
11 February 2014 CSE-4411M Test #1 w/ answers—Winter 2014 p. 4 of 14

2. Index Use. Consumer Price Index. (10 points) [Exercise]

Table R has a clustered tree index of type alternative #2 on A, B, C, D. (Assume R has
additional attributes; e.g., E, F, . . .) The index pages contain 133 index records (encompassing
134 pointers), on average;1 data-entry pages contain 50 data entries each, on average; and
data-record pages contain 20 data records each, on average.

A’s values range over 1..10, 000; B’s over 1..1, 000; C’s over 1..100; and D’s over 1..10.

For Questions 2c & 2d, assume “smart” processing; that is, that the processor would minimize
I/O usage with the selection information.

a. (3 points) An index record contains effectively the information A, B, C, D, and a pointer
(an address to another page). A data entry contains effectively A, B, C, D, and an RID
(which is an address to another page and a slot number). A data entry is slightly larger
than an index record—by a slot number—but only slightly. So explain how it is possible
there are 133 index records per page, on average, but only 50 data entries per page, on
average.

Key compression.

b. (2 points) Say that table R has 1,000,000 records. How deep is the index tree?

Fan-out is 134. We must index 20K pages. 1342 < 20K but 1343 > 20K. So we need
three levels of index pages (the root plus two more) to have page-ID “pointers” to the
20K data-entry pages.
These three index-page layers plus the data-entry layer means the tree is four pages deep.

1This accounts for the fill factor. A page could hold more than 133 index records.

11 February 2014 CSE-4411M Test #1 w/ answers—Winter 2014 p. 5 of 14

c. (3 points) Estimate the I/O cost of

select * from R where A = 1111 and B > 700;

using the index as the access path.

1M/10K = 100 matching A. 30% (1000−700)/1000) of these match B. So, 30 matching
records, in all.
Four I/O’s to get to the first A = 1111andB > 700 data entry. All 30 matches likely
on the same data-entry page. 2 I/O’s to fetch the data-record pages containing the 30
records. (Clustered, 20 records per page.) So 6 I/O’s predicted.

d. (2 points) Estimate the I/O cost of

select * from R where A > 9500 and C > 90;

using the index as the access path. (Assume “smart” processing.)

1M · 500/10K = 50K matching records for A > 9500. Cannot match for C > 90 by the
index (since B intervenes in the search key and there is no equality predicate on B in the
query). But 10/100 = 10% of the 50K will match also for C > 90 and need fetching; so
5K record fetches.
4 I/O’s to the data-entry page with the first A > 9500 entry. Scan 20K/20 = 1K of
data-entry pages. When C > 90, also fetch the record: 5K fetches costing 2.5K I/O’s
as we can estimate there are two matching records per fetched data-record page and the
index is clustered.
So 3,504 I/O’s are estimated in all.

12 February 2004 COSC-4411(M) Midterm #1 & answers p. 4 of 10

2. (10 points) Index Logic. Take the next index to the left. [short answer / exercise]

a. (5 points) You are told that the following indexes are available on the table Employee:

key type clustered?
A. name, address tree yes
B. age, salary hash no
C. name tree no
D. salary, age hash no
E. name, age tree yes

You are suspicious that this information is not correct. Why? Identify three problems
with what is reported.

– It is impossible that C. is unclustered if A. or E. are clustered.

– It is not possible to have two clustered indexes on the same table with different
keys: A. & E.

– It makes no sense to have B. and D.. They are identical functionally.

– . . .

21 October 2004 COSC-4411(A) Midterm #1 w/ answers p. 8 of 14

4. (10 points) B+ Trees. How low can you go? [short answer / exercise]

a. (3 points) Consider a B+ tree of order one. Construct an example of B+ tree with the
worst (largest) possible depth that indexes 10 data records.

5

3 7 9

2 4 6 8 10

1* 2* 3* 4* 5* 6* 7* 8* 9* 10*

b. (3 points) Consider a B+ tree of order one. Construct an example of B+ tree with the
best (smallest) possible depth that indexes 10 data records.

1* 2* 3* 4* 5* 6* 7* 8* 9* 10*

93 5

7

Some people have argued that for 3a, C is also a good answer. It is true that blocked
I/O is used for prefetching. However, prefetching and blocked I/O are different.
Prefetching still can be advantageous, even if not done with blocked I/O. And block
I/O is used for many things in databases than prefetching. A is a correct answer,
and a better answer than C.

21 October 2004 COSC-4411(A) Midterm #1 w/ answers p. 9 of 14

c. (4 points) Identify four distinct problems with the following “B+ tree”.

5* 10*

15* 30* 35*

50* 55* 60* 65* 70* 75*

20* 25* 40*

45* 80* 85* 90* 95*

55* 80*68*

20* 35*

15*

45*

42*

i. Not all nodes are at least half full.

ii. Record 55 is out of place. By the apparent convention in the tree, it should be
to the right of key 53 in the index node. (Otherwise, many other records are
misplaced.)

iii. In a B+ tree, all leaves should be at the same depth. This is not the case here.

iv. There is no leaf page to the right of key 42. Either the key should not be there,
or there should be a leaf page.

v. Keys in index pages are marked with ∗’s, indicating these are data records
themselves. Data records are not stored in index pages in a B+ tree.

21 October 2004 COSC-4411(A) Midterm #1 w/ answers p. 10 of 14

5. (10 points) Linear Hash Indexes. Coming up empty. [analysis]

a. (5 points) Dr. Dogfurry, infamous database researcher, has noted that sometimes when
a new bucket creation is triggered—whenever an overflow page has been made—no keys
redistribute into the new bucket. He reasons that it does not make sense to make the
new bucket in such cases.

So the algorithm should check whether redistribution would put anything into the new
bucket; if not, a new bucket is not made, and next is not advanced.

What is wrong with Dr. Dogfurry’s change? What bad consequences would this have?

This is quite bad. The #buckets will not grow until a record is added to that very
bucket in question that would result itself redistribute to the new bucket if this bucket
were split. In the meantime, long overflows can develop on the other buckets, greatly
degrading performance.
Namely, Dr. Dogfurry is not understanding how linear hashing works. The next

bucket needs to be spit when an overflowoccurs in order to ensure that, on average,
the #overflows is less than one.

18 November 2004 COSC-4411(A) Midterm #2 w/ answers p. 9 of 14

4. (15 points) Query Evaluation. What do polysci students take?! [exercise / analysis]

Consider tables

• student(id, name,major) with 100,000 records on 2,000 pages

• enrol(id, course#, section, term, grade) with 4,000,000 records on 40,000 pages

There is a foreign key from enrol onto student.

Available indexes:

• hash index on student on id (linear hash)

• clustered tree index on enrol on id, course#, section, term (index pages are 3 deep)

• unclustered tree index on enrol on course#, id (index pages are 3 deep)

Statistics:

• the number of values of student.major: 100

• values of enrol.course#: 1000, . . ., 4999 (so 4000 values)

Consider the query

select name, S.id, course#, section, term, grade

from student S, enrol E

where S.id = E.id

and course# is between 4000 and 4999

and major = ’political science’;

You have an allocation of 25 buffer frames.

a. (3 points) Estimate the cardinality of the query.

E has a foreign key on S, so we start with 4,000,000 “ES” records. The reduction
factor (RF) of σcourse# is 1000

4000
, or 1

4
. RF of σmajor is 1

100
. Therefore, the cardinality

estimation of the query is 4, 000, 000 · 1

4
· 1

100
= 10, 000.

18 November 2004 COSC-4411(A) Midterm #2 w/ answers p. 10 of 14

b. (7 points) Devise a good query plan for the query. Show the query tree, fully annotated
with the chosen algorithms and access paths.

Estimate the cost of your plan. For full credit, you should have a plan that costs less
than 10,000 I/O’s.

Here is one query plan.

on−the−fly

on−the−fly

INLJ

SELECT(major = ’polysci’)

FILESCAN(Student)

INDEX(Enrol: id, corse#, sect, term)

JOIN(id)

SELECT(course# btwn 1000 & 4999)

PROJECT(name, id, course#, section, term, grade)

σ: 2,000 I/O’s to filescan S. 1,000 records (1

100
) survive.

�: 1,000 probes. Each costs

∗ 3 I/O’s Index pages

∗ 1 I/O data-entry (DE) page

∗ 1 I/O data-record (DR) page

Each probe matches 40 records. Since the index is clustered, all are likely on the
same DR page.

Total: 7,000 I/O’s
If we assume that the root of the probe index stays in the buffer pool (BP) between probes
(a quite reasonable assumption), then each probe is just 4 I/O’s, and the total is 6,001
I/O’s.

18 November 2004 COSC-4411(A) Midterm #2 w/ answers p. 11 of 14

c. (5 points) Consider the query

select name, S.id, course#, section, term, grade

from student S, enrol E

where S.id = E.id

and course# is between 4000 and 4999;

This is the same as before, but with the “major = ’political science’” condition
dropped.

Show a good query plan (annotated tree) for this query. (By good, I mean better than
picking just any näıve approach.) What is its cost?

Here is one query plan.

on−the−fly

on−the−fly

SELECT(course# btwn 1000 & 4999)

PROJECT(name, id, course#, section, term, grade)

FILESCAN(Student)

SORT(id)

Temp

Merge JoinJOIN(id)

FILESCAN(Enrol)

Enrol is sorted on id because of its clustered index.

– Sort: Pass 0 is 80 runs plus two merge passes, so 24,000 I/O’s.

– �: Read Temp at 2,000 I/O’s and read Enrol at 40,000 I/O’s. Total: 42,000 I/O’s

Total: 76,000 I/O’s

2017 February 2 EECS-4411m: Test #1 w/ answers 4 of 14

2. [10pt] Buffer Pool. Learning to swim. Exercise

a. [2pt] LRU (least recently used) is known to be generally a good buffer-pool replacement
strategy in support of most SQL operations.

Why?

It is the principle of data locality. If a piece of data is needed for an operation, it is
more likely to be needed again soon by the operation. This is generally true for SQL
queries.

2pt data locality
1pt partial explanation in right direction

b. [3pt] Spell out the steps that the buffer-pool manager needs to make to handle a pin
call; e.g., pin(1729). Assume the replacement policy is LRU.

1 IF 1729 is in the buffer pool THEN

2 remove from replacement queue (or the like)

3 increment the frame descriptor’s pincount

4 return frame address to caller

5 ELSE

6 find a frame to replace by replacement policy

7 IF none, throw exception

8 IF page in chosen frame is ‘dirty’ THEN write it to disk

9 READ 1729 into selected frame

10 set frame descriptor’s pincount to 1

11 return frame address to caller

+1pt replacement
+1pt pins, writes old page, if needed
+1pt returns frame address

2017 February 2 EECS-4411m: Test #1 w/ answers 8 of 14

4. [10pt] Index Mechanics. It’s the carburetor, of course. Exercise

Assume the search-key rule to go left if ‘<’ and to go right if ‘≥’.

a. [2pt] You conduct some disk forensics and you discover a B+ tree structure with the
data as in Figure 1.

Figure 1: Recovered forensics B+ tree.

You suspect there is something wrong with this B+ tree. What is wrong?

Search keys in index pages should be moved up, not copied up. So that 43 appears twice
has to be a mistake. Indeed, it is; Note that records 31∗ and 37∗ should be to the left of
the root, but they are not. They could not be located.

+2pt That 43 appears twice. Or that records 31∗ and 37∗ are less than 43 but are
misplaced.

b. [3pt] Add a record with search-key value F to the B+ tree in Figure 2.

Figure 2: B+ tree for addition.

There can be other legal configurations that work. But now the tree is
– two deep in index levels,
– E, F, G, H, and I were distributed, and
– we had a proper copy up of G and push up of J.

+1pt each for the points above.

	one-ans (1)
	one-ans (3)
	one-ans (4)
	two-ans (2)
	one-ans

