
Beating Neciporuk on the Tree Evaluation Problem

July 26, 2017

1 Easy Problem

Really guys! Here is a version of the problem that I cant get a lower bound for. And it is SO SO
obvious.

Let z and x be in [k]. (k is a prime)
Let pi(z, x) = x+ iz mod k.
Player Qi, knows pi = x+ iz, but actually has zero information about x or about z.
Note that each x′ is equally likely to be the actual x.
He has to reveal something about f , but does not know which x′ for which to give f(x′).
It is like he has no information at all. And hence can give next to no information about f(x).

But here is the catch.
If two players Qi and Qi′ got together, they would know x+ iz and x+ i′z and hence could solve
for both z and x. Then either could send f(x).
But they can’t talk to each other.
We have to use the fact they cant talk.

If the different players could be given different z, then the lower bound is easy. (See proof in
PS)
But then two players could not solve for x and z.
Is there a link between these?

Prove that this cant work.

PS If zi(x) was the same for each player i or the players could be given different z, then lower
bound goes through as follows.
We have that |{pi(z(x), x) | x}| ≤ ♯pi/♯z. (ignore log factors)
Alice wants to communicate f to Bob.
For each i and each p in {pi(z(x), x) | x}, Alice communicates Qi(p, f).
This takes only

∑

i ♯pi/♯z field elements.
Note for each x, Bob can now determine f(x).
But f contains ♯x field elements.
Hence

∑

i ♯pi/♯z >= ♯x.

2 Separate Bits

The intuition is that the ith player from Pi(x, z) knows only enough about x to narrow it down to
some set of possible x′ values and hence does not know for which x′ it should send bits about f(x′).
We consider the case where each player is restricted so that he can send the referee any number
of bit about any one such f(x′) value, but is not allowed to send mixed bits. More specifically, let
qi(pi, x

′) ∈ R denote the fraction of a field element that Qi(pi, f) sends about f(x
′) value. Because

the player can send at most one fields element in total, we have that ∀i, ∀p,
∑

x′ qi(p, x
′) ≤ 1.

Because from all the players, the referee must obtain the entire field element f(x) for the actual
input x, we have that ∀x, z,

∑

i qi(Pi(x, z), x) ≥ 1.

∑

i

|{pi}| =
∑

i

∑

pi

[1] (1)

≥
∑

i

∑

pi

[

∑

x

qi(pi, x)

]

(2)

≥
∑

i





∑

pi

∑

x,∃z,pi=Pi(x,z)

qi(pi, x)



 (3)

=
∑

i

[

∑

x,z

qi(Pi(x, z), x)

]

(4)

=
∑

x,z

[

∑

i

qi(Pi(x, z), x)

]

(5)

≥
∑

x,z

[1] (6)

= |{x}||{z}| (7)

The brackets in (3) is a sum over all the edges in the bipartite graph from values of x to the
values of pi. Because this graph has no double edges, the sum in the brackets in (4) is the same.

Russell’s Predictability, says that if Qi(pi, f) sends one field element about 〈f(x1), . . . , f(xkd)〉
then for any parameter t, it can be converted so that it sends everything about t of the f(x′) and
sends at most 1

t of a field element about all the others. With this in mind, lets redo the above
ideas except that ∀i, ∀p, there are t values x′ such that qi(p, x

′) = 1 and for the others qi(p, x
′) ≤ 1

t .
Then there is an upper bound and lower bound such that

∑

i |{pi}| =
1
t |{x}||{z}|.

For the lower bound, note that unless one of the players tells the referee about all of f(x),
then learning 1

t from each of the t players is not quite enough to learn the one field element
f(x). Hence, we might as well assume that the 1

t are rounded down to zero. This gives that
∀i, ∀p,

∑

x′ qi(p, x
′) ≤ t. The same lower bound as above then works except for a lost factor of t.

The upper bound is as follows. For each i, let Pi(x, z) give all of z and the first log(|{Pi}|) −

log(|{z}|) bits of x. This leaves |{x}||{z}|
|{pi}|

different values of x′ that are possible. Each of the t players

send about t of these f(x′) for a total of t2. Then set t =
√

|{x}||{z}|
|{pi}|

so that all of the remaining

f(x′) are learned. Then
∑

i |{pi}| = t|{p}| = 1
t |{x}||{z}|.

2

3 〈z, f(x)〉 with z〈f,t〉(x) not depending on t.

The goal is to prove that a branching program computing g(f1(x1,1, . . . , x1,d), . . . , fd(xd,1, . . . , xd,d))
requires k2d−2 leaf reading states because it must use kd−1 to remember the first d−1 answers and
another kd−1 to compute fd(xd,1, . . . , xd,d) and these numbers need to be multiplied in order to
remember the first while doing the second.

A necessary easier problem is getting a lower bound for 〈z, f(x)〉. Here x = 〈x1, . . . , xd〉 are our
usual leaf variables and z = 〈z1, . . . , zd−1〉 = 〈f1(x1,1, . . . , x1,d), . . . , fd−1(xd−1,1, . . . , xd−1,d)〉 denote
the first d−1 answers. The restriction on the branching program is that z is known at the beginning
and must be known at the end. This should take |{z}|kd−1 leaf reading states because it must use
|{z}| to remember the z and another kd−1 to compute f(x).

The only states we are going to talk about are leaf reading ones such that at least one of their
k out going edges is an f read. Hence, we are just going to say “state” to talk about them. Let
ℓ denote the maximum number of such states in any computation path. This is the number of
alternations between leaf and f reading states.

Theorem 1 Assume for each f , the “entanglement” between z and x in the branching program is
the same at each level so that our detangling function z〈f,t〉(x) depends on f and x but does not

depend on t. Any such branching program solving 〈z, f(x)〉 requires at least s ≥ 1
d log s · |{z}| · k

d−1

leaf reading states. (Assuming |{z}| ≤ kd, gives s ≥ 1
2d2 log k

· |{z}| · kd−1.)

Partition these states S into levels S1, . . . , Sℓ so that a state α is in St if any computation path
from the start state to it goes through at most t states. In this way, each computation path visits
at most one state at each level. Let P〈f,t〉(z, x) ∈ [st] denote the at most one level t state that the
computation goes through on input 〈z, x, f〉. Let st = |St| with

∑

t st = s.
A key property of this function p = P〈f,t〉(z, x) is that from it and rereading x (for fixed f), z

needs to be recoverable. Specifically there needs to be a function P−1
〈f,t〉(p, x) = z. Informally, we

would like to say that “# bits in p = P〈f,t〉(z, x) about z” must be at least log |{z}| because z needs
to be recovered in the end. Exponentiating this gives that the number of values of P when varying
only z is at least |{z}|. We formalize this as follows.

Claim 2 For two different values z′ and z′′, the states P〈f,t〉(z
′, x) and P〈f,t〉(z

′′, x) are distinct.

Proof: If this state is in the computational paths of both 〈z′, x, f〉 and 〈z′′, x, f〉, then the value
of z cannot be recovered at the output.

Informally, we would like to say that “# bits in p = P〈f,t〉(z, x) about x” is at most “the # bits
in p” minus “# bits in p about z”. The number of bits in P (z, x) is clearly log |{P}| = log s. Then
because z must be recovered in the end, the number about z must be the log |{z}|. Exponentiating
this gives that the number of values of P when varying only x is at most s

|{z}| .

A troublesome example occurs when the function P〈f,t〉(z, x) computes z + x. Entropy is not
good at telling what one knows about x or z when one knows z + x. Russell Impagliazzo’s idea
of Predictability, instead fixes the value of z as a function of the value of x. In this example, let
z(x) = −x. Then knowing z(x)+x always gives you the same value zero and all values of x are still
possible. These ideas inspired the following proof. For each x ∈ [k]d, we map one value z〈f,t〉(x) for
z such that the number of states for these restricted inputs is as small as possible.

Lemma 3 There exists a choice z〈f,t〉(x) for z for each x, such that
∣

∣

{

P〈f,t〉(z〈f,t〉(x), x) | x
}∣

∣ ≤
st

|{z}|d log k.

3

To understand this lemma better consider the following two examples. If P (z, x) = 〈z, ℓ bits of x〉,
then |{P}| = s = |{z}| × 2ℓ. Set z(x) = 0. Then as needed |{P (0, x) | x}| = 2ℓ = st

|{z}| . On the

other hand, if P (z, x) = z + x, then |{P}| = s = |{z}| = |{x}|. Set z(x) = −x. Then as needed
|{P (−x, x) | x}| = 1 = st

|{z}| .

Proof: We use a greedy algorithm. Suppose by induction on r, we have mapped a value z(x) for
all x but those in Xr, the mapped x lead to at most r values of P (z(x), x), and Pr denotes the
unmapped values of P (z, x). Make a bipartite graph between Xr and Pr with an edge between x
and p if there exists a z such that P (z, x) = p. By the previous claim, for each x, each value of z
contributes a distinct edge. Hence, the number of edges in this graph is |Xr| · |{z}|. Hence, there

exists state p whose degree is at least the average |Xr| ·
|{z}|
st

. For each of the at least this number
of values x with an edge to this p, map x to the z(x) that put this edge in the graph. This gives

|Xr+1| ≤ |Xr|−|Xr|·
|{z}|
st

, increases the number of P (z(x), x) mapped to from r to r+1, and removes

p from Pr. We started with |X0| = kd unmapped values of x ∈ [k]d. We are done when every value

of x is mapped, i.e. |Xr| < 1. This occurs at least by |Xr| ≤ kd
(

1− |{z}|
st

)r
≤ kde−r|{z}|/st < 1,

giving r ≤ st
|{z}|d log k as required.

We now prove the lower bound for computing 〈z, f(x)〉 using a compression/communication
argument.

Proof: (Theorem 1) By the statement of the theorem, our detangling function z〈f,t〉(x) = zf (x)
depends on f and x but does not depend on t.

Alice wants to communicate f to Bob. Both know the branching program. For each level t and
each value x ∈ [k]d, Alice finds the state P〈f,t〉(zf (x), x). Being a leaf reading state, there are k
edges out of it. From each of these, she follows the computation path with value f past all the f
reading states until she gets to another leaf reading state. She uses log s bits to communicate to
Bob which of the s leaf reading states was arrived at. The total number of bits communicated is
∑

t

∣

∣

{

P〈f,t〉(z(x), x) | x
}∣

∣ · k · log s ≤
∑

t
st

|{z}|d log k · k · log s = s
|{z}|dk log k log s.

The claim is that from this Bob can recover all of f . Not knowing f , he does not know the
mapping from x to zf (x). Hence, for each tuple 〈z, x〉, he runs the branching program on input
〈z, x, f〉. The only place he may have a challenge is when he gets to an f reading state. For some
of the x to f transition states, Alice has told him the next leaf reading state that he will get to.
If the computation path that he is following on 〈z, x, f〉 only passes through these revealed states
then he can follow it and learn f(x). If not he aborts and tries another z for this x. When he tries
z = zf (x) he succeeds.

The entire function f is described by kd log k bits. This gives s
|{z}|dk log k log s ≥ kd log k or

s ≥ 1
d log s |{z}| · k

d−1. We are assuming that |{z}| ≤ kd so that s ≤ k2d and log s ≤ 2d log k. This
gives the result.

Removing the restriction that z〈f,t〉 does not depend on t: The quick fix would to have Alice

communicate for each t ∈ [ℓ]. This would add an extra 1
ℓ factor in the result. Yes, a ℓ = kd factor

would be a shame but still progress. But this does not work either. If we get x through level t
by communicating about state P〈f,t〉(zf (x), x) and through level t′ by communicating about state
P〈f,t′〉(z〈f,t′〉(x), x), we have not gotten one instance 〈x, zf (x)〉 or

〈

x, z〈f,t′〉(x)
〉

through. Also the
x and x′ that come together in the same state in one level, can do completely different things at
different levels.

4

4 An Easier Necessary Problem

With Ian
The goal is to prove that a branching program computing g(f1(x1,1, . . . , x1,d), . . . , fd(xd,1, . . . , xd,d))

requires k2d−2 leaf reading states because it must use kd−1 to remember the first d−1 answers and
another kd−1 to compute fd(xd,1, . . . , xd,d) and these numbers need to be multiplied to remember
both.

A necessary easier problem is getting a lower bound for 〈z, f(x)〉. Here x = 〈x1, . . . , xd〉 are our
usual leaf variables and z = 〈z1, . . . , zd−1〉 = 〈f1(x1,1, . . . , x1,d), . . . , fd−1(xd−1,1, . . . , xd−1,d)〉 denote
the first d−1 answers. The restriction on the branching program is that z is known at the beginning
and must be known at the end. This should take |{z}|kd−1 leaf reading states because it must use
|{z}| to remember the z and another kd−1 to compute f(x).

Some intuition about this 〈z, f(x)〉 problem is the following. Given z and reading x, the branch-
ing program could easy compute some function like P (z, x) = z+x using the same number of states
needed to store z alone. The branching program can recover z by subtracting x. In a counting
sort of way, it also “knows” x. However with only p = z + x it does not know where to query f .
Learning f(z + x) should not help. In fact, if f is “sensitive”, then no non-thrifty query should
help. The branching program needs to make the thrifty read f(x). But to do that, it needs to
know both z and x at the same time and this requires |{z}|kd−1 leaf reading states.

Proving a lower bound for this problem becomes even easier when we restrict the branching
program to have r pairs of stages followed by a final combining stage. (Ian and I proved the require
lower bound with r = 1.) For i ∈ [r], the first of the ith pair of stages, knowing z and reading x, it
ends up in the state specified by pi = Pi(z, x) ∈ [s]. The outputs of each these phases must encode
all of z, because there is a reverse function P−1

i (pi, x) = z that can recover z. The second of the
ith pair of stages uses the information saved about x to query f , namely qi = Qi(f, pi) ∈ [k]. The
last stage combines these outputs to obtain the answer, namely R(q1, . . . , qd) = f(x).

The standard algorithm for 〈z, f(x)〉 fits into this form with r = 1. p1 = P1(z, x) = 〈z, x〉,
q1 = Q1(f, p1) = f(x), and R(q1) = q1. Here s = |{z}|kd. Note the pi = Pi(z, x) ∈ [s] stage has
no access to f or else it could solve the problem with Pi(z, x, f) = 〈z, f(x)〉 with only s = |{z}|k
states.

It is easy to see that for first part pi = Pi(z, x) ∈ [s] of the ith stage to end in s states and
only contain x reads, it must contain at least s

k leaf reading states, for a total of at least rs
k .

Remembering 〈q1, . . . , qr〉 may take kr states, but we will give this and the computation of Pi,
Qi and R for free. The goal is to prove that rs ≥ |{z}|kd. An upper bound for this r stage
problem translates into a branching program as follows. Suppose the first i − 1 stages end in
the branching program knowing z and 〈q1, . . . qi−1〉 with |{z}|ki−1 states. From here it reads x,
computes pi = Pi(z, x) ∈ [s], forgets z and x, ending knowing pi and 〈q1, . . . qi−1〉 with s · ki−1

states. Then it reads f computes qi = Qi(f, pi) ∈ [k], forgets f , ending knowing pi and 〈q1, . . . qi〉
with s · ki states. Then it reads x computes P−1

i (pi, x) = z, forgets pi and x, ending knowing z and
〈q1, . . . qi〉 as required for the end of the stage. The last stage combines these outputs to obtain the
answer, namely R(q1, . . . , qd) = f(x).

The catalytic memory Ben-OR and Cleve algorithm computing ×(x1, x2) fits into this form
with r = 4. It starts with 〈0, z〉 in its registers. The four first stages compute p1 = z, p2 = x1 − z,
p3 = x2 − x1 + z, and p4 = x2 + z. Each second stage queries the function f = × by squaring its
value, namely qi = Qi(×, pi) = (pi)

2. The final stage subtracts these values and divides by two,
namely R(q1, . . . , qd) =

1
2(−q1+q2−q3+q4) = −(z)2+(x1−z)2−(x2−x1+z)2+(x2+z)2 = x1×x2.

Amazingly s = |{z}| = |{x}| = kd with no extra memory needed. The reason this works is because

5

f = × is never queried on the correct values f(x1, x2), i.e. thriftily, but instead on four different
values.1

Ian and I proved the required bound with r = 1. Consider the following set of f . Let x =
〈x1, . . . , xd〉 and a = 〈a1, . . . , ad〉. f0(x) = 0 and fa(x) = 1 if a = x else is 0 Note f0(x) is a sensitive
function. Hence, on every x, the branching program must make the thrifty read. We will use such a
branching program to communicate/compress 〈z, x〉 using only log s bits of communication. Hence
s = |{z}|kd. Given 〈z, x〉, the first player specifies p1 = P1(z, x) ∈ [s]. The second player for each
value of a computes R(Q1(fa, p1)) = fa(x) ∈ {0, 1} and in so doing learns whether or not a = x.
Now knowing x, he recovers P−1

1 (p1, x) = z.
Given this, we figured that this set of fa would be sufficiently hard for the general proof, but it

is not. Here is a ZLFLFLFLFLFLFLFL branching program with d leaf reads that works when
restricted to these fa.

For i = 1..d
Reads xi, then reads enough of f to know if xi = ai.
if xi 6= ai, then quit and answer 0.

Quit and answer 1.

This easily fits into our model with r = d. For i ∈ [d], pi = Pi(z, x) = 〈z, xi〉, qi = Qi(f, pi) = (if
xi = ai), and R(q1, . . . , qr) = (if x = a) = fa(x). Here s = |{z}|k.

A yet even easier form of this problem becomes the number on a forehead problem. Let r = d.
For i ∈ [d], the ith player receives pi = Pi(z, x) = 〈z, xj 6=i〉 where xj 6=i gives you all of x except
for xi because presumably xi is on his forehead. Here s = |{z}|kd−1, which we hope to show
is not enough. The ith player also receives f . Hence, he knows f(x) is one of a column of k
possible values. He, however, is only allowed to send a one way communication of one such value
qi = Qi(f, pi) = Qi(f, xj 6=i) ∈ [k]. The referee then must be able to combine these outputs to
obtain the answer, namely R(q1, . . . , qd) = f(x). We have to show that this is not possible. Note
that this number on forehead problem says nothing about z and hence our lower bound of kd−1 for
the f(x) problem should give a lower bound for this.

The intuition for the lower bound would go something like this. The player Qi, knowing only
pi = Pi(z, x) ∈ [s], knows only log s bits about 〈z, x〉. But he knows all of z. Hence, he knows only
log s − log |{z}| bits about x. Hence, the set Si ⊆ [k]d of values x that he still thinks are possible

has size on average |{z}|kd

s . Player Qi, however, is only allowed to send a one way communication of

one value qi = Qi(f, pi) ∈ [k]. The best he could do would be to send s log k
|{z}|kd

bits about each of the

possible values f(x′) for x′ ∈ Si consistent with pi. The referee then must be able to combine these
outputs to obtain the answer, namely R(q1, . . . , qd) = f(x). The referee knows a total of r · s log k

|{z}|kd

bits about the required log k bits of f(x). This gives r · s log k
|{z}|kd

≥ log k or rs ≥ k · |{z}|kd as we want

for our lower bound.
What do you think?

1This Ben-OR and Cleve algorithm can be used to multiplying d numbers by applying this same idea recursively
to a binary tree of dept d giving a width k2 branching program with length 4depth = 4log2 d = d2. It would be nice, but
I don’t however think that this branching program fits into our r = d2 framework. I can imagine that it fits into our
r = 2d stages. For each S ⊆ [d], let pS = z+

∑
j∈S

xj (likely with some subtractions). Then qS = QS(×, pS) = (pS)
d.

Note that q[d] = (z +
∑

j∈[d] xj)
d contains Πj∈[d]xj as one of its terms. With s = |{z}| = 2d and r = 2d, this would

give rs ≥ |{z}|kd as we want as our lower bound. Alternatively the model could be changed to allow Pi to depend
on the previously computed qi−1 = Πj∈[i−1]xj and use this to compute qi = qi−1 × xi.

6

5 A Better Proof for d-Ary Tree of Height h

Consider the full d-ary tree of height h problem. The n = 2h−1 leaves u are labeled with variables
xu. The vector of these is denoted ~x. The internal nodes v are labeled with functions fv. The
vector of these is denoted ~f .

Jeff and Steve’s restriction on the branching program is that it does not read f twice in a row.
The restriction here will be more complicated. Then we get close to the pebble bound.

Consider the computation path on input instance
〈

~x, ~f
〉

. For each internal node v in the tree,

there must be a state along this path that queries ~fv(~av) on the values ~av = 〈a1, . . . , ad〉 that arise
from this instance at this node v. Otherwise, its value can be changed changing the required output.
Colour such states red. Colour black the other ~f reading states that are querying ~fv(a

′
1, . . . , a

′
d)

on the values 〈a′1, . . . , a
′
d〉 that do not arise from input ~x. Similarly colour the values in the matrix

defining f either red or black. Colour green the leaf reading states.
The way the natural branching program completes its computation is to read the value xu at

some last leaf node u of the tree and then follow the path from it up to the root of the tree reading
the appropriate value of fv at each node v as it is reached. This means that the natural branching
program has a sub-computation path consisting of a green state followed by h− 1 red states. Now

lets go back to consider the computation path on input instance
〈

~x, ~f
〉

in our arbitrary branching

program. For each leaf node u of the tree, consider the one green state and the h − 1 red states
corresponding to reading the path in the tree from u to the root. This set of states we will call a
tree path of red states. We do know that each of the states in this set appears somewhere in
the computation path, but we don’t know where or in what order they will appear. Let γu denote
the first state from this set that appears in this computation path and let δu denote the last. Let
ℓu denote the total number states in this sub-computation path from γu to δu. Let ℓ = minu ℓu and
γ = γu and δ = δu be the corresponding states.

Theorem 4 The condition on the branching program is that ℓ is bounded. Then number of states

needed will be at least s ≥
(

ℓ
h

)−1
k(d−1)(h−1).

This is much better than the previous version of the theorem which also had a k−b factor, where
b is the number of black states.

Note for the natural branching program, γu to δu in the computation path only contains the
one green and h − 1 red states themselves, and hence ℓ = h and

(

ℓ
h

)

= 1 and the lower bound is
(more or less) tight. There are only n = 2h−1 leaf nodes of the tree and about the same number of
internal nodes, each of which has only one function values that needs to be queried. Suppose the
total length of each computation path in the branching program is at most c times this (i.e. the
relevant variables are not read more than c times each and there are not that many black states).
Then ℓ ≤ c2h so that

(

ℓ
h

)

is effectively a constant with respect to k (assuming c is). The worst case,
however, is bad. Each function fv is defined by kd different values. Hence, even if they are only
read once each there could be ℓ = kd black states in a computation path. Then

(

ℓ
h

)

≈ khd which
completely kills the result.

Proof: [With some handwavey parts] Alice knows an entire input instance
〈

~f, ~x
〉

. Alice sends

Bob log s+log
(

ℓ
h

)

+N − (h−1)(d−1) log k bits from which Bob learns all N bits needed to specify
〈

~f, ~x
〉

. This gives s ≥
(

ℓ
h

)−1
k(d−1)(h−1).

7

Alice’s method is to use the branching program, which they both know. Alice uses log s bits to
tell Bob state γ. Then she tells him enough about the input that Bob can traverse this computation
path from state γ to δ. Alice sends log

(

ℓ
h

)

bits to tell Bob which of these are the h red/green states
giving the path from leaf u in the tree to the root. Each of these h−1 red states queries fv(a1, . . . , ad)
at specific values ai that correspond to the values that reach node v of the tree on the actually

instance held by Alice. Each of these values ai restricts the set of inputs
〈

~f, ~x
〉

by a factor of k.

Hence, this provides (h− 1)d log k disjoint bits of information about the instance
〈

~f, ~x
〉

that Alice

then does not have to provide.
At the beginning of the communication, Alice prematurely assumes that Bob already has these

(h− 1)d log k bits and sends Bob N − (h− 1)d log k bits to tell him all the rest of the instance.
Bob, however, does not learn the path of red states until it is able to traverse the computation

path from γ to δ. This is complicated by the fact that Bob needs some of this learned information in
order traverse in order to learn this information. For example, again consider the natural branching
program. State γ is the green state that reads xu. Bob needs to be given the value of xu by Alice so
that he can follow this edge to the next red state that is reading the function fv labeling the parent
of u. Once Bob knows this red state is querying fv(~xv), he learns the values ~xv =

〈

x〈v,1〉, ..., x〈v,d〉
〉

that arise from the Alice’s instance. One of these learned values, however, is the value of xu that
he just learned. Hence, he really only learns d− 1 new values. This same thing repeats all the way
up the tree from leaf u to the root. This is why Alice assume that Bob learns (h− 1)(d− 1) values
from the h− 1 red states.

The handwavey part of the proof is that there are not any other complications of this sort, of
Bob needing to know information to traverse before he learns it. Certainly any black state reveals
information about the instance that is not learned from the h − 1 red states and hence Alice will
immediately be giving Bob its value well before Bob will need to transverse out of this state.

6 A Tuple of Functions

Consider this easier problem: The output is the tuple
〈

f1(x〈1,1〉, ..., x〈1,d〉),, fd(x〈d,1〉, ..., x〈d,d〉)
〉

with inputs being the f and the x. The obvious upper bound is as follows. After the branching
program computes the outputs of the first d− 1 functions, it must have kd−1 branches to remem-
ber their answers. Then it branches another kd−1 times to remember the first d − 1 leaf values
〈

x〈d,1〉, ..., x〈d,d−1〉

〉

. Hence, there are k2(d−1) leaf reading states that read the last leaf value x〈d,d〉.

This then branches on its value to k2(d−1)+1 states reading the specified value of fd. We HOPE to
prove a similar lower bound.

Theorem 5 Computing
〈

f1(x〈1,1〉, ..., x〈1,d〉),, fd(x〈d,1〉, ..., x〈d,d〉)
〉

requires s ≥ k2d−1 function

reading states and s ≥?? · k2d−2 leaf reading states.

*** OOPS I found a bug in the leaf reading state proof. Hence I give the function reading state
proof first *****

Proof: [Function Reading States] Suppose Alice and Bob both know a branching program for

this problem. Alice knows an entire input instance
〈

~f, ~x
〉

. She starts by telling Bob a specially

chosen function reading state δ along this instance’s computation path. She then tells Bob all but
2d− 1 of the n = d(kd + d) different [k] values in the instance. From this, Bob is able to learn all
n values in the instance. It follows that log s+ (n− 2d+ 1) log k ≥ n log k, giving that s ≥ k2d−1.

8

Consider the computation path on input
〈

~x, ~f
〉

. For each of the functions fi for i ∈ [d], there

must be a state along this path that queries fi(~xi) on the values ~xi =
〈

x〈i,1〉, ..., x〈i,d〉
〉

that arise
from the input. Otherwise, its value can be changed changing the required output. Colour such
values fi(~xi) and such states red. Colour black the other ~f reading states that are querying fi(~x

′
i)

on different values. Colour green the leaf reading states. Like Steve, let δ be the last red state in
this instance’s computation path.

Alice tells Bob state δ and enough about the input that Bob can traverse this computation path
from state δ on to the output node. This of course requires telling Bob the value queried at each
state along this path. For example, so that Bob can transit out of δ, she tells him the function
value queried there. The state δ itself, however, is special because it is red. This means it is labeled
with the values ~xi =

〈

x〈i,1〉, ..., x〈i,d〉
〉

that actually appear in Alice’s input instance. Bob, knowing
that this state is red, now knows these d values. Hence, Alice need not separately tell him them.
Bob will not encounter any other such red states, because δ was the last. Hence, Alice need not
separately tell Bob the other d− 1 outputs fi′(~xi′). Bob does, however, learn these values when he
reaches the output node, because they are part of the output. Hence, as stated Alice need only tell
Bob all but 2d− 1 of the [k] values in the instance.

Concern: Suppose you have a matrix fi of k
d values from [k]. How many bits does it take to

tell you all of them but one when it is not known ahead of time which one is not being given. Note
it takes log kd bits to tell you which log k bits you are not going to tell! Solution: From the state
δ, Bob learns which value is not being given to him, so Alice can just send a list of the other kd− 1
other values and Bob can figure out which are which.

Proof: [Leaf Reading States with Bug] The proof is similar. Again let δ be the last red state of
this instance’s computation path and let γ be the first leaf reading state before it. Alice tells Bob
state γ and enough about the input that Bob can traverse this computation path from state γ to
δ and then on to the output node. So that Bob can transit out of γ, she tells him the value of
the leaf variable read at γ. It is this information the changes the bound from s ≥ k2d−1 function
reading states to s ≥ k2d−2 leaf reading states.

But there are more complications. Between γ and δ there may be other red states. This,
however, is not a problem because for each such state, though Alice now must tell Bob the output
fi′(~xi′), she no longer needs to tell him this function’s d input values ~xi′ =

〈

x〈i′,1〉, ..., x〈i′,d〉
〉

.
(Though there is some complication about knowing which states are red.)

Lets just assume that from γ to the output state, δ is the only red state and the rest are black.
Note there are d · (kd−1) black functions values. Hence there may in fact be this many black states
between γ and the output. How does Bob know which of these is the red state δ? It may take log kd

bits for Alice to tell Bob. This kills the result, namely log s+ log kd + (n− 2d+ 2) log k ≥ n log k,
giving that s ≥ k−d · k2(d−1) = kd−1.

7 Extending Steve’s Proof from Section 8

Consider the full d-ary tree of height h problem. The n = 2h−1 leaves v are labeled with variables
xv. The vector of these is denoted ~x. The internal nodes v are labeled with functions fv. The
vector of these is denoted ~f .

Jeff and Steve’s restriction on the branching program is that it does not read f twice in a row.
The restriction here will be more complicated. Then we get close to the pebble bound.

Let ~f be the plus function on each node. Yes an easy function to compute. Consider the

computation path on input
〈

~x, ~f
〉

. For each internal node v in the tree, there must be a state

9

along this path that queries ~fv(~x
′) on the values ~x′ = 〈a1, . . . , ad〉 that arise from input ~x at this

node v. Otherwise, its value can be changed changing the required output. Colour such states red.
Colour black the other ~f reading states that are querying ~fv(a

′
1, . . . , a

′
d) on the values 〈a′1, . . . , a

′
d〉

that do not arise from input ~x. Colour green the leaf reading states.

Theorem 6 (Generalized Steve’s Proof) The condition on the branching program is that for
every ~x, there is a sub-computation path of some short length ℓ = r + b+ g from some green state
γ~x to some red state δ~x within which the number of red states is large, say r = h (and not redoing
info), the number of black states is small, say b, and the number of green states is small, say g.

Then number of leaf reading states needed will be at least
(

ℓ
r,b,g

)−1
k(d−1)r−b+1. (The first factor is

consider to be a constant.)

For example, in Steve’s proof, this sub path has d = 2, r = 1, b = 0, and g = 1 and the lower
bound is the same k(d−1)r−b+1 = k2. In the obvious upper bound, the last thing that the branching
program does is to read the right most leaf variable xn and then queries the h functions along the
path from this leaf to the root of the tree. This gives that this sub path has r = h, b = 0, and
g = 1 and the lower bound is k(d−1)h+1 closely matching the pebble bound.

Proof: The state γ~x will contain kℓ−1
(

ℓ
r,b,g

)

pockets, one of which contains ~x. We claim that each

such pocket in the s leaf reading states of the branching program will contain at most kn−dr−g

inputs ~x. Given there are kn such inputs ~x, this then proves that there are at least kdr+g pockets.

Hence there are at least s ≥ kdr+g/
[

kℓ−1
(

ℓ
r,b,g

)

]

=
(

ℓ
r,b,g

)−1
k(d−1)r−b+1 states. Recall ℓ = r + b+ g.

What remains is to prove the claim.
Proof of claim: Starting at state γ~x, there are at most kℓ−1 states δ~x that are at the end of a
path of containing ℓ states. Then there are

(

ℓ
r,b,g

)

choices of which of these ℓ = r + b+ g states in

this path will be red, black, and green. For each of these kℓ−1
(

ℓ
r,b,g

)

choices, state γ~x will have a
pocket. Each of these r red states queries fv(a1, . . . , ad) at specific values ai. Each of these values ai
restricts the set of inputs ~x by a factor of k. The edge out of each of the g green nodes specifies the
value of one variable xv restricting the set of input ~x by another factor of k. Hence, the kn values
of ~x are restricted by a factor of kdr+g. Of course we have to make sure that these restrictions don’t
repeat the same information. The statement of the claim follows.

Total of s states: If the entire branching program has at most s states, then the tree of kℓ−1

paths of length ℓ can actually only contain s states. But there are about sr ways to choose r of
these to be red. This only gives s ≥ kdr/sr, giving s ≥ kd.

8 A Direct Proof of Jeff’s June 13, 2016 Theorem 2

Theorem 7 (Jeff’s Theorem) Any deterministic k-ary branching program computing f(x4 +
x5, x6 + x7) that does not read f twice in a row, when f is part of the input, requires s ≥ k2

leaf-reading states.

Jeff’s proof was based on analyzing a game with 5 players. We use his ideas to give a direct
proof.

Proof: (direct) Let B be such a program. Fix the function f . We will associate with each
leaf input ℓ = (a4, a5, a6, a7), a leaf-reading state γℓ as follows: Let δℓ be the first state of the

10

computation C(ℓ, f) on input (ℓ, f) which queries f(a4+a5, a6+a7) (note that δℓ must exist, since
otherwise we could change the correct answer without changing the computation).

Let γℓ be the state immediately preceding δℓ in the computation C(ℓ, f). Since f cannot be
read twice in a row, γℓ queries some leaf input xi and follows the edge labeled ai to δℓ.

CLAIM: State γℓ can be associated with at most k2 different leaf inputs (x4, x5, x6, x7).
The Theorem follows from the CLAIM, since there are k4 different leaf inputs and k4/k2 = k2.
PROOF of CLAIM: γℓ has at most k successor states corresponding to the k values of the input

variable xi that it queries. If γℓ is associated with input (x4, x5, x6, x7) then one of these k successor
states, say δ′, must query f(x4 + x5, x6 + x7). But δ′ can play this role for at most k leaf inputs
(x4, x5, x6, x7) since xi is fixed and so are the values of x4 + x5 and x6 + x7.

9 Adding g Layer

The Tree Evaluation Problem FT h
d (k) is the d-ary tree of height h. Each internal node i is labeled

with a functions fi : [k]
d ⇒ [k]. External nodes with elements from [k].

Neciporuk2 gives that a deterministic k-way branching program solving FT h
d (k) requires at least

dh−2−1
4(d−1)2

· k2d−1 ≈ dh−4 · k2d−1 states.

This paper considers considers h = 4. Computing a d-ary g at the bottom level takes kd states.
I am assuming that Steve’s proof gives that the total number of states needed to compute h = 4 is
at least kd times the number of leaf reading states to compute h = 3. 3 Theorem 8 states that the
later is at least kd−(1/d). This then gives abound for h = 4 of k2d−(1/d).

Actually do you multiply by kd when adding g’s or kd−1. When d = 2, Steve was telling us to
multiply by k2. But the upper bound is O(k(d−1)h−d+2), which looks like multiplying by kd−1.

If you multiplying by kd−1, then for h = 4 we only get k2d−(1/d)−1 which is worse than Neciporuk.
——————————————
Well that is a disappointment. My understanding is that you said that a k4 lower bound for

h = 4 and d = 2, would beat Neciporuk. But your Problem 1 clearly states that that is only an
important step.

You need a k3d.2 = k10 bound for h = 4 and d = 4. Wow! This is so different. If I am not
mistaken, when computing g(z1, ..., zd), you need to remember all zi, before you can compute the g.
This increased the number of states needed by a factor of kd−1. But when computing +(z1, ..., zd),
you only have to remember the partial sum. This increased the number of states needed by a factor
of k1. You put at + at the second level. Hence I don’t think k3d−2 needed but only k2d−?.

10 Introduction

We count the number of the number of leaf reading states in a deterministic branching program. We

consider computing f
(

∑

j∈[r] x〈1,j〉, . . . ,
∑

j∈[r] x〈ℓ,j〉

)

, i.e. we consider the tree evaluation problem

in which f has ℓ children, each of which is a + with in-degree r, each of which is a leaf variable x〈i,j〉.
Each node is a value over [k]. The input consists of f and the leaves x〈i,j〉. Note that

∑

j∈[r] x〈i,j〉
can be computed with only k states by remembering the partial sum. Hence the whole function
requires kℓ states. We give a lower bound of kℓ−1/r. If the + was replaced by something harder,
then kℓ+r−1 may be needed. Sadly, Section 15 shows that even if the tree was ℓ-ary with height

2Figure 6, page 29 of Steve’s paper
3Actually, I do not recall seeing the proof of this.

11

h with an arbitrary functions f, g, .. : [k]ℓ ⇒ [k] at each node, our lower bound techniques cannot
prove a bound larger than kℓ.

The following helps to justify why the lower bound is less than kℓ. When r = 2 change the
problem so that the final output f is a single bit or equivalently we are only needing the branching
program to learn one bit about the output. We have a surprising upper bound of kℓ−0.27 moving
away from the obvious upper bound of kℓ closer to our lower bound of kℓ−0.5.

Theorem 8 Any deterministic branching program computing f
(

∑

j∈[r] x〈1,j〉, . . . ,
∑

j∈[r] x〈ℓ,j〉

)

re-

quires s leaf reading states:

f ∈ [k] f ∈ [2]

r ≥ 2 kℓ−1/r ≤ s ≤ kℓ kℓ−1/r/ log k ≤ s ≤ kℓ

r = 2 ” ” ≤ s ≤ kℓ−0.27

I am quite sure that the branching program upper bound for f(X + Y, U + V) ∈ [2] requires
at at most s ≤ k1.73 leaf reading states and at most k3.73 f reading states. The bound on the
number of leaf reading states is a blow to Steve’s leaf reading conjecture. When Steve adds a g
layer to increase a k2 leaf reading lower bound to a k4 over all state lower bound, this upper bound
contradicts this by giving k3.73. Of course, the upper bound outputs a only a single bit where
Steve’s function outputs log k bits. Converting from a branching program computing a single bit
to one computing log k bits, generally multiplies the the number of leaf reading states by a factor
of k because it either has to be done in parallel or the previously computed bits of the output need
to be remembered. If, on the other hand, the branching program were allowed to output the log k
bits one at a time, then this only multiplies the number of leaf reading states by log k. The latter
is what our information theoretic lower bound reflects.

We also consider some special cases.

Theorem 9 FLFL

Theorem 10 Any deterministic branching program, that does not read f twice in a row, computing
f(x4 + x5, x6 + x7), when f is part of the input, requires at least s ≥ k2 leaf reading states.

This restriction says that a computation path can values f(c1, c2) for many different tuples
c = 〈c1, c2〉, but after such a read, it much read a leaf value before it can read f(a′, b′) for another
tuple c′ = 〈a′, b′〉. The effect is that for any single “block” of f reads, the branching program learns
f(c) for one and only c. This difference differentiates the hard and the easy versions of the following
game.

11 Intuition

I just want to check to see if you understood what I meant that each part of f needs to be learned
locally in some part of the branching program. This was already known in that for each of the
kd possible input values to f , f needs to be queried on these values somewhere in the branching
program. This proves that the number of f reading states is at least kd. But we are shifting
from counting the number of f reading states to counting the number of leaf reading states (which
possibly could have been a factor of k smaller).

12

The way the lower bound goes is that for each of the s leaf reading states u, the path from u to
the next leaf reading state v communicates log(s) bits. The union of these s log(s) bits communicate
all kd log k bits of f according to the communication game. Locally the state u of the branching
program is responsible for some of this communication.

We show that the number of leaf reading states is not a factor of k smaller then the number of
f reading states, only possibly a factor of k1/d smaller. The reason we loose the k1/d is because the
player responsible for state u also knows the value of the leaf in question – though it is not clear
how this helps.

12 Games

We define a game that is a number in the hand game as each of the players has an input that
the others do not know and is a number on the forehead game as they all know a number on the
referee’s forehead and he in turn knows their inputs.

Definition 11 The 〈k, ℓ, r〉 function game is defined as follows. The input consists of a ℓ-input
function f : [k]ℓ ⇒ [k] and ℓr inputs x〈i,j〉 ∈ [k] for i ∈ [ℓ] and j ∈ [r]. The required output is

f
(

∑

j∈[r] x〈1,j〉, . . . ,
∑

j∈[r] x〈ℓ,j〉

)

. There are ℓr players and a referee. Player 〈i, j〉 knows
〈

f, x〈i,j〉
〉

.

Simultaneously they each send some s〈i,j〉 bits to the referee. There is zero communication between
them. For free, lets assume the referee knows the indexes x〈i,j〉 but knows nothing about f except
what the players send him. He needs to learn the output. The cost is the total number of bits
s =

∑

i∈[ℓ],j∈[r] s〈i,j〉 sent to him.

Lemma 12 The 〈k, ℓ, r〉 function game requires s ≥ kℓ−1/r log k bits.

Proof: Suppose we have an algorithm for the 〈k, ℓ, r〉 function game that communicates s bits.
From this we design an algorithm in which the referee learns from the players f (z1, . . . , zℓ) for each
z1, . . . , zℓ ∈ [k]. Knowing that this requires the communication of kℓ log k bits, gives us a bound
on s. For each i ∈ [ℓ], the log k bits of zi are partitioned into r parts. For j ∈ [r], Player 〈i, j〉
will use his value x〈i,j〉 to specify the bits in the jth part via the sum zi =

∑

j∈[r] x〈i,j〉. Define

Xj =
{

xj = a · (2log(k)/r)j−1 | a ∈ {0, 1}log(k)/r
}

to be the set of values with zeros in the bits out
side of his block. Note that each value of zi can be made from combinations of these x〈i,j〉 ∈ Xj ,

namely
{

zi ∈ {0, 1}log(k)
}

=
{

zi =
∑

j∈[r] x〈i,j〉 | x〈i,1〉, . . . , x〈i,r〉 ∈ Xj

}

. Knowing f , Player 〈i, j〉

for each x〈i,j〉 ∈ Xj sends the referee the s〈i,j〉 bits that he sends in the 〈k, ℓ, r〉 function game
protocol when knowing

〈

f, x〈i,j〉
〉

. Note, because the players do not communicate with each other,
we can know what one player will do without specifying the other player’s inputs. The total number
of bits sent is

∑

i∈[ℓ],j∈[r] |Xj | · s〈i,j〉 = |{0, 1}log(k)/r| · s = k1/r · s. For each z1, . . . , zℓ ∈ [k], the
referee can select one message from each player and determine f (z1, . . . , zℓ). Hence, the players
must be sending k1/r · s ≥ kℓ log k bits, giving s ≥ kℓ−1/r log k as required.

—————

Definition 13 An easier five person game is the same except each player for each c = 〈c1, c2〉
either communicates all of f(c) or none of it. Let sℓ denote number of c for which player Pℓ reveals
f(c) and s =

∑

ℓ∈{4,5,6,7} sℓ.

Lemma 14 For the easier five person game to succeed, s ≥ k2.

13

Proof: (Argument) If player P4 knew c∗ = 〈x4 + x5, x6 + x7〉, he would give the value of f(c∗).
But he does not. Knowing x4 alone gives him no information about which c needs f(c) revealed.
Hence, he gives f(c) for a seemingly arbitrary set of c. Same with the other three players. The
player Pc knows c∗ = x4 + x5 and f(c) for an “arbitrary” set of k

5 values of c. Does he necessarily
know the value f(c∗) for the correct c∗?

In the non-easy version of the game, things are harder because a player can communicate strange
things like the parity of f(c) over all c. But still knowing one of the leaves does not help the first
four players. They can only communicate some s′ bits about f . If they don’t specify the full matrix
f contains k2 log k bits, then player Pc might not know the answer.

Proof: (Easy Version of Game) We merge players P4 and P6 into one P〈4,6〉. For each setting of
〈x4, x6〉, let C〈x4,x6〉 denote the set of c = 〈c1, c2〉 for which this player reveals f(c). By definition
s〈x4,x6〉 = |C〈x4,x6〉|. Similarly, define C〈x5,x7〉. Form a bipartite graph with the k2 nodes u〈x4,x6〉 on
the left and the k2 nodes v〈x5,x7〉 on the right. For each value of 〈x4, x6〉 ∈ [k]2 and c = 〈c1, c2〉 ∈
C〈x4,x6〉, we add a red edge edge between node u〈x4,x6〉 and node v〈x5,x7〉 = v〈c1−x4,c2−x6〉. The
meaning of this edge is that on input 〈x4, x5, x6, x7〉, player Pc learns the value of f(c∗) from player
P〈x4,x6〉. The total number of such red edges is |{u〈x4,x6〉}| × |C〈x4,x6〉| = k2 × s〈x4,x6〉. Similarly
add k2 × s〈x5,x7〉 blue edges between v〈x5,x7〉 and u〈x4,x6〉 = u〈c1−x5,c2−x7〉 meaning that on input
〈x4, x5, x6, x7〉, player Pc learns the value of f(c∗) from player P〈x5,x7〉. If by way of contradiction,
s = s〈x4,x6〉 + s〈x5,x7〉 < k2, then the total number of edges added is less than k2 × k2. Hence, there
is in input 〈x4, x5, x6, x7〉 without an edge between u〈x4,x6〉 and v〈x5,x7〉. On this input, player Pc

learns f(c∗) from neither player.

13 Lower Bound on the Number of Leaf Reading States

The following lemma translates from the results about the communication game to results about
the branching program. Note that s log s ≥ k2 log k gives that s ≥ 1

2k
2. The 1

2 comes from
log s ≈ log k2 = 2 log k.

Lemma 15 Any branching program computing f(x4 + x5, x6 + x7) when f is part of the input
containing s leaf reading states can be translated into an algorithm for the five person game with
s′ = s log s bits communicated4. If the branching program does not read f twice in a row, then the
algorithm is also for the easy version of the game with s = s values f(c) revealed.

Proof: Assume all five players know the branching program. Denote the leaf reading states of
the branching program u1, . . . , us. For ℓ ∈ {4, 5, 6, 7} and for each state ui reading xℓ, player Pℓ

starts at state uj and follows the edge labeled by the value of xℓ and then follows any edges out of f
reading states until another leaf reading state uj is reached. The player uses log s bits to indicate uj
(or the fact that some output state was reached instead). The fifth player knowing 〈x4, x5, x6, x7〉
and the first four player’s output can easily trace out the computation path through the branching
program from the start state then from states ui to uj until an output state is reached determining
f(x4 + x5, x6 + x7). (In fact, player Pc does not even need to be told 〈x4, x5, x6, x7〉 if given log s
bits to handle an f reading start state.)

To clarify, consider the following examples. If state ui reads xℓ and the edge labeled with its
value goes to another reading state uj , then the index of uj is actually known by everyone already
so does not need to communicated. Hence, the lower bound actually does not need to count this

4Actually s′ = s log(s+ 1).

14

state ui. As a second case, suppose that the edge from ui labeled with xℓ’s value goes to state v
that reads the value of f(c) for some fixed c = 〈c1, c2〉. Suppose that the branching program does
not read f twice in a row. Then each edge out of v must go to a leaf reading state uj . When player
Pℓ communicates the index of the next reading state uj reached, all that is communicated is the
value of f(c) and nothing more. Note that this is in accordance with the easy version of the game.
As a third case, suppose that this f reading state v is the root of some large and complex tree of
f reading states. Then what Pℓ communicates is some complex information about the matrix f .
Note that if xℓ had a different value, then a different edge would be followed from state ui to the
root v′ of a different tree of f reading states and the information about f might be different.

14 Upper Bounds

I am quite sure that the branching program upper bound for f(X + Y, U + V) ∈ [2] requires at at
most s ≤ k1.73 leaf reading states and at most k3.73 f reading states.

Proof: (??) Let A be a function from [k] to a single bit. Babai’s paper top of page 21 expresses
A(X + Y) as

A(X + Y) =
∑

|T1|≤d/2





∑

|T1∪T2|≤d

aT1∪T2YT2



 ·XT1 +
∑

|T2|≤d/2





∑

|T1∪T2|≤d

aT1∪T2XT1



 · YT2 .

Define the single bit BT1(A, Y) to be
∑

|T1∪T2|≤d aT1∪T2YT2 and the single bit CT2(A,X) to be
∑

|T1∪T2|≤d aT1∪T2XT1 , giving

A(X + Y) =
∑

|T1|≤d/2

BT1(A, Y) ·XT1 +
∑

|T2|≤d/2

CT2(A,X) · YT2

The following is a branching program computing A(X + Y). It has a layer for each |T1| ≤ d/2
and for each |T2| ≤ d/2. The layer starts with two states knowing the sum so far computing
A(X +Y). The branching program branches k ways on the value of Y . For each of these branches,
it has a complex tree of A reading states computing BT1(A, Y). These states collapses down to four
states, knowing the sum so far and knowing BT1(A, Y). The branching program then branches k
ways on the value of X. It then completes the layer by adding BT1(A, Y) ·XT1 into the sum. Babai
and friends has only k0.73 bits of communication and hence I assume our branching program needs
only four times as many leaf reading states.

The number of bits BT1(A, Y) =
∑

|T1∪T2|≤d aT1∪T2YT2 that must be computed is k1.73 because

there are k0.73 layers and in each branching program branches k ways on the value of Y . A
single such value is a sum over the polynomial coordinates aT1∪T2 , each of which is a complex
combination of A(z) for all z ∈ [k]. But I am quite sure that each such coordinate is a simple
sum of these, namely aT1∪T2 =

∑

z∈[k]??A(z). Hence, the order of the two sums could be reversed,

namely BT1(A, Y) =
∑

|T1∪T2|≤d

[

∑

z∈[k]??f(z)
]

YT2 =
∑

z∈[k]

[

∑

|T1∪T2|≤d??f(z)
]

YT2 . This allows

BT1(A, Y) to be computed with only k reads to A, for a total of k2.73.
The branching program for f(X + Y, U + V) first reads U and than V giving k states each

knowing the value of U + V , it then follows the above protocol when A(.) is the indicated column
f(U + V, .). This increases the number of leaf reading states to k1.73 and f reading states to k3.73.

15

15 Technique cannot be extended

Consider a ℓ-ary binary tree with height h with an arbitrary functions f, g, .. : [k]2 ⇒ [k] at each
node. The pebble lower bounds would say that something like h+ ℓ pebbles would be needed and
hence the conjecture is that (h+ℓ) log k space or kh+ℓ states are needed. Our lower bound technique
naturally translates into the following game. There is a player for each leaf who knows his leaf value
and all of the f, g, .. and simultaneously communicates to the referee who must know the output.
There are ℓh functions f, g, .. requiring at total of ℓh × kℓ log k bits of information for the players
to send. This gives a ℓh × kℓ lower bound on the number of states needed or h log ℓ+ ℓ log k bound
on the space. I am assuming ℓ << k. Hence, this is way too small.

16 Chat that nobody wants to read

The most powerful s′ space algorithm is modeled by a branching program with s = 2s
′

states. The
function f(x4 + x5, x6 + x7) is an example of evaluating a binary tree of depth two, where the four
leaves are labeled xℓ, their parents compute plus and the root computes f . Each node takes on
a value from some field of size k. A lower bound for the corresponding pebble game states that
d pebbles and hence d log k space or kd states is needed to evaluate such a binary tree of depth
d. Barington and friends prove that actually only 2 log k + 2d space or k2 × 4d states is needed if
all the internal nodes are plus and times. Steve and David assure us that a lower bound stating
that k2 leaf reading states are needed to compute f(x4 + x5, x6 + x7) can be used to give a k3

lower bound on the number states needed to evaluate a depth d = 3 tree. The function f can be
thought of as k2 variables giving the value of f(c1, c2) for each 〈c1, c2〉 ∈ [k]2. If the top node of
that tree is included in the input then the total number of variables with values from [k] will be
k2 +8 and the number of bit variables will be ℓ ≈ k2 log k. Needing k3 states translates to needing
log k3 = 3 log k ≈ 1.5 log ℓ space. This is slightly better than the obvious log ℓ space bound and
beats Barington’s general 2 log k + 2d upper bound when the internal functions are only plus and
times and k > 2d.

A branching program is a DAG. Each node represents a state the computation might be in.

The number of such states is s = 2number of bits of computation space. In such a state, the
computation reads the value of some variable x and branches to another state based on this value,
i.e. state u is labeled with a variable x. There is an edge from state u to state v labeled by r if
the computation transitions from state r to state v when x = r. Let x1, x2, x3, x4 ∈ [k] be the leaf
values from a field of size k and let f(c1, c2) be an arbitrary function from [k]2 to [k]. The goal is
to have a branching program compute f(x4 + x5, x6 + x7). Having f part of the input means that
for each c1 and c2 ∈ [k], f(c1, c2) is a variable that could be read at a state node. In fact, the size
of the branching program must be at least k2 because there must be a state reading f(c1, c2) for
each of the k2 indexes c = 〈c1, c2〉 ∈ [k]2. We, however, will only count leaf reading states, i.e. ones
that reads one of the four variables xℓ.

The following story may help the intuition. Suppose a detective L is investigating about
c∗=Cathy so he asks player F the colour of Cathy’s hair to which F responds blond. A bad
guy does not hear the detective’s question but does hear F ’s answer. We do not care that he learns
that Cathy’s hair is blond. But we don’t want the bad guy to learn that the detective is investiga-
tion about Cathy. This he inadvertently may learn, by hearing F answer “Cathy’s hair is blond”.
F could simply answer “blond”, but even then the bad guy learns that the detective is investigating
about a blond person. Our solution is that in response to the detective’s question, player F will
give the colour of every person’s hair, i.e. the answer to every question that the detective may

16

have asked. Though this means that bad guy learns the answer to way more questions than he
normally would have learned, he does not learn which question the detective asked. Similarly, in
our game. The matrix F is big needing lots of bits to describe it, so I don’t mind everyone knowing
this information that player F gives about f(C∗). But learning the part C∗ that c∗ is contained in,
gives too much information away about c.

———————————–

17

	Easy Problem
	Separate Bits
	<z,f(x)> with z<f,t>(x) not depending on t.
	An Easier Necessary Problem
	A Better Proof for d-Ary Tree of Height h
	A Tuple of Functions
	Extending Steve's Proof from Section 8
	A Direct Proof of Jeff's June 13, 2016 Theorem 2
	Adding g Layer
	Introduction
	Intuition
	Games
	Lower Bound on the Number of Leaf Reading States
	Upper Bounds
	Technique cannot be extended
	Chat that nobody wants to read

