
156 Chapter 12

HASH JOIN: Now both relations are the same size, so we can treat either one

as the smaller relation. With 15 buffer pages the first scan of S splits it into 14

buckets, each containing about 72 pages, so again we have to deal with partition

overflow. We must apply the Hash Join technique again to all partitions of R

and S that were created by the first partitioning phase. Then we can fit an entire

partition of S in memory. The total cost will be the cost of two partioning phases

plus the cost of one matching phase.

TotalCost = 2 ∗ (2 ∗ (M + N)) + (M + N) = 10, 000

5. SORT-MERGE: With 52 buffer pages we have B >
√

M so we can use the ”merge-

on-the-fly” refinement which costs 3 ∗ (M + N).

TotalCost = 3 ∗ (1, 000 + 1, 000) = 6, 000

HASH JOIN: Now both relations are the same size, so we can treat either one

as the smaller relation. With 52 buffer pages the first scan of S splits it into 51

buckets, each containing about 20 pages. This time we do not have to deal with

partition overflow. The total cost will be the cost of one partioning phase plus the

cost of one matching phase.

TotalCost = (2 ∗ (M + N)) + (M + N) = 6, 000

Exercise 12.6 Answer each of the questions—if some question is inapplicable, explain

why—in Exercise 12.1 again, but using the following information about R and S:

Relation R contains 200,000 tuples and has 20 tuples per page.

Relation S contains 4,000,000 tuples and also has 20 tuples per page.

Attribute a of relation R is the primary key for R.

Each tuple of R joins with exactly 20 tuples of S.

1,002 buffer pages are available.

Answer 12.6 Let M = 10,000 be the number of pages in R, N = 200,000 be the

number of pages in S, and B = 1002 be the number of buffer pages available.

1. Basic idea is to read each page of the outer relation, and for each page scan the

inner relation for matching tuples. Total cost would be

#pagesinouter + (#pagesinouter ∗ #pagesininner)

which is minimized by having the smaller relation be the outer relation.

TotalCost = M + (M ∗ N) = 2, 000, 010, 000

The minimum number of buffer pages for this cost is 3.

Evaluation of Relational Operators 157

2. This time read the outer relation in blocks, and for each block scan the inner rela-

tion for matching tuples. So the outer relation is still read once, but the inner rela-

tion is scanned only once for each outer block, of which there are ⌈#pagesinouter
B−2

⌉.

TotalCost = M + N ∗ ⌈ M

B − 2
⌉ = 2, 010, 000

The minimum number of buffer pages for this cost is 1002.

3. Since B >
√

N >
√

M we can use the refinement to Sort-Merge discussed on

pages 254-255 in the text.

TotalCost = 3 ∗ (M + N) = 630, 000

NOTE: if R.a were not a key, then the merging phase could require more than

one pass over one of the relations, making the cost of merging M ∗N I/Os in the

worst case.

The minimum number of buffer pages required is 325. With 325 buffer pages, the

initial sorting pass will split R into 16 runs of size 650 and split S into 308 runs of

size 650 (approximately). These 324 runs can then be merged in one pass, with

one page left over to be used as an output buffer. With fewer than 325 buffer

pages the number of runs produced by the first pass over both relations would

exceed the number of available pages, making a one-pass merge impossible.

4. The cost of Hash Join is 3∗(M+N) if B >
√

f ∗ M where f is a ’fudge factor’ used

to capture the small increase in size involved in building a hash table, and M is

the number of pages in the smaller relation, S (see page 258). Since
√

M = 100, we

can assume that this condition is met. We will also assume uniform partitioning

from our hash function.

TotalCost = 3 ∗ (M + N) = 630, 000

Without knowing f we can only approximate the minimum number of buffer pages

required, and a good guess is that we need B >
√

f ∗ M .

5. The optimal cost would be achieved if each relation was only read once. We could

do such a join by storing the entire smaller relation in memory, reading in the

larger relation page-by-page, and for each tuple in the larger relation we search

the smaller relation (which exists entirely in memory) for matching tuples. The

buffer pool would have to hold the entire smaller relation, one page for reading in

the larger relation, and one page to serve as an output buffer.

TotalCost = M + N = 210, 000

The minimum number of buffer pages for this cost is M + 1 + 1 = 10, 002.

158 Chapter 12

6. Any tuple in S can match at most one tuple in R because R.a is a primary key

(which means the R.a field contains no duplicates). So the maximum number of

tuples in the result is equal to the number of tuples in S, which is 4,000,000.

The size of a tuple in the result could be as large as the size of an R tuple plus the

size of an S tuple (minus the size of the shared attribute). This may allow only

10 tuples to be stored on a page. Storing 4,000,000 tuples at 10 per page would

require 400,000 pages in the result.

7. If R.b is a foreign key referring to S.a, this contradicts the statement that each R

tuple joins with exactly 20 S tuples.

Exercise 12.7 We described variations of the join operation called outer joins in Sec-

tion 5.6.4. One approach to implementing an outer join operation is to first evaluate

the corresponding (inner) join and then add additional tuples padded with null values

to the result in accordance with the semantics of the given outer join operator. How-

ever, this requires us to compare the result of the inner join with the input relations

to determine the additional tuples to be added. The cost of this comparison can be

avoided by modifying the join algorithm to add these extra tuples to the result while in-

put tuples are processed during the join. Consider the following join algorithms: block

nested loops join, index nested loops join, sort-merge join, and hash join. Describe

how you would modify each of these algorithms to compute the following operations

on the Sailors and Reserves tables discussed in this chapter:

1. Sailors NATURAL LEFT OUTER JOIN Reserves

2. Sailors NATURAL RIGHT OUTER JOIN Reserves

3. Sailors NATURAL FULL OUTER JOIN Reserves

Answer 12.7 Answer not available.

162 Chapter 14

2. Suppose that for each of the preceding selection conditions, you want to retrieve

the average salary of qualifying tuples. For each selection condition, describe the

least expensive evaluation method and state its cost.

3. Suppose that for each of the preceding selection conditions, you want to compute

the average salary for each age group. For each selection condition, describe the

least expensive evaluation method and state its cost.

4. Suppose that for each of the preceding selection conditions, you want to compute

the average age for each sal level (i.e., group by sal). For each selection condition,

describe the least expensive evaluation method and state its cost.

5. For each of the following selection conditions, describe the best evaluation method:

(a) sal > 200 ∨ age = 20

(b) sal > 200 ∨ title =′CFO′

(c) title =′CFO′ ∧ ename =′Joe′

Answer 14.2 The answers are as follows.

1. For this problem, it will be assumed that each data page contains 20 relations per

page.

(a) sal > 100 For this condition, a filescan would probably be best, since a

clustered index does not exist on sal. Using the unclustered index would

accrue a cost of 10,000 pages * 20bytes
100bytes

* 0.1 for the B+ index scan plus

10,000 pages * 20 tuples per page * 0.1 for the lookup = 22000, and would

be inferior to the filescan cost of 10000.

(b) age = 25 The clustered B+ tree index would be the best option here, with a

cost of 2 (lookup) + 10000 pages * 0.1 (selectivity) + 10,000 * 0.2 (reduction)

* 0.1 = 1202. Although the hash index has a lesser lookup time, the potential

number of record lookups (10000 pages * 0.1 * 20 tuples per page = 20000)

renders the clustered index more efficient.

(c) age > 20 Again the clustered B+ tree index is the best of the options pre-

sented; the cost of this is 2 (lookup) + 10000 pages * 0.1 (selectivity)+ 200

= 1202.

(d) eid = 1000 Since eid is a candiate key, one can assume that only one record

will be in each bucket. Thus, the total cost is roughly 1.2 (lookup) + 1

(record access) which is 2 or 3.

(e) sal > 200∧age > 30 This query is similar to the age > 20 case if the age > 30

clause is examined first. Then, the cost is again 1202.

A Typical Query Optimizer 163

(f) sal > 200∧age = 20 Similar to the previous part, the cost for this case using

the clustered B+ index on < age, sal > is smaller, since only 10 % of all

relations fulfill sal > 200. Assuming a linear distribution of values for sal for

age, one can assume a cost of 2 (lookup) + 10000 pages * 0.1 (selectivity for

age) * 0.1 (selectivity for sal) + 10,000 * 0.4 * 0.1 * 0.1 = 142.

(g) sal > 200 ∧ title = ”CFO” In this case, the filescan is the best available

method to use, with a cost of 10000. sal > 200 ∧ age > 30 ∧ title =

”CFO” Here, an age condition is present, so the clustered B+ tree index

on < age, sal > can be used. Here, the cost is 2 (lookup) + 10000 pages *

0.1 (selectivity) = 1002.

(h) sal > 200 ∧ age > 30 ∧ title = ”CFO” Similar to the case of age > 20; the

best access path is again the clustered B+ tree on age, sal.

2. (a) sal > 100 Since the result desired is only the average salary, an index-only

scan can be performed using the unclusterd B+ tree on sal for a cost of 2

(lookup) + 10000 * 0.1 * 0.2 (due to smaller index tuples) = 202.

(b) age = 25 For this case, the best option is to use the clustered index on

< age, sal >, since it will avoid a relational lookup. The cost of this operation

is 2 (B+ tree lookup) + 10000 * 0.1 * 0.4 (due to smaller index tuple sizes)

= 402.

(c) age > 20 Similar to the age = 25 case, this will cost 402 using the clustered

index.

(d) eid = 1000 Being a candiate key, only one relation matching this should exist.

Thus, using the hash index again is the best option, for a cost of 1.2 (hash

lookup) + 1 (relation retrieval) = 2.2.

(e) sal > 200∧ age > 30 Using the clustered B+ tree again as above is the best

option, with a cost of 402.

(f) sal > 200 ∧ age = 20 Similarly to the sal > 200 ∧ age = 20 case in the

previous problem, this selection should use the clustered B+ index for an

index only scan, costing 2 (B+ lookup) + 10000 * 0.1 (selectivity for age) *

0.1 (selectivity for sal) * 0.4 (smaller tuple sizes, index-only scan) = 42.

(g) sal > 200∧ title = ”CFO” In this case, an index-only scan may not be used,

and individual relations must be retrieved from the data pages. The cheapest

method available is a simple filescan, with a cost of 10000 I/Os.

(h) sal > 200 ∧ age > 30 ∧ title = ”CFO” Since this query includes an age

restriction, the clustered B+ index over < age, sal > can be used; however,

the inclusion of the title field precludes an index-only query. Thus, the cost

will be 2 (B+ tree lookup) + 10000 * 0.1 (selectivity on age)+ 10,000 * 0.1

* 0.4 = 1402 I/Os.

3. (a) sal > 100 The best method in terms of I/O cost requires usage of the clus-

tered B+ index over < age, sal > in an index-only scan. Also, this assumes

164 Chapter 14

the ablility to keep a running average for each age category. The total cost of

this plan is 2 (lookup on B+ tree, find min entry) + 10000 * 0.4 (index-only

scan) = 4002. Note that although sal is part of the key, since it is not a

prefix of the key, the entire list of pages must be scanned.

(b) age = 25 Again, the best method is to use the clustered B+ index in an

index-only scan. For this selection condition, this will cost 2 (age lookup in

B+ tree) + 10000 pages * 0.1 (selectivity on age) * 0.4 (index-only scan,

smaller tuples, more per page, etc.) = 2 + 400 = 402.

(c) age > 20 This selection uses the same method as the previous condition, the

clustered B+ tree index over < age, sal > in an index-only scan, for a total

cost of 402.

(d) eid = 1000 As in previous questions, eid is a candidate field, and as such

should have only one match for each equality condition. Thus, the hash

index over eid should be the most cost effective method for selecting over

this condition, costing 1.2 (hash lookup) + 1 (relation retrieval) = 2.2.

(e) sal > 200 ∧ age > 30 This can be done with the clustered B+ index and an

index-only scan over the < age, sal > fields. The total estimated cost is 2

(B+ lookup) + 10000 pages * 0.1 (selectivity on age) * 0.4 (index-only scan)

= 402.

(f) sal > 200 ∧ age = 20 This is similar to the previous selection conditions,

but even cheaper. Using the same index-only scan as before (the clustered

B+ index over < age, sal >), the cost should be 2 + 10000 * 0.4 * 0.1 (age

selectivity) * 0.1 (sal selectivity) = 42.

(g) sal > 200∧ title = ”CFO” Since the results must be grouped by age, a scan

of the clustered < age, sal > index, getting each result from the relation

pages, should be the cheapest. This should cost 2 + 10000 * .4 + 10000

* tuples per page * 0.1 + 5000 * 0.1 (index scan cost) = 2 + 1000(4 +

tuples per page). Assuming the previous number of tuples per page (20), the

total cost would be 24002. Sorting the filescan alone, would cost 40000 I/Os.

However, if the tuples per page is greater than 36, then sorting the filescan

would be the best, with a cost of 40000 + 6000 (secondary scan, with the

assumption that unneeded attributes of the relation have been discarded).

(h) sal > 200 ∧ age > 30 ∧ title = ”CFO” Using the clustered B+ tree over

< age, sal > one would accrue a cost of 2 + 10000 * 0.1 (selectivity of age)

+ 5000 * 0.1 = 1502 lookups.

4. (a) sal > 100 The best operation involves an external merge sort over < sal, age >,

discarding unimportant attributes, followed by a binary search to locate min-

imum sal < 100 and a scan of the remainder of the sort. This costs a total

of 16000 (sort) + 12 (binary search) + 10000 * 0.4 (smaller tuples) * 0.1

(selectivity of sal) + 2 = 16000 + 4000 + 12 + 400 + 2= 16414.

A Typical Query Optimizer 165

(b) age = 25 The most cost effective technique here employs sorting the clustered

B+ index over < age, sal >, as the grouping requires that the output be

sorted. An external merge sort with 11 buffer pages would require 16000.

Totalled, the cost equals 16000 (sort) + 10000 * 0.4 = 20000.

(c) age > 20 This selection criterion works similarly to the previous one, in that

an external merge over < age, sal > is required, using the clustered index

provided as the pages to sort. The final cost is the same, 20000.

(d) eid = 1000 Begin a candidate key, only one relation should match with a

given eid value. Thus, the estimated cost should be 1.2 (hash lookup) + 1

(relation retrieval).

(e) sal > 200∧ age > 30 This case is similar to the sal > 100 case above, cost =

16412.

(f) sal > 200 ∧ age = 20 Again, this case is also similar to the sal > 100 case,

cost = 16412.

(g) sal > 200 ∧ title = ”CFO” The solution to this case greatly depends of the

number of tuples per page. Assuming a small number of tuples per page,

the cheapest route is to use the B+ tree index over sal, getting each index.

The total cost for this is 2 (lookup, sal > 200) + 10000 * .2 (smaller size) *

.1 (selectivity) + 10000 * .1 (selectivity) * tuples per page. The solution to

this case is similar to that of the other requiring sorts, but at a higher cost.

Since the sort can’t be preformed over the clustered B+ tree in this case, the

sort costs 40000 I/Os. Thus, for tuples per page ¡ 40, the B+ index method

is superior, otherwise, the sort solution is cheaper.

(h) sal > 200 ∧ age > 30 ∧ title = ”CFO” This solution is the same as the

previous, since either the index over sal or an external sort must be used.

The cost is the cheaper of 2 + 1000 * (.2 + tuples per page) [index method]

and 40000 [sort method].

5. (a) sal > 200∨age = 20 In this case, a filescan would be the most cost effective,

because the most cost effective method for satisfying sal > 200 alone is a

filescan.

(b) sal > 200 ∨ title = ”CFO” Again a filescan is the better alternative here,

since no index at all exists for title.

(c) title = ”CFO”∧ename = ”Joe” Even though this condition is a conjunction,

the filescan is still the best method, since no indexes exist on either title or

ename.

Exercise 14.3 For each of the following SQL queries, for each relation involved, list

the attributes that must be examined in order to compute the answer. All queries refer

to the following relations:

A Typical Query Optimizer 169

(b) An unclustered index would preclude the low cost of the previous plan and

necessitate the choice of a simple filescan, cost = 10000, as the best.

(c) Due to the WHERE clause, the clustered B+ index on ename doesn’t help at

all. The best alternative is to use a filescan, cost = 10000.

(d) Again, as in the previous answer, the best choice is a filescan, cost = 10000.

(e) Although the order of the B+ index key makes the tree much less useful, the

leaves can still be scanned in an index-only scan, and the increased number

of tuples per page lowers the I/O cost. Cost = 10000 * .5 = 5000.

2. (a) A clustered index on title would allow scanning of only the 10% of the tuples

desired. Thus the total cost is 2 (lookup) + 10000 * 10% + 2500 * 10%=

1252.

(b) A clustered index on dname works functionally in the same manner as that

in the previous question, for a cost 1002 + 250 = 1252 . The ename field

still must be retrieved from the relation data pages.

(c) In this case, using the index lowers the cost of the query slightly, due to

the greater selectivity of the combined query and to the search key taking

advantage of it. The total cost = 2 (look up) + 10000 * 5% + 5000 * 5%

=752.

(d) Although this index does contain the output field, the dname still must be

retrieved from the relational data pages, for a cost of 2 (lookup) + 10000 *

10% + 5000 * 10%= 1502.

(e) Since this index contains all three indexes needed for an index-only scan, the

cost drops to 2 (look up) + 10000 * 5% * .75 (smaller size) = 402.

(f) Finally, in this case, the prefix cannot be matched with the equality informa-

tion in the WHERE clause, and thus a scan would be the superior method of

retrieval. However, as the clustered B+ tree’s index contains all the indexes

needed for the query and has a smaller tuple, scanning the leaves of the B+

tree is the best plan, costing 10000 * .75 = 7500 I/Os.

3. (a) Since title is the only attribute required, an index-only scan could be per-

formed, with a running counter. This would cost 10000 * .25 (index-only

scan, smaller tuples) = 2500.

(b) Again, as the index contains the only attribute of import, an index-only scan

could again be performed, for a cost of 2500.

(c) This index is useless for the given query, and thus requires a sorting of the

file, costing 10000 + 3 * 2 * (2500). Finally, a scan of this sorted result will

allow us to answer the query, for a cost of 27500.

(d) This is similar to the previous part, except that the initial scan requires fewer

I/Os if the leaves of the B+ tree are scanned instead of the data file. Cost

= 5000 + 3 * 2 * (2500) = 22500.

170 Chapter 14

(e) The clustered B+ index given contains all the information required to perform

an index-only scan, at a cost of 10000 * .5 (tuple size) = 5000.

4. (a) Using a clustered B+ tree index on title, the cost of the given query is

10000 I/Os. The addition of another index would not lower the cost of any

evaluation strategy that also utilizes the given index. However, the cost of the

query is significantly cheaper if a clustered index on dname, title is available

and is used by itself, and if added would reduce the cost of the best plan to

1500. (See below.)

(b) The cheapest plan here involves simply sorting the file, at a cost of 10000 +

2 * 2 * (10000 *.25 (size reduction due to elimination of unwanted attributes;

the selection can be checked on the fly and we only need to retail the title

field)) = 20000.

(c) The optimal plan with the indexes given involves scanning the dname index

and sorting the (records consisting of the) title field of records that satisfy

the WHERE condition. This would cost 2500 * 10 % [scanning relevant portion

of index] + 10000 * 10% [retrieving qualifying records] + 10000 * 10% * .25

(reduction in size) [writing out title records] + 3 * 250 [sorting title records;

result is not written out]. This is a total of 2250.

(d) We can simply scan the relevant portion of the index, discard tuples that

don’t satisfy the WHERE condition, and write out the title fields of qualifying

records. The title records must then be sorted. Cost = 5000 * 10% + 10000

* 10% * .25 + 3 * 250 = 1500.

(e) A clustered index on title, dname supports an index-only scan costing 10000

* .5 = 5000.

Exercise 14.5 Consider the query πA,B,C,D(R ⊲⊳A=CS). Suppose that the projec-

tion routine is based on sorting and is smart enough to eliminate all but the desired

attributes during the initial pass of the sort, and also to toss out duplicate tuples on-

the-fly while sorting, thus eliminating two potential extra passes. Finally, assume that

you know the following:

R is 10 pages long, and R tuples are 300 bytes long.

S is 100 pages long, and S tuples are 500 bytes long.

C is a key for S, and A is a key for R.

The page size is 1,024 bytes.

Each S tuple joins with exactly one R tuple.

The combined size of attributes A, B, C, and D is 450 bytes.

A and B are in R and have a combined size of 200 bytes; C and D are in S.

1. What is the cost of writing out the final result? (As usual, you should ignore this

cost in answering subsequent questions.)

Parallel and Distributed Databases 281

1.

TotalCost = Shipping Departments Berlin −→ Naples = 5000ts

+ Cost of computing query at Naples = 3 ∗ (100, 0000 + 5000)td

+ Shipping result Naples −→ Delhi = N ∗ ts

= 5000ts + 315, 000td + 10, 000 ∗ ts

= 15, 000ts + 315, 000td

2.

Total Cost = Shipping Employees Naples −→ Berlin = 100, 000ts

+ Cost of computing query at Berlin = 3 ∗ (100, 0000 + 5000)td

+ Shipping result Berlin −→ Delhi = N ∗ ts

= 100, 000ts + 315, 000td + 10, 000 ∗ ts

= 110, 000ts + 315, 000td

3.

Total Cost = Shipping Employees Naples −→ Delhi = 100, 000ts

+ Shipping Departments Berlin −→ Delhi = 5000ts

+ Cost of computing query at Delhi = 3 ∗ (100, 0000 + 5000)td

= 100, 000ts + 5000ts + 315, 000td

= 105, 000ts + 315, 000td

4. We need to calculcate the cost of Bloomjoin at Naples.

The plan is to calculate the bit-vector (corresponding to Employees) at Naples, then

ship the bit-vector to Berlin, calculate the reduction of Departments at Berli, ship the

reduction to Naples, calculate the join at Naples, and (finally!) ship the result to Delhi.

Total Cost = Hashing Employees at Naples = 100, 000td

+ Shipping bit − vector Naples −→ Berlin = 5000ts?

+ Reduction of Departments at Berlin = 5000td

+ Shipping Reduction of Departments Berlin −→ Naples = 5000ts

+ Computing join at Naples = 3 ∗ (100, 000 + 5000)td

+ Shipping result Naples −→ Delhi = N ∗ ts

= 100, 000td + 5000ts? + 5000td + 5000ts + 315, 000td + 10, 000ts

= 420, 000td + 20, 000ts?

5. We need to calculcate the cost of Bloomjoin at Berlin.

Total Cost = Hashing Departments at Berlin = 5000td

+ Shipping bit − vector Berlin −→ Naples = 250ts?

282 Chapter 21

+ Reduction of Employeesat Naples = 100, 000td

+ Shipping Reduction of Employees Naples −→ Berlin = 100ts?

+ Computing join at Berlin = 3 ∗ (5000 + 100)td?

+ Shipping result Berlin −→ Delhi = N ∗ ts

+ 5000td + 250ts? + 100, 000td + 100ts? + 15, 300td? + 10, 000ts

+ 120, 300td + 10, 350ts??

6. We need to calculcate the cost of Semijoin at Naples.

The plan is to project the eid field of Employees at Naples, then ship the projection

to Berlin, calculate the reduction of Departments w.r.t. Employees at Berlin, ship the

reduction to Naples, calculate the join at Naples, and ship the result to Delhi.

Let us assume the size of the eid field is 10 bytes. Cost of projecting the eid field is

100, 000td for the scan of the Employees relation, and 50, 000td for creating a temporary

file. (Note the eid field is half the length of an Employess record.) If the optimizer to

smart to recognize that eid is a key field, it will not try to eliminate duplicates. Else the

projection will incur additional cost in sorting, and then scanning to eliminate duplicates.

For our purposes, let us assume we have a smart optimizer.

Total Cost = Projecting Employees at Naples = 150, 000td

+ Shipping projection Naples −→ Berlin = 50, 000ts

+ Reduction of Departments at Berlin = 3 ∗ (50, 000 + 5000)td

+ Shipping Reduction of Departments Berlin −→ Naples = 5000ts

+ Computing join at Naples = 3 ∗ (100, 000 + 5000)td

+ Shipping result Naples −→ Delhi = N ∗ ts

= 150, 00td + 50, 000ts + 165, 000td + 5000ts + 315, 000td + 10, 000ts

= 630, 000td + 65, 000ts

7. We need to calculcate the cost of Semijoin at Berlin.

The plan is to project the mgrid field of Departments at Berlin, then ship the projection

to Naples, calculate the reduction of Employeess w.r.t. Departments at Naples, ship the

reduction to Berlin, calculate the join at Berlin, and ship the result to Delhi.

Let us assume the size of the mgrid field is 10 bytes. Cost of projecting the mgrid field is

5000td for the scan of the Employees relation, and 2500td for creating a temporary file.

(Note the mgrid field is half the length of a Departments record.) Now the mgrid field

is not a key field, and we need to eliminate duplicates as part of the projection.

Total Cost = Projecting Departments at Berlin

+ Shipping projection Berlin −→ Naples = 2500ts

+ Reduction of Employees at Naples = 3 ∗ (100, 000 + 2500)td

+ Shipping Reduction of Employees Naples −→ Berlin = 1000ts

+ Computing join at Berlin = 3 ∗ (5000 + 1000)td

