
284 Chapter 21

(b) Give all employees a 10 percent raise. After the update is completed, the conditions

of the original partitioning of Employees must still be satisfied.

Answer 21.8 1. In the following, when we refer to the ”highest paid employee/manager”,

note there could be duplicates, and the queries will return all such tuples that qualify.

Also, we assume there is no cost involved in shipping a query from the site it is posted

at, ot the site(s) where it is evaluated.

(a) We need to do a total exchange of the Departments partitions. In other words, each

site must ship its partition to each of the other nine sites. Each of the Departments

partition is stored in 500 pages. For each site, the cost of shipping a partition to

the other nine sites is 500× 9ts. Hence, the cost of the total exchange is 45, 000ts.

The cost of a local natural join (using Sort-Merge Join) is 3(M + N)td, where

M = 10, 000 Departments records, and N = 2×106 Employees records. (Remember

the Employees relation is also partitioned, so each site has 10,000 pages, each with

200 records.) Hence the cost of the natural join across all the sites is 603 × 105td.

Finally, the result fragments have to shipped to the query site. Each site will have

a result fragment of 500 pages (the same size as the local Departments fragment.

Why?), and the total cost of shipping these fragments from nine sites to the query

site is 4500ts. Adding all the costs together, the total cost of the plan is 49, 500ts +

60, 300, 000td.

(b) Clearly, the highest paid employee will have a salary in the bracket 900, 000 < sal ≤
1, 000, 000. (We are assured that there is at least one employee in this salary range

because the sal field has values uniformly distributed in the range 0 to 1,000,000,

and there are 100,000 pages of Employees tuples). So we ship the query to the

tenth site, evaluate the highest paid employee at that site, and ship the result back

to the query site. Finding the employee(s) with the maximum salary at the tenth

site requires a scan of the Employees fragment, which costs 10, 000td. Since the

salary is uniformly distributed, we may assume there are 200×10,000
100,000

= 20 result

tuples, which fit on a single page. Thus total cost of the query is 10, 000td + ts.

(c) The best plan for this query results from the observation that the partition sal ≤
100, 000 is replicated at every site. So we just need to query the partition at the

query site for the highest paid employee in its partition. This does not involve any

shipping costs. Thus, the cost of the query is the cost of scanning the Employees

partition, which is 10, 000td.

(d) Again, we will find the highest paid employee in the salary bracket 400, 000 < sal ≤
500, 000 in the fifth site. So we ship the query to the fifth site, evaluate the query

there, and ship the result to the query site. The cost is the same as in part (b)

above.

(e) Employees in the salary bracket 450, 000 < sal ≤ 550, 000 are split across the fifth

and the sixth sites. But clearly, by the partitioning of the Employees relation, the

employees in the sixth site earn more than those at the fifth site. So we need to

query only the partition in the sixth site, but we need to qualify our query by

selecting only those employees whose salary is less than 550,000, and then selecting

the one with the highest salary. The cost is again the same as in part (b) above.

(f) We need to do a partial join of the two relations. The Departments fragment at the

query site is shipped across to each of the other nine sites, and the fragment is joined



Parallel and Distributed Databases 285

with the Employees fragment at the site. (Why would SemiJoin or BloomJoin at

the query site not buy us much in this case? Hint: The eid field is a key for

Employees and the join is on this field.) At each site, the result is scanned to select

the tuple with the maximum salary, and this tuple is shipped to the query site,

where a final scan of the ten tuples contributed by each site yields the department

(amongst the ones stored at the query site) with the highest paid manager. The

cost of the initial shipping is 4500ts, the cost of ten local joins is 603× 105td (refer

to part (a)), the cost of the scans is , the cost of shipping the result tuples is 9ts,

and the cost of the final scan is 10td.

(g) We do the above operation for each fragment of the Departments relation. Thus,

the initial shipping costs, and the local join costs increase ten-fold. Everything else

remains the same. Thus, the cost of the query is .

2. (a) We use the read-only write-all policy for synchronous replication here. Since

every site has a copy of the fragment, we can raise the salary of all those with

salary less than 100,000 without having to ship any part of the relation. So each

site simply raises the salary of all employees in the partition by 10have a salary

greater than 100,000, and we just reset their salary to exactly 100,000. In order to

do this, each site needs to obtain an exclusive lock on its local copy of the fragment,

and the query is executed at each site.

(b) We again use the read-only write-all policy, and we need to obtain an exclusive

lock on all the copies of the fragment with employees whose salary is less than

100,000. The remaining fragments of the relation are not replicated, and hence,

just one exclusive lock for each fragment is required, at the site where it is stored.

Once the update is complete, we need to do some shipping to satisfy the original

partitioning of Employees. Each site will ship to the ”next” site employees whose

salaries have been raised to the next bracket of the original partitioning. In other

words, the first site will ship all records will salaries greater than 100,000 to the

second site, the second site will ship all records will salaries greater than 200,000

to the third site, and so on. To do this, each site needs to get an exclusive lock

on the fragment they store. Once each site has modified its relation, shipped the

appropriate records, and has received its set of additional records, it obtains a lock

on its fragment to append the new records. The only tricky fragment to handle is

the one that has the employees with the lowest salaries, since it is replicated at all

the sites. Since we are using synchronous replication, the changes made at the first

site must be executed at all the sites. Hence, each site must obtain an exclusive

lock on its copy of the fragment, and run the query against it.

3. (a) Using primary site asynchronous replication, only the site with the primary copy of

the fragment whose employees earn less than 100,000 is visited. None of the other

copies need to be locked. The primary site is predetermined, and in our case, it is

possibly the first site. The changes to the primary copy will be captured at a latter

time, and applied to the secondary copies.

(b) We agin use primary site asynchronous replication. We follow a procedure very

similar to the one described when synchronous replication is used. The only differ-

ence is in teh handling of the fragment which is replicated at all the sites. Since we

are using asynchronous replication here, we can just lock and change the primary

copy, and copy the changes to the other sites at some later time.



266 Chapter 21

Total Cost = (# of Emp pgs at CPU 10) ∗ (I/O cost)

= 10, 000 ∗ td

Elapsed T ime = 10, 000 ∗ td

2. Find the highest paid employee in the department with did 55.

Plan: Since there is no guarantee that such a tuple might exist at any given processor,

conduct a complete linear scan of all Employees tuples at each processor retaining the

one with the highest sal value and did 55. Each processor except one should then send

their result to a chosen processor which selects the tuple with the highest value in the

sal field.

Total Cost = (# CPU scanning) ∗ (# of Emp pgs/CPU) ∗ (I/O cost)

+ (#CPUs− 1) ∗ (send cost)

= 10 ∗ 10, 000 ∗ td

+ 9 ∗ ts

= 100, 000 ∗ td + 9 ∗ ts

Elapsed T ime = 10, 000 ∗ td + ts

3. Find the highest paid employee over all departments with budget less than 100,000.

Plan: Department tuples with a budget field less than 100,000 must be located at pro-

cessor 1. The highest paid employees are located at the higher numbered processors,

however; as in the part 2 above, there is no guarantee that any processor has an Em-

ployees tuple with a particular did field value. So, processor 1 must conduct a complete

linear scan of Departments retaining only the did field. The results are then sent to all

other processors which store and join them with the Employees relation retaining only

the join tuple with the highest sal value. Finally, each processor except one sends the

result to a chosen processor who selects the Employees tuple with the highest sal value.

Total Cost = scan Dept for did fields at first CPU

+ sending did field tuples from 1 CPU to 9 CPUs

+ storing did field tuples at each processor

+ joining did field tuples with Emp

+ sending local results to chosen processor

= (# CPUs w/budget < 100, 000) ∗ (# Dept pgs) ∗ (I/O cost)

1 ∗ 500 ∗ td

500 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (167 did pgs) ∗ ts

1 ∗ 9 ∗ 167 ∗ ts



Parallel and Distributed Databases 267

10 ∗ 1, 503 ∗ ts

15, 030 ∗ ts

+ (# CPU storing) ∗ (167 did pgs) ∗ (I/O cost)

10 ∗ 167 ∗ td

1, 670 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (167 + 1, 000) ∗ td)

10 ∗ 3, 501 ∗ td

35, 010 ∗ td

+ (# CPUs− 1) ∗ (send cost)

9 ∗ ts

= 500 ∗ td + 15, 030 ∗ ts + 1, 670 ∗ td + 35, 010 ∗ td + 9 ∗ ts

= 37, 180 ∗ td + 15, 039 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 503 ∗ ts + 167 ∗ td + 3, 501 ∗ td + ts

= 3, 718 ∗ td + 1, 504 ∗ ts

4. Find the highest paid employee over all departments with budget less than 300,000.

Plan: The plan is identical to that for part 3 above except that now the first 3 processors

must create relations of did fields and send them to all other processors.

Total Cost = scan Dept for did fields at first three CPUs

+ sending did field tuples from 3 CPUs to 9 CPUs

+ storing did field tuples at each processor

+ joining did field tuples with Emp

+ sending local results to chosen processor

= (# CPUs w/budget < 300, 000) ∗ (# Dept pgs) ∗ (I/O cost)

3 ∗ 500 ∗ td

1, 500 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (170 did pgs) ∗ ts

3 ∗ 9 ∗ 170 ∗ ts

3 ∗ 1, 530 ∗ ts

4, 590 ∗ ts

+ (# CPU storing) ∗ (510 did pgs) ∗ (I/O cost)

10 ∗ 510 ∗ td

5, 100 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (510 ∗ 1, 000) ∗ td)

10 ∗ 4, 530 ∗ td



268 Chapter 21

45, 030 ∗ td

+ (# CPUs− 1) ∗ (send cost)

9 ∗ ts

= 1, 500 ∗ td + 4, 590 ∗ ts + 5, 100 ∗ td + 45, 030 ∗ td + 9 ∗ ts

= 51, 630 ∗ td + 4, 599 ∗ ts

Elapsed T ime = 500 ∗ td + 1, 530 ∗ ts + 510 ∗ td + 4, 530 ∗ td + ts

= 5, 540 ∗ td + 1, 531 ∗ ts

5. Find the average salary over all departments with budget less than 300,000.

Plan: This query is similar to part 4 above. The difference is that instead of selecting

the highest salary during the join and reporting to a chosen processor, each processor

retains a running sum of the sal field and count of joined tuples. The chosen processor

then computes the total sum and divides by the total count to obtain the average. Note

that the costs are identical to part 4.

6. Find the salaries of all managers.

Plan: Employees tuples with an eid field equal to a mgrid field of a Departments relation

may be stored anywhere. Each processor should conduct a complete linear scan of its

Departments tuples retaining only the mgrid field. Then, each processor sends the result

to all others who subsequently store the mgrid relation. Next, each processor joins the

mgrid relation with Employees retaining only the sal field of joined tuples.

Total Cost = scan Dept for mgrid fields

+ sending did field tuples from 10 CPUs to 9 CPUs

+ storing did field tuples at each processor

+ joining mgrid field tuples with Emp

+ sending local results to chosen processor

= (# CPUs scanning) ∗ (# Dept pgs) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (170 mgrid pgs) ∗ ts

10 ∗ 9 ∗ 170 ∗ ts

10 ∗ 1, 530 ∗ ts

15, 300 ∗ ts

+ (# CPU storing) ∗ (1, 700 did pgs) ∗ (I/O cost)

10 ∗ 1, 700 ∗ td

17, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (1, 700 ∗ 1, 000) ∗ td)

81, 000 ∗ td



Parallel and Distributed Databases 269

+ (# CPUs− 1) ∗ (send cost)

9 ∗ ts

= 5, 000 ∗ td + 15, 300 ∗ ts + 17, 000 ∗ td + 81, 000 ∗ td + 9 ∗ ts

= 103, 000 ∗ td + 15, 309 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 530 ∗ ts + 1, 700 ∗ td + 8, 100 ∗ td + ts

= 9, 850 ∗ td + 1, 531 ∗ ts

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

Plan: Department tuples with budget less than 300,000 are located at the first three

processors. Employees tuples with a sal fields greater than 100,000 are located at pro-

cessors 2 through 10. Conduct a complete linear scan of all Department tuples retaining

only the mgrid field of tuples with a budget field less than 300,000. Send the new mgrid

relation to processors 2 through 10 which subsequently store them. Next, processors 2

through 10 join the new mgrid relation with Employees to obtain the desired result.

Total Cost = scan Dept for mgrid fields at first thirty CPUs

+ sending mgrid field tuples from 1 CPU to 9 CPUs

+ sending mgrid field tuples from 2 CPUs to 8 CPUs

+ storing mgrid field tuples at 9 CPUs

+ joining mgrid field tuples with Emp in 9 CPUs

= (# CPUs scanning) ∗ (# Dept pgs/CPU) ∗ (I/O cost)

3 ∗ 500 ∗ td

1, 500 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (170 mgrid pgs) ∗ ts

1 ∗ 9 ∗ 170 ∗ ts

1 ∗ 1, 530 ∗ ts

1, 530 ∗ ts

+ (# CPU sending) ∗ (# CPU receiving) ∗ (170 mgrid pgs) ∗ ts

2 ∗ 8 ∗ 170 ∗ ts

2 ∗ 1, 360 ∗ ts

2, 270 ∗ ts

+ (# CPU storing) ∗ (510 mgrid pgs) ∗ (I/O cost)

9 ∗ 510 ∗ td

4, 590 ∗ td

+ (# CPU joining) ∗ (join cost)

9 ∗ (3 ∗ (510 + 1, 000) ∗ td)

9 ∗ 4, 530 ∗ td

40, 770 ∗ td



270 Chapter 21

= 1, 500 ∗ td + 1, 530 ∗ ts + 2, 270 ∗ ts + 4, 590 ∗ td + 40, 770 ∗ td

= 46, 860 ∗ td + 3, 800 ∗ ts

Elapsed T ime = 500 ∗ td + 1, 360 ∗ ts + 510 ∗ td + 4, 530 ∗ td

= 5, 540 ∗ td + 1, 360 ∗ ts

8. Print the eids of all employees, ordered by increasing salaries.

Plan: Sort the Employees relation at each processor and print it out.

Total Cost = (# CPU sorting) ∗ (sort cost)

= 10 ∗ (3 ∗ 10, 000 ∗ td)

= 10 ∗ (30, 000 ∗ td)

= 300, 000 ∗ td

Elapsed T ime = 30, 000 ∗ td

Exercise 21.5 Repeat Exercises 21.3 and 21.4 with the number of processors equal to (i) 1

and (ii) 100.

Answer 21.5 Repeat of Exercise 21.3

Recall that the round-robin distribution algorithm implies that the tuples are uniformly dis-

tributed across processors. Moreover, since the Employees and Departments relations sal

and budget fields are uniformly distributed on 0 to 1,000,000, each processor must also have

a uniform distribution on this range. Since elapsed time figures are redundant for the one

processor case they are omitted. Also, assume for simplicity that the single processor has

enough buffer pages for the Sort-Merge join algorithm, i.e., 317. Finally, for the 100 processor

case, the plans are nearly identical to Exercise 20.3 and thus are also omitted.

(i) Assuming there is only 1 processor

(ii) Assuming there are 100 processors

1. Find the highest paid employee

(i) Plan: Conduct a complete linear scan of all Employees tuples retaining only the one

with the highest sal value.

Cost = (# Emp pgs) ∗ (I/O cost) = 100, 000 ∗ td

(ii)

Total Cost = (# CPUs) ∗ (Emp pgs/CPU) ∗ (I/O cost)


	284
	266

