
Overview of Storage and Indexing 956. 11, h 1,1 i 19, h 2,1 i, h 2,2 i The order of entries is signi�
ant. Sin
e the order ofthe entries is the same as the order of data re
ord.7. 1.8 2.0 3.2 3.4 3.8 The order of entries is not signi�
ant.8. 1.8,h 1,1 i 2.0,h 1,2 i 3.2,h 2,1 i 3.4,h 1,3 i 3.8,h 2,2 iThe order of entries is not signi�
ant.9. Same as above10. It 
an not be used to build a sparse index on gpa. Be
ause Alternative (1) fordata entries always leads to a dense index.11. Neither alternative (2) nor (3) 
an be used to build a sparse index on gpa. Be
ausesparse index has to be 
lustered, and the key values gpa are not in order.For the dense index, the order of entries is not signi�
ant. Be
ause there is one dataentry in the index per re
ord in the data �le. However, for the sparse index, the orderof entries is signi�
ent. There is only one entry for ea
h page of re
ords in the data�le. So, the order of data entries in the index must 
orresponds to the order of re
ordsin the data �le.Exer
ise 8.5 Explain the di�eren
e between Hash indexes and B+-tree indexes. Inparti
ular, dis
uss how equality and range sear
hes work, using an example.Answer 8.5 Not yet available.Exer
ise 8.6 Fill in the I/O 
osts in Figure 8.2.File S
an Equality Range Insert DeleteType Sear
h Sear
hHeap �leSorted �leClustered �leUn
lustered tree indexUn
lustered hash indexFigure 8.2 I/O Cost ComparisonAnswer 8.6 Not yet available.



Overview of Storage and Indexing 97If no re
ord quali�es, in a heap �le, we have to sear
h the entire �le. So the 
ost isB(D +RC). In a sorted �le, even if no re
ord quali�es, we have to do equality sear
hto verify that no qualifying re
ord exists. So the 
ost is the same as equality sear
h,Dlog2B + Clog2R. In a hashed �le, if no re
ord quali�es, assuming no over
ow page,we 
ompute the hash value to �nd the bu
ket that would 
ontain su
h a re
ord (
ost isH), bring that page in (
ost is D), and sear
h the entire page to verify that the re
ordis not there (
ost is RC). So the total 
ost is H +D +RC.In all three �le organizations, if the 
ondition is not on the sear
h key we have to sear
hthe entire �le. There is an additional 
ost of C for ea
h re
ord that is deleted, and anadditional D for ea
h page 
ontaining su
h a re
ord.Exer
ise 8.9 What main 
on
lusions 
an you draw from the dis
ussion of the �vebasi
 �le organizations dis
ussed in Se
tion ??? Whi
h of the �ve organizations wouldyou 
hoose for a �le where the most frequent operations are as follows?1. Sear
h for re
ords based on a range of �eld values.2. Perform inserts and s
ans, where the order of re
ords does not matter.3. Sear
h for a re
ord based on a parti
ular �eld value.Answer 8.9 The main 
on
lusion about the �ve �le organizations is that all �ve havetheir own advantages and disadvantages. No one �le organization is uniformly superiorin all situations. The 
hoi
e of appropriate stru
tures for a given data set 
an have asigni�
ant impa
t upon performan
e. An unordered �le is best if only full �le s
ansare desired. A hash indexed �le is best if the most 
ommon operation is an equalitysele
tion. A sorted �le is best if range sele
tions are desired and the data is stati
; a
lustered B+ tree is best if range sele
tions are important and the data is dynami
.An un
lustered B+ tree index is useful for sele
tions over small ranges, espe
ially ifwe need to 
luster on another sear
h key to support some 
ommon query.1. Using these �elds as the sear
h key, we would 
hoose a sorted �le organization ora 
lustered B+ tree depending on whether the data is stati
 or not.2. Heap �le would be the best �t in this situation.3. Using this parti
ular �eld as the sear
h key, 
hoosing a hash indexed �le wouldbe the best.Exer
ise 8.10 Consider the following relation:Emp(eid: integer, sal: integer, age: real, did: integer)



Storing Data: Disks and Files 103Exer
ise 9.6 Consider again the disk spe
i�
ations from Exer
ise 9.5, and supposethat a blo
k size of 1024 bytes is 
hosen. Suppose that a �le 
ontaining 100,000 re
ordsof 100 bytes ea
h is to be stored on su
h a disk and that no re
ord is allowed to spantwo blo
ks.1. How many re
ords �t onto a blo
k?2. How many blo
ks are required to store the entire �le? If the �le is arrangedsequentially on the disk, how many surfa
es are needed?3. How many re
ords of 100 bytes ea
h 
an be stored using this disk?4. If pages are stored sequentially on disk, with page 1 on blo
k 1 of tra
k 1, whatpage is stored on blo
k 1 of tra
k 1 on the next disk surfa
e? How would youranswer 
hange if the disk were 
apable of reading and writing from all heads inparallel?5. What time is required to read a �le 
ontaining 100,000 re
ords of 100 bytes ea
hsequentially? Again, how would your answer 
hange if the disk were 
apable ofreading/writing from all heads in parallel (and the data was arranged optimally)?6. What is the time required to read a �le 
ontaining 100,000 re
ords of 100 bytesea
h in a random order? To read a re
ord, the blo
k 
ontaining the re
ord hasto be fet
hed from disk. Assume that ea
h blo
k request in
urs the average seektime and rotational delay.Answer 9.6 1. 1024=100 = 10. We 
an have at most 10 re
ords in a blo
k.2. There are 100,000 re
ords all together, and ea
h blo
k holds 10 re
ords. Thus,we need 10,000 blo
ks to store the �le. One tra
k has 25 blo
ks, one 
ylinder has250 blo
ks. we need 10,000 blo
ks to store this �le. So we will use more than one
ylinders, that is, need 10 surfa
es to store this �le.3. The 
apa
ity of the disk is 500,000K, whi
h has 500,000 blo
ks. Ea
h blo
k has10 re
ords. Therefore, the disk 
an store no more than 5,000,000 re
ords.4. There are 25K bytes, or we 
an say, 25 blo
ks in ea
h tra
k. It is blo
k 26 onblo
k 1 of tra
k 1 on the next disk surfa
e.If the disk were 
apable of reading/writing from all heads in parallel, we 
an putthe �rst 10 pages on the blo
k 1 of tra
k 1 of all 10 surfa
es. Therefore, it is blo
k2 on blo
k 1 of tra
k 1 on the next disk surfa
e.5. A �le 
ontaining 100,000 re
ords of 100 bytes needs 40 
ylinders or 400 tra
ks inthis disk. The transfer time of one tra
k of data is 0.011 se
onds. Then it takes400� 0:011 = 4:4se
onds to transfer 400 tra
ks.This a

ess seeks the tra
k 40 times. The seek time is 40 � 0:01 = 0:4se
onds.Therefore, total a

ess time is 4:4 + 0:4 = 4:8se
onds.



104 Chapter 9If the disk were 
apable of reading/writing from all heads in parallel, the disk 
anread 10 tra
ks at a time. The transfer time is 10 times less, whi
h is 0.44 se
onds.Thus total a

ess time is 0:44 + 0:4 = 0:84se
onds6. For any blo
k of data, averagea

esstime = seektime+rotationaldelay+transfertime.seektime = 10mse
rotationaldelay = 6mse
transfertime = 1K2; 250K=se
 = 0:44mse
The average a

ess time for a blo
k of data would be 16.44 mse
. For a �le
ontaining 100,000 re
ords of 100 bytes, the total a

ess time would be 164.4se
onds.Exer
ise 9.7 Explain what the bu�er manager must do to pro
ess a read request fora page. What happens if the requested page is in the pool but not pinned?Answer 9.7 When a page is requested the bu�er manager does the following:1. The bu�er pool is 
he
ked to see if it 
ontains the requested page. If the page is inthe pool, skip to step 2. If the page is not in the pool, it is brought in as follows:(a) A frame is 
hosen for repla
ement, using the repla
ement poli
y.(b) If the frame 
hosen for repla
ement is dirty, it is 
ushed (the page it 
ontainsis written out to disk).(
) The requested page is read into the frame 
hosen for repla
ement.2. The requested page is pinned (the pin 
ount of the 
hosen frame is in
remented)and its address is returned to the requester.Note that if the page is not pinned, it 
ould be removed from bu�er pool even if it isa
tually needed in main memory. Pinning a page prevents it from being removed fromthe pool.Exer
ise 9.8 When does a bu�er manager write a page to disk?Answer 9.8 If a page in the bu�er pool is 
hosen to be repla
ed and this page isdirty, the bu�er manager must write the page to the disk. This is also 
alled 
ushingthe page to the disk.Sometimes the bu�er manager 
an also for
e a page to disk for re
overy-related pur-poses (intuitively, to ensure that the log re
ords 
orresponding to a modi�ed page arewritten to disk before the modi�ed page itself is written to disk).



Storing Data: Disks and Files 1072. If there are many queries running 
on
urrently, the request of a page from di�erentqueries 
an be interleaved. In the worst 
ase, it 
ause the 
a
he miss on everypage request, even with disk pre-fet
hing.3. If we have pre-fet
hing o�ered by DBMS bu�er manager, the bu�er manager 
anpredi
t the referen
e pattern more a

urately. In parti
ular, a 
ertain numberof bu�er frames 
an be allo
ated per a
tive s
an for pre-fet
hing purposes, andinterleaved requests would not 
ompete for the same frames.4. Segmented 
a
hes 
an work in a similar fashion to allo
ating bu�er frames for ea
ha
tive s
an (as in the above answer). This helps to solve some of the 
on
urren
yproblem, but will not be useful at all if more �les are being a

essed than thenumber of segments. In this 
ase, the DBMS bu�er manager should still prefer todo pre-fet
hing on its own to handle a larger number of �les, and to predi
t more
ompli
ated a

ess patterns.Exer
ise 9.16 Des
ribe two possible re
ord formats. What are the trade-o�s betweenthem?Answer 9.16 Two possible re
ord formats are: �xed length re
ords and variable lengthre
ords. (For details, see the text.)Fixed length re
ord format is easy to implement. Sin
e the re
ord size is �xed, re
ords
an be stored 
ontiguously. Re
ord address 
an be obtained very qui
kly.Variable length re
ord format is mu
h more 
exible.Exer
ise 9.17 Des
ribe two possible page formats. What are the trade-o�s betweenthem?Answer 9.17 Two possible page formats are: 
onse
utive slots and slot dire
toryThe 
onse
utive slots organization is mostly used for �xed length re
ord formats. Ithandles the deletion by using bitmaps or linked lists.The slot dire
tory organization maintains a dire
tory of slots for ea
h page, with ahre
ord o�set, re
ord lengthi pair per slot.The slot dire
tory is an indire
t way to get the o�set of an entry. Be
ause of this indi-re
tion, deletion is easy. It is a

omplished by setting the length �eld to 0. And re
ords
an easily be moved around on the page without 
hanging their external identi�er.Exer
ise 9.18 Consider the page format for variable-length re
ords that uses a slotdire
tory.



Tree-Stru
tured Indexing 115
90 98 100

L6 L7

L8 L9 (new)

I3

98* 99* 100* 105* 109*Figure 10.112. Show the B+ tree that would result from inserting a re
ord with sear
h key 109into the tree.3. Show the B+ tree that would result from deleting the re
ord with sear
h key 81from the original tree.4. Name a sear
h key value su
h that inserting it into the (original) tree would 
ausean in
rease in the height of the tree.5. Note that subtrees A, B, and C are not fully spe
i�ed. Nonetheless, what 
an youinfer about the 
ontents and the shape of these trees?6. How would your answers to the pre
eding questions 
hange if this were an ISAMindex?7. Suppose that this is an ISAM index. What is the minimum number of insertionsneeded to 
reate a 
hain of three over
ow pages?Answer 10.2 The answer to ea
h question is given below.1. I1, I2, and everything in the range [L2..L8℄.2. See Figure 10.11. Noti
e that node L8 is split into two nodes.3. Assuming that there is redistribution from the right sibling, the solution 
an beseen in Figure 10.12.4. There are many sear
h keys X su
h that inserting X would in
rease the height ofthe tree. Any sear
h key in the range [65..79℄ would suÆ
e. A key in this rangewould go in L5 if there were room for it, but sin
e L5 is full already and sin
e it
an't redistribute any data entries over to L4 (L4 is full also), it must split; this inturn 
auses I2 to split, whi
h 
auses I1 to split, and assuming I1 is the root node,a new root is 
reated and the tree be
omes taller.



116 Chapter 10
I3

95 98

L8

(I1)

L6 L7

82* 94* 95* 96* 97*Figure 10.125. We 
an infer several things about subtrees A, B, and C. First of all, they ea
hmust have height one, sin
e their \sibling" trees (those rooted at I2 and I3) haveheight one. Also, we know the ranges of these trees (assuming dupli
ates �t onthe same leaf): subtree A holds sear
h keys less than 10, B 
ontains keys � 10and < 20, and C has keys � 20 and < 30. In addition, ea
h intermediate nodehas at least 2 key values and 3 pointers.6. The answers for the questions above would 
hange as follows if we were dealingwith ISAM trees instead of B+ trees.(a) This is only a sear
h, so the answer is the same. (The tree stru
ture is notmodi�ed.)(b) Be
ause we 
an never split a node in ISAM, we must 
reate an over
ow pageto hold inserted key 109.(
) Sear
h key 81 would simply be erased from L6; no redistribution would o

ur(ISAM has no minimum o

upation requirements).(d) Being a stati
 tree stru
ture, an ISAM tree will never 
hange height in normaloperation, so there are no sear
h keys whi
h when inserted will in
rease thetree's height. (If we inserted an X in [65..79℄ we would have to 
reate anover
ow page for L5.)(e) We 
an infer several things about subtrees A, B, and C. First of all, theyea
h must have height one, sin
e their \sibling" trees (those rooted at I2 andI3) have height one. Here we suppose that we 
reate a balan
ed ISAM tree.Also, we know the ranges of these trees (assuming dupli
ates �t on the sameleaf): subtree A holds sear
h keys less than 10, B 
ontains keys � 10 and< 20, and C has keys � 20 and < 30. In addition, ea
h of A, B, and C
ontains �ve leaf nodes (whi
h may be of arbitrary fullness), and these nodesare the �rst 15 
onse
utive pages prior to L1.



122 Chapter 103. The argument in part 2 does not assume anything about the data entries to beinserted; it is valid if dupli
ates 
an be inserted as well. Therefore the solutiondoes not 
hange.Exer
ise 10.6 Answer Exer
ise 10.5 assuming that the tree is an ISAM tree! (Someof the examples asked for may not exist|if so, explain brie
y.)Answer 10.6 The answer to ea
h question is given below.1. The answer to ea
h part is given below(a) Sin
e ISAM trees use over
ow bu
kets, any series of �ve inserts and deleteswill result in the same tree.(b) If the leaves are not sorted, there is no sequen
e of inserts and deletes thatwill 
hange the overall stru
ture of an ISAM index. This is be
ause insertswill 
reate over
ow bu
kets, and these over
ow bu
kets will be removed whenthe elements are deleted, giving the original tree.2. The height of the tree does never 
hange sin
e an ISAM index is stati
. If a leafpage be
omes full, an over
ow page is allo
ated; if a leaf page be
omes empty, itremains empty.3. See part 2.Exer
ise 10.7 Suppose that you have a sorted �le and want to 
onstru
t a denseprimary B+ tree index on this �le.1. One way to a

omplish this task is to s
an the �le, re
ord by re
ord, insertingea
h one using the B+ tree insertion pro
edure. What performan
e and storageutilization problems are there with this approa
h?2. Explain how the bulk-loading algorithm des
ribed in the text improves upon thiss
heme.Answer 10.7 1. This approa
h is likely to be quite expensive, sin
e ea
h entryrequires us to start from the root and go down to the appropriate leaf page.Even though the index level pages are likely to stay in the bu�er pool betweensu

essive requests, the overhead is still 
onsiderable. Also, a

ording to theinsertion algorithm, ea
h time a node splits, the data entries are redistributedevenly to both nodes. This leads to a �xed page utilization of 50%2. The bulk loading algorithm has good performan
e and spa
e utilization 
omparedwith the repeated inserts approa
h. Sin
e the B+ tree is grown from the bottomup, the bulk loading algorithm allows the administrator to pre-set the amountea
h index and data page should be �lled. This allows good performan
e forfuture inserts, and supports some desired spa
e utilization.



Hash-Based Indexing 135
000

h0

100

011

010

001

00

01

10

11

00

h1

Level = 0
Primary Pages Overflow Pages

Next = 1

32 8 24

9 25 41 17

14 18 10 30

31 35 7 11

44 36 4Figure 11.7 Index from Figure 11.6 after insertion of an entry with hash value 42. If the last item that was inserted had a hash
ode h0(keyvalue) = 00 then it 
auseda split, otherwise, any value 
ould have been inserted.3. The last data entry whi
h 
aused a split satis�es the 
onditionh0(keyvalue) = 00as there are no over
ow pages for any of the other bu
kets.4. See Fig 11.75. See Fig 11.86. See Fig 11.97. The following 
onstitutes the minimum list of entries to 
ause two over
ow pagesin the index : 63; 127; 255; 511; 1023The �rst insertion 
auses a split and 
auses an update of Next to 2. The insertionof 1023 
auses a subsequent split and Next is updated to 3 whi
h points to thisbu
ket.This over
ow 
hain will not be redistributed until three more insertions (a total of8 entries) are made. In prin
iple if we 
hoose data entries with key values of theform 2k +3 with suÆ
iently large k, we 
an take the maximum number of entriesthat 
an be inserted to redu
e the length of the over
ow 
hain to be greater than



136 Chapter 11
000

h0

100

011

010

001

00

01

10

11

00

h1

Level = 0
Primary Pages Overflow Pages

32 8 24

9 25 41 17

14 18 10 30

31 35 7 11

44 36 4

15

Next = 2

01101Figure 11.8 Index from Figure 11.6 after insertion of an entry with hash value 15
000

h0

011

010

001

00

01

10

11

h1

Level = 0
Primary Pages Overflow Pages

32 8 24

9 25 41 17

14 18 10 30

31 35 7 11

Next = 0

Figure 11.9 Index from Figure 11.6 after deletion of entries with hash values 36 and 44



Hash-Based Indexing 137any arbitrary number. This is so be
ause the initial index has 31(binary 11111),35(binary 10011),7(binary 111) and 11(binary 1011). So by an appropriate 
hoi
eof data entries as mentioned above we 
an make a split of this bu
ket 
ause justtwo values (7 and 31) to be redistributed to the new bu
ket. By 
hoosing asuÆ
iently large k we 
an delay the redu
tion of the length of the over
ow 
haintill any number of splits of this bu
ket.Exer
ise 11.3 Answer the following questions about Extendible Hashing:1. Explain why lo
al depth and global depth are needed.2. After an insertion that 
auses the dire
tory size to double, how many bu
kets haveexa
tly one dire
tory entry pointing to them? If an entry is then deleted fromone of these bu
kets, what happens to the dire
tory size? Explain your answersbrie
y.3. Does Extendible Hashing guarantee at most one disk a

ess to retrieve a re
ordwith a given key value?4. If the hash fun
tion distributes data entries over the spa
e of bu
ket numbers in avery skewed (non-uniform) way, what 
an you say about the size of the dire
tory?What 
an you say about the spa
e utilization in data pages (i.e., non-dire
torypages)?5. Does doubling the dire
tory require us to examine all bu
kets with lo
al depthequal to global depth?6. Why is handling dupli
ate key values in Extendible Hashing harder than in ISAM?Answer 11.3 The answer to ea
h question is given below.1. Extendible hashing allows the size of the dire
tory to in
rease and de
rease de-pending on the number and variety of inserts and deletes. On
e the dire
tory size
hanges, the hash fun
tion applied to the sear
h key value should also 
hange. Sothere should be some information in the index as to whi
h hash fun
tion is to beapplied. This information is provided by the global depth.An in
rease in the dire
tory size doesn't 
ause the 
reation of new bu
kets forea
h new dire
tory entry. All the new dire
tory entries ex
ept one share bu
ketswith the old dire
tory entries. Whenever a bu
ket whi
h is being shared by twoor more dire
tory entries is to be split the dire
tory size need not be doubled.This means for ea
h bu
ket we need to know whether it is being shared by twoor more dire
tory entries. This information is provided by the lo
al depth of thebu
ket. The same information 
an be obtained by a s
an of the dire
tory, but thisis 
ostlier.



Hash-Based Indexing 141
an be used to build a 
lustered index and most of the queries are range querieson this �eld. Then ISAM de�nitely wins over stati
 hashing.5. Example 1: Again 
onsider a situation in whi
h only equality sele
tions areperformed on the index. Linear hashing is better than B+ tree in this 
ase.Example 2: When an index whi
h is 
lustered and most of the queries are rangesear
hes, B+ indexes are better.Exer
ise 11.6 Give examples of the following:1. A Linear Hashing index and an Extendible Hashing index with the same dataentries, su
h that the Linear Hashing index has more pages.2. A Linear Hashing index and an Extendible Hashing index with the same dataentries, su
h that the Extendible Hashing index has more pages.Answer 11.6 1. Let us take the data entries8; 16; 24; 32; 40; 48; 56; 64; 128; 7; 15; 31; 63; 127; 1; 10; 4and the indexes shown in Fig 11.10 and Fig 11.11. Extendible hashing uses 9pages in
luding the dire
tory page(assuming it spans just one page) and linearhashing uses 10 pages.2. Consider the list of data entries 0; 4; 1; 5; 2; 6; 3; 7and the usual hash fun
tions for both and a page 
apa
ity of 4 re
ords per page.Extendible hashing takes 4 data pages and also a dire
tory page whereas linearhashing takes just 4 pages.Exer
ise 11.7 Consider a relation R(a, b, 
, d) 
ontaining 1 million re
ords, whereea
h page of the relation holds 10 re
ords. R is organized as a heap �le with un
lusteredindexes, and the re
ords in R are randomly ordered. Assume that attribute a is a
andidate key for R, with values lying in the range 0 to 999,999. For ea
h of thefollowing queries, name the approa
h that would most likely require the fewest I/Osfor pro
essing the query. The approa
hes to 
onsider follow:S
anning through the whole heap �le for R.Using a B+ tree index on attribute R.a.Using a hash index on attribute R.a.The queries are:



External Sorting 163(b) Create 256 `input' bu�ers of 1 page ea
h, 
reate an `output' bu�er of 64pages, and do 256-way merges.(
) Create 16 `input' bu�ers of 16 pages ea
h, 
reate an `output' bu�er of 64pages, and do 16-way merges.(d) Create eight `input' bu�ers of 32 pages ea
h, 
reate an `output' bu�er of 64pages, and do eight-way merges.(e) Create four `input' bu�ers of 64 pages ea
h, 
reate an `output' bu�er of 64pages, and do four-way merges.Answer 13.4 In Pass 0, 31250 sorted runs of 320 pages ea
h are 
reated. For ea
hrun, we read and write 320 pages sequentially. The I/O 
ost per run is 2 � (10+5+1 �320) = 670ms. Thus, the I/O 
ost for Pass 0 is 31250�670 = 20937500ms. For ea
hof the 
ases dis
ussed below, this 
ost must be added to the 
ost of the subsequentmerging passes to get the total 
ost. Also, the 
al
ulations below are slightly simpli�edby negle
ting the e�e
t of a �nal read/written blo
k that is slightly smaller than theearlier blo
ks.1. For 319-way merges, only 2 more passes are needed. The �rst pass will produ
ed31250=319e = 98sorted runs; these 
an then be merged in the next pass. Every page is read andwritten individually, at a 
ost of 16ms per read or write, in ea
h of these two passes.The 
ost of these merging passes is therefore 2�(2�16)�10000000 = 640000000ms.(The formula 
an be read as `number of passes times 
ost of read and write perpage times number of pages in �le'.)2. With 256-way merges, only two additional merging passes are needed. Every pagein the �le is read and written in ea
h pass, but the e�e
t of blo
king is di�erenton reads and writes. For reading, ea
h page is read individually at a 
ost of 16ms.Thus, the 
ost of reads (over both passes) is 2 � 16 � 10000000 = 320000000ms.For writing, pages are written out in blo
ks of 64 pages. The I/O 
ost per blo
kis 10 + 5 + 1 � 64 = 79ms. The number of blo
ks written out per pass is10000000=64 = 156250, and the 
ost per pass is 156250�79 = 12343750ms. The
ost of writes over both merging passes is therefore 2 � 12343750 = 24687500ms.The total 
ost of reads and writes for the two merging passes is 320000000 +24687500 = 344687500ms.3. With 16-way merges, 4 additional merging passes are needed. For reading, pagesare read in blo
ks of 16 pages, at a 
ost per blo
k of 10 + 5 + 1 � 16 = 31ms. Inea
h pass, 10000000=16 = 625000 blo
ks are read. The 
ost of reading over the4 merging passes is therefore 4 � 625000 � 31 = 77500000ms. For writing, pagesare written in 64 page blo
ks, and the 
ost per pass is 12343750ms as before. The
ost of writes over 4 merging passes is 4 � 12343750 = 49375000ms, and the total
ost of the merging passes is 77500000+ 49375000 = 126875000ms.



164 Chapter 134. With 8-way merges, 5 merging passes are needed. For reading, pages are read inblo
ks of 32 pages, at a 
ost per blo
k of 10 + 5 + 1 � 32 = 47ms. In ea
h pass,10000000=32 = 312500 blo
ks are read. The 
ost of reading over the 5 mergingpasses is therefore 5 � 312500 � 47 = 73437500ms. For writing, pages are writtenin 64 page blo
ks, and the 
ost per pass is 12343750ms as before. The 
ost ofwrites over 5 merging passes is 5 � 12343750 = 61718750ms, and the total 
ostof the merging passes is 73437500+ 61718750 = 135156250ms.5. With 4-way merges, 8 merging passes are needed. For reading, pages are read inblo
ks of 64 pages, at a 
ost per blo
k of 10 + 5 + 1 � 64 = 79ms. In ea
h pass,10000000=64 = 156250 blo
ks are read. The 
ost of reading over the 8 mergingpasses is therefore 8 � 156250 � 79 = 98750000ms. For writing, pages are writtenin 64 page blo
ks, and the 
ost per pass is 12343750ms as before. The 
ost ofwrites over 8 merging passes is 8 � 12343750 = 98750000ms, and the total 
ostof the merging passes is 98750000+ 98750000 = 197500000ms.There are several lessons to be drawn from this (rather tedious) exer
ise. First, the
ost of the merging phase varies from a low of 126875000ms to a high of 640000000ms.Se
ond, the highest 
ost is asso
iated with the option of maximizing fanout, 
hoosinga bu�er size of 1 page! Thus, the e�e
t of blo
ked I/O is signi�
ant. However, as theblo
k size is in
reased, the number of passes in
reases slowly, and there is a trade-o�to be 
onsidered: it does not pay to in
rease blo
k size inde�nitely. Finally, while thisexample uses a di�erent blo
k size for reads and writes, for the sake of illustration, inpra
ti
e a single blo
k size is used for both reads and writes.Exer
ise 13.5 Consider the re�nement to the external sort algorithm that produ
esruns of length 2B on average, where B is the number of bu�er pages. This re�nementwas des
ribed in Se
tion 11.2.1 under the assumption that all re
ords are the samesize. Explain why this assumption is required and extend the idea to 
over the 
ase ofvariable-length re
ords.Answer 13.5 The assumption that all re
ords are of the same size is used when thealgorithm moves the smallest entry with a key value large than k to the output bu�erand repla
es it with a value from the input bu�er. This "repla
ement" will only workif the re
ords of the same size.If the entries are of variable size, then we must also keep tra
k of the size of ea
hentry, and repla
e the moved entry with a new entry that �ts in the available memorylo
ation. Dynami
 programming algorithms have been adapted to de
ide an optimalrepla
ement strategy in these 
ases.


