
Overview of Storage and Indexing 956. 11, h 1,1 i 19, h 2,1 i, h 2,2 i The order of entries is signi�ant. Sine the order ofthe entries is the same as the order of data reord.7. 1.8 2.0 3.2 3.4 3.8 The order of entries is not signi�ant.8. 1.8,h 1,1 i 2.0,h 1,2 i 3.2,h 2,1 i 3.4,h 1,3 i 3.8,h 2,2 iThe order of entries is not signi�ant.9. Same as above10. It an not be used to build a sparse index on gpa. Beause Alternative (1) fordata entries always leads to a dense index.11. Neither alternative (2) nor (3) an be used to build a sparse index on gpa. Beausesparse index has to be lustered, and the key values gpa are not in order.For the dense index, the order of entries is not signi�ant. Beause there is one dataentry in the index per reord in the data �le. However, for the sparse index, the orderof entries is signi�ent. There is only one entry for eah page of reords in the data�le. So, the order of data entries in the index must orresponds to the order of reordsin the data �le.Exerise 8.5 Explain the di�erene between Hash indexes and B+-tree indexes. Inpartiular, disuss how equality and range searhes work, using an example.Answer 8.5 Not yet available.Exerise 8.6 Fill in the I/O osts in Figure 8.2.File San Equality Range Insert DeleteType Searh SearhHeap �leSorted �leClustered �leUnlustered tree indexUnlustered hash indexFigure 8.2 I/O Cost ComparisonAnswer 8.6 Not yet available.



Overview of Storage and Indexing 97If no reord quali�es, in a heap �le, we have to searh the entire �le. So the ost isB(D +RC). In a sorted �le, even if no reord quali�es, we have to do equality searhto verify that no qualifying reord exists. So the ost is the same as equality searh,Dlog2B + Clog2R. In a hashed �le, if no reord quali�es, assuming no overow page,we ompute the hash value to �nd the buket that would ontain suh a reord (ost isH), bring that page in (ost is D), and searh the entire page to verify that the reordis not there (ost is RC). So the total ost is H +D +RC.In all three �le organizations, if the ondition is not on the searh key we have to searhthe entire �le. There is an additional ost of C for eah reord that is deleted, and anadditional D for eah page ontaining suh a reord.Exerise 8.9 What main onlusions an you draw from the disussion of the �vebasi �le organizations disussed in Setion ??? Whih of the �ve organizations wouldyou hoose for a �le where the most frequent operations are as follows?1. Searh for reords based on a range of �eld values.2. Perform inserts and sans, where the order of reords does not matter.3. Searh for a reord based on a partiular �eld value.Answer 8.9 The main onlusion about the �ve �le organizations is that all �ve havetheir own advantages and disadvantages. No one �le organization is uniformly superiorin all situations. The hoie of appropriate strutures for a given data set an have asigni�ant impat upon performane. An unordered �le is best if only full �le sansare desired. A hash indexed �le is best if the most ommon operation is an equalityseletion. A sorted �le is best if range seletions are desired and the data is stati; alustered B+ tree is best if range seletions are important and the data is dynami.An unlustered B+ tree index is useful for seletions over small ranges, espeially ifwe need to luster on another searh key to support some ommon query.1. Using these �elds as the searh key, we would hoose a sorted �le organization ora lustered B+ tree depending on whether the data is stati or not.2. Heap �le would be the best �t in this situation.3. Using this partiular �eld as the searh key, hoosing a hash indexed �le wouldbe the best.Exerise 8.10 Consider the following relation:Emp(eid: integer, sal: integer, age: real, did: integer)



Storing Data: Disks and Files 103Exerise 9.6 Consider again the disk spei�ations from Exerise 9.5, and supposethat a blok size of 1024 bytes is hosen. Suppose that a �le ontaining 100,000 reordsof 100 bytes eah is to be stored on suh a disk and that no reord is allowed to spantwo bloks.1. How many reords �t onto a blok?2. How many bloks are required to store the entire �le? If the �le is arrangedsequentially on the disk, how many surfaes are needed?3. How many reords of 100 bytes eah an be stored using this disk?4. If pages are stored sequentially on disk, with page 1 on blok 1 of trak 1, whatpage is stored on blok 1 of trak 1 on the next disk surfae? How would youranswer hange if the disk were apable of reading and writing from all heads inparallel?5. What time is required to read a �le ontaining 100,000 reords of 100 bytes eahsequentially? Again, how would your answer hange if the disk were apable ofreading/writing from all heads in parallel (and the data was arranged optimally)?6. What is the time required to read a �le ontaining 100,000 reords of 100 byteseah in a random order? To read a reord, the blok ontaining the reord hasto be fethed from disk. Assume that eah blok request inurs the average seektime and rotational delay.Answer 9.6 1. 1024=100 = 10. We an have at most 10 reords in a blok.2. There are 100,000 reords all together, and eah blok holds 10 reords. Thus,we need 10,000 bloks to store the �le. One trak has 25 bloks, one ylinder has250 bloks. we need 10,000 bloks to store this �le. So we will use more than oneylinders, that is, need 10 surfaes to store this �le.3. The apaity of the disk is 500,000K, whih has 500,000 bloks. Eah blok has10 reords. Therefore, the disk an store no more than 5,000,000 reords.4. There are 25K bytes, or we an say, 25 bloks in eah trak. It is blok 26 onblok 1 of trak 1 on the next disk surfae.If the disk were apable of reading/writing from all heads in parallel, we an putthe �rst 10 pages on the blok 1 of trak 1 of all 10 surfaes. Therefore, it is blok2 on blok 1 of trak 1 on the next disk surfae.5. A �le ontaining 100,000 reords of 100 bytes needs 40 ylinders or 400 traks inthis disk. The transfer time of one trak of data is 0.011 seonds. Then it takes400� 0:011 = 4:4seonds to transfer 400 traks.This aess seeks the trak 40 times. The seek time is 40 � 0:01 = 0:4seonds.Therefore, total aess time is 4:4 + 0:4 = 4:8seonds.



104 Chapter 9If the disk were apable of reading/writing from all heads in parallel, the disk anread 10 traks at a time. The transfer time is 10 times less, whih is 0.44 seonds.Thus total aess time is 0:44 + 0:4 = 0:84seonds6. For any blok of data, averageaesstime = seektime+rotationaldelay+transfertime.seektime = 10mserotationaldelay = 6msetransfertime = 1K2; 250K=se = 0:44mseThe average aess time for a blok of data would be 16.44 mse. For a �leontaining 100,000 reords of 100 bytes, the total aess time would be 164.4seonds.Exerise 9.7 Explain what the bu�er manager must do to proess a read request fora page. What happens if the requested page is in the pool but not pinned?Answer 9.7 When a page is requested the bu�er manager does the following:1. The bu�er pool is heked to see if it ontains the requested page. If the page is inthe pool, skip to step 2. If the page is not in the pool, it is brought in as follows:(a) A frame is hosen for replaement, using the replaement poliy.(b) If the frame hosen for replaement is dirty, it is ushed (the page it ontainsis written out to disk).() The requested page is read into the frame hosen for replaement.2. The requested page is pinned (the pin ount of the hosen frame is inremented)and its address is returned to the requester.Note that if the page is not pinned, it ould be removed from bu�er pool even if it isatually needed in main memory. Pinning a page prevents it from being removed fromthe pool.Exerise 9.8 When does a bu�er manager write a page to disk?Answer 9.8 If a page in the bu�er pool is hosen to be replaed and this page isdirty, the bu�er manager must write the page to the disk. This is also alled ushingthe page to the disk.Sometimes the bu�er manager an also fore a page to disk for reovery-related pur-poses (intuitively, to ensure that the log reords orresponding to a modi�ed page arewritten to disk before the modi�ed page itself is written to disk).



Storing Data: Disks and Files 1072. If there are many queries running onurrently, the request of a page from di�erentqueries an be interleaved. In the worst ase, it ause the ahe miss on everypage request, even with disk pre-fething.3. If we have pre-fething o�ered by DBMS bu�er manager, the bu�er manager anpredit the referene pattern more aurately. In partiular, a ertain numberof bu�er frames an be alloated per ative san for pre-fething purposes, andinterleaved requests would not ompete for the same frames.4. Segmented ahes an work in a similar fashion to alloating bu�er frames for eahative san (as in the above answer). This helps to solve some of the onurrenyproblem, but will not be useful at all if more �les are being aessed than thenumber of segments. In this ase, the DBMS bu�er manager should still prefer todo pre-fething on its own to handle a larger number of �les, and to predit moreompliated aess patterns.Exerise 9.16 Desribe two possible reord formats. What are the trade-o�s betweenthem?Answer 9.16 Two possible reord formats are: �xed length reords and variable lengthreords. (For details, see the text.)Fixed length reord format is easy to implement. Sine the reord size is �xed, reordsan be stored ontiguously. Reord address an be obtained very quikly.Variable length reord format is muh more exible.Exerise 9.17 Desribe two possible page formats. What are the trade-o�s betweenthem?Answer 9.17 Two possible page formats are: onseutive slots and slot diretoryThe onseutive slots organization is mostly used for �xed length reord formats. Ithandles the deletion by using bitmaps or linked lists.The slot diretory organization maintains a diretory of slots for eah page, with ahreord o�set, reord lengthi pair per slot.The slot diretory is an indiret way to get the o�set of an entry. Beause of this indi-retion, deletion is easy. It is aomplished by setting the length �eld to 0. And reordsan easily be moved around on the page without hanging their external identi�er.Exerise 9.18 Consider the page format for variable-length reords that uses a slotdiretory.



Tree-Strutured Indexing 115
90 98 100

L6 L7

L8 L9 (new)

I3

98* 99* 100* 105* 109*Figure 10.112. Show the B+ tree that would result from inserting a reord with searh key 109into the tree.3. Show the B+ tree that would result from deleting the reord with searh key 81from the original tree.4. Name a searh key value suh that inserting it into the (original) tree would ausean inrease in the height of the tree.5. Note that subtrees A, B, and C are not fully spei�ed. Nonetheless, what an youinfer about the ontents and the shape of these trees?6. How would your answers to the preeding questions hange if this were an ISAMindex?7. Suppose that this is an ISAM index. What is the minimum number of insertionsneeded to reate a hain of three overow pages?Answer 10.2 The answer to eah question is given below.1. I1, I2, and everything in the range [L2..L8℄.2. See Figure 10.11. Notie that node L8 is split into two nodes.3. Assuming that there is redistribution from the right sibling, the solution an beseen in Figure 10.12.4. There are many searh keys X suh that inserting X would inrease the height ofthe tree. Any searh key in the range [65..79℄ would suÆe. A key in this rangewould go in L5 if there were room for it, but sine L5 is full already and sine itan't redistribute any data entries over to L4 (L4 is full also), it must split; this inturn auses I2 to split, whih auses I1 to split, and assuming I1 is the root node,a new root is reated and the tree beomes taller.



116 Chapter 10
I3

95 98

L8

(I1)

L6 L7

82* 94* 95* 96* 97*Figure 10.125. We an infer several things about subtrees A, B, and C. First of all, they eahmust have height one, sine their \sibling" trees (those rooted at I2 and I3) haveheight one. Also, we know the ranges of these trees (assuming dupliates �t onthe same leaf): subtree A holds searh keys less than 10, B ontains keys � 10and < 20, and C has keys � 20 and < 30. In addition, eah intermediate nodehas at least 2 key values and 3 pointers.6. The answers for the questions above would hange as follows if we were dealingwith ISAM trees instead of B+ trees.(a) This is only a searh, so the answer is the same. (The tree struture is notmodi�ed.)(b) Beause we an never split a node in ISAM, we must reate an overow pageto hold inserted key 109.() Searh key 81 would simply be erased from L6; no redistribution would our(ISAM has no minimum oupation requirements).(d) Being a stati tree struture, an ISAM tree will never hange height in normaloperation, so there are no searh keys whih when inserted will inrease thetree's height. (If we inserted an X in [65..79℄ we would have to reate anoverow page for L5.)(e) We an infer several things about subtrees A, B, and C. First of all, theyeah must have height one, sine their \sibling" trees (those rooted at I2 andI3) have height one. Here we suppose that we reate a balaned ISAM tree.Also, we know the ranges of these trees (assuming dupliates �t on the sameleaf): subtree A holds searh keys less than 10, B ontains keys � 10 and< 20, and C has keys � 20 and < 30. In addition, eah of A, B, and Contains �ve leaf nodes (whih may be of arbitrary fullness), and these nodesare the �rst 15 onseutive pages prior to L1.



122 Chapter 103. The argument in part 2 does not assume anything about the data entries to beinserted; it is valid if dupliates an be inserted as well. Therefore the solutiondoes not hange.Exerise 10.6 Answer Exerise 10.5 assuming that the tree is an ISAM tree! (Someof the examples asked for may not exist|if so, explain briey.)Answer 10.6 The answer to eah question is given below.1. The answer to eah part is given below(a) Sine ISAM trees use overow bukets, any series of �ve inserts and deleteswill result in the same tree.(b) If the leaves are not sorted, there is no sequene of inserts and deletes thatwill hange the overall struture of an ISAM index. This is beause insertswill reate overow bukets, and these overow bukets will be removed whenthe elements are deleted, giving the original tree.2. The height of the tree does never hange sine an ISAM index is stati. If a leafpage beomes full, an overow page is alloated; if a leaf page beomes empty, itremains empty.3. See part 2.Exerise 10.7 Suppose that you have a sorted �le and want to onstrut a denseprimary B+ tree index on this �le.1. One way to aomplish this task is to san the �le, reord by reord, insertingeah one using the B+ tree insertion proedure. What performane and storageutilization problems are there with this approah?2. Explain how the bulk-loading algorithm desribed in the text improves upon thissheme.Answer 10.7 1. This approah is likely to be quite expensive, sine eah entryrequires us to start from the root and go down to the appropriate leaf page.Even though the index level pages are likely to stay in the bu�er pool betweensuessive requests, the overhead is still onsiderable. Also, aording to theinsertion algorithm, eah time a node splits, the data entries are redistributedevenly to both nodes. This leads to a �xed page utilization of 50%2. The bulk loading algorithm has good performane and spae utilization omparedwith the repeated inserts approah. Sine the B+ tree is grown from the bottomup, the bulk loading algorithm allows the administrator to pre-set the amounteah index and data page should be �lled. This allows good performane forfuture inserts, and supports some desired spae utilization.



Hash-Based Indexing 135
000

h0

100

011

010

001

00

01

10

11

00

h1

Level = 0
Primary Pages Overflow Pages

Next = 1

32 8 24

9 25 41 17

14 18 10 30

31 35 7 11

44 36 4Figure 11.7 Index from Figure 11.6 after insertion of an entry with hash value 42. If the last item that was inserted had a hashode h0(keyvalue) = 00 then it auseda split, otherwise, any value ould have been inserted.3. The last data entry whih aused a split satis�es the onditionh0(keyvalue) = 00as there are no overow pages for any of the other bukets.4. See Fig 11.75. See Fig 11.86. See Fig 11.97. The following onstitutes the minimum list of entries to ause two overow pagesin the index : 63; 127; 255; 511; 1023The �rst insertion auses a split and auses an update of Next to 2. The insertionof 1023 auses a subsequent split and Next is updated to 3 whih points to thisbuket.This overow hain will not be redistributed until three more insertions (a total of8 entries) are made. In priniple if we hoose data entries with key values of theform 2k +3 with suÆiently large k, we an take the maximum number of entriesthat an be inserted to redue the length of the overow hain to be greater than



136 Chapter 11
000

h0

100

011

010

001

00

01

10

11

00

h1

Level = 0
Primary Pages Overflow Pages

32 8 24

9 25 41 17

14 18 10 30

31 35 7 11

44 36 4

15

Next = 2

01101Figure 11.8 Index from Figure 11.6 after insertion of an entry with hash value 15
000

h0

011

010

001

00

01

10

11

h1

Level = 0
Primary Pages Overflow Pages

32 8 24

9 25 41 17

14 18 10 30

31 35 7 11

Next = 0

Figure 11.9 Index from Figure 11.6 after deletion of entries with hash values 36 and 44



Hash-Based Indexing 137any arbitrary number. This is so beause the initial index has 31(binary 11111),35(binary 10011),7(binary 111) and 11(binary 1011). So by an appropriate hoieof data entries as mentioned above we an make a split of this buket ause justtwo values (7 and 31) to be redistributed to the new buket. By hoosing asuÆiently large k we an delay the redution of the length of the overow haintill any number of splits of this buket.Exerise 11.3 Answer the following questions about Extendible Hashing:1. Explain why loal depth and global depth are needed.2. After an insertion that auses the diretory size to double, how many bukets haveexatly one diretory entry pointing to them? If an entry is then deleted fromone of these bukets, what happens to the diretory size? Explain your answersbriey.3. Does Extendible Hashing guarantee at most one disk aess to retrieve a reordwith a given key value?4. If the hash funtion distributes data entries over the spae of buket numbers in avery skewed (non-uniform) way, what an you say about the size of the diretory?What an you say about the spae utilization in data pages (i.e., non-diretorypages)?5. Does doubling the diretory require us to examine all bukets with loal depthequal to global depth?6. Why is handling dupliate key values in Extendible Hashing harder than in ISAM?Answer 11.3 The answer to eah question is given below.1. Extendible hashing allows the size of the diretory to inrease and derease de-pending on the number and variety of inserts and deletes. One the diretory sizehanges, the hash funtion applied to the searh key value should also hange. Sothere should be some information in the index as to whih hash funtion is to beapplied. This information is provided by the global depth.An inrease in the diretory size doesn't ause the reation of new bukets foreah new diretory entry. All the new diretory entries exept one share buketswith the old diretory entries. Whenever a buket whih is being shared by twoor more diretory entries is to be split the diretory size need not be doubled.This means for eah buket we need to know whether it is being shared by twoor more diretory entries. This information is provided by the loal depth of thebuket. The same information an be obtained by a san of the diretory, but thisis ostlier.



Hash-Based Indexing 141an be used to build a lustered index and most of the queries are range querieson this �eld. Then ISAM de�nitely wins over stati hashing.5. Example 1: Again onsider a situation in whih only equality seletions areperformed on the index. Linear hashing is better than B+ tree in this ase.Example 2: When an index whih is lustered and most of the queries are rangesearhes, B+ indexes are better.Exerise 11.6 Give examples of the following:1. A Linear Hashing index and an Extendible Hashing index with the same dataentries, suh that the Linear Hashing index has more pages.2. A Linear Hashing index and an Extendible Hashing index with the same dataentries, suh that the Extendible Hashing index has more pages.Answer 11.6 1. Let us take the data entries8; 16; 24; 32; 40; 48; 56; 64; 128; 7; 15; 31; 63; 127; 1; 10; 4and the indexes shown in Fig 11.10 and Fig 11.11. Extendible hashing uses 9pages inluding the diretory page(assuming it spans just one page) and linearhashing uses 10 pages.2. Consider the list of data entries 0; 4; 1; 5; 2; 6; 3; 7and the usual hash funtions for both and a page apaity of 4 reords per page.Extendible hashing takes 4 data pages and also a diretory page whereas linearhashing takes just 4 pages.Exerise 11.7 Consider a relation R(a, b, , d) ontaining 1 million reords, whereeah page of the relation holds 10 reords. R is organized as a heap �le with unlusteredindexes, and the reords in R are randomly ordered. Assume that attribute a is aandidate key for R, with values lying in the range 0 to 999,999. For eah of thefollowing queries, name the approah that would most likely require the fewest I/Osfor proessing the query. The approahes to onsider follow:Sanning through the whole heap �le for R.Using a B+ tree index on attribute R.a.Using a hash index on attribute R.a.The queries are:



External Sorting 163(b) Create 256 `input' bu�ers of 1 page eah, reate an `output' bu�er of 64pages, and do 256-way merges.() Create 16 `input' bu�ers of 16 pages eah, reate an `output' bu�er of 64pages, and do 16-way merges.(d) Create eight `input' bu�ers of 32 pages eah, reate an `output' bu�er of 64pages, and do eight-way merges.(e) Create four `input' bu�ers of 64 pages eah, reate an `output' bu�er of 64pages, and do four-way merges.Answer 13.4 In Pass 0, 31250 sorted runs of 320 pages eah are reated. For eahrun, we read and write 320 pages sequentially. The I/O ost per run is 2 � (10+5+1 �320) = 670ms. Thus, the I/O ost for Pass 0 is 31250�670 = 20937500ms. For eahof the ases disussed below, this ost must be added to the ost of the subsequentmerging passes to get the total ost. Also, the alulations below are slightly simpli�edby negleting the e�et of a �nal read/written blok that is slightly smaller than theearlier bloks.1. For 319-way merges, only 2 more passes are needed. The �rst pass will produed31250=319e = 98sorted runs; these an then be merged in the next pass. Every page is read andwritten individually, at a ost of 16ms per read or write, in eah of these two passes.The ost of these merging passes is therefore 2�(2�16)�10000000 = 640000000ms.(The formula an be read as `number of passes times ost of read and write perpage times number of pages in �le'.)2. With 256-way merges, only two additional merging passes are needed. Every pagein the �le is read and written in eah pass, but the e�et of bloking is di�erenton reads and writes. For reading, eah page is read individually at a ost of 16ms.Thus, the ost of reads (over both passes) is 2 � 16 � 10000000 = 320000000ms.For writing, pages are written out in bloks of 64 pages. The I/O ost per blokis 10 + 5 + 1 � 64 = 79ms. The number of bloks written out per pass is10000000=64 = 156250, and the ost per pass is 156250�79 = 12343750ms. Theost of writes over both merging passes is therefore 2 � 12343750 = 24687500ms.The total ost of reads and writes for the two merging passes is 320000000 +24687500 = 344687500ms.3. With 16-way merges, 4 additional merging passes are needed. For reading, pagesare read in bloks of 16 pages, at a ost per blok of 10 + 5 + 1 � 16 = 31ms. Ineah pass, 10000000=16 = 625000 bloks are read. The ost of reading over the4 merging passes is therefore 4 � 625000 � 31 = 77500000ms. For writing, pagesare written in 64 page bloks, and the ost per pass is 12343750ms as before. Theost of writes over 4 merging passes is 4 � 12343750 = 49375000ms, and the totalost of the merging passes is 77500000+ 49375000 = 126875000ms.



164 Chapter 134. With 8-way merges, 5 merging passes are needed. For reading, pages are read inbloks of 32 pages, at a ost per blok of 10 + 5 + 1 � 32 = 47ms. In eah pass,10000000=32 = 312500 bloks are read. The ost of reading over the 5 mergingpasses is therefore 5 � 312500 � 47 = 73437500ms. For writing, pages are writtenin 64 page bloks, and the ost per pass is 12343750ms as before. The ost ofwrites over 5 merging passes is 5 � 12343750 = 61718750ms, and the total ostof the merging passes is 73437500+ 61718750 = 135156250ms.5. With 4-way merges, 8 merging passes are needed. For reading, pages are read inbloks of 64 pages, at a ost per blok of 10 + 5 + 1 � 64 = 79ms. In eah pass,10000000=64 = 156250 bloks are read. The ost of reading over the 8 mergingpasses is therefore 8 � 156250 � 79 = 98750000ms. For writing, pages are writtenin 64 page bloks, and the ost per pass is 12343750ms as before. The ost ofwrites over 8 merging passes is 8 � 12343750 = 98750000ms, and the total ostof the merging passes is 98750000+ 98750000 = 197500000ms.There are several lessons to be drawn from this (rather tedious) exerise. First, theost of the merging phase varies from a low of 126875000ms to a high of 640000000ms.Seond, the highest ost is assoiated with the option of maximizing fanout, hoosinga bu�er size of 1 page! Thus, the e�et of bloked I/O is signi�ant. However, as theblok size is inreased, the number of passes inreases slowly, and there is a trade-o�to be onsidered: it does not pay to inrease blok size inde�nitely. Finally, while thisexample uses a di�erent blok size for reads and writes, for the sake of illustration, inpratie a single blok size is used for both reads and writes.Exerise 13.5 Consider the re�nement to the external sort algorithm that produesruns of length 2B on average, where B is the number of bu�er pages. This re�nementwas desribed in Setion 11.2.1 under the assumption that all reords are the samesize. Explain why this assumption is required and extend the idea to over the ase ofvariable-length reords.Answer 13.5 The assumption that all reords are of the same size is used when thealgorithm moves the smallest entry with a key value large than k to the output bu�erand replaes it with a value from the input bu�er. This "replaement" will only workif the reords of the same size.If the entries are of variable size, then we must also keep trak of the size of eahentry, and replae the moved entry with a new entry that �ts in the available memoryloation. Dynami programming algorithms have been adapted to deide an optimalreplaement strategy in these ases.


