y) =
P(Y|X)P(X)

P(Y)
, P(Y) 6= 0 (2.19)

The denomenator can be re-written using the marginal distribution ofY over the variableX, then Bayes

rule becomes

P(Xj |Y) =
P(Y|Xj)P(Xj)
n
∑

i=0
P(Y|Xi)P(Xi)

(2.20)

Similarly, Bayes rule can be defined for over continuous probability densities. Letx,y denote random
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variables andf (x) be a density function. Then Bayes rule is described as

f (x|y) =
f (y|x) f (x)

f (y)
(2.21)

and using the total probability theorem gives the followingform

f (x|y) =
f (y|x) f (x)

+∞
R

−∞

f (y|x) f (x)dx

(2.22)

The probabilityP(Xj) in Equation2.20or f (x) in Equation?? is known as theprior probability (or a

priori density) of the eventX occurring. A prior probability represents the degree of certainty in a random

variable before any evidence is gathered about the state of that variable. If no knowledge is available about

the process being estimated, then typically the variable isassigned a uniform prior probability; each event

is assigned an equal prior probability.

Bayes rule (also known as Bayes Theorem) is the basis of many statistical inference techniques (also

known as Bayesian Inference). It provides a method for calculating a conditional probability given some

evidence about the world and the prior probability distributions. The conditional probability after applying

Bayes rule is also called aposterior, ora posterioriprobability. For robot localization, Bayes rule supplies

an inference mechanism for calculating a probability of therobot location given information about the

world in the form of sensor measurements.

For the remainder of this report, we will be using the notation of capitalP(X) as a discrete probability

of the random variableX and we will use lowercasep(x) as the continuous probability density function of

the random variablex.
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2.2 Expected Value and Moments

When large sets of values are to be considered, we are generally not interested in any particular value

but would rather like to look at certain quantities that describe the distribution fully. This is also true

for probabilities since if we had to evaluate each outcome ofa continuous pdf, it would take an infinite

amount of time to do so. Two such descriptive quantities are theExpected valueand thevarianceof the

distribution.

Estimating theexpected valueor meanof a probability density function is fundamental to using prob-

ability in any state estimation algorithm. The standard wayof calculating the sample mean ofN numbers

is statisically

x =
1
N

N

∑
i=0

xi (2.23)

For probability density functions, each valuex has an associated probability densityp(x). With no prior

knowledge about the pdf of a random variable, a uniform pdf istypically assumed. That is, the random

variablex can take on any value in the sample space with equal probability. In this case, the expected

value is simply the mean (µ) of the distribution. In a situation where we have obtained knowledge about

the probability distribution, we need to weight each event with its associated probability. The mean can

be defined as theExpected valueof the random variable. For continous domains, the expectedvalue is

E[x] =

+∞
Z

−∞

xp(x)dx (2.24)

and for discrete random variables, the mean is denoted

E[x] = ∑
x∈Ω

xP(x)dx (2.25)
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The expected value is also sometimes called the first moment of the distribution. Every random vari-

able can be described by a set of moments that describe the behaviour of the pdf. A moment represents a

particular characteristic of the density function. Given enough knowledge of these moments, the pdf can

be fully reconstructed.

In general, ther-th moment,ξr , of a probability distribution function is given by

ξr , ∑
i

xr
i P(xi) (2.26)

and its central moment (centered around the mean) can be described as

E
[
[x−E[x]]r

]
, ∑

i
(xi−E[x])rP(xi) (2.27)

These notions are expressed similarly for continuous domains

E
[
[x−E[x]]r

]
=

+∞
Z

−∞

(x−E[x])r p(x)dx (2.28)

For instance the equation of the normal (Gaussian) distribution is

N(x;µ,σ2) =
1√

2πσ2
e
−(x−µ)2

2σ2 (2.29)

This can be fully represented by its first moment, the mean, and its second central moment, the variance.

More generally, a Gaussian with dimensionalityd is represented by its mean vector~µ and a covariance

matrix Σ.

Nd(~x;~µ,Σ) =
1

√

(2π)d
|Σ|− 1

2e−
1
2(~x−~µ)TΣ−1(~x−~µ) (2.30)

To manipulate expected values of random variables, there are only a few simple rules that have to be
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used

1. E[c] = c wherec is a constant.

2. E[cx] = cE[x] wherec is a constant.

3. E [E[x]] = E[x].

4. E[x+y] = E[x]+E[y].

5. E[xy] = E[x]E[y] if and only if x andy are independent random variables.

2.3 Bayes Filters

Bayes Rule provides a framework for inferring a new probability density function as new evidence in the

form of sensor measurements becomes available. A Bayes filteris a probabilistic tool for computing a

posterior probability density in a computationally tractable form. Bayesian filtering is the basis of all suc-

cessful SLAM algorithms and thus must be introduced appropriately. First the notion of a Markov-Chain

process and the Markov assumption is introduced which leadsinto the explanation of Recursive Bayesian

Filtering. This type of filter is implemented, with some assumptions about the probability distributions,

in the Kalman filtering framework which is discussed in detail. Finally, the Particle-filter is an important

recursive Bayes filtering technique that has recently becomepopular in the robotics community.

2.3.1 Markov-Chain Processes

A Markov-chain process is defined In a Markov-chain process the current state is dependent only upon the

previous state [42, 39, 15]. This allows for a huge reduction in complexity, both in time and space, and

provides a computationally feasible way to approach many problems. This can be described notationally
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as

p(xt+1|x0,x1, . . . ,xt−1,xt) = p(xt+1|xt) (2.31)

A consequence of the Markov-chain assumption is that the probability of the variable at timet +1 can

be computed as

p(xt+1) =
Z

p(xt+1|xt)p(xt)dxt (2.32)

2.3.2 Recursive Bayesian Filtering

Using Bayesian updating rules at each step of a Markov-chain process is calledrecursive Bayesian fil-

tering. Recursive Bayesian filtering addresses the problem of estimating a random vector using sensor

measurements or other data pertaining to the state. Basically, it estimates the posterior probability density

function of the state conditioned by the data collected so far. In the robot localization scenario, we are

given some measurements of the world (i.e. range from the robot to known landmarks) as the robot moves

and we wish to estimate the pose of the robot. Thus, we need to estimate

p(st |zt ,ut) , zt = {z1,z2, . . . ,zt} , ut = {u1,u2, . . . ,ut} (2.33)

wherest is the robot’s pose at timet, zt are the measurements until now, andut are the control inputs (i.e.

commanded motion of the robot) until now. This can be described using Bayes rule as

p(st |zt ,ut) =
p(zt |st ,zt−1,ut)p(st |zt−1,ut)

R

p(zt |st ,zt−1,ut)p(st |zt−1,ut)dst
= η−1p(zt |st ,z

t−1,ut)p(st |zt−1,ut) (2.34)

whereη−1 =
R

p(zt |st ,zt−1,ut)p(st |zt−1,ut)dst is usually viewed as a normalizing constant that ensures

the result is a probability density function.

The first term,p(zt |st ,zt−1,ut), can be simplified by assuming that each measurement is independent
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of each other and only dependent upon the robot pose, or thatp(zt |st ,zt−1,ut) = p(zt |st).

p(zt |st) is known as the probabilistic measurement model. The secondterm, p(st |zt−1,ut), is the

prior pdf of the robot pose given all measurements and control inputs until now. Since the robot pose is

dependent only upon the pose and control inputs but not on theactual measurements (i.e. the measurement

itself does not influence how the pose changes over time), then p(st |zt−1,ut) = p(st |ut) and Equation2.34

may be simplified to

p(st |zt ,ut) = η p(zt |st)
︸ ︷︷ ︸

Measurement Model

p(st |ut)
︸ ︷︷ ︸

Pose Prior

(2.35)

Using the Markov assumption (see §2.3.1), we marginalize the pose prior distribution on the previous

robot position, namely we can writep(st |ut) =
R

p(st |st−1,ut)p(st−1|ut−1)dst−1 to get

p(st |zt ,ut) = ηp(zt |st)
Z

p(st |st−1,ut)
︸ ︷︷ ︸

Motion Model

p(st−1|ut−1)dst−1 (2.36)

The simplest way to think about a recursive Bayesian filter is by evaluating Equation2.36in two stages.

In order to estimate the posterior density given sensor measurements, first a prediction stage is performed

which estimates the pdfp−(st |ut) defined as

p−(st |ut) =
Z

p(st |st−1,ut)p(st−1|ut−1)dst−1 (2.37)

This describes a process of predicting what the state shouldbe at the current time step given that we

know how the system evolves and the value of the state the previous time step. The termp(st |st−1,ut)

represents the system motion model. In a moving robot example, this could be a linear function that uses

the current velocity of the robot to predict where it should be, or the function could very well be a nonlinear

function that integrates angular and linear velocities to predict the next pose. The termp(st−1|ut−1) is the

probability of being in the previous statest−1 given the control inputs until timet−1.
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The second stage of recursive Bayesian filtering is to incorporate the measurement and probabilistic

measurement model into the estimate of the posterior pdf. This stage is typically known as the measure-

ment update and is described in notation as

p∗(st |ut)← p(zt |st)p−(st |ut) (2.38)

p∗ is then re-normalized to become a proper pdf

p(st |ut) = ηt p
∗(st |ut) (2.39)

p∗(st |ut) =
Z

p(st |ut)p(st)dst (2.40)

This equation describes how to correct the probability density function for the current timep(st |ut), using

the predicted density functionp−(st |ut) and the measurement data.

Of course, the above formulation provides a very generalized probabilistic framework. To implement

such a scheme requires the specification of a system dynamicsmodelp(st |st−1,ut), a sensor modelp(zt |st),

and the representation of the density functionp(st |ut). This is non-trivial and highly problem specific. It

is in the differences in the representation of these quantities that differentiate the various Bayesian filtering

schemes in the literature.

2.4 Kalman Filtering

Perhaps the most common application of Bayesian filtering (Equation2.36) is the Kalman filter [41, 83].

This is a recursive Bayes filter for linear systems. The assumption within the Kalman filter is that the un-

derlying probability density function for each of the abovedistributions can be modeled using a Gaussian

distribution. This provides a simple way of estimating the pdf since a Gaussian can be fully represented in
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closed-form by its variance,σ2, and mean,µ. In a multi-dimensional situation, this is easily generalized

by using a mean vector~µ and a covariance matrixP that represents how each element of the state vector

varies with every other element.

The Kalman filter is used as a state or parameter estimator. Ituses the Bayesian framework to update

the mean and covariance of a Gaussian probability distribution. The state to be estimated, ˆx, is a multi-

dimensional vector of random variables that we wish to estimate. The derivation of the Kalman filter

equations is beyond the scope of this report but is included in the Appendix for the interested reader. The

final Kalman filtering algorithm can be stated (see Table2.1for the notation used).

Time Update Step

x̂−k = Ax̂k−1 +Buk (2.41)

P−

k = APk−1AT +Q (2.42)

Measurement Update Step

Kk = P−

k HT(HP−

k HT +R)−1 (2.43)

x̂k = x̂−k +Kk(zk−Hx̂−k ) (2.44)

Pk = (I −KkH)P−

k (2.45)

2.4.1 Extended Kalman Filtering

The linear Kalman filter formulated as above has been proven in [41], in a least squares sense, to be an

optimal estimation filter for discrete linear systems. It israre in computer vision, graphics and robotics,

that the system dynamics of the process to be estimated is in fact linear. Most systems do not exhibit linear

system dynamics. Adding a rotation term to the system dynamics (e.g. if the robot rotates in the plane)
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Notation Size Description
x̂k n×1 State vector of variables, estimated at time stepk
zk m×1 Measurement vector at time stepk
A n×n System dynamics matrix
uk l ×1 Optional control input at time stepk
B n× l Matrix that relates control input to the state
Pk n×n State covariance matrix at time stepk
Q n×n Process noise covariance matrix
R m×m Measurement noise covariance matrix
K n×m Kalman gain matrix
H m×n Matrix relating state to measurement
I n×n Identity matrix

x̂−k n×1 Predicted state
P−

k n×n Predicted covariance

Table 2.1: The notation used in the form of the Kalman Filter discussed here. Note thatn is the dimension
of the state vector,m is the dimension of the measurement vector, andl is the dimension of the control
input.

adds an inherent non-linearity to the system. Several different techniques have been employed to model

the non-linearity in the Kalman filtering framework. The most popular implementations of Kalman filters

for nonlinear systems are the extended Kalman filter (EKF) [83] and the Unscented Kalman filter (UKF)

[40, 81].

The EKF assumes that the system dynamics model

x̂t = fX(xt−1,ut−1,vt−1) (2.46)

is governed by a nonlinear process with additive zero-mean Gaussian noise. Similarly, the measurement

model is also nonlinear

zt = h(xt ,vt) (2.47)

The EKF solution to using nonlinear system and measurement models involves truncating the Taylor series

of the nonlinear systems model. It linearizes the nonlinearmodel by using only the first two terms of the

Taylor series.
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The notation used in the extended Kalman filter is summarizedin Table2.2.

Notation Size Description
x̂t n×1 State vector of variables, estimated at time stept
zt m×1 Measurement vector at time stept
ut l ×1 Optional control input at time stept
Pt n×n State covariance matrix at time stept
Q n×n Process noise covariance matrix
R m×m Measurement noise covariance matrix
K n×m Kalman gain matrix
I n×n Identity matrix

f (·) The motion model.
h(·) The measurement model.
A n×n Jacobian Matrix of Partial derivatives off (·) with respect tox

A[i, j] =
∂ f[i]
∂x[ j]

(x̂t−1,ut ,0)

W n×n Jacobian Matrix of Partial derivatives off (·) with respect to noisew

W[i, j] =
∂ f[i]
∂w[ j]

(x̂t−1,ut ,0)

H m×n Jacobian Matrix of Partial derivatives ofh(·) with respect tox

H[i, j] =
∂h[i]

∂x[ j]
(x̂t ,0)

V m×m Jacobian Matrix of Partial derivatives ofh(·) with respect to noisev

H[i, j] =
∂h[i]

∂v[ j]
(x̂t ,0)

x̂−t n×1 Predicted state
P−

t n×n Predicted Covariance

Table 2.2: The notation used in the form of the extended Kalman filter discussed here.

Thetime-updateequations in this framework now become

x̂−t = f (x̂t−1,ut ,0) (2.48)

P−

t = AtPt−1AT
t +WtQt−1W

T
t (2.49)
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and themeasurement-updateequations are now

Kt = P−

t HT
t (HtP

−

t HT
t +VtRtV

T
t )−1 (2.50)

x̂t = x̂−t−1 +Kt(zt−h(x̂−t ,0)) (2.51)

Pt = (I −KtHt)P
−

t (2.52)

Note that the JacobiansA,W,H,V are different at each timestep and must be recalculated. TheJaco-

bianHt is important since it propagates only the relevant component of the measurement information. It

magnifies only the portion of the residual that affects the state.

Time Update Step

x̂−t = f (x̂t−1,ut ,0)

P−

t = AtPt−1AT
t +WtQt−1WT

t

Measurement Update Step

Kt = P−

t HT
t (HtP

−

t HT
t +VtRtVT

t )−1

x̂t = x̂−t−1 +Kt(zt−h(x̂−t ,0))

Pt = (I −KtHt)P
−

t

Table 2.3: Summary of the Extended Kalman Filter Equations

2.4.2 Extended Information Filters

The Extended Information Filter (EIF) [50, 80] is highly related to the EKF. It is essentially the EKF

framework re-expressed ininformation form. The difference is that the EKF maintains a covariance matrix,

while the EIF maintains the inverse of the covariance matrix, typically called theinformation matrix

[58, 50]. The EKF formulation above represents the estimated posterior density function as a multivariate
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GaussianN(xt : µt ,Σt):

p(xt |zt ,ut)∝ e−
1
2(xt−µt)

TΣt(xt−µt) (2.53)

= e−
1
2xT

t Σ−1
t xt+µT

t Σ−1
t xt−

1
2µT

t Σ−1
t µt (2.54)

The last term does not contain the random variablext , thus it can be subsumed into the normalizing

constant and we get

p(xt |zt ,ut)∝ e

−
1
2xT

t Σ−1
t
︸︷︷︸

Ht

xt+µT
t Σ−1

t
︸ ︷︷ ︸

bt

xt

(2.55)

Ht = Σ−1
t (2.56)

bt = µT
t Σ−1

t (2.57)

whereHt is defined to be the information matrix andbt is the information vector. The EIF maintains the

following posterior density function

p(xt |zt ,ut)∝ e−
1
2xT

t Htxt+btxt (2.58)

Solutions in information space have advantages over state space when using multiple robots to explore

the space. The total map or information of the state is simplythe sum of the contributions from each robot

and the cross information between robots is zero. This can make simplifications when designing SLAM-

like algorithms. However, the main disadvantage of information space versus state-space algorithms is that

the state is typically required for making decisions about the world. In the information formulation, the

state is hidden through a matrix inversion. In SLAM, the information matrix represents links between map

features, however if a geometric map is required, the information matrix must be inverted which incurs a
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high computational cost.

2.4.3 Unscented Kalman Filtering

The Unscented Kalman filter (UKF) [40, 81] addresses the issue of nonlinearity in the system model

by using the non-linear system motion model directly instead of approximating it with Jacobians. It

must be noted that the UKF overcomes the issues with nonlinearity of the Kalman filter, however it still

assumes the models are fully represented by a unimodal Gaussian distribution (as oppposed to a mixture

of Gaussians) with additive zero-mean Gaussian noise. At each time-update step, the UKF samples the

state around the current mean estimate. The number of samples is deterministic and provably requires at

most 2L+1 samples whereL is the dimension of the state vector. Each sample is temporally propagated

with the actual non-linear dynamics model and a new mean is calculated. This new mean is considered

to be the predicted state at that time in the future. Since no Jacobians are calculated as in the EKF, the

computational cost of the UKF algorithm is of the same order as the EKF [81]. The UKF requires very

few samples in comparison to Monte-Carlo Particle Filteringtechniques (see next section) which typically

requires hundreds if not thousands of particles to represent the distribution properly (depending on the

complexity of the distribution). The UKF requires far fewernumbers of samples than a Particle filter since

it samples in a deterministic fashion around the covarianceof its current estimate correctly. It has been

shown in [81] that the UKF approximation is accurate to the third order ofthe Taylor series for Gaussian

motion models, and also accurate to the second order for non-Gaussian motions.

2.5 Particle Filtering

The Kalman filter is provably optimal in a least squares sensebut only for a system with linear dynamics,

linear measurement models, and both processes are adequately represented by a unimodal Gaussian den-
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sity function and have additive zero-mean Gaussian noise [41]. This is restrictive as such constraints are

unrealistic for many applications. The EKF and UKF addresses nonlinear system models, however these

algorithms still are only applicable to problems with unimodal Gaussian distributions. When the system

dynamics are highly nonlinear, or the sample rate is too low,the EKF gives a poor approximation to the

dynamics and has a tendency to diverge. This is because the EKF provides only a first-order approximation

to the nonlinear function being estimated. The UKF performsmuch better than the EKF and is accurate

to the second order of nonlinearity in general but is accurate to the third order for Gaussian systems. The

UKF is still not-applicable to systems that exhibit non-Gaussian noise or have multi-modal dynamics.

Particle filters have become a popular solution to the issuesof Kalman filtering and have recently been

applied to robot localization [25, 64]. At the core of the particle filtering algorithm is a collection of

samples (particles) rather than assuming a closed-form representation of the pdf (i.e. representing the pdf

via a Gaussian). Each individual particle represents a single sample of the pdf. If enough samples are

used, the distribution is represented in full. For the interested reader, an excellent discussion and tutorial

on Particle filters can be found in [65].

Particle-filtering algorithms represent a probability density through a weighted set ofN samples;p(xt)

is represented asp(xt) = {x(i),w(i)}i=1...N. Here,x(i) is a particle that samples the pdfp(xt) andw(i) is

a weighting orimportance factordenoting the importance of each particle (typically∑w(i) = 1). The

initial set of samples of the pdf is drawn according to a uniform prior probability density; each particle is

assigned an equal weighting of1
N .

The particle update procedure can be described by five stages.

1. Sample a statext−1 from the pdfp(xt−1) by randomly drawing a samplex from the set of particles

according to the importance distribution (determined by the weights).

2. Use the samplext−1 and the control inputut−1 to sample a new pdf, namelyp(xt |xt−1,ut−1). This
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is described as predicting the motion of the vehicle using the motion model. The predicted pdf can

be described byp(xt |xt−1,ut−1)p(xt−1).

3. Compute the new weight for the particle given a measurementand the predicted motion probability

density. This is accomplished by computing the likelihood of the samplex(i)
t−1 given the measurement

zt . Weight the particle by the non-normalized likelihood thatthe measurement could produce this

sample using the measurement modelp(zt |x(i)
t−1). These three steps must be performed on a per

particle basis for each time step.

4. Re-normalize the weightsw(i). This is done after allM particles have been sampled and re-weighted.

After this step the particles represent a probability density function. Note that this procedure imple-

ments the posteriorp(xt) = ηp(zt |xt)
R

p(xt |xt−1,ut−1)p(xt−1)dxt−1.

5. Re-sample the posterior. The goal is to sample the posterior so that only the most important particles

remain in the set for the next iteration.

There are many ways to implement the resampling stage but a widely used method is described by

Liu in [46]. The process (replacing stages 4. and 5. above) is described in general as given a set of

random samplesSt = {x(i),w(i)}Ni=1, the setSt is treated as a discrete set of samples and another discrete

set,S̃t = {x̃(i), w̃(i)}Ni=1, is produced as follows

• For i = 1. . .N

– computea(i) =
√

w(i)

– if a(i) ≥ 1

∗ retainki = ⌊a(i)⌋ copies of the samplex(i)

∗ assign new weight ˜w(i) = w(i)

ki
to each copy

– if a(i) < 1
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∗ Remove the sample with probability proportional to 1−a(i)

∗ assign new weight ˜w(i) = w(i)

a(i) if sample survives

Liu notes that resampling is necessary for several reasons.Notably that

1. resampling can prune away bad samples

2. resampling can produce multiple copies of good samples which allow the next sampling stage to

produce better future samples.

Grisetti et al [29] demonstrate that the effective number of particlesNe f f can be used as an indication

on how well the particle system estimates the posterior pdf of the robot location. This is computed as

Ne f f =
1

N
∑

i=1
(wi)

2
(2.59)

and if Ne f f falls below a specified threshold, then this measure indicates that the variance of the weights

is high and thus the particles are dispersed too much and the set should be resampled. By resampling

only when necessary, the particle filter has a much improved performance which is necessary for real-time

applications.

2.6 Summary

In this section we have explored the necessary mathematics and mechanisms that make it possible to

“solve” SLAM in a probabilistic framework. We first introduced the notion of probabilities which led

into the idea of Bayesian estimation. Most algorithms work onthe assumption that the current state

estimate subsumes the history of its past states hence we introduced the Markov assumption. This was

followed by a definition of Recursive estimation which bringsthese notions into a framework that can

32



be subsequently implemented. The Kalman filter and some of its variants were discussed in detail which

aids in the understanding of typical SLAM schemes (since themost common implementations of SLAM

use Kalman filtering at their core). Finally, Particle-filtering was introduced which provides a way of

estimating any generalized probability density function instead of the assumption that the density functions

can be fully described by a Gaussian. The next chapter shows how this mathematics can be used to solve

SLAM and how it has been done in the literature.
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Chapter 3

Solutions to the SLAM problem

To date, the most common solution to SLAM has been with the useof an extended Kalman filter formula-

tion. However, there has recently been a shift of interest towards the use of Monte-Carlo particle filtering

techniques for computing the SLAM posterior to overcome thelimitations of the EKF approach. These

approaches constitute the most successful solutions to SLAM to date, however many other approaches

exist. This chapter will first place SLAM into a probabilistic framework by using the tools described in

the previous chapter to derive a Bayesian formulation. This formulation serves as the basis of the solutions

to SLAM and the remainder of the chapter will discuss the common approaches to estimating the SLAM

posterior.

3.1 Probabilistic derivation of SLAM

The goal of SLAM is to simulataneously localize a robot and determine an accurate map of the environ-

ment. This can be formalized in a Bayesian probabilistic framework by representing each of the robot

position and map locations as probabilistic density functions. In essence, it is necessary to estimate the

posterior density of mapsΘ and posesst given that you know the observationszt = {z1,z2, . . . ,zt}, the
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control inputut = {u1,u2, . . . ,ut} and data associationsnt = {n1,n2, . . . ,nt} which represent the mapping

between map points inΘ and observations inzt . The SLAM posterior, as defined in Montemerlo[52], is

p(st ,Θ|zt ,ut ,nt) (3.1)

The system dynamics motion model assumes the Markov property

p(st |st−1,ut) (3.2)

and the perceptual measurement model is

p(zt |st ,Θ,nt) (3.3)

The derivation of the above posterior is detailed in [52] but it is worthwhile to repeat here in detail

since it provides insight into the SLAM problem and how successful solutions are modeled.

The first step in deriving the SLAM posterior is to apply Bayes rule. Remembering Equation2.20, the

posterior probability can be defined as:

p(A|B,C) = ηp(B|A,C)p(A,C) (3.4)

and by using the substitutionsA = {st ,Θ}, B = zt , andC = {zt−1,ut ,nt}, Equation3.1becomes

p(st ,Θ|zt ,ut ,nt) = ηp(zt |st ,Θ,zt−1,ut ,nt)p(st ,Θ|zt−1,ut ,nt) (3.5)

The first termη is a normalizing value that ensures the posterior is a probability and is within the range
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[0,1]. The second term can be simplified since each measurement is assumed to be independent of each

other, thuszt is independent ofzt−1 and all other measurements. The measurement at this time is also

independent of the control input. Thus, the term can be simplified to

p(zt |st ,Θ,zt−1,ut ,nt)→ p(zt |st ,Θ,nt) (3.6)

and the SLAM posterior (Equation3.5) can be re-written as

p(st ,Θ|zt ,ut ,nt) = η p(zt |st ,Θ,nt)
︸ ︷︷ ︸

Measurement Model

p(st ,Θ|zt−1,ut ,nt) (3.7)

The next step is to evaluate the last factor in Equation3.7, p(st ,Θ|zt−1,ut ,nt). Using the theorem of

total probability (Equation2.13) along with the Markov Assumption enables us to condition the pdf on

the previous statest−1

p(st ,Θ|zt−1,ut ,nt)→
Z

p(st ,Θ|st−1,z
t−1,ut ,nt)p(st−1|zt−1,ut ,nt)dst−1 (3.8)

and the SLAM posterior can now be re-written as

p(st ,Θ|zt ,ut ,nt) = ηp(zt |st ,Θ,nt)
Z

p(st ,Θ|st−1,z
t−1,ut ,nt)p(st−1|zt−1,ut ,nt)dst−1 (3.9)

If the map is allowed to be dynamic then a new map is possible ateach time step as well which is

denoted with the subscriptedΘt . Thus, the SLAM posterior to be estimated would then be

p(st ,Θt |zt−1,ut ,nt)= ηp(zt |st ,Θ,nt)
ZZ

p(st ,Θt |ut ,st−1,Θt−1,n
t)p(st−1,Θt−1|zt−1,ut−1,nt−1)dst−1dΘt−1

(3.10)

36



This is computationally very difficult, so the most common assumption in SLAM algorithms is a static

map and Equation3.9 is used.

Using the definition of conditional probability, the first term in the integral of Equation3.9can be split

into

p(st ,Θ|st−1,z
t−1,ut ,nt)→ p(Θ|st−1,z

t−1,ut ,nt)p(st |st−1,Θ,zt−1,ut ,nt) (3.11)

and the SLAM posterior becomes

p(st ,Θ|zt ,ut ,nt) = ηp(zt |st ,Θ,nt)
Z

p(Θ|st−1,z
t−1,ut ,nt)p(st |st−1,Θ,zt−1,ut ,nt)p(st−1|zt−1,ut ,nt)dst−1

(3.12)

Using the Markov assumption, the robot pose at timet (st) can be assumed to be independent upon all

variables except its own pose in the previous time stepst−1 and the control input given at timet (ut). Thus,

the following substitution is used

p(st |st−1,Θ,zt−1,ut ,nt)→ p(st |st−1,u
t) (3.13)

which is our motion model. Thus SLAM can be re-expressed as

p(st ,Θ|zt ,ut ,nt) = ηp(zt |st ,Θ,nt)
Z

p(st |st−1,u
t)

︸ ︷︷ ︸

Motion Model

p(Θ|st−1,z
t−1,ut ,nt)p(st−1|zt−1,ut ,nt)dst−1 (3.14)

The final two terms in the integral can be combined into a single term using the definition of conditional

probability

p(Θ|st−1,z
t−1,ut ,nt)p(st−1|zt−1,ut ,nt)→ p(st−1,Θ|zt−1,ut ,nt) (3.15)

Also, note that sinceut = {u0:t−1,ut} andnt = {n0:t−1,nt} andut ,nt do not influence the previous mea-
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surement and pose,zt−1,st−1, they can be eliminated. Finally the Bayesian filtering equation for SLAM

can be written as

p(st ,Θ|zt ,ut ,nt) = η p(zt |st ,Θ,nt)
︸ ︷︷ ︸

Measurement Model

Z

p(st |st−1,u
t)

︸ ︷︷ ︸

Motion Model

p(st−1,Θ|zt−1,ut−1,nt−1)dst−1 (3.16)

As can be seen in Equation3.16, it incorporates the perceptual modelp(zt |st ,Θ,nt) and the system

dynamics motion modelp(st |st−1,ut) of the system into a single expression.

It is in the evaluation of this posterior that differentiates the various SLAM algorithms. The following

sections explore a number of these algorithms in detail.

3.2 Kalman filtering approaches

Kalman filtering approaches to SLAM go back to the seminal paper by Smith, Self, and Cheeseman

[70, 71, 72]. They estimated the spatial-relationships between landmarks using an EKF framework. Much

work using an EKF framework can be found in [45, 13, 17].

In order to implement Equation3.16in the Bayes filter framework, the representation of the measure-

ment model, the motion model and the posterior pdf must be defined. In the EKF approach, all probability

density functions are assumed to be Gaussian and can thus be fully represented with a multivariate Gaus-

sian distribution.

p(st ,Θ|zt ,ut ,nt)∼ N(µt ,Σt) (3.17)

Since the Gaussian distribution can be fully reconstructedby its mean and covariance, this is what is

required to be estimated. The mean vectorµt of the Gaussian represents the current state of the world, i.e.
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the current robot pose and the current positions of the map elements. Thus,

x = [st ,θ0,θ1, . . . ,θn] (3.18)

wherest represents the robot pose in vector form, and the map point positions are represented asΘ =

{θ0,θ1, . . . ,θn}. An uncertain spatial relationship can be represented overthe random variablex as

P(x) = p(x)dx where p(x) is the probability density function that assigns a probability to x. To esti-

mate this probability distribution function using a Gaussian requires us to define the estimated mean ˆx and

covarianceΣ(x) of the distribution, thus we define

x̂ = E[x] (3.19)

x̃ = x− x̂ (3.20)

Σ(x) = E[x̃x̃T ] (3.21)

The two steps in the Bayes filter, namely prediction followed by correction (observation), can be

implemented by updating the mean and covariance of a Gaussian distribution.

The prediction stage predicts the new probability distribution given knowledge of the previous proba-

bility distribution, namely it needs to implement

Z

p(st |st−1,u
t)p(st−1,Θ|zt−1,ut−1,nt−1)dst−1 (3.22)
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This is implemented through the Extended Kalman filter update equations for prediction or time update:

x̂−t = f (x̂t−1,ut ,0) (3.23)

P−

t = AtPt−1AT
t +WtQt−1W

T
t (3.24)

Equivalently we can note the following:

Z

p(st |st−1,u
t)p(st−1,Θ|zt−1,ut−1,nt−1)dst−1∼ N(x̂−t ,P−

t ) (3.25)

Similarly, the next step in the Bayes filter is to perform a correction or measurement update, thus

we need to represent the probability density functionp(zt |st ,Θ,nt), or rather provide a mechanism to

update the Gaussian distribution using the current mean position, map, and data associations. This is

accomplished using the EKF measurement update equations

Kt = P−

t HT
t (HtP

−

t HT
t +VtRtV

T
t )−1 (3.26)

x̂t = x̂−t−1 +Kt(zt−h(x̂−t ,0)) (3.27)

Pt = (I −KtHt)P
−

t (3.28)

This actually does two steps, it uses the measurement modelh(x̂−t ,0) as an error metric for the least

squares formulation, then it uses this to weight the predicted mean hence correcting it appropriately. The

EKF measurement update equations implement the Bayes filter steps

p(zt |st ,Θ,nt)p−(st ,Θ|ut ,nt) (3.29)

After a succession of time-update and measurement update stages, the current mean and covariance
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reflect the parameters of the posterior probability densityfunction over robot pose and map point positions.

The disadvantages of the EKF formulation are threefold

• Linearized motion model. The assumption that the motion of the vehicle is close to linear can

become fatal for all EKF formulations. If the system exhibits highly non-linear motions, then the

EKF can diverge. However, if the motion is close to being linear or the time step between filter

updates is small then this is a good assumption and works wellin many situations.

• Quadratic Complexity. The filter update procedure requires a quadratic (in the number of land-

marks) number of operations. The covariance matrixPt is size(2N + M)× (2N + M) whereM is

the number of variables being estimated for the robot pose. Computationally, the most number of

operations occur when computing the Kalman gain

Kt = Pt−HT
t (HtP

−

t HT
t +VtRtV

T
t )−1 (3.30)

The measurement jacobianHt is of size(2N+M)×L where L is the dimension of the measurement

vector. The termHtP
−

t HT
t requires that the covariance matrix be first inverted (traditionally matrix

inversion is anO(N3) algorithm, strictly speacking theoretically the time complexity of matrix in-

version isO(Nlog27)[63], either way it is cubic or quadratic (at best) inN) and then multiplied by

a matrix of size(2N + M)×L. Thus, computing the Kalman gain requires a quadratic number of

multiplications in the number of landmarks. This makes it computationally difficult to estimate an

increasing number of landmarks within the EKF itself.

• Single-Hypothesis Data Association. When a sensor reading of the environment is available, it

must be associated with a map point to update the EKF appropriately. This is typically done through

a maximum likelihood heuristic. The problem with this heuristic, is that if the data association is
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incorrect, the filter is updated incorrectly. If this happens for too many map features often, the EKF

will diverge since the effect can never be corrected (see [14]).

A useful extension to the extended Kalman filtering framework is theCompressed Extended Kalman

Filter (CEKF) introduced by Guivant [31, 32, 30]. This is essentially a hierarchical approach to Kalman

filtering implementing a very local update scheme with a global update once in a while. The CEKF

exploits the fact that not all landmarks need to be present inthe state update equations. The filter produces

an identical state estimate to the EKF but at a lower computational cost. This algorithm works well when

the robot is exploring a very local area but when the vehicle transitions to a different area a full SLAM

update must be done; practically this happens infrequently. The idea of the CEKF algorithm is to run the

standard EKF algorithm on a smaller set of data in a local areaof the map. This allows for an increase

in performance since the entire state and covariance need not be used. However, to be consistent when

the robot moves outside of this local area, the entire state and covariance must be updated to reflect the

changes that have been made locally. To do this, an additional set of state and covariance matrices are

maintained during the local updates and are used in the postponed global system update.

3.3 Particle filtering approaches

3.3.1 Rao-Blackwellised Particle Filters

The Rao-Blackwell theorem [] shows how to improve on any estimator under every convex loss function

[5]. This theorem has been extended to Markov chain Monte Carlo methods by Gelfand and Smite []

and Liu, Wong and Kong[]. Using this to improve variance allows the algorithm to integrate out ancillary

variables and create an estimator provably superior to the original estimator. A Rao-Blackwellised particle

filter provides a method of simplifying a probability estimation scheme by partitioning the state space into

independent variables and marginalizing out one or more of the components of the partition, see [5, 16] for

42



further discussion on the topic of Rao-Blackwellisation and Rao-Blackwellised Particle Filters (RBPFs).

The most common realisation of Rao-Blackwellisation for Particle Filtering is outlined by Murphy in [56,

57]. Here, they use Dynamic Bayesian Network theory to show thatit is possible to separate the SLAM

posterior into estimating two independent posteriors. Oneposterior over maps, and the other posterior

over robotpathsor entiretrajectoriesinstead of pose. FastSLAM [52] is a popular implementation of

this type of Rao-Blackwellised Particle Filter framework. Grisetti showed improvements in the basic

RBPF framework in [29] by estimating an improved proposal distribution (sampling the predictive motion

model), however this work assumes a normalized Gaussian motion model but seems to work well in

practice.

3.3.2 FastSLAM

Most solutions to SLAM attempt to estimate the posterior over robotpose, a single pose of the robot. The

FastSLAM approach, introduced by Montemerlo in [52], takes a slightly different approach to solving

SLAM. FastSLAM estimates a different posterior

p(st ,Θ|zt ,ut ,nt) (3.31)

wherest = s1,s2, . . . ,st is a robot path or trajectory. The algorithm estimates the posterior over maps and

robot paths. As shown in [51], this allows the SLAM problem to be factored into a product of simpler

terms. By using ideas from Dynamic Bayes Network theory, Montemerlo observed that if the robot path

is known then the observation of each landmark does not provide information about other landmarks.

Thus, given the robot path, each landmark is independent from the rest of the landmarks. This enabled
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Montemerlo to factor the SLAM posterior into the following form

p(st ,Θ|zt ,ut ,nt) = p(st |zt ,ut ,nt)
N

∏
n=1

p(Θn|st ,zt ,ut ,nt) (3.32)

This states that SLAM can be decomposed into estimating the product of a posterior over robot paths and

N landmark posteriors given knowledge of the robot’s path.

Due to the separation between the pose and the landmarks, theestimation can be slightly decoupled

into a filter that estimates the robot pose, followed byN-landmark estimators (1 per landmark). In [51],

Montemerlo describes his implementation as partitioning the SLAM problem into a localization problem

and a mapping problem. He solves localization through the use of a particle filter and the construction of a

map is performed using a set of independent EKFs, one per landmark. The original paper [52], describes

the algorithm assuming that the data association is known. This becomes an issue in practice since the data

association is almost never known. In [60], Nieto shows how the data association problem for FastSLAM

can be handled usingMultiple Hypothesis Tracking(MHT) algorithms. This is implemented by splitting

each particle in the FastSLAM filter inton+2 particles, wheren is the number of hypotheses to be tracked.

Thus, there aren hypothesis particles containing a different data association for the observation, there is

1 additional particle for the non-association hypothesis (i.e. to ensure that it is possible to not have a

data association at all) and another particle for a new landmark hypothesis. As new measurements are

incorporated into the filter, the wrong data associations are less likely to effectively describe the robot

motion and will thus be pruned out in the particle resamplingstage.

3.3.3 DP-SLAM

DP-SLAM [20, 21] is a pure particle-filtering approach to solving SLAM. It uses a particle filter to main-

tain a joint probability density over robot positions as well as the possible map configurations. This
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approach removes the need to maintain separate EKFs for the landmarks as in FastSLAM. DP stands

for Distributed Particlemapping and allows for efficient maintenance of hundreds of candidate maps and

robot poses. The data structure used in DP-SLAM plays a key role in the efficiency of this algorithm. Each

particle in essence keeps its own version of the map represented as an occupancy grid. In each grid-cell, a

balanced tree is kept of all of the particles that have updated this cell. A second data structure called the

ancestry tree per particle is also maintained which describes the relationships between particles at timet

and the sampled particles at timet +1. Instead of associating maps with particles, the algorithm associates

particles with maps. An update consists of the following; when a particle makes an observation about a

particular grid cell, the ID of that particle is inserted into the balanced data structure stored in the cell. In

order to check the occupancy state of that cell, the particlelooks into its ancestry tree and finds an ancestor

that has updated this cell previously. If no ancestor is found then the state of the cell is currently unknown

to this particle. In this way, each particle is able to efficiently maintain its own version of the map (i.e. thus

multiple maps are estimated). An important advantage of this algorithm over most SLAM solutions is that

there is no need for explicit data association or external loop-closing (§4.5). Since the algorithm maintains

multiple maps and robot locations the proper data associations are estimated and loops are automatically

closed. The algorithmic complexity of this algorithm was analyzed to be log-quadratic in the number of

particles.

Subsequently, an addendum to the original DP-SLAM algorithm called DP-SLAM 2.0 [21] was devel-

oped. The new algorithm makes improvements in the laser uncertainty model. In the original algorithm

there was an inconsistency with the laser model since they assumed it was perfect for the mapping prob-

lem, but assumed it was noisy for the localization problem. DP-SLAM 2.0 addressed this issue by using

a probabilistic laser penetration model that is dependent upon the distance the laser has traveled through

each grid cell. Using this method, the occupancy grid was improved from storing binary states (occupied

or empty) to a more stochastic representation. Each cell has a probability associated with the laser pene-
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tration model, the higher the probability the more likely the cell is to be occupied. The search method for

the localization stage was also improved. For each particle, when an update occurs it is required to search

through its ancestry to determine if any of its ancestors have updated this cell before. The new method

uses a more efficient search method using a batch search of allancestors at the same time. Simplifications

can then be made to the algorithm using sorting methods and the overall time complexity is reduced from

log-quadratic to simply quadratic in the number of particles.

3.4 Other notable approaches

3.4.1 Sparse Extended Information Filters

Recently, there has been a thrust in developing SLAM solutions using information theory. Most notably

is the work by Nettleton [50, 58] using Extended Information Filters. The use of information filters in

SLAM was proposed by Frese in [26], implemented by Thrun in [80], and related to the work of Lu and

Milios [49]. The idea of using information filters for SLAM is to represent maps of the environment

by a graphical network of locally interconnected features.Each link in the network represents relative

information between pairs of features in a local neighbourhood. The link also encodes information of the

robot pose relative to the map. At each step, weak off-diagonal elements are removed from the information

matrix to guarantee sparsity. An interesting result of Thrun’s work is that by exploiting the sparsity of the

information matrix, the algorithm complexity is reduced from the EKF’sO(n3) toO(n), the most important

update equations can be performed in constant time; In otherwords, the time complexity for each update is

independent of the number of landmarks being estimated in the map. However, even though the algorithm

requires constant time for a measurement update, the relaxation process used introduces small errors in

the resulting map that negatively affects the overall map fidelity.
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3.4.2 Thin Junction Tree Filters

Paskin [61, 62] proposed theThin Junction Tree Filterto solve SLAM. The idea here is to view the SLAM

problem as a graphical problem and notice that if a node separates the graph into two partitions, these

partitions are conditionally independent of one another given that you have an estimate for the nodes

that create the partitions. The junction tree of these separating nodes is maintained which grows with

the measurement and motion updates. To keep the computational complexity to a minimum, the tree is

thinned, or equivalently weak edges are removed from the graphical model. This is essentially the same

goal as the Sparse Extended Information Filter above and shows promise for solving SLAM in practice.

3.4.3 Submap Approaches

Submap approaches are another popular approach to solving SLAM. In this paradigm, small independent

maps are estimated. This allows the algorithm to work only ona small amount of data at a time, thus an

update can take constant time. The issue with these algorithms is that it is difficult to align the submaps

together.

One implementation of the submap approach is that of Atlas [2]. Atlas merges the ideas of metric and

topological map building into a single framework. The algorithm maintains a graph where each node in

the graph represents a local coordinate frame and each edge represents the transformation between these

frames. A metric map is maintained per node thus merging the ideas of metric and topological mapping.

Each submap is small and of constant size and is estimated using a Kalman filter, thus covariance estimates

of each map point are also estimated along with the robot poserelative to this local frame. This allows

for a constant time updating scheme. However, even though updating a submap can be performed in

constant time, a map matching algorithm must be employed to close loops and identify submaps that have

been visited before. Even though an efficient algorithm has been implemented, the time complexity of the
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Map Matching is stillO(n2 logn). During the Map Matching process, edges are created betweensubmaps

that areclose. This enables the algorithm to identify possible loops in the graph. One issue with Atlas’

approach is that since only local submaps are maintained, a global pose estimate is unavailable. Plus, since

the map matching process adds edges between nodes, there is adiscrepancy between the global pose of this

submap determined through different paths through the graph. To obtain a global map of the envrironment

from the topological map requires the estimation of this discrepancy. This is posed as a non-linear least

squares optimization problem to find the global arrangementof map poses of all frames that minimize the

discrepancy error over all edges.

Another approach related to submap algorithms is the Hybrid-Metric Maps (HYMMs) algorithm from

Nieto and colleagues [59]. Their solution uses an occupancy grid as their map representation and com-

bines feature maps with other sensory information. The feature maps are used to partition the explored

environment into smaller regions. Each feature position defines a coordinate frame for this region and

a global dense map consists of many smaller submaps defined relative to the coordinate frame in their

region. When the position estimate of the features change, the dense representation of the area is automat-

ically updated since they are defined relative to the local region frame. This algorithm is similar to Atlas’

described above in that it uses a hybrid mapping approach that combines metric information (the dense

sensory information) with topological information (relationships between salient features).

3.5 Summary

This chapter introduced different approaches to solving the SLAM problem. The most standard approach

is the Kalman filter based approach where both the map and poseare encoded in the state vector. The

state is defined to be the mean of the unimodal Gaussian probability distribution and a covariance matrix

encodes the interactions between elements in the state vector.
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Lately, Particle-filtering based approaches have become successful in solving SLAM and it seems that

the research community is leaning towards these types of solutions rather than the Kalman filter based

approach. This is due to the fact that Particle-filter-basedsolutions address the core issues in the Kalman

filter, namely that a Gaussian model does not necessarily fit the SLAM problem well. Particle-filtering can

represent any probability distribution given enough samples. A popular algorithm in use is FastSLAM,

and not just for its catchy name, but also because it works very well in practice. FastSLAM estimates the

posterior distribution over robot paths (trajectories) and landmarks. The FastSLAM algorithm utilizes a

separate Extended Kalman Filter per landmark and a particlefilter that samples the robot trajectory. The

novelty of the FastSLAM algorithm is that Montemerlo showedthat it was possible to accurately solve

SLAM using Particle-filters and that it was possible to separate the two problems of mapping and localiza-

tion. Subsequently, FastSLAM has data association issues which Nieto solved using a multiple hypothesis

tracking algorithm that exploited the particle-resampling phase to pick the proper data association.

FastSLAM works well in practice, however there are drawbacks to this approach. As Paskin points

out in [62] and [61], since the data association problem must be solved on a per-particle basis, each

particle contains a different representation of the environment. Merging these multiple maps is nontrivial

and computationally expensive. Also, if landmarks are sparse or measurements have high amounts of

noise then the FastSLAM algorithm is prone to diverge. This occurs because of the dimensionality of

the problem. Since the probability distribution that is estimated is the posterior over robotpaths, as

time progresses the dimensionality increases linearly. The use of particle-filters requires that the particle

population is large enough to sample the region of “high-probability” in the sample space. If too-few

particles exist, then the filter essentially ignores hypotheses in the hidden state. Thus, to avoid divergence,

FastSLAM requires frequent updates with informative observations, i.e. when closing a loop. As a loop is

closed, the particles that represent this change are weighted much higher than other particles and are less-

likely to be pruned out in the resampling phase. Thus, only the particles that are consistent with closing
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the loop remain. From that point onwards, the particles begin to spread out until another loop is closed.

Thus, in situations where extremely large loops exist or if there are no loops at all, then the particles will

continue to diverge and spread out from one another. Effectively, this is the core issue of FastSLAM. In

order to maintain a high degree of accuracy, many more particles are required to sample the robot path

space which increases the computational requirements of the algorithm.

FastSLAM is a hybrid particle-filtering and Kalman filteringalgorithm and contains elements of both

including their strengths and weaknesses. A full Particle-filtering SLAM algorithm known as DP-SLAM

was discussed which shows promise in solving SLAM effectively in practice. Since it is a particle-filtering

approach, it suffers from the need to sample the space with anappropriate number of particles, however

unlike FastSLAM the dimensionality of the problem is constant over time since it estimates the posterior

over robotposesinstead of paths. One issue with DP-SLAM is that even though for simple environments

the algorithm can function well with in near-real time with 3000 particles, the results shown in their paper

required around 24 hours of computation time since they wereextremely complex environments.

Other approaches to solving SLAM were also discussed in thischapter. These involve submap ap-

proaches such as Atlas which separates the problem of mapping into a very local problem that can be

updated in a constant amount of time. This is an interesting approach which is capable of mapping very

large areas effectively. The drawback to this approach is the lack of a good mechanism to merge local

maps into a global world representation. This is a complex algorithm that requires computational time

quadratic in the number of local maps. In related work, the goal of the Hybrid Metric Maps algorithm is

to acquire a dense representation of the environment. They do not limit themselves to a particular type

of sensor. Many local feature maps are used to partition the envrionment into smaller regions. A topo-

logical map of coordinate frames are estimated and a dense map representation is attached to each frame.

This approach seems promising in acquiring a dense representation of the environment however a full

computational complexity examination of this algorithm has not yet been produced.
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Recently, the Sparse Extended Information Filter (SEIF) [80], approach is gaining in popularity. It uses

the EKF framework to maintain an Information matrix, namelythe inverse of the covariance matrix. The

fundamental assumption in this algorithm is that if the covariance matrix is dense, then the information

matrix will be sparse or very close to being sparse. This is anappropriate assumption since work of

Newman and Csorba proved how as time progresses the covariance matrix becomes dense, that is errors

in each landmark become fully correlated with each other. The interesting point about the SEIF approach

is that the computational complexity of the update procedure is constant. The sparsity of the information

matrix is exploited allowing the algorithm to update only the neighbouring nodes. However, even though

the algorithm update requires constant time, the map itselfis inaccessible at any point in the algorithm.

In order to extract a map from the information filter, the information matrix must be inverted which is

typically aO(n3) algorithm, quadratic at best.

Thin Junction Tree Filters (TJTF) were also discussed. Thissolution seems promising and addresses

some issues in the FastSLAM approach. Initial experiments indicate that the TJTF algorithm seems to

work well in closing large loops, something that FastSLAM has difficulty with. The authors state that the

algorithm is expected to be less susceptible to divergence than FastSLAM however a proof of this is not

given. However, as Thrun points out in [80] this method presently does not address the data association

problem efficiently.
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Chapter 4

Key Issues and Open Problems

In this chapter, I will discuss some issues with developing asolution to SLAM, i.e. things that one must

take into account when developing a SLAM algorithm. Identifying the core issues reveals areas that are

still immature and some of the open problems become apparent. Key issues in SLAM include

• Representational issues

• Unstructured 3D Environments

• Dynamic Environments

• Data Association issues

• Loop Closing

4.1 Representational issues

One of the key issues in developing any solution to SLAM is representation. That is, there are questions

that need to be asked about the representation of the map, robot pose, and the probability distributions.

Should the map be composed of a sparse set of landmarks (i.e. salient image features), or should it be
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composed of a dense set of data (i.e. dense laser scan data or dense depth from stereo imagery)? What

form of the probability distribution functions should be employed?

In an EKF-based solution, a Gaussian form is assumed for all pdf’s. This has its limitations but

provides a relatively simple way of proving optimality and convergence properties. Particle-filter based

approaches do not use a closed-form but rather use sampling to estimate a generalized pdf. This is useful

in the sense that it can represent any pdf, however many samples are required for more general pdf’s. Are

other representation formalisms more effective or useful for solving SLAM?

4.2 Unstructured 3D Environments

A mostly unexplored area is large unstructured 3D environments. Many applications require a robot to

operate autonomously for hours, possibly even days while travelling many kilometers from its starting

position. Underwater exploration applications, for example, may require the robot to collect 3D data for

large sections of ocean-floors or the entire lake-bed. City exploration, i.e. being able to accurately and

automatically construct a 3D map of an entire city could be beneficial for urban planning applications.

There have been several papers on SLAM in large unstructuredenvironments, (e.g. [33, 82]), however

these results still provide a two dimensional map of the environment as output and are tested only on

standard datasets from fairly structured environments. Some work has been done in 3D EKF-based SLAM

using a single camera [11] and also using a wide-angle camera [12]. Davison uses a single camera and

an EKF to estimate the pose of the camera with respect to static features that are tracked in real-time.

Here, the static world assumption is abundant and the algorithm fails if too many features are improperly

tracked, i.e. the object moves while other features stay stationary.

One interesting approach to 3D SLAM is presented in [67, 68]. Here, a stereo camera is used to ex-

tract a dense 3D mesh of the world, and scale-invariant features (SIFT features [47]) are used to estimate
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the camera’s ego-motion. The SIFT features are used as tie points between the 3D mesh sets to compute

the registration between point clouds. The dense 3D depth information is registered using the computed

transformation and a 3D surface model is extracted. This algorithm seems to work well in unstructured

6DOF domains, however it assumes the presence of valid SIFT features in the environment. These are

typically locally planar patches that have high gradient response in multiple levels in an image pyramid.

Their algorithm does not exploit the dense data in the registration process and thus errors can be accu-

mulated. Also, there is no automatic method of closing loopswhile estimating the pose. This algorithm

treats the SLAM problem as two interleaved independent problems, estimating a map from known pose

and then estimating a pose from known map points.

4.3 Dynamic Environments

It is important to address the issue of dynamic environmentswhen developing a solution to the SLAM

problem. The world we live in, and the one in which a robot willbe navigating, is not static. The state

of the world is constantly changing, objects are moved and doors are opened. Moving objects or animals

move in and out of the navigated area constantly in a real world application. In an indoor environment

typically people move in front of the robot, underwater applications have fish swimming around the scene.

These play havoc on most algorithms since each frame is considered individually and assumed static. The

effect that this has on the global map is tremendous. First, the possibility of divergence increases since

map registration is highly dependent upon data association. The accuracy of the registration is degraded

when spurious dynamic objects are improperly treated as static objects since their motion will be estimated

and not just the motion of the robot. Second, even if the map registration converges the accuracy of the

map will contain elongated objects due to their motion.

SLAM within highly dynamic environments have not been addressed fully in the literature. There is
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currently no fully encompassing framework that solves SLAMin the presence of dynamic environments.

There has been work in this field however. Current work in navigating in the presence of moving objects

has been looked at in [54, 4, 37, 38, 84]. In [38], an expectation maximization algorithm has been devel-

oped which uses laser range data as input and updates the global map of the world in two steps. The first

step (Expectation step) estimates probabilistically which measurements are associated with static objects

and which ones are associated with dynamically moving objects. The second step (Maximization step)

uses these estimates to localize the robot within the map. Finally, these steps are iterated until no improve-

ment in the map is made. The results from this algorithm are promising and is capable of extracting 3D

information of people walking in a static environment.

In another approach to dynamic environments [84] two occupancy grids are estimated, one for the

static portions of the map and the other models the dynamic portion. A complete representation of the

environment can be produced through the union of both grids.A third map is also maintained which

represents static landmarks detected in the environment which provides the robot with a way to localize

itself. A probabilistic framework is used to update the occupancy grids based upon range data. In this

context, “dynamic” denotes areas that change occupancy state in their static grid. Thus, if it sees an area

which is occupied and we had previously observed that it was static moments prior, then this is designated

as a dynamic portion in the environment and the dynamic occupancy grid is updated appropriately. The

features used to localize the robot are corners in the range data and are separately found and used to

estimate the robot pose. This method provides another heuristic method of coping and identifying dynamic

portions of the environment.
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4.4 Data Association issues

Data association is the problem of associating observations from sensors to a particular landmark or area of

the map being estimated within the SLAM algorithm. Robust data association is necessary for any SLAM

algorithm. In an EKF SLAM algorithm, it is necessary to have correct data associations, if not then the

filter will diverge. FastSLAM also requires good data associations but is more tolerant to spurious data due

to the particle resampling phase. However, if too many spurious measurements are associated improperly,

then the filter will not produce a correct map/pose estimate.Nieto [60] proposed a multi-hypothesis

scheme to solve the data association problem with FastSLAM by using the particle resampling phase as

the mechanism to prune incorrect associations. A review of statistical techniques for data association for

motion correspondence has been looked at by Cox in [9]. Another highly used algorithm for fitting models

to data is RANSAC [23] which could be used to determine a set of samples that fit a minimal model well.

This algorithm could be used to help in robustness for determining data associations.

Difficulties for associating measurements with map elements includes imprecision, noise and clutter.

If the sensor is not precise or noisy, then the probability ofassociating each measurement with an incorrect

map measurement is high. Some sensors produce very ordered data sets (such as laser scanners) which

have low clutter and are precise. Other sensors such as stereo vision produce a tremendous amount of

data points but are highly cluttered. High clutter increases the probability of incorrect association with-

out another mechanism. Using features, or small sets of salient observations, is useful for determining

matches.

A typical approach to matching multiple sets of 3D points is the iterative closest point algorithm [1].

In this algorithm, it is assumed that the point sets are overlapping. The distance between closest points are

minimized by determining the “best” (in a least squares sense) rotation matrix and translation vector. The

final rotation and translation are considered to be the registration transformation between the two point
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clouds that aligns them properly.

Some issues concerning the data association problem are:

1. Noisy measurements.

Each sensor has noise characteristics that must be modeled.This is typically done offline but is

necessary for the system to converge appropriately. Additive noise to the measurements makes

it much more difficult to associate measurements since the same static point in the world is not

sampled identically due to noisy sensors.

2. Precision of the sensors.

Cameras have a limited resolution. Sonars are precise withina known distance range. Sensor

characteristics limit the precision of the generated localization and map. Each sensor used must

be carefully modeled and the precision must be taken into account. Sampling intervals must be

monitored and the algorithm should not attempt to generate amodel that is more precise than the

data given by the sensors. As Nyquist said, you can only accurately reconstruct a signal with a

sampling rate of twice the highest frequency which also limits the precision of the reconstruction or

map that theoretically can be generated with a particular set of sensors.

3. Dynamically moving objects.

Typically SLAM implementations use a static world assumption to avoid having to deal with data

association issues caused by moving objects. This is highlyrestrictive in a real setting since almost

all real-world applications exist in a highly dynamic environment. If this issue is not carefully

addressed the accuracy of the localization and map may be degraded, or the filter may not converge

properly.

4. Sparse Data.
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Figure 4.1: Before and after closing a loop. Courtesy of [34].

Many types of sensors (e.g. sonar or a single laser point rangefinder), provide sparse amounts of

data fast while acquiring a more dense amount of data usuallyrequires several seconds. This impacts

the map building process since it is usually advantageous toobtain a multitude of points for data

association. More points equals more possible features, while sparse data sets allows only a sparse

reconstruction and hinders the point matching process due to the lack of features.

In order to accomodate these issues with data association, the use of statistics is typically employed to

determine outliers and to find the ’best’ match to the data given sets of noisy measurements.

Most SLAM algorithms cannot cope with a failure to properly associate measurements to map fea-

tures. For instance, in a Kalman filter based SLAM algorithm,if too many measurements are incorrectly

assigned, the filter will diverge. Hahnel [36] explicitly addresses this problem and constructs a theoretical

framework for performing a “lazy” data association. This involves maintaining a tree that represents the

possible data associations at each update. The log-likelihood for each association is stored in the tree.
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4.5 Loop Closing

As a robot moves through the environment, the estimate of itsposition suffers from accumulated error.

Thus, the map quality is degraded and does not necessarily reflect reality. In order to overcome this error,

the robot must sense places that it has been before, understand that this position has been already visited

and then correct its version of the map accordingly. This process is calledclosing the loopin SLAM since

it involves the robot moving in a loop and associating new observations with the existing map. The effect

of this can be seen visually in Figure4.1. In this scenario from Konolige and Gutmann in [34], the robot

relies on odometry for its pose information. As can be seen, the robot’s map before the loop is closed

has drifted quite far from reality. The next image shows the effect of using a map matching algorithm

to close the loop and propagate the error throughout the restof the map positions. The resulting map is

much closer to reality and the robot can now explore the rest of the map properly. Loop closing is an

important part of the SLAM process and greatly influences theexploration strategy. A successful SLAM

algorithm should be able to close loops properly with littlecomputational cost since the map may be very

large and the algorithm should have close to real-time performance. If uncertainty is handled properly

within the SLAM framework, then the map will deform itself appropriately when loops are closed in order

to maintain consistency. Loop closing can also be seen as theeffect of correct data association.

Lu and Milios[49] call this global consistency, i.e. two landmarks are adjacent if and only if the robot

sensed this relationship. They use scan matching and iterative minimization techniques to align multiple

laser range scans. This allows for a reduction of uncertainty in the global map estimate.

In the FastSLAM algorithm [53], since it is a particle filter loops are closed automatically during the

particle resampling phase. The particle resampling strategy prunes out particles that do not explain the

environment properly. As the robot moves, the particles spread out due to uncertainty in the robot pose

and sensors. When it visits already seen areas, the error of the robot pose estimated with the particles that

59



close the loop is significantly smaller than the error of the other particles. Thus in the resampling stage,

the particles that close the loop are chosen more often to remain in the particle set. This provides a huge

advantage over other SLAM approaches since closing loops isa side effect of the algorithm itself. Thus,

no additional computation needs to be involved to close loops. Similarly, DP-SLAM[21] is a particle

filtering algorithm which addresses the loop closing effectimplicitly as part of the algorithm.

EKF-based SLAM algorithms suffer from the inability to implicitly close loops. Thus, an expensive

data association computation must be performed to take loops into account. If the loops are large enough,

then each map point must be matched with every other map point(a O(n2) solution). However, if the

exploration strategy can gurantee that loops can be indeed be small, efficient solutions using Quad-tree or

Octree representations can be developed that reduces the computational complexity.

4.6 Other Open Problems

Coupling sensing in closed loop with SLAM has not been looked at yet to the best of my knowledge.

That is, how can you fully incorporate the system dynamics generative model with the SLAM estimation

scheme. Is it possible to have a probabilistic framework that can modify the generative model as the

robot moves? As an example, consider a stereo sensor system.As the robot maps an environment it will

begin to view areas that have been previously sensed. This could inform the sensing process as one has

a good estimate of what should be sensed at this time. To date,all sensing paradigms treat the sensors

as a black-box, they assume that the parameters can be modeled but not modified. With stereo imagery,

for example, the matching process could be guided with an initial estimate, and the errors of this process

could be used to improve the map. The question arises, does this closed loop between sensing and SLAM

improve performance?

The type of sensor to be used in SLAM is typically a laser rangefinder. There has been some work
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using stereo vision [27], and the early work focused on sonar range data. However, noalgorithm is

able to use the information from multiple different types ofsensors simultaneously. The issue of sensor

representation within SLAM has not yet been addressed. Possibly, the use of multiple different types of

sensors can aid in mapping. The map itself may not necessarily be defined solely by range information

to points in space, but rather a collection of sensorial information. It is possible that the mapping process

could be made more robust by using visual information, rangeinformation, electromagnetic field strength

information, or even sound information from microphones. Typically a robot does not have all different

types of sensors for monetary reasons, but the algorithms used in SLAM have focused primarily on range

information.

Another issue in SLAM is which posterior should be estimated? With appropriate assumptions, Fast-

SLAM estimates the posterior over robot paths (trajectories) whereas most other implementations estimate

the posterior over robot pose. It is unclear as to which of these is a better choice.

4.7 Summary

Simultaneous localization and mapping is a highly active field of research. Applications of SLAM in

autonomous robotics include active exploration of unknownenvironments which is of major concern for

underwater and planetary exploration. The basis of all successful SLAM algorithms is a probabilistic

framework which is appropriate since uncertainty is inherent in any robotic system.

There is a multitude of algorithms that have developed to solve this problem and have been discussed

in this report. The open problems that require more researchare mainly that of representation, full 3D

unknown environments, and dynamic environments. For a robot to fully understand the world, it will be

required to identify dynamic changes in the world and understand the consequences of these changes. For

instance, if the goal is autonomous navigation and exploration of unknown environments, then the robot
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should be able to create a map in the presence of moving objects such as people or other vehicles, and

identify existing areas of its map that has changed state such as doors that have closed, or chairs that have

moved. Work has been performed to accomodate such changes, however to date no general framework for

SLAM in dynamic environments exists.

Other issues such as the coupling of dynamic sensor models within SLAM has not yet been addressed.

It is possible that the sensor used to observe the world changes its parameters over time. Or that the current

environment map and robot pose could influence either the characteristics of the sensor or aid in extracting

information from the sensor itself. In a sonar scenario, thesensor provides poor or noisy information when

close to angled planar walls. As the robot moves closer to such places, this could inform the sensor module

that it should evaluate the sonar reading differently or wait longer than usual for a return echo. It is possible

that this closed-loop between SLAM and sensor parameters isuseful for solving SLAM more efficiently

or accurately.

This report has provided an overview of the necessary probabilistic mechanisms used in the state-of-

the-art algorithms for solving SLAM. A review of current algorithms has been presented and a discussion

on the core issues still to be solved in SLAM has been given.
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Appendix A

Kalman Filter Derivation

The expected value of a random variablex at timet is denoted asE[xt ] = x̂t and its covariance matrix is
Pt . The predicted state at timet +1 is written as ˆx−t+1 and the predicted covariance isP−

t+1.
In general, the Kalman filter models the state dynamics as a linear function of the previous state

(Markov assumption), the control input and the system dynamics zero-mean Gaussian noise.

xt+1 = f (xt ,ut ,wt) = Atxt +Btut +wt (A.1)

Here, the system dynamics is modeled as a linear combinationof the previous state,xt , the control inputut

and the system noisewt . The matrixA is the state transition matrix and the matrixB is the transition matrix
for the control input, i.e. how to relate the control to the state. The state is assumed to be hidden and can
only be estimated through observations from some uncertain(noisy) sensor. Thus, the measurements must
be modeled as well. This is accomplished in the standard Kalman filter as a linear function of the state
plus some noise associated with the sensor.

zt = h(xt ,vt) = Hxt +vt (A.2)

Here,zt is the measurement,xt is the state at timet, vt is the measurement noise and the matrixH relates
the state to the sensor.

In the above, the noise models are assumed to be Gaussian and zero-mean, or that

wt ∼ N(0,Q) , vt ∼ N(0,R) (A.3)

whereQ andRare the covariances of the noise models

Q = E[wtw
T
t ] , R= E[vtv

T
t ] (A.4)

Also note that the noise is not correlated with the state or measurements, thus the following are true

E[xiv
T
j ] = 0 ,∀i, j (A.5)

E[xiw
T
j ] = 0 , i ≤ j (A.6)

E[ziv
T
j ] = 0 , i ≤ j−1 (A.7)

E[ziw
T
j ] = 0 , i ≤ j (A.8)

E[viw
T
j ] = 0 ,∀i, j (A.9)

E[viv
T
j ] = 0 , i 6= j , E[viv

T
j ] = R , i = j (A.10)

E[wiw
T
j ] = 0 , i 6= j , E[wiw

T
j ] = Q , i = j (A.11)
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The objective of the Kalman filter is to estimate the posterior of the state, ˆx, at timet +1 given mea-
surements, the previous state, and control inputs, namelyp(xt+1|xt ,zt ,ut) to optimally reduce the error
covariance in the state. The derivation that follows is based on that found in [41] and the interested reader
should refer to this as well as [83] for more information.

Given the above state dynamics model, the expected value of the state at timet +1 is

x̂t+1 = E[xt+1] (A.12)

= E [Atxt +Btut +wt ] (A.13)

= E [Atxt ]+E [Btut ]+E [wt ] (A.14)

E [wt ] = 0 since it is zero-mean noise

= E [Atxt ]+E [Btut ] (A.15)

E [ut ] = ut since it is not a random variable

= AtE [xt ]+Btut (A.16)

SubstitutingE[xt ] = x̂t gives (A.17)

x̂t+1 = At x̂t +Btut (A.18)

Now, the expected value of the covariance at timet +1 must be estimated. To do so, an error metric
for the state must be contrived. Given an estimate of the state vector ˆxt , let an error function be denoted as

et = f (x̂t) = f (xt− x̂t) (A.19)

The function f (x̂t) is implementation specific however it is useful to have the function be positive and
increase monotonically. The mean squared error is a typicalexample,

et = xt− x̂te
2
t = (xt− x̂t)

2 (A.20)

or more importantly, the expected value of the above error function can be computed as

ε(t) = E[e2
t ] = E[ete

T
t ] = Pt (A.21)

Pt = E
[
(xt− x̂t)(xt− x̂t)

T] (A.22)

wherePt is the state error covariance matrix at timet. It is the goal of the Kalman filter to estimate the
state ˆxt+1 given the measurementszt = z0,z1, . . . ,zt that minimizes the expected covariancePt .

The expected error covariance of the state at timet +1 can be computed as follows

e−t+1 = xt+1− x̂t+1 (A.23)

= (Axt +But +wt)− (Ax̂t +But) (A.24)

= A(xt− x̂t)+wt (A.25)

= Aet +wt (A.26)

64



Therefore, the expected covariance at timet +1 can be estimated as

P−

t+1 = E[e−t+1eT−
t+1] (A.27)

= E
[
(Aet +wt)(Aet +wt)

T] (A.28)

= E
[
Aet(Aet)

T +2Aetw
T
t +wtw

T
t

]
(A.29)

= E
[
Aet(Aet)

T]+2E
[
Aetw

T
t

]
+E

[
wtw

T
t

]
(A.30)

= E
[
Aet(Aet)

T]+E
[
wtw

T
t

]
(A.31)

= E
[
Aete

T
t AT]+Q (A.32)

= AE
[
ete

T
t

]
AT +Q (A.33)

P−

t+1 = APtA
T +Q (A.34)

The above so far contains a theoretical framework for predicting the state and covariance forward in
time. Now sensor measurements must be taken into account.

Rearranging EquationA.2 and solving for the state at timet +1 gives

zt+1 = Ht+1xt+1 +vt+1 (A.35)

zt+1−vt+1 = Ht+1xt+1 (A.36)

H−1
t+1(zt+1−vt+1) = H−1

t+1Ht+1xt+1 (A.37)

xt+1 = H−1
t+1(zt+1−vt+1) (A.38)

And the expected value of the above is

x̂t+1 = E[xt+1] = E
[
H−1

t+1(zt+1−vt+1)
]

(A.39)

= E
[
H−1

t+1zt+1
]
−E

[
H−1

t+1vt+1)
]

(A.40)

= E
[
H−1

t+1zt+1
]

(A.41)

x̂t+1 = H−1
t+1zt+1 (A.42)

The covariance matrix,Σt+1, of this result can be computed (note that in the following subscripts are
removed for the derivation)

Σt+1 = E
[
et+1eT

t+1

]
(A.43)

= E
[
(x− x̂)(x− x̂)T] (A.44)

Substitutingx = H−1(z−v) andx̂ = H−1zgives

= E
[
(H−1(z−v)−H−1z)(H−1(z−v)−H−1z)T] (A.45)

= E
[
(H−1z−H−1v−H−1z)(H−1z−H−1v−H−1z)T] (A.46)

= E
[
(−H−1v)(−H−1v)T] (A.47)

= E
[
(H−1v)(H−1v)T] (A.48)

= E
[
H−1vvTH−T] (A.49)

= H−1E
[
vvT]H−T (A.50)

Noting thatE[vvT ] = R

Σt+1 = H−1
t+1Rt+1H−T

t+1 (A.51)
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Here we have described two versions of covariance for the state at timet + 1. NamelyΣt+1 =
H−1

t+1Rt+1H−T
t+1 which incorporates the measurement model and the predictedcovarianceP−

t+1 = APtAT +Q
which incorporates the system dynamics. The best estimate of the combined state is a weighted average
of the two. In a least-squares scenario, we wish to estimate the state which minimizes the following error
function

χ2 = ∑
i

(xi− x̂i)
2

σ2
i

(A.52)

In order to find the minimum value of ˆx we take the derivative with respect to ˆx, set it to zero and solve
for x̂. It is simpler to see the case of two values, since this is mostcommonly used in the derivation to
follow. Thus, given two values of the statex1 andx2, and their variancesσ1 andσ2 respectively, we wish
to estimate the best estimate ˆx that minimizes the function

χ2 =
(x1− x̂)2

σ2
2

+
(x2− x̂)2

σ2
2

(A.53)

First, take the derivative and set it to zero

d
dx̂

[
(x1− x̂)2

σ2
2

+
(x2− x̂)2

σ2
2

]

= 0 (A.54)

d
dx̂

[
(x1− x̂)2

σ2
2

]

+

[
d
dx̂

(x2− x̂)2

σ2
2

]

= 0 (A.55)

2

σ2
1

(x1− x̂)
d
dx̂

(x1− x̂)+
2

σ2
2

(x2− x̂)
d
dx̂

(x2− x̂) = 0 (A.56)

2
x̂−x1

σ2
1

+2
x̂−x2

σ2
2

= 0 (A.57)

and now solving for ˆx gives

2

(
x̂

σ2
1

− x1

σ2
1

+
x̂

σ2
2

− x2

σ2
2

)

= 0 (A.58)

2x̂

(
1

σ2
1

+
1

σ2
2

)

−2

(
x1

σ2
1

+
x2

σ2
2

)

= 0 (A.59)

x̂

(
1

σ2
1

+
1

σ2
2

)

=

(
x1

σ2
1

+
x2

σ2
2

)

(A.60)

Finally, the expression for ˆx can be given as

x̂ =

x1
σ2

1
+ x2

σ2
2

1
σ2

1
+ 1

σ2
2

=

(
x1

σ2
1

+
x2

σ2
2

)(
1

σ2
1

+
1

σ2
2

)−1

(A.61)

This is the value of ˆx that minimizes the chi-squared cost function and thus minimizes the error given two
estimates of the same state with different variances. In a similar vain, we want to find an estimate of the
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variance that minimizes the error as well. Thus we wish to compute the following

E[(x̂−µ)2] = E










x1
σ2

1
+ x2

σ2
2

1
σ2

1
+ 1

σ2
2

−µ

1
σ2

1
+ 1

σ2
2

1
σ2

1
+ 1

σ2
2





2



 (A.62)

= E










x1−µ
σ2

1
+ x2−µ

σ2
2

1
σ2

1
+ 1

σ2
2





2



 (A.63)

=
1

(
1

σ2
1
+ 1

σ2
2

)2E

[(
x1−µ

σ2
1

+
x2−µ

σ2
2

)2
]

(A.64)

DefineN =
1

(
1

σ2
1
+ 1

σ2
2

)2

= N

(

E

[(
x1−µ

σ2
1

)2
]

+2E

[
x1−µ

σ2
1

x2−µ

σ2
2

]

+E

[(
x2−µ

σ2
2

)2
])

(A.65)

Since we are talking about errors, the secondE [·] term disappears

and also, we notice that(x1−µ)2 = σ1 and(x2−µ)2 = σ2

= N

(

E

[
σ2

1

σ4
1

]

+0+E

[
σ2

2

σ4
2

])

(A.66)

= N

(

E

[
1

σ2
1

]

+E

[
1

σ2
2

])

(A.67)

=






1
(

1
σ2

1
+ 1

σ2
2

)2






(
1

σ2
1

+
1

σ2
2

)

(A.68)

=
1

1
σ2

1
+ 1

σ2
2

(A.69)

=
((

σ2
1

)−1
+
(
σ2

2

)−1
)−1

(A.70)

In general, EquationA.70 is the “best” estimate (in a least squares sense) of the variance given two
variance estimates. This can also be written more compactlyin multidimensional form using matrix
notation; given two covariance matrices (Σ1,Σ2) the best covariance estimate is therefore

(
Σ−1

1 +Σ−1
2

)−1
= Σ1(Σ1 +Σ2)

−1Σ2 (A.71)

Hence, we now wish to combine the two estimates of the covariance that we have already computed above;
namelyΣt+1 = H−1

t+1Rt+1H−T
t+1 andP−

t+1 = APtAT + Q. We will denote the “best” estimate using these
matrices,P̂t+1, i.e. the corrected version of the covariance matrix at timet +1 since it will incorporate the
measurement model uncertainty and the system dynamics uncertainty. For simplicity of the derivation, we
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drop thet +1 subscripts since they are on each term.

P̂ = P−
(
P− +Σ

)−1Σ (A.72)

= P−
(
P− +H−1RH−T)−1

H−1RH−T (A.73)

Inserting Identity Matrix:I = H−1H

= P−
(
P− +H−1RH−T)−1

H−1HH−1RH−T (A.74)

Using the matrix identity:(AB)−1 = (B−1A−1)

= P−
(
H(P− +H−1RH−T)

)−1
RH−T (A.75)

= P−
(
HP− +HH−1RH−T)−1

RH−T (A.76)

= P−
(
HP− +RH−T)−1

RH−T (A.77)

Inserting Identity Matrix:I = HTH−T

= P−HTH−T (HP− +RH−T)−1
RH−T (A.78)

Using the matrix identity:B−1A−1 = (AB)−1

= P−HT ((HP− +RH−T)HT)−1
RH−T (A.79)

= P−HT (HP−HT +RH−THT)−1
RH−T (A.80)

P̂ = P−HT (HP−HT +R
)−1

RH−T (A.81)

Now, we can define the Kalman gain to be

Kt+1 = P−

t+1HT
t+1

(
Ht+1P−

t+1HT
t+1 +Rt+1

)−1
(A.82)

finally, the covariance update equation can be expressed fully as

P̂t+1 = Kt+1RH−T
t+1 (A.83)

This can also be expressed differently through some matrix manipulation as

P̂t+1 = P−

t+1−Kt+1Ht+1P−

t+1 (A.84)

= (I −Kt+1Ht+1)P
−

t+1 (A.85)

EquationA.61 allows us to estimate the “best” estimate of two states givenvariance weightings. This
for simpler notation can be expressed in matrix notation as

(
Σ−1

1 +Σ−1
2

)−1(
Σ−1

1 x1 +Σ−1
2 x2

)
(A.86)

Using a similar approach, a correction to the state can be made since we have the estimate of the state
from measurements and the estimate of the predicted state. Thus, we need to combine the estimates of
EquationA.42(x̂t+1 = H−1

t+1zt+1) and EquationA.18(x̂t+1 = At x̂t +Btut) The best estimate of the combined
states can be simplified into the final form

x̂t+1 = x̂−t+1 +Kt+1(zt+1−Ht+1x̂t+1) (A.87)
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