
Time-Space Lower Boundsfor Undirected andDirected ST -Connectivityon JAG ModelsbyJe� A. Edmonds
A thesis submitted in conformity with the requirementsfor the degree of Doctor of PhilosophyGraduate Department of Computer ScienceUniversity of TorontocJe� Edmonds 1993

Abstract { Time-space lower boundsfor undirected and directedst-connectivity on JAG modelsJe� A. EdmondsDoctor of Philosophy 1993Department of Computer ScienceUniversity of TorontoDirected and undirected st-connectivity are important problems in computing. There are algo-rithms for the undirected case that use O (n) time and algorithms that use O (logn) space. The�rst result of this thesis proves that, in a very natural structured model, the JAG (Jumping Au-tomata for Graphs), these upper bounds are not simultaneously achievable. This uses new entropytechniques to prove tight bounds on a game involving a helper and a player that models a compu-tation having precomputed information about the input stored in its bounded space. The secondresult proves that a JAG requires a time-space tradeo� of T � S 12 2
 �mn 12 � to compute directedst-connectivity. The third result proves a time-space tradeo� of T � S 13 2
 �m 23n 23 � on a versionof the JAG model that is considerably more powerful and general than the usual JAG.
i

AcknowledgmentsThere are many people I wish to thank for helping me along the path from s to t. There werethose who held my hand while I walked the treacherous edges from idea to idea and bug to bug.I am also indebted to those who helped me make sure that my ideas changed state from thoughtto written form in a way that insured they were accepted rather than rejected. As I jumped fromdeadline to deadline, there were always people who insured that I cleared the hurdles and who gaveme the support I needed to prepare for the next leap. Faith Fich, my advisor, provided the perfectbalance between directing my path and leaving me to take a random walk through the undirectedgraph of research.Courses and research groups were important in providing the necessary supplies for my trip.They helped me learn about new papers, hear about the research of my peers, and gave me oppor-tunities to share my own work. Some of my favorite courses were combinatorial methods by Faithand Mauricio Karchmer, logic and non-standard numbers by Russell Impagliazzo and Steve Cook,graph theory by Derek Corneil, distributed systems by Vassos Hadzilacos, and complexity by AlBorodin. The research groups that most inuenced me were graph theory led by Derek Corneil,NC2 led by Mauricio Karchmer, ordinals and graph minors led by Arvind Gupta, the probabilisticmethod led by Hisao Tamaki, and complexity theory led by Al Borodin. The breadth requirementswere important as well. Some of them were actually interesting and taking them with Gara Pruessemade them all the more enjoyable. Especially, the beer afterwards.When I was traversing some of those edges during my mathematical odyssey, there weremany people who provided valuable support. Russell Impagliazzo, Arvind Gupta, Toni Pitassi,Hisao Tamaki, Tino Tamon, and Chung Keung Poon were kind enough to listen to my ideas andhelp me along. Some of my best work was also done jointly with these same people. Hisao, Tino,C.K. and Russell were particularly helpful in providing me with information from the mathematicalliterature that I wasn't as well versed in as I should have been. Al Borodin, Charlie Racko� andSteve Cook helped me by hitting my bugs with a y swatter. And of course, a great deal of thanksgoes to Faith Fich for treating me as a peer and for always being excited to discuss research.I will always be grateful to those who helped me convert my research to understandableEnglish. Faith Fich was my most devoted critic and English teacher and spent much of her timebeating my writing into shape and combing out the typos. Since criticism is often hard to hear,I sometimes relied on Jeannine St. Jacques to help put it into perspective. Many proof readerswere also crucial in revising my work. In addition to Faith Fich, I would like to thank Toni Pitassi,Naomi Nishi, Jennifer Edmonds, Miriam Zachariah, Paul Beame, and some unknown referees whowere very hard working. I was also saved many times by Steven Bellantoni, Eric Schenk, and KenLalonde when I was lost with Unix and Latex.There were many people who provided the emotional support I needed to continue my journey.ii

Faith Fich, Russell Impagliazzo, and Arvind Gupta, who had already become successful researchers,often reassured me when I despaired about my own success. Faith was always there for me withmotherly love. Through out the years, Al too gave many touching words of support that were greatlyappreciated. I thank Derek Corneil, Arvind Gupta, Faith Fich, Steven Rudich, and Pat Dymondfor arranging for me to give talks outside of U. of T. which provided me with some of the exposureand experience I needed. Martha Hendricks lightened things up and provided distractions when Iwas working too hard. Rick Wallace, Shirley Russ, Roland Mak, and Toni Pitassi were always bymy side to help me with ongoing emotional issues.PhD students are responsible for more than their own research. As I learned to teach under-graduates, I found important role models in Jim McInnes, Peter Gibbons, and Faith Fich. KathyYen, Teresa Miao, and Vicky Shum led me by the hand when I had administrative obligations.I would be remiss if I did not mention a few others who helped me on my way. My father, JackEdmonds, deserves some of the credit for my introduction to mathematics. He continually kept meinterested in puzzles to ponder. My mother, Patricia Oertel, provided support and encouragementas I made my way through public school and university. Baby Joshua was very obliging in keepingme awake at night so that I could do research. He also provided a lots of joy and love. My wifeMiriam was a tremendous support in every way possible and one last thanks goes to Faith Fich forbeing such a wonderful advisor.

iii

Contents1 Introduction 11.1 JAGS, NNJAGs, and Branching Programs : 11.2 Time Space Tradeo�s : 71.3 The st-Connectivity Problem : 81.4 A History of Lower Bounds for st-Connectivity : 91.5 The Contributions of the Thesis : 102 The Helper-Parity Game 112.1 The De�nition of the Game : 122.2 Viewing the Helper's Message as Random Bits : 132.3 The Existence of a Helper-Parity Protocol : 152.4 The �r=2b� Lower Bound : 162.5 The (2� �) Lower Bound Using Probabilistic Techniques : : : : : : : : : : : : : : : : 172.6 A (2� �) Lower Bound Using Entropy for a Restricted Ordering : : : : : : : : : : : 182.7 A Simpler Version of the Helper-Parity Game : 233 Undirected st-Connectivity on a Helper-JAG 273.1 Graph Traversal : 283.2 The Helper JAG : 303.3 A Fly Swatter Graph : 313.4 The Helper and a Line of Fly Swatter Graphs : 333.5 The Recursive Fly Swatter Graphs : 333.6 The Time, Pebbles, and Cost used at Level l : 343.7 Reducing the Helper Parity Game to st-Traversal : 353.8 The Formal Proof : 414 Directed st-Connectivity on a JAG 43iv

4.1 Comb Graphs : 434.2 JAGs with Many States : 445 Directed st-Connectivity on a NNJAG 475.1 A Probabilistic NNJAG with One Sided Error : 475.2 The Probability Distribution D on Comb Graphs : 495.3 The De�nition of Progress : 495.4 Converting an NNJAG into a Branching Program : 505.5 The Framework for Proving Lower Bounds on Branching Programs : : : : : : : : : : 515.6 A Probabilistic NNJAG with Two Sided Error : 525.7 Trials : 555.8 The Probability of Finding a Hard Tooth : 566 Future Work 606.1 Undirected Graphs : 606.2 Directed Graphs : 617 Glossary 63

v

Chapter 1IntroductionThis thesis proves lower bounds on the time-space tradeo�s for computing undirected and di-rected st-connectivity on the JAG and related models of computation. This introductory chapterintroduces the models of computation considered, gives a brief history of time-space tradeo�s, sum-marizes the known upper and lower bounds for st-connectivity, and outlines the contributions ofthe thesis.1.1 JAGS, NNJAGs, and Branching ProgramsMany di�erent models of computation are used in computer science. These abstract the crucialfeatures of a machine and allow theoreticians, programmers, and architecture designers to com-municate in succinct ways. Another motivation for de�ning models is to be able to prove lowerbounds. A long term goal is to be able to prove lower bounds on the Random Access Machines(RAM), because this is the abstraction that best models the computers used in practice. However,this goal remains elusive.In order to make the task of proving lower bounds easier, models are de�ned that are in someways more restricted than the RAM and in some ways are less restricted. One way of restrictingthe model is to restrict the order in which it is allowed to access the input. Another way is to notallow the actions of the model to depend on the aspects of the input that have to do with the inputrepresentation and not on the output of the computational task at hand. The usual justi�cationfor restricting the model in these ways is that it seems natural and that most known algorithmsfor the given problem adhere to the restrictions.One way to strengthen a model is to de�ne the model's internal workspace in such a way thatno assumptions are made about how the space is managed. Another way to strengthen the modelis to add to its instruction set; in the extreme, allow the model to compute any function of theknown information in one time step.This thesis is particularly interested in two models; JAGs and NNJAGs, and is indirectlyinterested in branching programs. These models and some closely related models are de�ned below.In Figure 1.1, the relative strengths in terms of direct simulations between these models, the RAMand the Turing machine are depicted.The (r-way) branching program [BC82] is the most general and unstructured model1

JAG

TM

NN-JAG
Strong Jumping

BP
ComparisonRAM

BP

NN-JAGFigure 1.1: Models of Computationof sequential computation and is at least as powerful as all reasonable models of computation.Depending on the current state, one of the input variables is selected and its value is queried.Based on this value, the state changes. These state transitions are represented by a directed acyclicrooted graph with out-degree r, where r is the maximum number of di�erent values possible for aninput variable. Each node of this graph represents a possible state that the model might be in andis labeled with the input variable that is queried in this state. The edges emanating out of the nodeare labeled with the possible values of the queried variable and the adjacent nodes indicate theresults of the corresponding state transitions. In order to indicate the outcome of the computation,each sink node is labeled with either accept or reject. A computation for an input consists ofstarting at the root of the branching program and following a computation path through theprogram as explained above, until an accept or reject sink node is reached. The time TG is thelength of the computation path for input G. The space S is formally the logarithm of the number ofnodes in the branching program. Equivalently, it can be viewed as the number of bits of workspacerequired to specify the current state. The branching program is said to be leveled if the nodes canbe assigned levels so that the root has level 0 and all edges go from one level to the next.The branching program model is more powerful than the RAM model in the two ways men-tioned above. Assumptions are made about how the RAM manages its workspace. Speci�cally, theworkspace is broken into many small squares and the RAM is only allowed to alter one of thesesquares at a time. What may be more signi�cant is that, during a particular time step, the RAM'snext action is allowed to depend only on a �nite state control together with the contents of only afew of these input squares. In contrast, the state of the branching program speci�es the contentsof the entire workspace. A branching program is able to alter the entire workspace in one timestep by means of the appropriate state transition and its next action can depend on its new statein an arbitrary way. Because any transition is allowed, no assumption is made about the way themodel's workspace is managed.A RAM is also restricted in comparison to a branching program because it has a limitedinstruction set. A RAM can compute the sum or the product of the contents of two squares inone step, but is not, for example, able to quickly factor these numbers. A branching program doesnot have this restriction. Its state transition function can be de�ned arbitrarily and non-uniformly.Hence, in one time step, it can compute any function of the known information in a manner thatamounts to a table lookup.Although in many ways unrealistic, the advantage of proving lower bounds on the more2

powerful branching program model is that we gain the understanding of what features of thecomputational problem really are responsible for its di�culty. Another bene�t is that a number ofproof techniques have been developed for the branching program model, whereas we have few toolsto take advantage of the fact that RAM has a restricted instruction set or that it can change onlyone bit of its workspace at a time. Besides, any lower bounds for the branching program apply tothe RAM.Proving lower bounds for decision problems on either the branching program model or theRAM is beyond the reach of current techniques. Hence, restricted models of computation areconsidered. One model that has been a successful tool for understanding the complexity of graphconnectivity is the \jumping automaton for graphs" (JAG) model introduced by Cook and Racko�[CR80]. This model restricts the manner in which it is allowed to access the input and in the typeof information about the input that it is allowed to access. In addition, some of its workspace isstructured to contain only a certain type of information. As well, its basic operations are based onthe structure of the graph, as opposed to being based on the bits in the graph's encoding [Bo82].Hence, it is referred to as a \structured" model of computation. The JAG model has a set ofpebbles representing node names that a structured algorithm might record in its workspace. Theyare useful for marking certain nodes temporarily, so that it can be recognized when other pebblesreach them.
s t

1
1

2
3

2
1

2
3

1
2 3

1
2

2
2

1

11 2
3

Current
State

1

Figure 1.2: The JAG model for undirected graphs
v1

v3

v4

v2

deg = 3

v4

v1

v3

3

Ajacency List

Current
State

names of p nodes

deg = 2

deg = 4

deg = 2 :

:

:

: ,

, ,

v

v v

v,

,

,

,

v

v1 5

3

4 91v2

vFigure 1.3: The structured allocation of the workspace that the JAG modelsThe JAG [CR80] is a �nite automaton with p distinguishable pebbles and q states. The3

space charged to the model is de�ned to be S = p log2 n+ log2 q. This is because it requires log2 nbits to store which of the n nodes a pebble is on and log2 q bits to record the current state.The input to this JAG model is a graph with n nodes, m edges, and two distinguished nodess and t. The input graph is directed or undirected depending on whether directed or undirectedst-connectivity is being considered. For each node v, there is a labeling of the out-going edges withthe numbers from 1 to the out-degree of the node. (If the edge is undirected, it can receive twodi�erent labels at its two endpoints.) One of the pebbles is initially placed on the distinguishednode t and the other p� 1 are placed on s. The initial state is Q0.Each time step, the automaton is allowed an arbitrary non-uniform state transition similarto that of a branching program. It also does one of the following two things. It either selects somepebble P 2 [1::p] and some label l and walks P along the edge with label l or it selects two pebblesP; P 0 2 [1::p] and jumps P to the node occupied by P 0. (For directed graphs, the pebbles may bewalked in the direction of an edge, but not in the reverse direction.)What the JAG chooses to do each time step is only allowed to depend on speci�c parts ofthe current machine con�guration. Speci�cally, its actions are able to depend on the current state,which pebbles are on the same nodes, which pebbles are on the distinguished nodes s and t, andthe out-degrees of the nodes containing pebbles1 . (For directed graphs, the model has no directaccess to the in-degrees of the nodes.)A JAG that solves undirected st-connectivity enters an accepting state if there is an undirectedpath between s and t in the input graph and enters a rejecting state if there is no such path.Similarly, a JAG that solves directed st-connectivity enters an accepting state if and only if thereis a directed path from s to t.Now that it has been speci�ed what the JAG model is allowed to do, I will make it clearerwhat it has not been allowed to do. It is, in fact, restricted in the two ways mentioned at thebeginning of this section.Like the Turing machine, the JAG model is restricted in the order in which it is allowed toaccess its input. The Turing machine is only allowed to move its input heads one square to theright or one to the left in a single step. The JAG is only allowed to \walk" and \jump" its pebbles.For the task of graph st-connectivity, accessing the input in an order constrained by the Turingmachine's tape does not seem to be natural. In fact, such a restriction would likely increase thecomplexity of the problem by a factor of O (n). 2 In contrast, \walking" pebbles along the edgesof the input graph does seem to be natural to the computational problem at hand. After all, themodel can know that s is connected to t simply by \walking" a pebble from s to t.Being able to \jump" a pebble directly to the node containing another pebble also adds agreat deal of power to the JAG model that the Turing machine does not have. From lower boundson JAGs that are not allowed to jump (WAGs) [BRT92, BBRRT90], it can be concluded thatjumping increases the model's power signi�cantly, because the model is able to quickly concentrateits limited pebble resources in the subgraph it is currently working on.At �rst, it might seem unnatural that the JAG model for directed graphs is not allowed to1The graphs in [CR80] are d-regular for some �xed degree. I am allowing the input to be more general. The JAGis told the out-degree of the nodes containing pebbles so that it knows which labels l it can choose for walking apebble. The distinction is of greater importance when the model is being charged for the computation time.2[CR80] charged the model only for space. I am charging the model for time as well. Hence, these factors areimportant. 4

access the in-degree or allowed to walk in the reverse direction along an edge. However, suppose theinput is stored by listing, for each node, the out-degree followed by the out-adjacency list. Then,even a RAM, would not be able to learn the in-adjacency list of a node without scanning the entireinput3. Hence, not allowing the JAG to walk pebbles backwards along directed edges is reasonableand natural.Even when the order in which the model is allowed to access its input is restricted, provinglower bounds for decision problems like st-connectivity is hard. One reason is that a general modelof computation is able to perform weird tasks and store arbitrary information. Hence, it is di�cultfor us to judge, for each of the possible states that the model might be in, how much progress hasbeen made towards solving the given problem. By restricting the model again so that it is only ableto learn or store \structured" information about the input, it is then possible to de�ne a measureof progress.More precisely, any input representation of a graph that is written as a list of values mustimpose \names" on the nodes of the graph. With these names, a general model of computation isable to do strange things like taking their bitwise parity and then changing its actions based onthe values obtained. In contrast, the JAG is not allowed to do things which seem to be unnatural.This restriction can viewed as a restriction on the instruction set of the JAG or, equivalently, asa change in the way that the input is represented. The input graph can be considered to be asan abstract object, in which the nodes other than s and t do not have names. The actions of theJAG do not depend on the names of these nodes. E�ectively, this means that the actions of theJAG are not allowed to depend on which nodes the pebbles are on, but only on which pebbles areon the same nodes. Note that the answer to a problem instance and hence the �nal outcome of acomputation does not depend on the names of the non-distinguished nodes.The JAG is not the only model that is restricted in how it can react to its input. The compar-ison based branching program is another example. In this model, a step consists of comparing twoinputs variables and changing state based on which is larger. Hence, the actions of a comparisonbased branching program are allowed to depend on the permutation describing the relative order-ing of the input variables, but not on the actual values of these variables. Similarly, an arithmeticcircuit model is able to add, subtract, and multiply the values of certain input variables, but thechoice of operations and the variables cannot depend on the actual values that variables have.Despite the fact that the JAG is restricted in two signi�cant ways, the JAG is not a weak modelof computation. To begin with, it is not strictly weaker than the RAM, because like a branchingprogram, it allows arbitrary non-uniform state transitions. More importantly, it is general enoughso that most known algorithms for graph connectivity can be implemented on it. See Section 1.3for some upper bounds. Furthermore, Beame, Borodin, Raghavan, Ruzzo, and Tompa [BBRRT90]give a reduction that transforms any O (s) space Turing machine algorithm for any undirectedgraph problem to run on a O (s) space JAG within a polynomial factor as fast. Hence, a lowerbound for the JAG translates to a lower bound for a Turing machine. However, this is not helpfulhere because
 �n2� time bounds for the JAG are too small as compared to the overhead incurredby this reduction.There has been a great amount of success in proving lower bounds on the JAG model. Poon[Po93b] has taken this work another step further by introducing another model that is considerably3An interesting related problem is the following. The input is a set of n pointers forming a set of linked lists oflength l and the last node of one of the lists. The output is the head of the list whose last node has been speci�ed. Iconjecture that a RAM with O (log n) space would require � (ln) time.5

less restricted. The model is referred to as the node named jumping automaton for graphs (NNJAG).The initial motivation for de�ning this model was to overcome an apparent weakness of the JAG:namely, on the JAG, it does not seem possible to implement Immerman's non-deterministic O (logn)space algorithm for detecting that a graph is not st-connected. However, Poon can do so on anNNJAG.The NNJAG is an extension of the JAG, with the additional feature that it can executedi�erent actions based on which nodes the pebbles are on. This feature makes the NNJAG aconsiderably more general model of computation than the JAG. The NNJAG is able to storearbitrary unstructured information about the names of the nodes by transferring the informationthat is stored in the \pebble workspace" into the \state workspace". This is done by having thestate transition depend on the names of the nodes containing pebbles.If the NNJAG was to be able to access its input in an arbitrary order, then the model wouldbe equivalent to the branching program model. However, it is not. Although it can store anyinformation in its state, it can only gain new information about the input graph by means of itspebbles. In addition, even if the model knows the name of a particular node, it is only allowed to\jump" a pebble there if another pebble is already there and to get a pebble there initially, it must\walk".The NNJAG seems incomparable to the Turing machine, because they are allowed to accesstheir inputs in di�erent orders. Savitch introduced a new operation, strong jumping, to theJAG model [Sa73]. Strong jumping is the ability to move any pebble from a node to the nexthigher numbered node, for some ordering of the nodes. Such an operation seems to be comparableto jumping a pebble to an arbitrary node of the graph, because the nodes can be placed by anadversary in an arbitrary order. On the other hand, with this additional power, the NNJAG modelis strictly more powerful than the Turing machine model by direct simulation. Because the NNJAGlacks this ability, it is not able scan to the entire input in linear time. In fact, pebbles are neverable to reach components of the input graph that do not initially contain pebbles. For solvingst-connectivity, it does not seem that the model could gain useful information by doing this, butthis restriction does mean that the JAG and the NNJAG are not considered generals model ofcomputation. At present, we are unable to remove this restriction on the model, because it is thisfeature that enables us to prove lower bounds for JAGs. Recall that a di�culty in proving lowerbounds is de�ning a measure of the amount of progress that a computation has done. For theNNJAG model, this problem is solved by de�ning progress in terms of how much of the graph themodel has accessed so far.All the above mentioned models, the branching program, the JAG, and the NNJAG aredeterministic. Probabilistic versions of these models can be de�ned quite simply. For every randomstring R 2 f0; 1g�, the model will have a separate algorithm, with disjoint states. At the beginningof the computation a random R 2 f0; 1g� is chosen. Then the computation proceeds as before withthe selected algorithm.The space of a probabilistic JAG, NNJAG, or branching program is de�ned to be the max-imum of the space used by each of the separate algorithms. This e�ectively provides the modelwith jRj bits of read only workspace which contains R and which can be accessed in its entiretyevery time step.As long as the model has enough space to store the time step, i.e. S � logT , this way ofrepresenting probabilism is stronger than supplying the model with a few random bits each time6

step4. In this case, the time step can be used as a pointer into R. Yao uses this same de�nitionof randomization [Ya77]. However, for upper bounds this de�nition is unrealistic. A non-uniformalgorithm for one value of n can be speci�ed in polynomial size by giving the circuit. However,specifying such a random algorithm requires a non-uniform circuit for each random string.A probabilistic algorithm is said to allow zero-sided error if the correct answer must alwaysbe produced; however, the running time may depend on the choice of the random string R. Aprobabilistic algorithm is said to allow one-sided error if for every input not in the language,the correct answer is given, but for inputs in the language the incorrect answer may be given withsome bounded probability. A probabilistic algorithm is said to allow two-sided error if for everyinput, it may give the incorrect answer with probability �12 � ��.We have now de�ned models of computation that are both non-uniform and probabilistic. Inmany circumstances, this is redundant. Adleman tells us how to convert a probabilistic algorithminto a non-uniform deterministic algorithm [Ad78]. He does this by proving that, for every proba-bilistic algorithm, there exists a set of O (n) random strings R, such that for every input, one of therandom strings gives the correct answer. The non-uniform algorithm is to simply deterministicallyrun the probabilistic algorithm for each of these choices of R. An e�ect of this reduction is that alower bound on a non-uniform deterministic model applies for free to the probabilistic version of themodel. The only di�culty is that, because the reduction blows up the time by a factor of O (n),a lower bound of
 �n2� on the non-uniform deterministic model would say nothing non-trivialabout the probabilistic model. Therefore, there is value to proving lower bounds on non-uniformprobabilistic models of computation. Clearly, such a bound applies to uniform probabilistic modelsas well.Yao compares worst case probabilistic algorithms and average case deterministic algorithms[Ya77]. He proves that there exists a probabilistic algorithm whose expected running time on theworst case input is T if for every distribution on inputs, there exists a deterministic algorithmwhose average running time weighted by the input distribution is T . This means that if there isnot a probabilistic algorithm, then there exists a distribution for which there is no algorithm thatis fast on average with respect to this distribution. This thesis will strengthen the lower boundfurther by specifying a speci�c natural input distribution for which the average time must be large.In fact, this thesis considers both of these settings at the same time, i.e. average case probabilisticalgorithms. Given Yao's result, this might be excessive, but it is helpful for forming additionalintuition.The lower bounds proved are on probabilistic JAGs for undirected graphs, JAGs for directedgraphs, and probabilistic NNJAGs for directed graphs.1.2 Time Space Tradeo�sProving time-space tradeo�s is one of the more classical issues in complexity theory. For somecomputational problems it is possible to obtain a whole spectrum of algorithms within which onecan trade the time requirements with the storage requirements. In these cases, the most meaningful4If the space is less than this, then the random bits cannot be chosen initially, because the model cannot rememberthem. Beame et al. [BBRRT90] proved that a deterministic WAG with pq =
(n) traversing 2-regular graphs havein�nite worst case time. Hence, with the random bits provided at the beginning of the computation, the expectedtime would be in�nite. However, a probabilistic WAG can easily traverse such a graph in expected n2 time.7

bounds say something about time and space simultaneously.Cobham [Co66] established the �rst time-space tradeo�. The model used was a one tapeTuring Machine. Tompa [Tm80] established a number of time-space tradeo�s for both the Booleanand the arithmetic circuit models.Borodin, Fischer, Kirkpatrick, Lynch, and Tompa [BFKLT81] introduced a framework thathas been extremely successful in proving lower bounds on the time-space tradeo�s for branchingprograms. Using this framework, they prove the near optimal bound of T � S 2
 �n2� for sortingon comparison based branching programs. Borodin and Cook [BC82] strengthened this resultsigni�cantly by proving the �rst non-trivial time-space tradeo� lower bound for a completely generaland unrestricted model of computation, the r-way branching program. They showed that T � S 2
 � n2logn� for sorting n integers in the range [1::n2]. Beame [Be91] improved this to
 �n2�. Thesesame techniques were also used to prove lower bounds for a number of algebraic problems such asthe FFT, matrix-vector product, and integer and matrix multiplication [Ye84, Ab86, BNS89].Each of these lower bounds relies heavily on the fact that the computation requires manyvalues to be output, in order to establish a measure of progress. For decision problems this methoddoes not work. Borodin, Fich, Meyer auf der Heide, Upfal, and Wigderson [BFMUW87] de�ne anew measure of progress and prove a lower bound on the time-space tradeo� for a decision problem.They proved T � S 2
 �n 32 log n� for determining element distinctness. This was then improvedto T �S 2
 �n2��� by Yao [Ya88]. They were not, however, able to prove this bound for a generalmodel of computation, but only for the comparison based branching program.1.3 The st-Connectivity ProblemGraph connectivity is an important problem, both practically and theoretically. Practically, itis a basic subroutine for many graph theoretic computations. It is used in solving network owoptimization problems, such as project scheduling and the matching of people to jobs. Theoremproving can be viewed as �nding a logical path from the assumptions to the conclusion. Graphconnectivity is also important for computer networks and search problems. Theoretically, it hasbeen studied extensively in a number of settings. Because the undirected version of the problemis complete for symmetric log-space and the directed version is complete for non-deterministiclog-space, they are natural problems for studying these classes. The study of random walks onundirected graphs and deterministic universal traversal sequences has made the problem relevant tothe issue of probabilism. In addition, the undirected version was used by Karchmer and Wigdersonto separate monotone NC1 from NC2. The importance of these problems is discussed in moredetail in Wigderson's beautiful survey [Wi92].The fastest algorithms for undirected graph st-connectivity are depth-�rst and breadth-�rstsearch [Tar72]. These use linear time, i.e. O (m+ n) for an n node, m edge graph. However, theyrequire
 (n) space on a RAM.Alternatively, this problem can be solved probabilistically using random walks. The ex-pected time to traverse any component of the graph is only � (mn) and uses only O (log n) space[AKLLR79]. More generally, Broder et al. [BKRU89] have exhibited a family of probabilistic al-gorithms that achieves a tradeo� of S � T 2 m2 logO(1) n between space and time. This has beenimproved to S �T 2 m1:5n:5 logO(1) n [BF93]. A long term goal is to prove a matching lower bound.8

Deterministic non-uniform algorithms for st-connectivity can be constructed using Universaltraversal sequence. The algorithm uses a single \pebble" to traverse the connected componentsof the graph. Sequences of length O �n4 logn� are proved to exist [CRRST89, KLNS89]. Thisproves the existence of O (log n) space and O �n4 logn� time algorithms. Nisan provides an explicitconstructions of a universal traversal sequences using pseudo-random generators. This gives adeterministic uniform algorithm using O �log2 n� space and nO(1) time [Ni92]. Finally, Nisan, Sze-mer�edi, and Wigderson describe and a deterministic uniform algorithm that uses only O �log1:5 n�space [NSW92]. The time for this algorithm, however, is 2O(log1:5 n).Directed st-connectivity has the same complexity as undirected st-connectivity when thereis ample space. Speci�cally, the linear time, linear space, depth �rst search algorithm works �ne.However, the known algorithms for the directed problem require considerably more time when thespace allocated to the model is bounded. Savitch's algorithm [Sa70] uses only O �log2 n� space,but requires 2O(log2 n) time. It is only recently that a polynomial time, sub-linear O � n2plog n � spacealgorithm was found for directed st-connectivity [BBRS92].Section 1.1 stated that the JAG model is general enough so that most known algorithmsfor graph connectivity can be implemented on it. I will now be more speci�c. It can performdepth-�rst or breadth-�rst search. It avoids cycling by leaving a pebble on each node when it�rst visits it. This uses O (n logn) space. As well, because it is a non-uniform model, the JAG isable to solve st-connectivity for undirected graphs in O (log n) space and O �n4 logn� time using auniversal traversal sequence [CRRST89, KLNS89]. For directed graphs, Cook and Racko� [CR80]show that the JAG model is powerful enough to execute an adaptation of Savitch's algorithm [Sa70]which uses O �log2 n� space. Poon [Po93a] shows that Barnes et al.'s [BBRS92] sub-linear space,polynomial time algorithm for directed st-connectivity runs on a JAG as well.1.4 A History of Lower Bounds for st-ConnectivityA number of space lower bounds have been obtained (even when an unbounded amount of timeis allowed). Cook and Racko� [CR80] prove a lower bound of
 �log2 n= log logn� on the spacerequired for a JAG to compute directed st-connectivity. This has been extended to randomizedJAGs by Berman and Simon [BS83] (for T 2 2logO(1) n). Recently, Poon [Po93b] has extended thisresult again to the powerful probabilistic NNJAG model.For undirected graph st-connectivity, Cook and Racko� [CR80] prove that pq 2 ! (1) andBeame et al. [BBRRT90] prove that if the pebbles are not allowed to jump, then pq 2
 (n) evenfor simple 2-regular graphs. These proofs for undirected graphs show that, with a sub-linear numberof states, the model goes into an in�nite loop. (This method does not work when there are at leasta linear number of states, because then the JAG is able to count the time steps.)Lower bounds on the tradeo� between the number of pebbles p used and the amount of timeneeded for undirected graph st-connectivity have also been obtained. These results are particularlystrong, because they do not depend on the number of states q. For example, a universal traversalsequence is simply a JAG with an unlimited number of states, but only one pebble. Borodin,Ruzzo, and Tompa [BRT92] prove that on this model, undirected st-connectivity requires
 �m2�time where the graph has degree 3 � d � 13n � 2. Beame, Borodin, Raghavan, Ruzzo, and Tompa9

[BBRRT90] extend this to
 �n2=p� time for p pebbles on 3-regular graphs with the restriction thatall but one pebble are unmovable (after being initially placed throughout the graph). Thus, forthis very weak version of the model, a quadratic lower bound on time�space has been achieved.Beame et al. [BBRRT90] also prove that there is a family of 3p-regular undirected graphs for whichst-connectivity with p 2 o (n) pebbles requires time
 �m log �np��, when the pebbles are unableto jump.1.5 The Contributions of the ThesisThis thesis proves time-space tradeo�s for both undirected and directed st-connectivity. The �rstresult, presented in Chapter 3 proves the strongest known bound for undirected st-connectivity. Theresult is that the expected time to solve undirected st-connectivity on a JAG is at least n�2
(log nlog log n),as long as the number of pebbles p 2 O � lognlog logn� and the number of states q 2 2logO(1) n. Thisresult improves upon at least one of the previous results in at least �ve ways: the lower boundon time is larger, all pebbles are allowed to jump, the degree of the graphs considered is onlythree, it applies to an average case input instead of just the worst case input, and probabilisticalgorithms are allowed.This result is obtained by reducing the st-connectivity problem to the problem of traversingfrom s to t and then reducing this problem to a two player game. Chapter 2 proves tight bounds forthis game. The game is referred to as the helper-parity game and is designed to mirror a key aspectof time-space tradeo�s. When the space is bounded, the computation cannot store the results to allthe previously computed subproblems and hence must recompute them over and over again. Thedi�culty in proving lower bounds is that we must assume that earlier stages of the computationcommunicate partial information about the subproblem via the bounded workspace. The questionthen is how helpful this information can be in decreasing the time to recompute the subproblem bythe later stages. This is modeled in the helper-parity game by having the helper communicate thestored information to the player at the beginning of the player's computation. Upper and lowerbounds are provided giving the tradeo� between the amount of information that the helper providesand the time for the player's computation.Chapter 4 proves the even stronger lower bound of T � S 12 2
 �mn 12 �, but for the moredi�cult computational problem of directed st-connectivity. This is the �rst time-space tradeo�where the pebbles are able to jump and their number is unrestricted. Note, as well, that the timebound matches the upper bound of O (m+ n) when the amount of available space increases to n.Another interesting feature of the result is that it does not count the number of states as part ofthe space and hence applies even when the JAG has an arbitrarily large number of states. It hadbeen assumed that the time to compute st-connectivity on a JAG became linear as the number ofstates increases.Chapter 5 then proves a weaker bound of T �S 13 2
 �m 23n 23� on the same family of graphs,but on the more powerful probabilistic NNJAG model. Very di�erent techniques are required toaccomplish this. The general framework is the one outlined in Section 1.2.The last chapter describes some current work and open problems.10

Chapter 2The Helper-Parity GameThe essential reason that tradeo�s arise between the time and the space required to solve a problemis that when the space is bounded the computation cannot store the results to all the previouslycomputed subproblems and hence must recompute them over and over again. The di�culty inproving lower bounds is that only in the �rst encounter with a subproblem is the computationcompletely without knowledge about the solution. We must assume that the earlier stages of thecomputation communicate partial information about the subproblem via the bound workspace.This chapter characterizes this problem in terms of a game referred to the helper-parity game. Thehelper in the game communicates to the player the information that would be stored in the boundedworkspace. The player then uses this information to help in his computation. Upper and lowerbounds are provided in this chapter, giving the tradeo� between the amount of information thatthe helper provides and the time for the player's computation.The hope was that requiring the player to solve multiple instances of the problem would makeproving time-space tradeo�s easier. Because the space is bounded, the number of bits of informationthat the helper is allowed to give the player is bounded. Even if this is enough information forthe player to quickly solve one instance of the problem, the hope was that the helper would notbe able to encode the relevant information about many instances into the same few bits. Whatwas expected was that if the number of game instances doubles, then the number of bits of helpwould need to double as well in order for the complexity per instance to remain constant. This,however, is not the case. If the same bits of help are given for an arbitrarily large number ofinstances, then the complexity of each instance can drop as e�ectively as if this many bits of helpwere given independently to each of the instances. It is surprising that enough information aboutso many game instances can be encoded into so few bits. This appears to contradict Shannon'slaws concerning the encoding of information.This upper bound is best understood by not considering the message sent by the helper asbeing information about the input, but as being random bits. With a few \random" bits, the worstcase complexity decreases to the point that it matches the expected complexity for a randomizedprotocol, which is 2 questions per game instance. The upper and lower bounds on the numberof helper bits required match the work done by Impagliazzo and Zuckerman [IZ89] on recyclingrandom bits.For the purpose of proving lower bounds on time-space tradeo�s these results are disappoint-ing. Increasing the number of game instances does not help in the way we hoped. However, the11

results are still useful. Though, achieving 2 questions per game instance requires very few helpbits, a lot of help bits are required to decrease the number of required questions below this number.Furthermore, this 2 (actually a 1.5) is su�cient of provide the lower bound in Chapter 3.2.1 The De�nition of the GameThe task of one game instance is to �nd a subset of the indexes on which the input vector hasodd parity. This idea was introduced by Borodin, Ruzzo, and Tompa [BRT92] for the purpose ofproving lower bounds for st-connectivity. The basic idea is that the input graph has two identicalhalves connected by r switchable edges. A vector � 2 f0; 1gr speci�es which of the switchableedges have both ends within the same half of the graph and which span from one half to the other.Traversing from distinguished node s to distinguished node t requires traversing a pebble from onehalf of the graph to the other. After a pebble traverses a sequence of switchable edges, which halfof the graph the pebble is contained in is determined by the parity of the corresponding bits of �.The JAG computation on this graph is modeled by a parity game. The following is a more complexgame. A version of it is used in Chapter 3.The helper-parity game with d game instances is de�ned as follows. There are two parties,a player and a helper. The input consists of d non-zero r bit vectors �1; : : : ; �d 2 f0; 1gr�f0rg,one for each of the d game instances. These are given to the helper. The helper sends b bits intotal about the d vectors. The player asks the helper parity questions. A parity question speci�esone of the game instances i 2 [1::d] and a subset of the indexes E � [1::r]. The answer to theparity question is the parity of the input �i at the indexes in this set, namely Lj2E [�i]j . Thegame is complete when the player has received an answer of 1 for each of the game instances. Fora particular input ~�, the complexity of the game is the number of questions asked averaged overthe game instances, c~� = 1dPi2[1::d] ch~�;ii, where ch~�;ii is the number of questions asked about theith game instance on input ~�. Both worst case and average case complexities are considered.One instance of the helper-parity game can be solved using at most r2b questions per gameinstance as follows. Partition the set of input positions [1::r] into 2b blocks. The helper speci�esthe �rst non-zero block. The player asks for the value of each bit within the speci�ed block. Amatching worst case complexity lower bound for this problem is easy to obtain.For d game instances, one might at �rst believe that the worst case number of questions pergame instance would be r2b=d . The justi�cation is that if the helper sends the same b bits to all ofthe game instances then on average only b=d of these bits would be about the ith game instance.Therefore, the player would need to ask r2b=d questions about this instance. The helper and theplayer, however, can do much better than this. The number of questions asked averaged over thenumber of game instances satis�esmax h r2b ; 2�O� bd + 2�r+1� i � Exp~�c~� � max~� c~� � max h r2b+log (e)+log�2r2b�+o (1) ; 2+o (1) i :As long as the bound is more than 2, it does not depend on the number of game instancesd. Therefore, if we �x the size of each game instance r, �x the number of questions c asked by theplayer per game instance, and increase the number of game instances d arbitrarily, then the numberof help bits b needed does not increase. Given that each player requires some \information" fromthe helper \about" each game instance, this is surprising. The result r2d also says that there is no12

di�erence between the helper independently sending b bits of help for each of the game instancesand requiring the helper to send the same b bits for each of the instances.This chapter is structured as follows. Section 2.2 explains the connection between theseresults and the work done by Impagliazzo and Zuckerman on recycling random bits [IZ89]. In thislight, the results are not as surprising. Section 2.3 proves that a protocol exists that achieves theupper bound and Section 2.4 gives the simple r2b lower bound. Section 2.5 presents a recent proofby Rudich [R93] of the (2� �) lower bound. Section 2.6 proves my own (2� �) lower bound forthe problem under the restriction that the player must solve the game instance being worked onbefore dynamically choosing the next game instance to work on. Both proofs are presented becausethey use completely di�erent proof techniques. My proof uses entropy to measure the amount ofinformation the helper's message contains \about" the input �i to each game instance and thenexamine how this message partitions the input domain. Rudich avoids the dependency betweenthe game instances caused by the helper's message by using the probabilistic method. Section 2.7de�nes a simpler version of the helper-parity game. The st-connectivity lower bound in Chapter 3could be proved using the original game, but the proof becomes much simpler when using thissimpler game. A tight lower bound is proved for this version of the game using my techniques.Rudich's techniques could be used to get the same result.2.2 Viewing the Helper's Message as Random BitsThe fact that the player need ask only maxf r2b ; 2g questions per game instance may seem surprising.However, if the game is viewed in the right way, it is not surprising at all. The incorrect way ofviewing the game is that the helper sends the player information about the input. With this viewthe result is surprising, because Shannon proves that it requires d times as many bits to send amessage about d di�erent independent objects. The correct way of viewing the game is that thehelper sends the player purely random bits. With this view the result is not surprising, becauseImpagliazzo and Zuckerman [IZ89] prove that the player can recycle the random bits used in solvingone game instance so that the same random bits can be used to solve other game instances. Tounderstand this, we need to understand how random bits can help the player, understand how arandom protocol for the game can be converted into a deterministic protocol, and �nally understandhow many random bits the helper must send the player.With no helper bits, if the player asks his questions deterministically, then on the worst caseinput, he must ask rd questions. However, if the helper sent the player random bits, then the playercould deterministically use these to choose random questions (from those that are linearly indepen-dent from those previously asked). With random questions, the expected number of questions pera game instance is 2. This is because a random question has odd parity with probability 12 .By the de�nition of the game, the helper is not able to send a random message, but mustsend a �xed message M (~�) determined by the input ~�. However, this causes no problem for thefollowing reason. Suppose that there is exists a protocol in which the helper sends the players brandom bits and on every input ~� there is a non-zero probability that the player succeeds afteronly c questions. It follows that for every input ~�, there exists a �xed messageM (~�) for which theplayer asks so few questions. Hence, a deterministic protocol could be de�ned that achieves thissame complexity by having the helper send this �xed message M (~�) on input ~�.The question remaining is how many random bits a player needs. First consider one game13

instance. With b random bits, the player can partition [1::r] into 2b blocks and ask for the valuesof each of the bits of � within the randomly speci�ed block. Because the entire vector is non-zero, the speci�ed block will be non-zero with a non-zero probability. In this case, the player willsucceed at getting an answer with odd parity. The number of questions asked by the player isr2b . Hence, b = log � rc � random bits are needed to ensure that the player is able to succeed withnon-zero probability after only c questions. Note that this is exactly the complexity of one gameinstance when viewing the helper's message as containing information about the input. A savingsis obtained only when there are many game instances.Impagliazzo and Zuckerman [IZ89] explain how performing an experiment might require lotsof random bits, but the entropy that it \uses" is much less. Their surprising result is that thenumber of random bits needed for a series of d experiments is only the number of random bitsneeded for one experiment plus the sum of the entropies that each of the other experiments uses.The consequence of this for the helper-parity game is that if the player recycles the random bits itobtains, then the helper need not send as many bits.Although this technique decreases the number of helper bits needed, it does not completelyexplain the amazing upper bound. Recall that the upper bounds says that as the number of gameinstances increases arbitrarily, the number of helper bits does not need to increase at all. Theexplanation is that we do not require each player to ask fewer than c questions about each gameinstance. We only require that the total number of questions asked is less than cd. Because atmost 2 questions are likely to be asked, this will be the case for most inputs. The player is thenable to ask almost O (cd) questions about a few of the game instances and still keep the totalnumber of questions within the requirements. Ensuring that the maximum number of questionsasked about a particular instance is at most O (cd) requires far fewer random bits then ensuringthat the maximum is c. Therefore, as d increases, the number of random bits needed per gameinstance decreases so that the total number remains �xed.Before proving that such a protocol exists, let us try to understand the Impagliazzo andZuckerman result better by considering a sightly di�erent version of the helper-parity game. Insteadof requiring that the total number of questions asked be at most cd, let us consider requiring thatfor each game instance at most w questions are asked. With this change, the game �ts into theImpagliazzo and Zuckerman framework of d separate tasks each with independent measures ofsuccess.This framework needs to know howmuch entropy is \used up" by each of these game instances.Consider the standard protocol again. The input to the game instance is broken into 2b pieces ofsize w. The helper speci�es the �rst block that is non-zero. Because there are 2b di�erent messagesthat the helper might send, we assume that the helper must send b bits. However, the entropy ofthe helper's message (the expected number of bits) is much less than this, because the helper doesnot send each of its messages with the same probability. For a random input �i, the �rst block willbe non-zero with probability 1� 2�w and hence the �rst message will be sent with this probability.The entropy of the message works out to be only 12w .The Impagliazzo and Zuckerman's result then says that the number of random bits need for dgame instances is log � rw � + d2w to give a non-zero probability that all of the game instances succeedafter only w questions each. This, in fact, matches the upper and lower bounds for this version ofthe helper-parity game that I am able to obtain using the same techniques used in Section 2.6.14

2.3 The Existence of a Helper-Parity ProtocolThis section proves the existence of the protocol that achieves the surprising upper bound.Theorem 1 There exists a protocol for the helper-parity game such that for every r and b, as dincreases, the number of questions per game instance is at mostmax~� 241d Xi2[1::d]ch~�;ii35 � max � r2b + log (e) + log�2r2b�+ o (1) ; 2 + o (1)� :Proof of Theorem 1: A protocol will be found for which the number of questions per gameinstance is at most c = max h r2b + log �e ��1=d�+ log �2r2b + 2 log �e ��1=d�� ; 2 + �i, where � =2�pdr=2b. Note that c � r2b +q rd2b + log (e) + log �2r2b + 2q rd2b� and c � 2 + 2�pdr=2b. Hence, therequired bounds are achieved as d gets su�ciently large.A helper-parity protocol is randomly chosen as follows. For each message m 2 [1::2b]and for each i 2 [1::d], independently at random choose an ordered list of r parity questions,Ehm;i;1i; : : : ; Ehm;i;ri � [1::r]. The player asks questions about each of the game instances in turn.If the help message received was m, then the player asks the questions Ehm;i;1i; : : : ; Ehm;i;ri about�i one at a time until he receives an answer of 1. For each ~� 2 (f0; 1gr�f0rg)d, let Ch~�;mibe the total number of questions that the player asks. On input ~�, the helper sends the mes-sage m = M (~�), that minimizes this number. In order to prove that there exists a proto-col such that max~� Xi2[1::d]ch~�;ii � cd, it is su�cient, by the probabilistic method, to prove thatPr h9~�; 8m;Ch~�;mi > cdi < 1.Fix an input ~� and a message m and consider the random variable Ch~�;mi determined by therandomly chosen protocol. Every question asked has a probability of 12 of having an odd parityand the player stops asking questions when he receives d odd parities. Thus Pr hCh~�;mi = ki isthe probability that the dth successful Bernoulli trial occurs on the kth trial. It is distributedaccording to a negative binomial distribution. Standard probability texts show this probability tobe Pr hCh~�;mi = ki = �k�1d�1�2�k .If the protocol \fails", it must ask some number of questions greater than cd. The probabilityof this is Pr hCh~�;mi > cdi = Pk>cd �k�1d�1�2�k. This is the tail of a negative binomial distribution.After k � (2 + �)d, these terms become geometric. Speci�cally, the ratio of the kth and the k+1stterms is bounded by a constant. Namely,� kd�1�2�(k+1)�k�1d�1�2�k = k(k � 1) : : :(k � d+ 2)(k � 1)(k� 2) : : :(k � d+ 1)2�1= � k(k � d+ 1)� 12 � kk � k2+� ! 12 � �2 + �1 + �� 12 � 1� �4 :Note that A + �1� �4�A + �1� �4�2A + : : : = 4�A. Therefore, because cd � (2 + �) d, thenPr hCh~�;mi > cdi � 4� cdd� 1!2�(cd+1) � (cd)d�1� (d� 1)!2�cd15

� (cd)d�d! 2�cd � (cd)d� �de�d 2�cd = � ce2c�1=d�d :Because there are 2b messagesm, there are 2b independent chances that the bound on the num-ber of questions succeeds. Therefore, the probability that all 2b fail isPr h8m;Ch~�;mi > cdi� �� ce2c�1=d �d�2b. However, the algorithm must work for each of the (2r � 1)d <2rd inputs ~�. Therefore,Pr h9~�; 8m;Ch~�;mi > cdi < 2rd� ce2c�1=d�d2b :Substituting in c � r2b + log �e ��1=d�+ log �2r2b + 2 log�e ��1=d�� gives2rd� ce2c�1=d�d2b � 2rd0@h r2b + log �e ��1=d�+ log �2r2b + 2 log�e ��1=d��i e2 r2b � e ��1=d � 2 � r2b + log �e ��1=d��� �1=d 1Ad2b< 2rd � 12 r2b �d2b = 1:We can conclude there exists a protocol.2.4 The �r=2b� Lower BoundThe following is a worst case lower bound for the helper-parity game. It is tight for the case whenat least 2 questions are asked per game instance.Theorem 2 In any protocol for helper-parity game, the average number of questions per gameinstance is max~� 241d Xi2[1::d]ch~�;ii35 � r2b .Proof of Theorem 2: First consider d = 1 game instance and b = 0 bits of help. Suppose thatthere is a protocol in which at most r�1 questions must be asked. The protocol consists of a list ofquestions E1; : : : ; Er�1 that will be asked until an answer of 1 is obtained. The set of homogeneousequations hE1; : : : ; Er�1iT � = h0; : : : ; 0iT has a non-zero solution � 2 f0; 1gr. This vector hasparity 0 on each of the subsets Ei. Therefore, on input �, the protocol does not get an answer of 1,contrary to the assumptions. Thus, every protocol must ask at least r questions in the worst case.Now consider d game instances played in parallel with b = 0 bits of help. Any input from(f0; 1gr�f0rg)d is possible when the player starts asking questions, because the helper provides noinformation. The player can ask questions about only one of the game instances at a time, so theset of possible inputs always remains in the form of a cross product of d sets. In e�ect, the lowerbound for one game instance can be applied to each of the game instances in parallel. It followsthat rd questions are needed in total.Now consider an arbitrary number of helper bits b. For every subset of vectors S � (f0; 1gr�f0rg)d,de�ne C (S) to be the minimum number of questions that the player must ask assuming that the16

helper speci�es that the input vector ~� is in S. The b = 0 case proves that C �(f0; 1gr�f0rg)d� = rd.The b bits of information sent by the helper partitions the original set of (f0; 1gr�f0rg)d input vec-tors into 2b sets Sm corresponding to each message m. Given a good player questioning protocolfor each Sm, simply asking the union of the 2b sets of questions works for any input because everyinput is in one of these sets. Thus Pm2f0;1gbC (Sm) � C �(f0; 1gr�f0rg)d� = rd. Therefore, thereexists a message m such that C (Sm) � rd2b .2.5 The (2� �) Lower Bound Using Probabilistic TechniquesThe following is an expected case lower bound for the helper-parity game. It is applies when fewerthan 2 questions are asked per game instance. The proof uses the probabilistic method and is byRudich [R93].Theorem 3 For every � > 0, if b � �0:34�2 � 2�r+1� d� log2 �100� �, thenExp~� h1d �Pi2[1::d] ch~�;ii�i � 2� �.Proof of Theorem 3 [R93]: Consider a helper parity protocol. For each helper's messagem 2 f0; 1gb, de�ne Sm � (f0; 1gr�f0rg)d to contain those inputs ~� for which the player, afterreceiving m, asks at most (2� 0:98�)d questions. We will prove that Sm contains at most a0:01�2�b fraction of the inputs ~� 2 (f0; 1gr�f0rg)d. There are a most 2b di�erent help messagesm 2 f0; 1gb. Therefore, unioned over all messages, the player asks at most (2� 0:98�)d questionsfor at most a 0:01� fraction of the inputs. Even if the player asks zero questions for these inputsand the stated (2� 0:98�)d questions for the other inputs, the expected number of questions is stillat least (1� 0:01�)� (2� 0:98�)d � (2� �)d.Fix a helper message m. Randomly choose an input ~� uniformly over all the inputs in(f0; 1gr)d. We will consider what the player's protocol is given this message and this input, evenif the helper does not send this message on this input. Given any parity question, Lj2E [�i]j forE � [1::r] and i 2 [1::d], the probability that the answer is odd is exactly 12 . After the player receivesthe answer to a number of parity questions, the probability distribution is restricted to those inputsconsistent with the answers obtained. The conditional probability that the next question has an oddanswer is still, however, 12 . This is, of course, under the reasonable assumption that the questionsasked by the player are linearly independent (if not the probability is 0).After (2� 0:98�)d questions have been asked, we stop the protocol. Even though the actualquestions asked might be chosen dynamically depending on the answers to the previous questions,the probability of getting an odd parity is 12 for each question. Hence, each question can be viewed asan independent trial with 12 probability of success and we are able to apply Cherno�'s bound [Sp92].Let xi; i 2 [1::n] be mutually independent random variables with Pr [xi = 1] = Pr [xi = 0] = 12 ,then for every a > 0, Pr hPi2[1::n] xi � n2 > ai < e�2a2n .In our situation, the number of trials is n = (2� 0:98�)d. The player requires at least dodd answers, (one for each game instance). In other words, he requires Pi2[1::n] xi > d which isequivalent to Pi2[1::n] xi � n2 > d� (2�0:98�)d2 = :49�d. Cherno�'s bound gives that the probabilityof this occurring is less than e�2(:49�d)2(2�0:98�)d � 2�0:34�2d. Therefore, for at most this fraction of vectors17

~� 2 (f0; 1gr)d does the player obtain d odd answers after only (2� 0:98�)d questions.Since Sm contains at most a 2�0:34�2d fraction of the vectors ~� 2 (f0; 1gr)d, it contains at mosta 2�0:34�2d � 2rd(2r�1)d fraction of the inputs ~� 2 (f0; 1gr�f0rg)d. Now observe that 1 � x � 2�2x,as long as x 2 [0; 12]. Therefore, 2rd(2r�1)d = (1� 2�r)�d � 22�r+1d. By the given restriction on thenumber of help bits b, 2(�0:34�2+2�r+1)d � 0:01�2�b. In conclusion, Sm contains at most a 0:01�2�bfraction of the inputs ~� 2 (f0; 1gr�f0rg)d.2.6 A (2� �) Lower Bound Using Entropy for a Restricted Or-deringThe following is my original lower bound for the helper-parity game. The proof is more complexthan Rudich's proof and applies to a restricted game, but is included because the techniques arecompletely di�erent and it provides more intuition into the message sent by the helper.We will say that the d game instances are played in series if the player must solve the gameinstances within continuous blocks of time. He is allowed to dynamically choose the order in whichto solve them. However, after starting to ask questions about one instance, he may not start askingabout another until an odd answer has been obtained about the �rst. To help the player, he isgiven the full input �i to the game instances that he has �nished. The following is a lower boundfor this version of the helper-parity game.Theorem 4 For every � > 0, there exists a constant z� such that, in any protocol for d helper-parity game instances played in series,Exp~� h1d �Pi2[1::d] ch~�;ii�i � 2� �� z� � bd + 2�r+1�.In Section 2.2, it was suggested that the helper need not provided information about theinput ~�, but need only send random bits. Without help, the player must ask r questions per gameinstance in the worst case. With random bits, the player can expect to ask only 2 questions pergame instance. These random bits can be recycled for the di�erent game instances, hence thehelper need send very few bits to obtain this complexity. Clearly, this method does not work if theplayer wants to ask fewer than 2 questions per game instance. In this case, the helper must revealto the player a great deal of information about the input. This section uses entropy to measure theamount of information that the helper needs to send \about" each game instance.Shannon's entropy H (x) of the random variable x measures the expected number of bitsof information \contained" in x. In other words, it is the expected number of bits needed tospecify which speci�c value the random variable has. Formally, it is de�ned to be H (x) =�P�Pr [x = �] log (Pr [x = �]). In addition, Shannon's entropy can be used to measure the ex-pected number of bits of information that the random variable x contains \about" the randomvariable y. This is de�ned to be I (x; y) = H (x) +H (y)�H (x; y). H (x; y) is the entropy of thejoint random value hx; yi.The proof of Theorem 4 is structured as follows. Consider a �xed protocol for the d instancesof the parity game played in series. Because the game instance are worked on during continuousblocks of time, the protocol can easily be partitioned into disjoint protocols for the d separate game18

instances. It is then proved that, on average, only a 1d fraction of the b bits sent by the helper are\about" any �xed game instance. Finally, it is proved that bd bits of information are not enoughfor the player to achieve the desired number of questions about this game instance.The protocol is partitioned into disjoint protocols by considering d players instead of justone. The ith player asks questions only about the ith game instance �i. On input ~�, the helper,who is omnipotent, sends the ith player the information Mi (~�) that he would know just before thequestion about the ith game instance is asked.We do not know how much information the player has learned about �j , by the time he hascompleted the jth game instance. Therefore, it is easier to assume that he knows the entire vector�j . This means that the message Mi (~�) must include M (~�) and all the game instance askedabout prior to �i. The situation is complicated by the fact that the order in which the questionsare asked is not �xed, but may be chosen dynamically by the player. For example, suppose thatfor input ~�, the helper's message M (~�) causes the protocol to ask about �1 �rst. In such a case,M1 (~�) consists of only M (~�). However, if M (~�0) causes the protocol to ask about �03 �rst andhM (~�0) ; �03i causes the protocol to ask about �08 next and hM (~�0) ; �03; �08i causes the protocol toask about �01 next, then M1 (~�0) = hM (~�0) ; �03; �08i.Shannon's entropy provides a measure of the expected number of bits of information the ithplayer learns \about" his input �i from this messageMi (~�). Clearly, the more information he has,the better chance he has to ask a question with odd parity. The following lemma states that onaverage only a 1d fraction of the b bits sent by the helper are \about" any one of the game instances.Lemma 1 Let ~x be a random variable chosen uniformly from (f0; 1gr�f0rg)d.Xi2[1::d]I (Mi (~x) ; xi) = I (M (~x) ; ~x) :Corollary 5 Xi2[1::d]I (Mi (~x) ; xi) � b:Proof of Corollary 5: Note that I (M ; ~x) � b follows trivially from fact that the helper's messageM (~x) contains only b bits.Proof of Lemma 1: By de�nition, H (M (~x)) = �1u P~�2(f0;1gr�f0rg)d log (Pr [M (~x) =M (~�)]),where u = j (f0; 1gr�f0rg)d j. Hence, the right hand side becomesI (M (~x) ; ~x) = H (M (~x)) +H (~x)�H (M (~x) ; ~x) = 1uX~� log�Pr [M (~x) =M (~�) and ~x = ~�]Pr [M (~x) =M (~�)] Pr [~x = ~�] �and the left hand side becomesXi2[1::d]I (Mi (~x) ; xi) = Xi2[1::d] 1uX~� log�Pr [Mi (~x) =Mi (~�) and xi = �i]Pr [Mi (~x) =Mi (~�)] Pr [xi = �i] � :We will equate these separately for each ~�. For a �xed input ~� the order in which the ques-tions are asked about the game instances is �xed. Let ��1 ; ��2 ; : : : ; ��d be this order. Therefore,19

the information that the �j+1st player receives is M�j+1 (~�) = DM (~�) ; ��1 ; : : : ; ��jE. In particu-lar, this implies that Pr hM�j+1 (~x) =M�j+1 (~�)i = Pr hM�j (~x) =M�j (~�) and x�j = ��j i, whereM�d+1 (~�) = hM (~�) ; ��1 ; : : : ; ��di. Hence,Xi2[1::d] log�Pr [Mi (~x) =Mi (~�) and xi = �i]Pr [Mi (~x) =Mi (~�)] Pr [xi = �i] �= Xj2[1::d] log0@Pr hM�j (~x) =M�j (~�) and x�j = ��j iPr hM�j (~x) =M�j (~�)iPr hx�j = ��j i 1A= Xj2[1::d] log0@ Pr hM�j+1 (~x) =M�j+1 (~�)iPr hM�j (~x) =M�j (~�)iPr hx�j = ��ji1A= log Pr �M�d+1 (~x) =M�d+1 (~�)�Pr [M�1 (~x) =M�1 (~�)]�i2[1::d]Pr [x�i = ��i]!= 1u log�Pr [M (~x) =M (~�) and ~x = ~�]Pr [M (~x) =M (~�)] Pr [~x = ~�] �The lemma follows.The protocol has now been partitioned into disjoint protocols for the d separate game instancesand it has been proven that on average bd bits of help has been provided to each separate protocol.What remains to prove is that this is not enough information for a particular player to e�ectivelyask questions about his game instance.Lemma 2 For every � > 0, there exists a constant z� such that, in any protocol for one helper-parity game instanceExp~� hch~�;iii � 2� � � z� �I (Mi (~x) ; xi) + 2�r+1�.Before proving the lemma, the following minimization property is needed.Claim 1 Let z be a constant and let fqig and feig be �nite sets of constants. De�ne the setof constants fq0ig such that Pi q0i = Pi qi and q0i = � �ei � 1z for some constant �. It follows thatPi qi log (eiqzi) �Pi q0i log (ei(q0i)z) =Pi q0i log (�).Proof of Claim 1: By way of contradiction, suppose that the values fqig minimize the sumPi qi log (eiqzi) and that there exists indexes j and k such that ejqzj 6= ekqzk . We will now minimizethe summation subject to changing qj and qk, but leaving all the other qi's �xed. Because the condi-tionPi qi = K must be maintained, there exists a constantK0 for which qk = K 0�qj . The equationto minimize becomes y = K 00+qj log �ejqzj �+(K0 � qj) log (ek (K 0 � qj)z). Setting the derivative tozero gives dydqj = log �ejqzj �+ qjejqzj zejqz�1j � log (ek (K 0 � qj)z)+ K0�qjek(K0�qj)z zek (K 0 � qj)z�1 (�1) = 0.Solving gives log �ejqzj � = log (ek (K 0 � qj)z) = log (ekqzk). Therefore, the minimum occurs whenejqzj = ekqzk , contradicting the above assumptions.20

Proof of Lemma 2: Consider a protocol. For each message Mi (~�) = m sent by the helper tothe ith player, the player asks a series of parity questions about the ith game instance �i and stopswhen he receives an answer of 1. Let Ehm;1i; Ehm;2i; : : :� [1::r] denote the parity questions asked.In order to simplify the notation, let � = h�1; : : : ; �i�1; �i+1; : : : ; �di and hence ~� = h�i; �i.The message sent by the helper partitions the universe of possible inputs h�i; �i. Let u =j (f0; 1gr�f0rg)d j, sm = jfh�i; �i j m = Mi (�i; �)gj, Am = f�i j 9�;m = Mi (�i; �)g, Qhm;�ii =f� j m =Mi (�i; �)g, and qhm;�ii = jQhm;�iij. By de�nition, P�i qhm;�ii = sm.
u

q
ms m

α

α

Am

Am,c

βFigure 2.1: The helper's message partitions the input spaceConsider a message Mi (~�) = m sent by the helper to the ith player. After receiving thismessage the ith player asks the parity questions Ehm;1i; Ehm;2i; : : :� [1::r] in order until an answerof 1 is obtained. De�ne chm;�ii to be the number of the Ehm;1i; Ehm;2i; : : : questions asked when theplayer has input �i. Recall that Am is the set of inputs �i for which the player might receive themessage m. Sort the inputs in Am in increasing order according to chm;�ii and partition the listinto wm parts Ahm;1i; : : : ; Ahm;wmi of geometrically decreasing size so that 8c 2 [1::wm]; jAhm;cij =2r2c . (Except maybe the last, which is exponentially small.) I claim that 8c 2 [1::wm]; 8�i 2Ahm;ci; chm;�ii � c. This is because the number of r-bit vectors �0i for which one of the questionsEm;1; : : : ; Em;c�1 has parity 1 is Pj2[1::c�1] 2r2j and there are at least this many vectors proceeding�i in the sorted list. Given this notation, the expected number of questions asked can be expressedas Exp�i;� �chMi(�i;�);�ii� = 1uXm Xc2[1::wm] X�i2Ahm;ci X�2Qhm;�ii chm;�ii� 1uXm Xc2[1::wm] X�i2Ahm;ci qhm;�iic:As well, we can expressI (Mi (~x) ; xi) = 1u X�i;� log�Pr [Mi (~x) =Mi (~�) and xi = �i]Pr [Mi (~x) =Mi (~�)] Pr [xi = �i] �= 1u X�i;� log qhm;�ii=u(sm=u) (1=jf�igj)!= 1uXm Xc2[1::wm] X�i2Ahm;ci qhm;�ii log (2r � 1) qhm;�iism ! :Let z be a constant to be chosen later. Combining the above two expressions givesExp�i;� �chMi(�i;�);�ii�+ zI (Mi (~x) ; xi) 21

= 1uXm Xc2[1::wm] X�i2Ahm;ci qhm;�ii log 2c (2r � 1) qhm;�iism !z! :In order to bound this amount, consider each m separately. For all c and all �i 2 Ahm;ci, de-�ne q0hm;�ii such that Pc2[1::wm]P�i2Ahm;ci q0hm;�ii = Pc2[1::wm]P�i2Ahm;ci qhm;�ii and q0hm;�ii =��m2c � 1z sm(2r�1) , for some constant �m. (i.e. the argument of the logarithm �m = 2c (2r�1)q0hm;�iism !zis a constant). By Claim 1, it is clear thatExp�i;� �chMi(�i;�);�ii�+ zI (Mi (~x) ; xi)� 1uXm Xc2[1::wm] X�i2Ahm;ci q0hm;�ii log 2c (2r � 1) q0hm;�iism !z! :We need to determine what this constant �m is given the constraints on it. The �rst constraintinsures that that sm =Pc2[1::wm]P�i2Ahm;ci q0hm;�ii. Substituting in the second constraint gives thatsm = Xc2[1::wm] X�i2Ahm;ci ��m2c � 1z sm(2r � 1) :The terms no longer depend on �i. In addition, jAhm;cij = 2r2c for each c 2 [1::wm]. Therefore,sm = Xc2[1::wm] 2r2c ��m2c � 1z sm(2r � 1) = 2r2r � 1 (�m) 1z sm Xc2[1::wm] h21+ 1z i�c= 2r2r � 1 (�m) 1z sm 241� 2�wm(1+ 1z)�21+ 1z �� 1 35 :Solving for �m gives�m = 242r � 12r �21+ 1z �� 11� 2�wm(1+ 1z)35z andlog (�m) = z hlog �21+ 1z � 1�+ log �1� 2�r�� log �1� 2�wm(1+ 1z)�i :Now observe that 1�x � 2�2x as long as x 2 [0; 12], since it is true at endpoints and 2�2x is concave.Therefore, log (1� 2�r) � �2�r+1. Similarly, the last term � log �1� 2�wm(1+ 1z)� is positive andinsigni�cant. This gives log (�m) � z log �21+ 1z � 1�� z2�r+1. The limit of z log �21+ 1z � 1� as zgoes to in�nity is 2. Therefore, for any � there is a constant z� such that log (�m) � 2� ��z�2�r+1.We can now conclude by stating thatExp�i;� �chMi(�i;�);�ii�+ z�I (Mi;�i)� 1uXm Xc2[1::wm] X�i2Ahm;ci q0hm;�ii log (�m)� 2641uXm Xc2[1::wm] X�i2Ahm;ci X�2Qhm;�ii 1375h 2� � � z�2�r+1 i= [1] h2� � � z�2�r+1i : � 22

Now that we know that the player does not have enough information to e�ectively ask ques-tions about an average game instance, we are ready to prove that the total number of questionscharged to the player is at least (2� �)d.Proof of Theorem 4:Exp~� 241d 0@ Xi2[1::d] ch~�;ii1A35= 1d Xi2[1::d]Exp~� hch~�;iii (by Lemma 2)� 1d Xi2[1::d]h2� � � z� �I (Mi (~x) ; xi) + 2�r+1�i= 2� � � z�0@1d Xi2[1::d]I (Mi (~x) ; xi)1A � z� �2�r+1� (by Lemma 1)� 2� � � z� � bd + 2�r+1� : �2.7 A Simpler Version of the Helper-Parity GameThis section de�nes the version of the helper-parity game that is actually used in Chapter 3. It issimpler and hence makes the st-connectivity lower bound simpler.As before, the input consists of a vector for each of the game instances �1; : : : ; �d 2 f0; 1gr�f0rg, the helper sends a help message M (~�) containing at most b bits of information, and theplayer asks parity questions until he asks a question with parity 1 for each of the d game instances.However, in this version, the player is charged for at most the �rst two questions asked about eachgame instance.An equivalent formulation of the game is as follows. First, the helper sends the messageM (~�) to the player. Then, repeatedly, the player selects a game instance i (in any order) and aparity question Ei. If the answer to the question is 1 then he is charged only 1 for the question. Ifthe answer is 0 then he is charged 2. Independent of the answer, the helper reveals the input �i tothe player. This is repeated until one question has been asked about each of the game instances.The cost of the game on input ~� is de�ned to be the total charge per game instance,c~� = 1d Xi2[1::d]8<: 1 if Mj2Ei [�i]j = 12 otherwise 9=;:These two formulations of the game are equivalent because in both cases the cost for a gameinstance depends only on the answer to the �rst question. As well, in the second formulation, theplayer is given the input �i for free, but in the �rst formulation the player is not charged if he keepsasking questions until he learns this information himself.The �rst formulation makes it clear that the complexity of the original game is at least thecomplexity of this game. The second formulation simpli�es the game, making the reduction from23

st-connectivity much easier. Speci�cally, after the JAG \asks" a �rst parity question about asubgraph, the structure of this subgraph can be revealed to the JAG. Hence, the proof does notneed to be concerned about the model knowing partial information about the subgraph. The proofdoes go through if this is not done, but it is more complex. Besides, the complexities of the versionsare (2� �) and (1:5� �) and hence e�ect the �nal result by very little.The worst case complexity for this version of the game without any helper bits is clearly 2.With random bits, the expected complexity is clearly 1.5. This section uses the same techniquesused in Section 2.6 to prove that a helper must provide lots of bits of information for the complexityto be signi�cantly less than 1.5.Theorem 6 For every � > 0, there exists a � > 0 and a large enough constant r such that if b < �d,then Exp~�c~� � 1:5� �.For example, if � = 0:0125, � = 0:0002, r = 13, and d � 1� b, then c � 1:5� �. The proof is presentedin Section 2.7.The structure of the proof is the same as that for Theorem 4. Now, however, a �xed protocolcan be partitioned easily into d disjoint protocols, without requiring a restriction on the order theplayer asks his questions. This is because, in the second formulation, the player asks only onequestion per game instance.Lemma 3 Let P be the probability that the �rst question the player asks about the ith game instancehas even parity. For all � > 0, there exists � > 0 and r such that if I (Mi (~x) ; xi) � �, then P � 12��.Proof of Lemma 3: As before, let � = h�1; : : : ; �i�1; �i+1; : : : ; �di and ~� = h�i; �i. For eachhelper message m, let Em � [1::r] be the parity question asked by the player. Partition the domainof �i 2 f0; 1gr�f0rg into Fm = f�i j Lj2Em [�i]j = 0g and Fm = f�i j Lj2Em [�i]j = 1g.Clearly, jFmj = 2r2 � 1 and jFmj = 2r2 . The message sent by the helper partitions the universe ofpossible inputs h�i; �i. Let u = j (f0; 1gr�f0rg)d j, sm = jfh�i; �i j m = Mi (�i; �)gj, Qhm;�ii =f� j m = Mi (�i; �)g, and qhm;�ii = jQhm;�iij. From these values, we can express and compare Pand I (Mi (~x) ; xi).
q

ms

u

m

α

α

Fm

βFigure 2.2: The helper's message partitions the input spaceNote that the probability that the �rst question the player asks about the ith game instance24

has even parity isP = 1uXm X�i2Fm qhm;�ii;because the summation counts the number of ~� = h�i; �i for which the parity is 0. Similarly,I (Mi (~x) ; xi)= 1u X�i;� log�Pr [Mi (~x) =Mi (~�) and xi = �i]Pr [Mi (~x) =Mi (~�)] Pr [xi = �i] �= 1uXm X�i X�2Qhm;�ii log qhm;�ii=u(sm=u) (1=jf�igj)!= 1uXm X�i2Fm qhm;�ii log (2r � 1) qhm;�iism !+ 1uXm X�i2Fm qhm;�ii log (2r � 1) qhm;�iism ! :We will bound the two summations separately.For all m and all �i 2 Fm, de�ne q0hm;�ii such that PmP�i2Fm q0hm;�ii = PmP�i2Fm qhm;�iiand q0hm;�ii = sm(2r�1)�F , for some constant �F . Similarly, for all m and all �i 2 Fm, de�neq00hm;�ii such that PmP�i2Fm q00hm;�ii = PmP�i2Fm qhm;�ii and q00hm;�ii = sm(2r�1)�F , for some con-stant �F . By the �rst requirement, it is clear that P = 1uPmP�i2Fm q0hm;�ii and that 1 � P =1uPmP�i2Fm q00hm;�ii. As well, by Claim 1, it is clear thatI (Mi (~x) ; xi)� 1uXm X�i2Fm q0hm;�ii log (2r � 1) q0hm;�iism !+ 1uXm X�i2Fm q00hm;�ii log (2r � 1) q00hm;�iism != [P] log (�F) + [1� P] log ��F � :The next step is to bound �F and �F using the fact that P = 1uPmP�i2Fm q0hm;�ii =1uPmP�i2Fm sm(2r�1)�F . Using jFmj = 2r2 � 1 and Pm sm = u, gives P = 1uPm �2r2 � 1� sm(2r�1)�F= � 2r2 �1�(2r�1) �F or that �F � 2P . The same calculations for the second summation over Fm gives that�F = 2r�12r2 (1� P) = 2 (1� 2�r) (1� P). To be consistent, �F � 2 (1� 2�r)P .Returning to I , this gives I (Mi (~x) ; xi) � [P] log (2 (1� 2�r)P) + [1� P] log (2 (1� 2�r) (1� P))= 1 + log (1� 2�r) + P log (P) + (1� P) log (1� P). Note that log (1� 2�r) � �2�r+1 as long asr � 1 and let U (P) = 1+P log (P) + (1� P) log (1� P). This gives us that �I (Mi;�i) + 2�r+1� �U (P). Plotting U (P) reveals the shape of a \U" with key points being (P; U) = (0; 1) ; (:5; 0) ; and(1; 1). This means that if �I (Mi;�i) + 2�r+1� is small, then U (P) is small, and then P is close to12 . We can conclude that 8� > 0; 9� > 0; and a large enough r, such that if I (Mi;�i) � �, thenP � 12 � �.Proof of Theorem 6: Let � > 0 be an arbitrary constant and let �0 = �2:5 . Let �0 and r be theconstants proved to exist in Lemma 3 for �0. Let � = �0� �0. By Lemma 1, Pi2[1::d] I (Mi (~x) ; xi) �b � �d = �0�0d. It follows that for at least (1� �0)d of the game instances, it is the case that25

I (Mi (~x) ; xi) � �0. Hence, for these game instances Pr hLj2Ei [�i]j = 0i � 12��0. We can concludethat Exp~�c~� = Exp~� � 1d Xi2[1::d]8<: 1 if Lj2Ei h�hl;iiij = 12 otherwise 9=; �= 1d Xi2[1::d] [1 (1� Pi) + 2Pi] = 1d Xi2[1::d] [1 + Pi]� 1d � �1� �0� d� �1:5� �0�� 1:5� 2:5�0 = 1:5� �: �

26

Chapter 3Undirected st-Connectivity on aHelper-JAGIn this chapter, a lower bound is proved on the time-space tradeo� for undirected st-connectivity.Theorem 7 For every constant z � 2, the expected time to solve undirected st-connectivity for3-regular graphs on a probabilistic JAG with p � 128z lognlog logn pebbles and q � 2logz n states is at leastn� 2 125z log nlog log n .See Section 1.1 for a formal de�nition of a probabilistic JAG. The graphs considered are called\recursive y swatter graphs" and are built recursively from the squirrel cage graph considered in[BBRRT90]. Their lower bound applies when there is at most one moving pebble. My boundapplies as long as there are fewer pebbles than the number of levels of recursion.The input graph is composed of many y swatter subgraphs. When a superlinear amountof time is available, the JAG may traverse such a subgraph many times. Although traversing aparticular subgraph the �rst time may take many time steps, the JAG can use its states to recordthe structure of the subgraph so that subsequent traversals can be performed more quickly. Todeal with this situation, the lower bound is actually proved on a stronger model, called the helperJAG. In this model, the helper is allowed to set the JAG's initial state and the initial positionof the pebbles to minimize the computation time. In this way, the helper is able to communicateto the JAG at least as much information about the input as it could learn during a �rst traversalof a subgraph. In e�ect, a helper JAG lower bound is a bound on the time for a regular JAG totraverse the graph during subsequent traversals.The helper JAG lower bound is obtained by reducing the st-connectivity problem to theproblem of traversing from s to t and then reducing this problem to the helper-parity game.The game characterizes the relationship between the number of bits of help (or foreknowledge) andthe resulting traversal time. Upper and lower bounds for this and other similar games are found inChapter 2.Section 3.1 reduces the st-traversal problem to the st-connectivity problem. Once the com-putation problem being considered is not a decision problem, I am able to de�ne the helper JAG.This is done in Section 3.2. Section 3.3 describes the y swatter graph and provides intuitionabout the complexity of the traversal of this family of graphs. This motivates the helper parity27

game de�ned in Section 2.7. Section 3.4 describes a graph consisting of a line of y swatters andinformally compares the complexity of traversing such a graph to that of the helper parity game.Section 3.5 describes the recursive construction of the input graphs and informally estimates thecomplexity of its st-traversal. Section 3.6 de�nes a measure of the time and pebble resources thatare used to traverse a particular level of the recursion. Sections 3.3, 3.4, 3.5, and 3.6 do not providea formal proof, but they do give some crucial intuition. Section 3.7 reduces the traversal problemto the helper parity game and Section 3.8 proves the average case lower bound for a natural inputdistribution. By Yao's theorem, this is su�cient to prove the expected case probabilistic lowerbound in the stated theorem.3.1 Graph TraversalIf it is possible for a pebble of a JAG to walk from s to t on a graph, then a graph is st-connected.However, a JAG can determine that the graph is st-connected in other ways. For example, supposethat at time T0, pebble Ps is on vertex s, Pt is on t, and P1 and P2 are both on some third vertexv, at time T 0 2 [T0::T1], Ps and P1 are both on the same vertex v0 and, at time T 00 2 [T0::T1], Ptand P2 are both on some other vertex v00. If these pebbles only walk along edges of the graph, thenit follows that the graph is st-connected.Additional complexity is caused by the pebbles being able to jump. A single pebble maynot walk these paths from s to t. Instead, one pebble way walk part of the way. Another pebblemay jump to this pebble and continue on the walk. In general, one cannot assume that a task iscompleted by \a speci�c pebble", because the pebbles are able to continually change places andeach could complete some fraction of the task.Such complex procedures for determining st-connectivity are captured by the st-traversalproblem, which is formally de�ned as follows. Given a JAG computation on a graph G, thetraversal graph H is de�ned as follows. For every vertex v of G and step T 2 [T0::T1], let hv; T ibe a vertex of H if and only if there is a pebble on vertex v at time T . Let fhu; T i ; hv; T + 1ig bean edge of H if a pebble walks along edge fu; vg in G during step T and let fhv; T i ; hv; T + 1ig bean edge of H if there is a pebble that remains on vertex v during step T . We say that the JAGtraverses the graph G from vertex s to vertex t during the time interval [T0::T1] if and only ifthere is an undirected path in H between hs; Tsi and ht; Tti for some Ts; Tt 2 [T0::T1].In the example given above there is a traversal path comprised of the four segments: fromhs; T0i to hv0; T 0i following the movements of Ps, from hv0; T 0i to hv; T0i following the movementsof P1 backwards in time, from hv; T0i to hv00; T 00i following the movements of P2, and from hv00; T 00ito ht; T0i following the movements of Pt backwards in time. From the existence of this path, theJAG can deduce that s and t are connected.The st-connectivity decision problem and the problem of traversing from s to t are closelyrelated. Let F be a family of connected graphs with distinguished nodes s and t. Let Gs;t[Gs0;t0 bethe graph comprised of two identical disjoint copies of the graph G 2 F . Let Gs;t0[Gs0;t be the sameexcept that one copy has the vertices s and t0 and the other has s0 and t. The �rst is st-connectedand the second is not. Let F 0 be the family of graphs fGs;t[Gs0 ;t0 j G 2 Fg[fGs;t0[Gs0;t j G 2 Fg.Lemma 4 If a JAG solves st-connectivity for every graph in F 0 (in T steps), then it performsst-traversal for every graph in F (in T steps). 28

pt< t; T0 > ps < v0; T 0 >< v00; T 00 >p1 p2< s; T0 >< v; T0 >Figure 3.1: A path in the traversal graph of GProof of Lemma 4: Suppose that there is a JAG that solves st-connectivity for all graphs in F 0.We prove that the JAG must traverse either from s to t or from s0 to t0. By way of contradiction,suppose the JAG is given graph Gs;t [Gs0;t0 as input and it neither traverses from s to t nor froms0 to t0. Consider the connected components of H . At each point in time, the pebbles can bepartitioned based on which connected component of H they are in. A pebble can change whichpart of this partition it is in by jumping, but not by traversing an edge. Since there is no pathfrom s to t in H , the node hs; Tsi, for any time step Ts, is in a di�erent component than the nodesht; Tti for any time step Tt. Similarly, for all time steps Ts0 and Tt0 , nodes hs0; Ts0i and nodes ht0; Tt0iare in di�erent components. If this JAG was given Gs;t0 [Gs0 ;t as input instead, the connectedcomponents of H and the partitioning of the pebbles would be the isomorphic. It follows that thecomputation on Gs;t [Gs0 ;t0 and on Gs;t0 [Gs0;t are identical.Confusion is added to the lower bound proof by the fact that the path through the traversalgraph H may go forwards and backwards in time many times. As demonstrated in the aboveexample, this is caused by the graph initially containing pebbles within the graph and by thepebbles entering the graph via both the distinguished nodes s and t. By the de�nition of thest-traversal problem, all the pebbles are initially placed on s and t, and not within the graph.However, in the proof of the lower bound, we need to consider the traversal of sub-graphs duringsub-intervals of time. By initially, I mean at the beginning of the sub-interval of time during whichthe traversal takes place. Therefore, the pebbles could initially have any placement through thegraph, and hence the path through H could be complex.The following de�nes the type of traversals for which proving the lower bound is easier.Consider a sub-graph with distinguished nodes s and t, that initially contains no pebbles andwhich is built so that it can be entered by pebbles only via s or t. We will say that the sub-graphhas been forward traversed from s to t if it is traversed, yet, during the time period of thetraversal, pebbles enter the subgraph via only one of the distinguished nodes s or t, but not both.When this occurs, there must be a path from s to t or from t to s that proceeds only forwards intime. Consider a line of d sub-graphs, the ith of which has distinguished nodes si and ti, which areconnected by the nodes si and ti+1 being the same node. The input graph will be many copies ofthis line of graphs. Consider a computation of this input graph starting with some initial placementof the pebbles and stopping when one of the lines of sub-graphs has been traversed. Because theline is traversed, each of the sub-graphs in the line must have been traversed. However, only someof these sub-graphs would have been forward traversed. These need to be identi�ed. Let S0 � [1::d]consist of those i for which, some copy of the line initially contains a pebble in its ith sub-graph.De�ne S1 � [1::d]� S0 to consist of those i such that the �rst time the ith sub-graph in some lineis traversed, it is not forward traversed. These sub-graphs do not initially contain pebbles, hence,29

when they are �rst traversed, pebbles must inter them via both the distinguished nodes si and ti.Claim 2 jS0 [S1j � 2p+ 1Proof of Claim 2: jS0j � p, because there are only p pebbles. Consider two indices i and i0 2 S0,such that i < i0 and there is no i00 2 S0 strictly between them i < i00 < i0. Consider two indexes jand j0, such that i < j < j0 < i0. If j; j 0 2 S1, then pebbles would need to enter the jth sub-graphvia tj and enter the j0th sub-graph via sj0 . How did pebbles get in the line of sub-graphs betweenthese two nodes without pebbles �rst traversing the jth or the j 0th sub-graphs? Recall pebblescannot jump to nodes not already containing pebbles. This is a contradiction. Hence, there canonly be one j 2 S1 between i and i0. There can also be at most one j 2 S1 before �rst i 2 S0 andat most after the last. Hence, jS1j � jS0j+ 1.For all i 2 [1::d]� (S0 [S1), the ith sub-graph is forward traversed. The parameters will be de�nedso that p 2 o (d), so that most of the sub-graphs need to be forward traversed.3.2 The Helper JAGIf the goal of the JAG is to compute the st-connectivity problem, then for any given input graph,a helper could tell the JAG the answer by communicating only one bit of help. On the other hand,we will show that many bits of help are required to signi�cantly improve the time for the JAG toactually traverse from s to t in a certain class of graphs.Having formally de�ned st-traversal, we are now able to formally de�ne a Helper JAG. It isthe same as a regular JAG except that the helper, who knows the complete input, is able to setthe initial state and pebble con�guration in a way that minimizes the traversal time. Let T hG;Q;�ibe the time required for a regular JAG to traverse the input graph G starting in state Q 2 [1::q]and with � 2 [1::n]p specifying for each of the p pebbles which of the n nodes it is initially on. Thetime for the corresponding helper JAG to traverse G is de�ned to be minhQ;�i T hG;Q;�i. It is ofteneasier to think of the helper giving the JAG b = log (qnp) bits of information.In order to prove Theorem 7, it is su�cient to prove the theorem with the following changes.The input domain is restricted to the family of recursive y swatter graphs. The st-traversalproblem is considered instead of st-connectivity. By Lemma 4, this is su�cient. As well, the helperJAG model is considered instead of the regular JAG. Finally, the running time of a deterministicalgorithm averaged over inputs according to a �xed input distribution is considered instead ofconsidering the expected running time for a probabilistic algorithm on the worst case input. Yao[Ya77] proves that this is su�cient, since there exists a random algorithm whose expected runningtime on the worst case input is T i� for every distribution on inputs, there exists a deterministicalgorithm whose average running time according to the distribution is T . The average case lowerbound is, however, a stronger statement because it is proved for a �xed distribution that is naturalfor the family of graphs being considered.Theorem 70 For every constant z � 2, the average time for st-traversal by helper JAG withp � 128z lognlog logn pebbles and q � 2logz n states is at least n � 2 125z log nlog log n , where the input graphG (~�1; :::; ~�L) is chosen by uniformly choosing ~�1; :::; ~�L from (f0; 1gr�f0rg)d (for su�ciently largen). 30

The family of graphs G (~�1; :::; ~�L) is de�ned in the next section.3.3 A Fly Swatter GraphThe basic components of the input graphs de�ned in Section 3.5 are the y swatter graph. A yswatter graph consists of two identical graphs with r switches between them. It is very similar tothe squirrel cage graph de�ned in [BBRRT90]. Each half consists of a path of length h2 , called thehandle, and a swatting part. The swatting part consists of two parallel paths of length r+ 1 thatare both connected to one end of the handle. The distinguished nodes s and t are located at theends of the handles furthest from the swatting parts. Suppose the swatting part of one half of thegraph contains the paths u00; u000 ; u01; u001 ; : : : ; u00r�1; u0r and v00 ; v000 ; v01; v001 ; : : : ; v00r�1; v0r and the swattingpart of the other half contains the paths u10; u010 ; u11; u011 ; : : : ; u01r�1; u1r and v10 ; v010 ; v11; v011 ; : : : ; v01r�1; v1r .Then the setting of the switches between the halves is speci�ed by a non-zero vector � 2 f0; 1gras follows. For each j 2 [1::r], the jth switch consists of the two cross-over edges fu0j ; v[�]jj g andfu1j ; v[�]jg. Note that if [�]j = 0, then the switch remains within the same half and if [�]j = 1, thenthe switch crosses over from one half to the other. (The notation [�]j is used to denote the jth bitof the vector �. The notation �i is reserved to mean the ith vector in a vector of vectors.) Theextra nodes u00i and v00i are added so that the smallest square containing cross-over edges containssix edges.
α 2α dα1

h/

d
==1 1 2s s ts t 2 t 3 3

2

4

5

1

3

[α] = 1
[α] = 0

[α] = 0

[α] = 1

[α] = 1

α

s t

(b)(a)

2

r

Figure 3.2: A y swatter graph and a line of y swattersForward traversing from s to t in the y swatter speci�ed by � requires traversing a sequence ofswitches E 2 [1::r]+ for which the parity of the bits of � on the indexes in E is 1, i.e.Lj2E [�]j = 1.To be able complete this task, the JAG must be able to determine the parity of such a sequenceE. There are two ways in which the JAG can ask a parity question. The lower bound will provethat these are the only ways in which the JAG is able to acquire the information about the input.The �rst method of asking a parity question requires only one pebble, but a great deal oftime. The pebble enters the y swatter via the distinguished node s (or t), traverses up the handle,through a sequence of switches E 2 [1::r]+, and back down the handle. While the pebble is insidethe y swatter, the JAG has no way of learning which half the pebble is in, because the two halves31

are indistinguishable. However, when the pebble reaches the bottom of the handle, the parity of thesequence is determined by whether the distinguished node s or t is reached. Each handle containsh=2 edges. Therefore, asking a parity question with one pebble requires the JAG to traverse atleast h edges.
1 53

[α] [α] [α] = 1
1 53

[α] [α] [α] = 0

2

4

5

1

3

[α] = 1
[α] = 0

[α] = 0

[α] = 1

[α] = 1

s t

(a)

s t

2

4

5

1

3

[α] = 0

[α] = 0

[α] = 1

[α] = 1

[α] = 0

vs

2h/

3 4
[α] [α] = 0 3 4

[α] [α] = 1

(b)

4

M M

VS
4

3 3

[α] = 0

[α] = 0

[α] = 1

[α] = 0Figure 3.3: A parity question without and with a markerThe second method requires two pebbles, one of which acts as a marker and the other ofwhich traverses a sequence of switches E. The parity of the sequence is determined by whether thetraversing pebble returns to the marker. For example, if a pebble starts at node u02 and walks theedges labeled hswitch,up,switch,downi, then one possible sequence of nodes for the pebble to followis u02; v02; v03; u03; u02 and another is u02; v02; v03; u13; u12 depending on which switches in the graph areswitched. Provided the JAG leaves a pebble as a marker at the node u02, it can di�erentiate betweenthese two sequences and learn whether [�]2 � [�]3 is 0 or 1. This is illustrated in Figure 3.3 (b).Even though a parity question E (for example, the parity of all the bits in �) may require � (r)edges to be traversed, the lower bound will only charge the JAG for the traversal of at most twoedges for a parity question using a marker.If the JAG can only gain information about the input by asking parity questions in thesetwo ways, then a JAG that solves st-connectivity for a y swatter graph must be able to solve thehelper-parity game with the number of game instances being d = 1 and the amount of helper bitsbeing b = 0. Recall, the input to this game consists of a non-zero vector � 2 f0; 1gr. The playerasks parity questions. A parity question speci�es a subset of the indexes E � [1::r]. The answer tothe parity question is the parity of the input � at the indexes in this set, namely Lj2E [�]j . Thecomplexity is the number of questions asked before the player asks a parity question with answer1. Beame et al. [BBRRT90] prove that, for this game, r questions must be asked in the worstcase. The proof uses the fact that � 2 f0; 1gr�f0rg forms a vector space of dimension r. In thisway, they prove that for one pebble, � (hr) = � �n2� time is needed. However, we are consideringmore than one pebble. With two pebbles the JAG can traverse the y swatter graph in linear time.In order to prove lower bounds when the JAG has more than one pebble, a more complexgraph is needed. The y swatter graph will be a subgraph of this more complex graph. In order totraverse this complex graph the JAG will have to traverse a particular y swatter subgraph manytimes. Hence, on subsequent traversals of this y swatter the JAG may have some precomputedinformation about it. This is modeled by a helper providing the JAG with this precomputedinformation. 32

3.4 The Helper and a Line of Fly Swatter GraphsThe helper communicates information to the JAG about the input graph by specifying the initialstate Q 2 [1::q] and location of each of the p pebbles. Hence, the amount of information that thehelper is able to provide is limited to at most b = log (qnp) bits. As mentioned in Section 3.3,only log r << b bits are required for the JAG to be able to traverse a y swatter in linear time.However, b is not enough bits of help to simultaneously provide su�cient information about manyy swatter graphs. For this reason, we require the JAG to traverse a line of d y swatters. Sucha line is speci�ed by the parameters r 2 O (1), h 2 O (1), d 2 logO(1) n and the vector of vectors~� = h�1; : : : ; �di 2 (f0; 1gr�f0rg)d. The d graphs are connected by making the distinguished nodesti and si+1 be the same node, for i 2 [1::d�1]. This is illustrated in Figure 3.2 (b). The similaritiesbetween the parity game and the traversal of a line of y swatter graphs should be clear, at leastinformally. Theorem 6 proves that if the JAG is only able to gain information by asking parityquestions and b << d, then the average number of questions the JAG must ask is (1:5� �)d.The time to traverse the line of y swatters is the product of the number of parity questionsasked and the number of time steps per question. This, however, might be complicated if the JAGutilizes a marker for some of the questions and not for others. This is handled in the formal proof.However, it is instructive to consider the situation where this does not happen. Informally, we canconclude that if a marker is utilized in none of the questions, then the number of edges traversedby the JAG is h (1:5� �)d and, if a marker is utilized in all of the questions then (1:5� �) d edgesare traversed.Because the input graph is built recursively on the edges of this graph, it is convenient tocompare this time bound to the number of edges in the line of y swatters instead of the number ofnodes. Without a marker, the time required is roughly a factor of (1:5� �) larger than the numberof edges. With a marker, it is roughly a factor of (1:5��)h less than the number of edges. Thisdi�erence is not very impressive, but its e�ect is magni�ed in a recursive construction.3.5 The Recursive Fly Swatter GraphsLet G (~�l) denote the line of y swatters speci�ed by the vector of vectors ~�l = D�hl;1i; : : : ; �hl;diE2 (f0; 1gr�f0rg)d. For each l � 0, we recursively de�ne a graph. De�ne G (;) to be a single edge.De�ne G (~�1; :::; ~�l) to be the graph G (~�l) where each edge is replaced by a super edge consisting ofa copy of G (~�1; :::; ~�l�1). The node shl�1;1i is one end of the super edge and the node thl�1;di is theother end. All the super edges in one level are the same. The family of recursive y swatter graphsis � G (~�1; :::; ~�L) j ~�1; : : : ; ~�L 2 (f0; 1gr�f0rg)d 	, where L is such that n is the total number ofnodes. (Gadgets can be added to make the graph 3-regular without changing it signi�cantly). Thegraph G (~�1; :::; ~�l) contains (h+ 10r)d copies of G (~�1; :::; ~�l�1). Therefore, the total number ofedges is at most [(h + 10r)d]L. The number of nodes n is approximately two thirds of the numberof edges.A crucial and di�cult observation in understanding the complexity of traversing this graphis that a pebble can only be used as a marker in one recursion level at a time. To demonstratethis, consider L = 2 levels of recursion and p = 2 pebbles. If a parity question is asked about thetop level vector ~�L by leaving a pebble as a marker, then only one pebble remains to traverse thesequence of super edges required by the question. Hence, these super edges, which are themselves33

Figure 3.4: The recursive line of y swatters graph (Sorry, the cycles in the �gure have length 4instead of 6.)lines of y swatters, must be traversed with the use of only one pebble. Alternatively, if two pebblesare used to traverse each super edge, then there is \e�ectively" one pebble for the traversal of thetop level. See Figures 3.3 (b) and 3.5.
Figure 3.5: Ten super edges of a two level recursive y swatter graphAn intuitive explanation of the lower bound can now be given. (A formal proof is providedin Section 3.8.) There are p pebbles, hence at most p � 1 markers. It follows that L � p + 1levels are traversed without the use of a marker. Note, as well, that the time to traverse a copy ofG (~�1; :::; ~�l) is the number of super edges traversed in the lth level subgraph G (~�l) multiplied bythe time to traverse each super edge G (~�1; :::; ~�l�1). Therefore, an estimation of the total time isthe product of the number of super edges traversed at each of the L levels,T � [h (1:5� �)d]L�p+1 [(1:5� �) d]p�1= (1:5� �)L � (hd)L � h�p+1 (3.1)The parameters are chosen as follows: r; h 2 � (1), d 2 log�(1) n, and L 2 � � lognlog logn�. Thenthe �rst factor becomes 2
� log nlog log n�, the second is close to n (assuming r << h), and the third isinsigni�cant compared to the �rst assuming that p is a constant fraction of Llog h 2 � � lognlog logn�.This gives the result in Theorem 7.3.6 The Time, Pebbles, and Cost used at Level lThe lower bound is proved by induction on the number of levels of recursion l. For each l 2 [1::L],we prove a lower bound on the cost to traverse some copy of G (~�1; :::; ~�l). De�ne ~ = h~�1; : : : ; ~�l�1iand ~� = h~�l+1; : : : ; ~�Li so that G (~�1; :::; ~�L) and G �~; ~�l; ~�� denote the same graph. Think of34

G (~; ~�l) (the sub-graph traversed) as a line of d y swatters G (~�l) with each of its super edgesbeing a copy of G (~). The super edge G (~) does not need to be understood, because the inductionhypothesis proves a lower bound on the time to traverse it. In the graph G �~; ~�l; ~��, there aremany copies of G (~; ~�l). The graph G(~�) is called the context in which these copies of G (~; ~�l)appear.Informally, the time required to traverse G (~; ~�l) is the number of super edges of G (~�l)traversed multiplied by the time to traverse a super edge G (~). This fails to be true, because eachtraversal of a super edge may require a di�erent amount of time. This di�erence in time is causedby the number of markers (pebbles) beings used in the traversal and by the state and position ofthe pebbles before the traversal. Note, di�erences in traversal times are not caused by di�erencesin the structure of the super edges, because they are all identical.Let Q 2 [1::q] be a state of the JAG and let � 2 [1::n]p specify which node of G �~; ~�l; ~�� eachof the p pebbles is on. Consider the JAG computation starting in the con�guration described by Qand � on the graph G �~; ~�l; ~�� until some copy of G (~; ~�l) is traversed. De�ne T �l;
~; ~�l; ~�� ; Q;�� tobe the number of time steps taken. This will be abbreviated to T [l] when the rest of the parametersare understood. De�ne p�l;
~; ~�l; ~�� ;Q;�� (abbreviated to p[l]) to bep�l;
~; ~�l; ~�� ; Q;�� = maxT2[1::T [l]] [p+ 1� (# copies of G (~; ~�l) containing pebbles at time T)] :At no time during the interval does a copy of G (~; ~�l) contain more than p[l] pebbles. For example,suppose there are two copies of G (~; ~�l) containing pebbles. One copy contains at least one pebbleand, therefore, the other copy contains no more than p� 2 + 1 = p� 1 pebbles. Think of the \(#copies of G (~; ~�l) containing pebbles)" as the number of pebbles being used as \markers" in thegraph G(~�). Essentially, no more than one of these pebbles is available to be used in the traversalof G (~; ~�l).De�ne the cost incurred by the JAG in traversing a copy of G (~; ~�l) to bew�l;
~; ~�l; ~��� = minhQ;�i log�hp�l;
~; ~�l; ~�� ; Q;��T �l;
~; ~�l; ~�� ; Q;��� (and let)W [l] = Exph~;~�l;~�iw�l;
~; ~�l; ~���:The motivation for using hp[l]T [l] comes from Equation 3.1. Since the average time T [l] to traverseG (~; ~�l) can be estimated by (1:5� �)l (hd)l h�p[l]+1, the quantity hp[l]T [l] is essentially independentof the number of pebbles used. Technically, it is convenient to use the logarithm of this quantity.This converts the total complexity from being the product of the complexities at each level intobeing the sum. We are then able to use the fact that the expectation of the sum is the sum ofthe expectations. The reason for minimizing over hQ;�i is that we are assuming the helper setsthe initial JAG con�guration in a way that minimizes the cost of the traversal. Finally, W [l] isthe average cost for a uniformly chosen input
~; ~�l; ~��. Substituting the estimate Equation 3.1 intothe de�nition of W [l] gives the informal estimate of the average cost to be log �[(1:5� �) hd]l h�= [log h+ log d+ log (1:5� �)]� l + log h. This motivates Lemma 5.3.7 Reducing the Helper Parity Game to st-TraversalSuppose that there is a JAG algorithm for which the time to traverse a copy of G (~; ~�l) is only asmall factor more than the time to traverse a copy of G (~). This means that the JAG is able to35

traverse the line of y swatters G (~�l) without traversing many of its super edges and hence without\asking" many parity questions about ~�l. In e�ect, the JAG is able to play the helper parity gamewith parameters r, d, and b = log (qnp), where r and d are the parameters de�ning the line of yswatters and log (qnp) is the space allocated to the JAG. This is captured in the following lemma.Recall that the cost of a traversal is proportional to the logarithm of time for the traversal andhence di�erences in cost correspond to ratios of time.Lemma 5 Given an algorithm for st-traversal whose average cost to traverse the graph at the l�1stand the lth levels are W [l� 1] and W [l], we can produce a protocol for the helper parity game forwhich the average number of questions asked per game instance isExp~�lc~�l � W [l]�W [l� 1]� log (h)� log d+ 1 + 9pd :Proof of Lemma 5: Consider a �xed algorithm for st-traversal whose average cost to traversethe graph at the l�1st and the lth levels are W [l� 1] and W [l]. In the helper-parity protocol de�nedbelow, the game-helper learns what help to send and the game-player learns what questions to askby running this �xed JAG algorithm as it traverses a line of y swatters at the lth level.Both the st-traversal problem and the helper-parity game have the vector ~�l = D�hl;1i; : : : ; �hl;diE 2(f0; 1gr�f0rg)d as part of its input. However, the st-traversal problem has the additional inputs ~and ~�. SinceW [l]�W [l� 1] = Exph~;~�l;~�iw�l;
~; ~�l; ~��� � Exph~;~�l;~�iw�l� 1;
~; ~�l; ~���= Exph~;~�i Exp~�l h w�l;
~; ~�l; ~��� � w�l� 1;
~; ~�l; ~��� i ;There exists ~ 0 and ~�0 such thatExp~�l h w�l;
~0; ~�l; ~�0�� � w�l� 1;
~0; ~�l; ~�0�� i � W [l]�W [l� 1]Fix vectors ~0 and ~�0 satisfying this property. These vectors are known in advance to both thegame-helper and the game-player.The �rst thing that the game protocol must specify is the message M (~�l) sent by the game-helper on each input ~�l. This message is de�ned to be DQhl;~�li;�hl;~�liE, where this speci�es thecon�guration in which the JAG-helper initially places the JAG when G �~ 0; ~�l; ~�0� is the JAG'sinput graph. Note that the game-helper only sends log (qnp) bits, because this is the number ofbits needed to encode a state and the locations of all p pebbles.The game-player learns which questions to ask the helper by simulating the JAG algorithmon the graph G �~0; ?; ~�0� starting in the con�guration DQhl;~�li;�hl;~�liE. The only thing preventingthe game-player from running the JAG is that he does not know the vector ~�l. However, he can runthe JAG as long as the computation does not depend on this unknown information. Speci�cally,suppose during the simulation, pebbles enter a y swatter de�ned by a �hl;ii that is not knownby the game-player. The game-player will be able to continue running the JAG for quite a while.However, as soon as the computation depends on which cross-over edges of the y swatter areswitched, he must stop the simulation. He then asks the game-helper a question about the gameinstance �hl;ii. By de�nition of the parity game, the game-helper reveals to him the entire vector36

�hl;ii. With this new information, the game-player is able to continue the simulation until the nextsuch event occurs.As done in Section 3.1, let S0 � [1::d] consist of those i for which some copy of G (~ 0; ~�l)initially (i.e. according to �hl;~�li) contains a pebble in its ith y swatter. Note that the p pebblesof the JAG might be contained in di�erent copies of G (~0; ~�l), but all such copies are considered.The game-player begins the game by asking an arbitrary parity question Ei about �hl;ii for eachi 2 S0.The game-player then starts simulating the JAG. Because he knows �hl;ii for every y swattercontaining pebbles, he can run the JAG at least until a pebble moves into an adjacent y swatter.The JAG might alternately move pebbles contained in di�erent copies of G (~ 0; ~�l). However, wewill count the number of time steps taken in each copy separately.If the ith y swatter in some copy of G (~0; ~�l) is entered via both its si and ti distinguishednodes, then the game-player will also ask an arbitrary parity question Ei about �hl;ii, as long as aquestion has not been asked about �hl;ii already. The indexes for which this happens forms the setS1, as de�ned in Section 3.1. By Claim 2, jS0[S1j � 2p+1. Therefore, this completes at most 2p+1of the d game instances �hl;1i; : : : ; �hl;di. The remaining y swatters indexed by i 2 [1::d]�(S0 [S1)are forward traversed.Two events will now be de�ned. If one of these events occurs within the ith y swatter insome copy of G (~0; ~�l), then the game-player asks a question about the ith game instance �hl;ii.Below, I prove that the computation of the JAG through the ith y swatter does not depend on�hl;ii until one of these events occurs. It follows that the game-player is always capable of runningthe simulation and hence of executing the parity-game protocol currently being de�ned. I alsoprove that, because y swatters indexed by i 2 [1::d]� (S0 [S1) are forward traversed, one of theevents eventually occurs within each of them. From this, it follows that the parity-game protocolwill terminate, asking a question about each game instance. Because making these events occuris costly for the JAG, the JAG cannot make them occur too many times while keeping the costW [l]�W [l� 1] small. Hence, the game-player in the de�ned protocol does not ask a lot of questions.Before continuing, recall that Section 3.3 described two ways to ask a parity question. The�rst event will be de�ned so that it occurs within a y swatter when the two pebble method is usedwithin it, i.e. a pebble is left as a marker while another pebble walks along a sequence of superedges. Similarly, the second event will be de�ned so that it occurs when the one pebble method isused, i.e. a pebble walks up the handle, through a sequence of switches and back down a handleagain.The �rst of these events is formally de�ned to occur within a y swatter after the followinghas occurred twice during disjoint intervals of time. What must occur twice is that one of the superedges of the y swatter is traversed and during the entire time of its traversal, there is a pebble(not necessarily the same pebble at each time step) contained in the copy of G (~0; ~�l) containingthe y swatter, but not contained in the super edge of the y swatter in question. If this occurs inthe ith y swatter in some copy of G (~0; ~�l), then the player asks an arbitrary question Ei about�hl;ii. The second event is de�ned to occur within a y swatter, if it is initially empty, pebblestraverse up the handle, reaching the cross-over edges, and then traverse down the handle again,reaching one of the distinguished nodes shl;ii or thl;ii, yet during this entire time the �rst eventnever occurs. I claim that for this event to occur, for i 2 [1::d]� (S0 [S1), all the pebbles within37

this y swatter must traverse a single well de�ned sequence of switches. When the second eventoccurs within the ith y swatter in some copy of G (~0; ~�l), the game-player asks the question Eithat contains j i� the jth switch was traversed an odd number of times.Now I will prove the claim. As stated, the pebbles are initially outside of the y swatter.Because i 62 S1, pebbles do not enter the y swatter via both the distinguished nodes shl;ii and thl;ii.Without loss generality assume that they enter via shl;ii. Furthermore, there are never two pebbleswithin the y swatter that are have four or more full super edges between them. The reason is asfollows. The pebbles contained in the y swatter are initially together, because they enter only viashl;ii. By traversing a super edge, while all the pebbles contained in this entire line of y swattersG (~0; ~�l) is contained in this super edge, two pebbles can move on opposite sides of a super edge.They can get three full super edges between them by them respectively traversing a super edgeforward and backwards. This requires traversing a super edge of the y swatter while there is apebble contained in this copy of G (~0; ~�l), but not contained in the super edge in question. For the�rst event to occur, this must happen twice during disjoint intervals of time. For two pebbles tohave four full super edges between, a second super edge must be traversed while there is a pebblecontained in this copy of G (~0; ~�l), but not contained in the super edge. These two traversalsoccur during disjoint intervals in time and hence the �rst event occurs. Because the �rst event doesnot occur, the pebbles in the y swatter never have four full super edges between them. Hence,the pebbles must traverse up the handle more or less together. They cannot traverse in oppositedirections around a square of six super edges, hence must traverse the same sequence of switches.Finally, they must traverse down the handle together. This proves the claim.I will now prove that the game-player always has enough information to continue runningthe JAG. Because of the game-helper's message and the fact that ~ 0 and ~�0 are �xed, the onlyinformation that the player is lacking is ~�l. In addition, �hl;ii is revealed as soon he asks a questionabout it. Therefore, the only concern is whether the game-player, even though it does not know�hl;ii, can run the JAG as it traverses the ith y swatter, at least until one of the two events happens.As said, if the �rst event has not occurred, then all the pebbles must traverse the same sequenceof switches. Therefore, the only inuence that �hl;ii (i.e. which switchable edges are switched) hason the computation is which of the two y swatter halves these pebbles are contained in. However,the JAG has no way of knowing which half the pebbles are in, because the super edges in the twohalves, the structure of the halves, and even the edge labels are identical. Therefore, the playerknows as much as the JAG knows (i.e. the state and the partition of the pebbles) until second eventoccurs.It has now been proven that the above protocol is well de�ned and meets the requirementsof the game. The remaining task is to bound the average number of questions asked by thegame-player. To do this, we need to prove that the JAG requires a lot of time to make one ofthe two events occur and hence does not have enough time to make them occur often. For eachi 2 [1::d]� S0, de�ne T [l; ~�l; i] to be the number of time steps for the event to occur within the ithy swatter of some copy of G (~ 0; ~�l). There are two factors that e�ect this time: the number ofpebbles used and the time to traverse a super edge G (~0). The game-player runs the JAG until somecopy of G (~0; ~�l) is traversed. Hence, the number of pebbles used to make the event in questionhappen is bounded by the number of pebbles \used" during this traversal. Recall that by de�nitionp�l;
~0 ; ~�l; ~�0� ; Qhl;~�li;�hl;~�li� is this number, where DQhl;~�li;�hl;~�liE speci�es the con�guration in whichthe JAG-helper initially places the JAG when G �~0; ~�l; ~�0� is the JAG's input graph. This will beabbreviated by p[l; ~�l]. The minimum cost to traverse a super edge G (~0) when the entire graph is38

G �~ 0; ~�l; ~�0� is de�ned to be w�l� 1;
~0; ~�l; ~�0��. Abbreviate this with w[l� 1; ~�l].Claim 3 For each i 2 [1::d]� (S0 [S1),T [l; ~�l; i] � 8<: 1 if Mj2Ei ��hl;ii�j = 12 otherwise 9=;2w[l� 1; ~�l]h�p�l; ~�l�+1:Proof of Claim 3:Case 1: Suppose the �rst event occurs, i.e. two super edges at level l� 1 are traversed by a pebbleand during the entire time of their traversal, there is another pebble contained in the same copyof G (~ 0; ~�l), but not contained in these two super edges. Consider one of these two super edgestraversed and let DQhl�1;~�li;�hl�1;~�liE be the con�guration of the JAG at the beginning of thistraversal. The number of time steps, starting in this con�guration, until some copy of G (~0) istraversed (clearly the super edge in question) is de�ned to be T �l� 1;
~0; ~�l; ~�0� ;Qhl�1;~�li;�hl�1;~�li� andthe number of pebbles \used" in this traversal is de�ned to be p�l� 1;
~0; ~�l; ~�0� ; Qhl�1;~�li;�hl�1;~�li�.Abbreviate these to T [l� 1; ~�l] and p[l� 1; ~�l]. It will also be useful to use T 0[l� 1; ~�l] to denote thetime interval during which this traversal occurs and to use T 0[l; ~�l] to denote the time interval duringwhich the entire line of y swatters G (~0; ~�l) is traversed. The \cost" of the traversal of the superedge is de�ned to be p[l� 1; ~�l] log h+ log T [l� 1; ~�l]:This is at leastw[l� 1; ~�l] � minhQ;�i p�l� 1;
~0; ~�l; ~�0� ; Q;�� log h + logT �l� 1;
~0 ; ~�l; ~�0� ; Q;��:which is the minimal cost of traversing any super edge when the helper has pre-set the JAGcon�guration hQ;�i to minimize the cost. Solving for the traversal time givesT [l� 1; ~�l] � 2w[l� 1; ~�l]h�p�l� 1; ~�l�:The next step is to bound the number of pebbles p[l� 1; ~�l] \used" to traverse this super edge.The intuition is as follows. The JAG has p[l; ~�l] pebbles available to traverse a copy of G (~ 0; ~�l). Ifit leaves a pebble as a marker in the lth level and traverses a sequence of switchable edges with theother p[l; ~�l] � 1 pebbles, then only p[l; ~�l]� 1 pebbles are available for the traversal of these superedges G (~0). More formally, we want to prove that p[l� 1; ~�l] � p[l; ~�l] � 1. To do this, we mustbound the minimum number of copies of G (~ 0) in G �~ 0; ~�l; ~�0� that contain pebbles (number ofmarkers), during the traversal of this super edge. By de�nition,p[l; ~�l] = maxT2T 0[l; ~�l] [p+ 1� (# copies of G (~0; ~�l) containing pebbles at time T)] :Therefore, minT2T 0[l� 1; ~�l] [# copies of G (~0; ~�l) containing pebbles at time T] � p� p[l; ~�l]+ 1:We know that during the time interval T 0[l� 1; ~�l], one of the copies of G (~0; ~�l) contains two copiesof G (~0) that contain pebbles. Therefore,minT2T 0[l� 1; ~�l] [# copies of G (~0) containing pebbles at time T] � p� p[l; ~�l]+ 1+139

and, therefore, p[l� 1; ~�l] � p[l; ~�l]�1. From this we can bound the time of this super edge's traversalto be T [l� 1; ~�l] � 2w[l� 1; ~�l]h�p�l; ~�l�+1. Because the �rst event occurred, this occurred twice duringdisjoint intervals in time. Hence, the time required for the �rst event to occur can be taken to beat least the sum of the times for the two super edges to be traversed, without over counting timesteps. Therefore, 2� 2w[l� 1; ~�l]h�p�l; ~�l�+1 time steps are required.Case 2: Suppose the second event occurs and Lj2Ei h�hl;iiij = 1. This event involves traversingup and down the handle. The handle contains h2 super edges. Therefore, at least h super edgesare traversed. These traversals must occur during disjoint intervals of time, because a super edgealong the handle must be completely traversed, before the next super edge along the handle isentered. The maximum of number of pebbles p[l� 1; ~�l] that can be used to traverse each of thesecopies of G (~0) is p[l; ~�l]. Even if this number is used, the traversal time for each is T [l� 1; ~�l] �2w[l� 1; ~�l]h�p�l; ~�l�. Therefore, the time to traverse h super edges is at least 2w[l� 1; ~�l]h�p�l; ~�l�+1.Case 3: Suppose the second event occurs and Lj2Ei h�hl;iiij = 0. Without loss of generality,assume that the pebbles entered the ith y swatter from the (i � 1)st y swatter through theshl;ii distinguished node. The pebbles then traverse up the handle through a sequence of switchesspeci�ed by Ei and back down the handle to a distinguished node. Because Lj2Ei h�hl;iiij = 0, thepebbles do not make it to the distinguished node thl;ii, but arrive back at the shl;ii node. How dowe know that the pebbles traverse back up and down the handle a second time? By the de�nitionof i 62 S1, the JAG must \continue on" to traverse into the i + 1st y swatter. Hence, they musttraverse up and down the handles a second time. The two traversals up and down the handle takeat least 2� 2w[l� 1; ~�l]hp�l; ~�l�+1 time steps.The �nal goal is to use the fact that W [l]�W [l� 1] for the st-connectivity algorithm is smallin order to bound the average number of questions asked per game instance. Recall that, byde�nition, T �l;
~0; ~�l; ~�0� ;Qhl;~�li;�hl;~�li� is the total number of time steps occurring within the �rstcopy ofG (~ 0; ~�l) to be traversed and that p�l;
~0; ~�l; ~�0� ;Qhl;~�li;�hl;~�li� is the number of pebbles \used"during this traversal. (Here DQhl;~�li;�hl;~�liE specify the con�guration in which the JAG-helperinitially places the JAG when G �~0; ~�l; ~�0� is the JAG's input graph.) The cost of the traversal ofthis G (~0; ~�l) is de�ned to be w�l;
~0; ~�l; ~�0�� = minhQ;�i log�hp�l;
~0; ~�l; ~�0� ; Q;��T �l;
~0 ; ~�l; ~�0� ; Q;���.This minimum is no more than that for the DQhl;~�li;�hl;~�liE chosen by the JAG-Helper. (Withoutloss of generality, we can assume that the same DQhl;~�li;�hl;~�liE gives the minimum.) Abbreviatethese values to T [l; ~�l], p[l; ~�l] and w[l; ~�l]. The average number of questions asked per game instance,in the helper parity game de�ned above, isExp~�lc~�l = Exp~�l 1d Xi2[1::d]8<: 1 if Mj2Ei [�i]j = 12 otherwise 9=;:Before bounding this, let us bound the following slightly di�erent value.Exp~�l log �c~�ld� 4p� 2� 40

� Exp~�l log0@�4p� 2 + 2jS0 [S1j + Xi2[1::d]�(S0[S1)8<: 1 if Mj2Ei [�i]j = 12 otherwise 9=;1A (by Claim 3)� Exp~�l log0@ Xi2[1::d]�(S0[S1) 2�w[l� 1; ~�l]hp�l; ~�l��1T [l; ~�l; i]1A� Exp~�l log�2�w[l� 1; ~�l]hp�l; ~�l��1T [l; ~�l]�(by choice of DQhl;~�li;�hl;~�liE, w[l; ~�l] = log�hp�l; ~�l�T [l; ~�l]�)= Exp~�l log�2�w[l� 1; ~�l]hp�l; ~�l��1 � 2w[l; ~�l]h�p�l; ~�l��= Exp~�l (w[l; ~�l]� w[l� 1; ~�l]� log (h))= W [l]�W [l� 1]� log (h)In order to handle the �4p � 2, note that log �c~�ld� 4p� 2� = log �c~�ld� + log�1� 4p+2c~�ld �� log �c~�ld� � 24p+2c~�ld � log �c~�ld� � 9pd , because 1 � x � 4�x if x 2 [0; 12]. Handling the otherlogarithm is more di�cult, because in general Exp �log �c~�ld�� � log �Exp �c~�ld��. In fact, the lefthand side can be made arbitrarily small by making the variance of the c~�l values large. Luckily,this diversity is limited by 1 � c~�l � 2, because the game never charges less than 1 question pergame instance or more than 2. Suppose that � is such that Exp~�lc~�l = 1:5 � �. Then the worstcase diversity is when a �12 + �� fraction of the ~�l values give c~�l = 1 and a �12 � �� fraction givec~�l = 2. This givesExp~�l log �c~�ld� � �12 + �� log (1d) + �12 � �� log (2d) = log d+ �12 � ��= log d+ 12 � �1:5� Exp~�lc~�l�= Exp~�lc~�l + log d� 1:In conclusion,Exp~�lc~�l � Exp~�l log �c~�ld� 4p� 1�� log d+ 1 + 9pd� W [l]�W [l� 1]� log (h)� log d+ 1 + 9pd : �3.8 The Formal ProofThe �nal step is to prove the theorem.Theorem 70 For every constant z � 2, the average time for st-traversal by helper JAG withp � 128z lognlog logn pebbles and q � 2logz n states is at least n � 2 125z log nlog log n , where the input graphG (~�1; :::; ~�L) is chosen by uniformly choosing ~�1; :::; ~�L from (f0; 1gr�f0rg)d (for most su�cientlylarge n).Proof of Theorem 70: Fix any constant z � 2 and suppose p � 128z lognlog logn and q � 2logz n. Set� = 0:0125, � = 0:0002, r = 13, and d = d2� logz ne � 1� (logz n+ p logn) � 1� log (qnp) = 1� b. Then,41

by Theorem 6, c � 1:5� �. As well p 2 o (d). Therefore, by Lemma 5,W [l] � W [l� 1]+ log h+ log d+ �12 � � � o (1)� :The proof proceeds by induction on l. For the base case, l = 0, the subgraph G () is asingle edge requiring at least 1 time step for traversal by at least one pebble. This gives W [0] �Exph~;~�l;~�iminhQ;�i [p[0] log h+ log T [0]]� log h and henceW [L] � hlog h+ log d+ �12 � � � o(1)�iL+log h. By de�nition,W [L] = Exph~;~�L;;i minhQ;�i log �hp[L]T [L]� � p log h+ Exph~;~�L;;i minhQ;�i log (T [L])Rearranging this equation gives the average time for the helper JAG to traverse the entire inputgraph.Exph~;~�L;;i minhQ;�i T [L]= 2log (Exp min T [L]) (which by concavity of the log function)� 2Exp log (min T [L]) � 2W [L]� p log h � 2(12���o(1))L (hd)L h�p+1:Set h = 1922 and �0 = 6rh = 39961 . Then, the number of vertices in G (~�1; :::; ~�L) is n � [(h+ 6r)d]L� [(1 + �0)hd]L and L � lognlog((1+�0)hd) � lognz log logn+O(1) . This givesExph~;~�L;;i minhQ;�iT [L]� 2(12���o(1))L � (hd)L � h�p+1= ��1 + �0�hd�L � 2(12���o(1)�log(1+�0))L � 2�p log h+1� [n]� 2(12�0:0125�o(1)�log(1+0:0406))� log nz log log n+O(1)� � 2�� 128z log nlog log n � log1922� n� 2 125z log nlog log n
42

Chapter 4Directed st-Connectivity on a JAGA lower bound T � S 12 2
 �mn 12 � on the time-space tradeo� to compute directed st-connectivityon a JAG is proved in this chapter. The proof is simple and elegant and applies even when thenumber of states is not counted as part of the space.4.1 Comb GraphsThe lower bound on the time-space tradeo� is proved for a subdomain of acyclic directed graphs,referred to as the family of comb graphs. A comb graph, illustrated in Figure 4.1, is composed ofa back, � teeth, plus the distinguished node t. The back of the comb consists of a directed pathof n nodes v1; : : : ; vn. The �rst node v1 is the distinguished node s. The rth tooth consists of thedirected path uhr;1i; : : : ; uhr;li. The length of each tooth will be l = n� so that the total number ofnodes is N = 2n+ 1.There are m (� n) directed connecting edges e1; : : : ; em each going from a back node vito the top of one of the teeth in such a way that that the out-degree of any two back nodes candi�er by at most 1. In particular, if m = n, the out-degree of the graph is two. More formally, forj 2 [1::m], the connecting edge edge ej is the d jn eth edge emanating from back node vh(jmodn)+1iand has label d jne. The variables y1; : : : ; ym 2 [1::�] will be used to specify which tooth each of theconnecting edges leads to. Speci�cally, yj = r means that the edge ej leads to the top node of therth tooth. We will allow double edges, so it is of no concern if two edges from the same back nodevi go to the same tooth.If there is to be a directed path from s to t then the node t is attached to the bottom of atleast one of the teeth. The variables �1; : : : ; �� 2 f0; 1g will be used to specify for each of the teethwhether this is the case. Speci�cally, �r = 1 if the bottom node of the rth tooth has a directededge to node t. If �r = 0, then there is a self loop edge from the bottom node to itself in order tokeep the degree �xed.The number of teeth � is a parameter that will chosen after the space allocated to the modelis �xed. In Theorem 8, it is set to n 12 p 12 >> p so that there are more teeth than pebbles. InTheorem 9, it is set to m 13n 13S 13 >> S so that the NNJAG is unable to store even a bit ofinformation about each tooth. 43

m

s

n

n

t?χ

χ

t?Figure 4.1: A comb graphIntuitively, solving st-connectivity for comb graphs is di�cult because each tooth needs tobe traversed to the bottom before the JAG can be sure that t is not connected to any of them.However, because the amount of space is limited, it is di�cult for the JAG to \remember" which ofthe teeth have been traversed already. Therefore, some teeth may get traversed many times beforethe JAG is sure that they all have been traversed.4.2 JAGs with Many StatesThere are two basic approaches to computing st-connectivity on comb graphs. One is the bruteforce approach. For each connecting edge ei, the JAG walks a pebble to the bottom of the toothattached to it. This requires m� l time steps and two pebbles.Another approach is to learn enough about which connecting edges are attached to the sameteeth, so that no tooth needs to be traversed more than once. This is done by choosing twoconnecting edges ei and ej and moving a pebble to the top of the tooth attached to ei and anotherpebble to the top of the tooth attached to ej . The edges ei and ej are attached to the same toothif and only if the pebbles collide. This approach requires � ��mp � time steps. This is proved byreducing the problem to the following game.
PP PPFigure 4.2: The connecting edges are connected to the same tooth or di�erent teethThe game is parameterized by m, �, and � and the input consists of a partition of the edgese1; : : : ; em into � non-empty parts. The player is able to specify two edges and query whether ornot they are in the same part. The game is over when the player has determined a set S of � edgesthat cover each of the � parts of the input partition, i.e. for each of the � parts, there is an edgefrom the part that is included in S.Lemma 6 The partition game requires at least 12 (� � 1) (m� �) queries.An upper bound of �m is easy for completely determining the partition. Simply, query for eachedge ei whether or not e1 and ei are in the same part. From these m queries, you completely learnthe contents of the part containing e1. Delete these edges and repeat once for each part.44

Proof of Lemma 6 [Im93]: For the purpose of this proof, e1; : : : ; em will be referred to as nodesinstead of edges, because edges fei; ejg are required for the proof. The adversary, for the proof,maintains disjoint parts P1; : : : ; P��1 � fe1; ::; emg and an undirected graph H . The adversaryadds a node to the part Pr when he �xes the node to be within the rth part of the input partitionand he adds an edge fei; ejg to H when he reveals to the player that these nodes are in di�erentparts. A property of H that is maintained is that the degree of every node not in [r2[1::��1]Pr isat most �� 2.When the player asks a question fei; ejg for the �rst time, the adversary does the following.For each of ei and ej , if it is not in [r2[1::��1]Pr and has degree �� 2, then it is added to one of theparts Pr that contains none of ei's (ej 's) neighbors in H . There are � � 1 parts, so by the pigeonhole principle such a part exists. If ei and ej are both added to parts, it does not matter whetheror not they go into the same part. Now the adversary responds to the question. If ei and ej arecontained in the same part Pr, the adversary reveals this information. Otherwise, the adversaryanswers that ei and ej are in di�erent parts and adds the edge fei; ejg to H .After only 12 (�� 1) (m� �) � 1 queries, there are at least � + 1 nodes not contained in[r2[1::��1]Pr. This is because a node is not added to a part until ��1 questions are asked about it.However, a single query asks about two nodes. Therefore, 12 (� � 1) (m� �) queries are requiredfor all but � of the m nodes to be added. Hence, with one fewer query, there are at least � + 1nodes that have not been added to a part.At the end of the computation, the player must specify a set S of � nodes that cover each ofthe � parts of the input partition. By the pigeon hole principle, there must be a node e� that isamongst the �+1 nodes not contained in [r2[1::��1]Pr and is not amongst the � nodes in S speci�edby the player. The adversary then �xes the �th part P� to be the singleton part containing onlye�. Each of the nodes that has not yet been added to a part is added to one of the �rst �� 1 partsthat contains none of its neighbors in H . This de�nes a partition P1; : : : ; P� which is consistentwith all the answers given by the adversary. Hence, the player's solution to the computation mustbe correct, however, it is not. The part P� is not covered by the players set of nodes S, since e� isnot in it. .Theorem 8 All JAGs with p pebbles (even with an arbitrarily large number of states) that computedirected st-connectivity require time
 �mn 12 =p 12�.Proof of Theorem 8: We will show that T � Min�m2 � l; 12 (��1)(m2)(p�1) �. If a JAG has p pebbles,then setting � to n 12 p 12 gives the required bound T 2
 �mn 12 =p 12 �, since l = n� .The proof reduces the st-connectivity problem to the above partition game with the param-eters m, �, and � = m2 . Suppose by way of contradiction, that there is a JAG algorithm that usesless than this amount of time. From this, a protocol for the partition game is constructed thatbeats the bound given in Lemma 6. The input to the game is a partition of e1; : : : ; em into � partsP1; : : : ; P�. The comb graphs corresponding to this partition are those in which, for each r 2 [1::�],the connecting edges in Pr are connected to the rth tooth. The comb graphs considered by thegame-player are only those that are not connected from s to t. In particular, �x �r = 0 for allr 2 [1::�]. Hence, a partition completely speci�es a comb graph.The game-player simulates the running of the JAG. As the JAG computation proceeds, he45

associates each pebble that is contained within a tooth, with the connecting edge ei through whichit entered the tooth. If the pebble had jumped into the tooth, then it is associated the connectingedge ei that the pebble jumped to was associated with. Whenever there is a pebble associated withthe connecting edge ei and another pebble associated with ej at the same time, the JAG mightlearn whether or not ei and ej are connected to the same tooth. When this �rst happens, the game-player \queries fei; ejg" and learns whether or not they are in the same part. Similarly, wheneverthere is a pebble associated with the connecting edge ei that traverses down to the bottom of thetooth connected to ei, the JAG might learn whether or not this tooth is connected to t. When thishappens, the game-player adds ei to the set S that is supposed to cover the � parts (teeth).The game-player is able to continue this simulation because the JAG computation is the samefor every comb graph consistent with the information revealed by the queries. This follows fromthe following two observations. First, although the in-degree of the nodes on the tops of the teethdepend on the particular comb graph, the JAG has no access to the in-degree of nodes. Secondly,when two pebbles enter teeth via two di�erent connecting edges ei and ej , the answers to the queriesensure that they are either in the same tooth for each input graph or in di�erent teeth for eachgraph. Thus if two pebbles meet within the computation for one of the input graphs still beingconsidered, then they meet within the computation for each of the graphs.During the entire computation, the game-player \queries" at most 12 (� � 1) �m2 �� 1 di�erentpairs fei; ejg. This is because during one time step of the JAG computation only one pebble isallowed to move. This time step causes the game-player to make a query only if this pebble movesinto the tooth attached to say ei, while there is another pebble already in the tooth attached toej . There are only p� 1 other pebbles. Therefore, this time step cause the game-player to make atmost p� 1 queries. Therefore, in 12 (��1)(m2)(p�1) � 1 time steps, at most 12 (�� 1) �m2 �� 1 queries canbe made.Note as well, the game-player adds at most m2 connecting edges to the set S. The reason isthat the number of JAG computation steps required to move a pebble into a tooth via a connectingedge and then to the bottom of the tooth is at least l, the length of the tooth. The JAG computationproceeds for less than �m2 � l time steps. Therefore, this is done for at most m2 connecting edges.Finally, for every game input P1; : : : ; P�, the set S formed from this game protocol must coverall � of the parts. By way of contradiction, suppose that there is a partition P1; : : : ; P� and an rfor which S is disjoint from the part Pr. This partition corresponds to a comb graph, which we willdenote by G. Never, during the computation on G, does a pebble traverses to the bottom of therth tooth. If a pebble did, then the pebble would need to enter the tooth via a connecting edge.This connecting edge would need to be contained in both Pr and S. It follows that a pebble neveris on the bottom node uhr;li of this tooth.Let G0 be the same graph except that the node t is attached to the bottom of the rth tooth,i.e. �r = 1. The JAG computation is identical on the graphs G and G0, because the JAG musthave a pebble on node uhr;li in order to know whether or not there is an out-going edge from it tot. Pebbles located on node t do not give the JAG any information about incoming edges. In fact,because t has no outgoing edges, pebbles on t can only move by jumping.Because the computation is the same on G and G0, the JAG must give an incorrect answerfor one of the graphs. This is a contradiction, if the JAG algorithm must always give the correctanswer. Hence, the set S produced by the game protocol must cover all the parts of the game'sinput. 46

Chapter 5Directed st-Connectivity on aNNJAGIn this chapter, I prove another lower bound on the time-space tradeo� for computing directed st-connectivity on comb graphs. The bound is a little weaker, but it applies to the stronger NNJAGmodel and its probabilistic version with either one-sided or two-sided error.My time-space tradeo� for st-connectivity is proved for the NNJAG by translating any e�cientNNJAG algorithm into a (r-way) branching program. De�ning a measure of progress for a decisionproblem on such a general model of computation still remains elusive. However, for this result,the branching program inherits enough structure from the NNJAG that an e�ective measure ofprogress can be de�ned.The lower bound follows the framework introduced in [BFKLT81] and used in [BC82] (SeeSection 1.2.) If the computation time is short, then for each input there must be a short sub-branching program in which lots of the \progress" required for the input is made. However, nosub-branching program is able to accomplish this for many inputs. Therefore, in order to handle allof the inputs, the branching program must be composed of many of these sub-branching programs.This means that the branching program has lots of nodes and hence uses lots of \space".5.1 A Probabilistic NNJAG with One Sided ErrorA probabilistic algorithm is said to allow one-sided error for a language L if for every input notin L, the correct answer is given, but for inputs in L, the incorrect answer may be given with somebounded probability. We will be considering algorithms with one-sided error for non-st-connectivity.Speci�cally, the algorithms must answer correctly, when there is a directed path from s to t. Theresult is strengthened by considering a random input chosen from a natural input distribution Don graphs for which s and t are not connected. (Let st-conn denote the set of graphs that areconnected.) The result is stated as follows.Theorem 9 There exists a probability distribution D on directed graphs of out-degree two that arenot in st-conn such that for every probabilistic NNJAG solving directed non-st-connectivity with47

one-sided error PrG2D;R2f0;1g�"ThG;Ri � 0:09m 23n 23S 13 and hG;Ri 2 Corr# � 2�S ;where ThG;Ri is the computation time for input G and random bit string R 2 f0; 1g� and de�neCorr is the set of hG;Ri for which the correct answer to st-connectivity is given.This formulation of the bound is di�erent than that used by Yao [Ya77]. However, his formulationfollows as a simple corollary. When considering only algorithms for which the probability of erroris no more than some constant �, the expected running time is at least �1� �+ 2�S�Tmax, whereTmax is the bound given above. However, I consider my formulation to be more interesting, becauseit considers the running time only for those hG;Ri for which the correct answer is given. Thefollowing upper bound demonstrates that the running time when the incorrect input is given is ofno interest. Suppose that there is a deterministic algorithm whose worst case time is T 0max. Thefollowing is a probabilistic algorithm that allows only one-side error, has error probability �, andthe expected running time is (1� �)T 0max. On each input, ip a coin. With probability 1 � �,compute the correct answer using T 0max time steps. Otherwise, answer that the input is in st-conn.Note that the bound �1� �+ 2�S�Tmax is �ne when � � 12 � �. However, when the algorithmsallow only one-sided error, it is interesting to consider algorithms that give the correct answer withonly very small probability, for example 1�� = 2� 2�S . It may be di�cult to quickly obtain eventhis many correct answers while assuring to give the correct answer when the input is in st-conn.In this case, Yao's formulation gives a very poor result, namely that the expected time is at least2�STmax. However, the formulation in the theorem is still interesting.The proof of Theorem 9 does not consider probabilistic NNJAGs, but deterministic NNJAGon a random input. Recall that Yao [Ya77] proves that a lower bound on the average time on adeterministic algorithm gives an expected case lower bound for a random algorithm. However, thereis a problem when the errors are allowed. If the lower bound on the average time on a deterministicalgorithm applies when the algorithm allows errors with 2� probability, then Yao only gives theexpected case lower bound on for random algorithm directly applies when the algorithm allowserrors with only � probability. This factor of 2 in the error probability is signi�cant. For two-sidederror, an algorithm can get the correct answer with probability 12 , simply by guessing and hencethe strongest result possible will apply to algorithms with error probability � = 12 � �. Hence, thestrongest result given by Yao's reduction is for � = 14 � �2 . This is a weaker result. Using theformulation in Theorem 9, this problem does not arise. The proof proves that for any deterministicalgorithm PrG2D "TG � 0:09m 23n 23S 13 and G 2 Corr# � 2�S :It follows that the same is true for a randomly chosen algorithm.This chapter is structured as follows. Section 5.2 de�nes the probability distribution on theinput comb graphs. Section 5.3 de�nes a measure of progress for a computation. Section 5.4describes how to convert a NNJAG protocol into a branching program. Section 5.5 provides thebasic framework of the proof. Section 5.6 does the same for the two-sided error result. Section 5.7states the required Cherno� results. Finally, Section 5.8 proves the technical probabilistic lemmathat completes the proof. 48

5.2 The Probability Distribution D on Comb GraphsThe input domain consists of the same comb graphs as used in Theorem 8. The only di�erenceis that the model requires that the input includes a \name" for each of the nodes. These namescould be assigned arbitrarily. However, we will simply use the names vi and uhr;ji that were used todescribe the graph. The e�ect is that the model always knows which node within the comb graphstructure each pebble is on. Considering this �xed naming only strengths the lower bound result.The probability distribution D is de�ned by constructing comb graphs as follows. Set �r = 0for all r 2 [1::�]. Thus all inputs G 2 D are not in st-conn. What remains is to set the random vari-ables y1; : : : ; ym specifying which teeth the connecting edges e1; : : : ; em are attached to. Randomlypartition the teeth into two equal size subsets easyteethG and hardteethG � [1::�]. Randomlychoose �2 of the connecting edges and put the associated variables yj in the set hardedgesG. Ran-domly attach each of these \hard" connecting edges to one of the \hard" teeth in a one-to-one way.The set easyedgesG is de�ned to contain the remaining yj variables. Independently assign eachyj 2 easyedgesG a tooth from easyteethG chosen uniformly at random.5.3 The De�nition of ProgressThe lower bound measures, for each input G and each step in the computation, how much progresshas been made towards solving st-connectivity. We will say that the amount of progress madeis the number of hard teeth, i.e. r 2 hardteethG, that have had a pebble on their bottom nodeuhr;li at some point so far during the computation. It turns out that if the correct answer has beenobtained for G 62 st-conn, then lots of progress must have been made.Lemma 7 For every comb graph G 62 st-conn, if G 2 Corr, then the computation for G mustmake �2 progress.Proof of Lemma 7: Suppose that G 62 st-conn and there is a hard tooth r 2 hardteethG suchthat during the computation there is never a pebble on bottom node of this tooth. Let G0 beobtained from G by connecting the bottom node of the rth tooth to t, i.e. set �r = 1. The NNJAGmodel is de�ned such that it can only learn whether there is a directed edge from uhr;li to t byhaving a pebble on node uhr;li. Therefore, the computation on G and G0 is the same. Since G0 2 st-conn, the answer given must be that the graph is connected. Since G 62 st-conn, this implies thatG 62 Corr.The next lemma uses the fact that NNJAG is not a random access machine to prove that ltime steps are required to make progress for one tooth.Lemma 8 If at some step, the rth tooth does not contain a pebble, then a pebble must enter thetooth via one of the connecting edges and each edge in the tooth must be traversed by some pebble,before a pebble arrives at the bottom of this tooth.Proof of Lemma 8: The NNJAG model does not allow a pebble to arrive at a node unless thereis another pebble to jump to or it walks there.Moving a pebble to the bottom of a tooth in itself requires too little time for progress to besu�ciently costly for a superlinear lower bound. Additional cost occurs because many easy teeth49

must be traversed before a hard tooth is found. The distribution D on comb graphs is de�ned sothat the easy teeth are accessed by most of the connecting edges, hence are easy to �nd. This iswhy arriving at the bottom of these teeth is not considered to be progress. On the other hand, thehard teeth are each attached to only one connecting edge and hence are hard to �nd.5.4 Converting an NNJAG into a Branching ProgramThe proof technique is to convert a NNJAG algorithm into a branching program. In general,proving lower bounds on branching programs is very di�cult. However, the branching programthat we will obtain will have \structure" imposed on it by the structure of the NNJAG model.Lemmas 7 and 8 characterize the required structure.Consider any �xed NNJAG algorithm. The leveled branching program P is formed as follows.There is a node hQ;�; T i in P for every con�guration hQ;�i of the NNJAG algorithm and timestep T 2 [1::Tmax], where Tmax is the bound given in the theorem. An NNJAG con�guration hQ;�iis speci�ed by the current state Q 2 [1::q] and the position of the p pebbles � 2 [1::N]p. Start,accept, and reject states of the NNJAG translate to start, accept, and reject con�guration nodes ofthe branching program, respectively. There is a directed edge from con�guration node hQ;�; T ito hQ0;�0; T + 1i in P , if there exists a comb graph for which our �xed NNJAG algorithm wouldcause this transition. Let us consider the possibilities.Suppose that in con�guration hQ;�i, our NNJAG algorithm has some pebble jump to anotherpebble. � speci�es the current positions of the pebbles, hence the resulting positions are uniquelyde�ned. Similarly, the resulting state is uniquely de�ned, because no new information about theinput graph is learned. Therefore, the con�guration node hQ;�; T i in P has out-degree one.If, in the con�guration hQ;�i, the NNJAG algorithm causes some pebble on a back node towalk the edge to the next back node, then the con�guration node has out-degree one as well. Thisis also the case if there is some pebble on a tooth node which walks to the next node along thetooth.Next, suppose there is a pebble on a back node that the NNJAG has walk the connectingedge ej into the tooth it is attached to. The pebble will arrive on the top node of one of theteeth. Which tooth depends on the value of the variable yj . It follows that the out-degree of sucha con�guration node is �.Finally, suppose there is a pebble on the bottom of the rth tooth that the NNJAG has walkthe directed edge down. If �r = 1, the pebble arrives at t, otherwise it remains where it is. Hence,the out-degree of this con�guration node is two.The time step T is included in the con�guration hQ;�; T i so that P is acyclic and leveled.Although the NNJAG computation may run arbitrarily long for some G, we will only be concernedabout the �rst Tmax � n2 steps. The number of nodes in P is q � np � n2 2 2(1+o(1))S , whereS = log2 q + p log2 n is the space of the NNJAG. Hence, (1 + o(1))S is the space used by P .50

5.5 The Framework for Proving Lower Bounds on BranchingProgramsThe �rst step of the [BC82] framework is to break the leveled branching program P into a collectionof shallow sub-branching programs. This is done by breaking P into layers of h = �4 levels eachand considering the sub-branching programs rooted at each node on the inter-layer boundaries. Wenow prove that for the inputs that make lots of progress in a small amount of time, there must bea sub-branching program bP that makes quite a bit of progress for this input.Lemma 9 If G 62 st-conn, TG � Tmax, and G 2 Corr, then at least one of these sub-branchingprograms makes at least �2Tmaxh progress on input G.Proof of Lemma 9: Consider such an input G. By Lemma 7, the computation on G must makeat least �2 progress. Because the branching program P is leveled, the computation on G passes theroot of only one sub-branching program bP at each of the Tmaxh inter layer boundaries. Therefore,one of these sub-branching programs must make �2 =Tmaxh of the required �2 progress.The next step is to prove that a shallow sub-branching program cannot make this muchprogress for many inputs. Consider one of the sub-branching programs bP 2 P . We will determinehow much progress it makes for every input G 2 D (even if the computation on input G neverreaches the root of bP).Recall that each node hQ;�; T i of the branching program speci�es the location of every pebblein the comb graph. De�ne F � [1::�] to be the set of teeth that contain pebbles at the root ofbP. Because there are only p pebbles, jFj � p. For each input G 2 D, de�ne CG � [1::�] to be theset of teeth that do not contain pebbles at the root of bP, yet whose bottoms contain a pebble atsome point during the computation by bP on G. By Lemma 8, each edge of each tooth in CG mustbe traversed by some pebble. The teeth have length l and the computation by bP performs only hsteps; therefore jCGj � hl . Let c = hl denote this bound.The lower bound considers that progress has been made only when a pebble arrives at thebottom of hard teeth. Hence,j (F [CG) \ hardteethGj� jCG \ hardteethGj+ jFj� jCG \ hardteethGj+ pis an upper bound on the amount of progress made by the sub-branching program bP on input G.(The lower bound credits the algorithm with p progress, even if the teeth that initially containpebbles are never traversed to the bottom and even if they are not hard. Because p << �, this isnot a problem.) What remains is to prove that bP makes lots of non-free progress, jCG\hardteethGjis large, for very few comb graph inputs.Lemma 10 If h � jeasyteethG j2 , then PrG2D h jCG \ hardteethGj � 2�c i � 2�0:38�c, where � = �m .The proof is left until Section 5.8. The idea is as follows. Within the distribution D, the probabilityof a particular tooth r 2 [1::�] being hard is 12 . However, the NNJAG is not able to move a pebbleto a particular tooth. Instead, it must select a connecting edge ei and move a pebble into what51

ever tooth it is attached to. The model can identify the tooth found by the name of its top node.However, the bounded space model cannot have stored very much information about whether ornot this tooth is hard. Therefore, the algorithm has little information on which to base the decisionas to whether to move the pebble to the bottom of the tooth (i.e. r 2 CG) or not. It turns outthat the tooth is hard i� the connecting edge ei is hard and the probability of this is only �=2m � �,because only �2 of the m di�erent connecting edges are chosen to be connected to hard teeth. Usinga more formal argument, each of the at most c teeth in CG is shown to be hard with probabilityat most �. Hence, we can expect �c of the teeth in CG to be hard. Cherno�'s bounds prove thatjCG \ hardteethGj will not deviate far from this expectation.The next step is to prove is that if each sub-branching program bP makes su�cient progressfor very few inputs, then not too many inputs have a sub-branching program in which su�cientprogress is made.Lemma 11 PrG2D h 9 bP that makes � 2�c+ p progress for G i � 2(1+o(1))S � 2�0:38�c:Proof of Lemma 11: From Lemma 10, for any sub-branching program bP,PrG2D h bP that makes � 2�c + p progress for G i � 2�0:38�c. The number of nodes in the en-tire branching program P and hence the number of sub-branching programs bP is no more thanq � np � Tmax 2 2(1+o(1))S . Thus, the number of inputs that make the stated progress within somesub-branching program bP , is no more than 2(1+o(1))S times the number that make it with one �xedsub-branching program. The lemma follows.The �nal step combines Lemma 9 and Lemma 11.Proof of Theorem 9: Recall, l = n� , h = �4 , c = hl = �24n , and � = �m . Set the number of teeth� to 2:77m 13n 13S 13 in order to insure that 0:38�c = 0:38 �34mn = 2:01 S. Finally, set the time boundTmax to 0:09m 23 n 23S 13 or equivalently to mn4:02� = ml4:02 (which is the time for the brute force algorithm).By Lemma 9,PrG2D [TG � Tmax and G 2 Corr]� PrG2D h 9 bP that makes � �2Tmaxh progress for G i :Because �=2Tmax=h = 2:01� �m��hl � = 2:01�c � 2�c+ Slogn � 2�c+ p; it follows that thisprobability is no more thanPrG2D h 9 bP that makes � 2�c+ p progress for G i (by Lemma 11)� 2(1+o(1))S � 2�0:38�c (by the defn of �)� 2(1+o(1))S � 2�2:01S � 2�S : �5.6 A Probabilistic NNJAG with Two Sided ErrorWe will now consider a probabilistic NNJAG that allows two sided error. A probabilistic algorithmis said to allow two-sided error if for every graph it may give the incorrect answer with probability52

bounded by �12 � ��. The lower bound proves that if the time is limited to only o� � 43m 23 n 23S 13 � timesteps, then the probabilistic NNJAG cannot do much better than simply always rejecting or alwaysaccepting.Theorem 10 There exists a probability distribution D0 on directed graphs so that PrG2D0 h G 2st-conn i = 12 and for every probabilistic NNJAG solving directed st-connectivity with two-sidederror and � � 0 PrG2D0 h TG � 0:07� 43m 23n 23S 13 and G 2 Corr i � 12 + �:The proof is similar in structure to that of Theorem 9, but must be changed in two ways. First, theallowed time is restricted to an � 43 fraction of what it was before so that only an �2 fraction of thehard teeth are found. Second, the number of easy teeth is restricted to being only an �2 fraction ofthe teeth. These conditions ensure that with high probability pebbles reach the bottom of no morethan an � fraction of the teeth. This is important because if the NNJAG were to manage to get apebble to the bottom of more teeth, then it could give the correct answer with probability > 12 + �:De�ne the distribution D0 to be the same as D except for the following changes. First setjeasyteethG j = �2� and jhardteethGj = �1� �2�� and then randomly choose the values for y1; ::; ymas before. Now decide with probability 12 whether the input will be in st-conn. If it is, thenrandomly choose one of the teeth r 2 [1::�] and put t on the bottom of this tooth. As before,de�ne T 0max to be the smallest integer such that PrG2D0 h TG � T 0max and G 2 Corr i > 12 + �.Lemma 12PrG2D0 h TG � T 0max and G 2 Corr i� 12 + �2 + PrG2D0 h G makes �2� progress in the �rst T 0max time steps ��� G 2 st-conn i :Proof of Lemma 12: For every comb graph G 62 st-conn and tooth r 2 [1::�], de�ne Gj�r=1 2 st-conn to be the same graph except that t is connected to the bottom of the rth tooth. The domainD0 is partitioned into subdomains to be considered separately. Speci�cally, de�neA = n G ��� G 62 st-conn and pebbles arrive at the bottom of at least �2� hard teeth during the�rst T 0max time steps for Go .bA = n Gj�r=1 ��� G 2 A; r 2 [1::�]oB = n G ��� G 62 st-conn and pebbles arrive at the bottom of less than �2� hard teeth during the�rst T 0max time steps for Go .bB = n Gj�r=1 ��� G 2 B; r 2 hardteethG whose bottom never contains a pebble during the �rstT 0max time steps for Go .cB0 = n Gj�r=1 ��� G 2 B; r 2 easyteethG or r 2 hardteethG and a pebble arrives at the bottom ofthe rth tooth during the �rst T 0max time steps for Go .The �rst step is to prove that if Gj�r=1 2 bB then hTG � T 0max and G 2 Corri is not truefor both it and its unconnected counterpart G. Consider an input Gj�r=1 2 bB. It follows the same53

computation path as the corresponding G 2 B for at least T 0max time steps. If the algorithm thencontinues the computation, then TG � T 0max will not be true. Otherwise, by this time the algorithmeither has accepted, or rejected. Either way, the answer is either wrong for Gj�r=1 or for G. If thealgorithm rejects in such situations, then it is correct for G 2 B, but not for Gj�r=1 2 bB. If itaccepts, then it is correct for G 2 bB, but not for Gj�r=1 2 B. PrG2D0 h G 2 B i � PrG2D0 h G 2 bB i ,because some of the corresponding Gj�r=1 inputs are in cB0. Hence, it would be wisest for thealgorithm to reject in such situations. It follows thatPrG2D0 h TG � T 0max and G 2 Corr i� PrG2D0 h G 2 A [bA i + PrG2D0 h G 2 B i + PrG2D0 h G 2 cB0 i :What remains is to bound these probabilities.Progress is de�ned to be made when a pebble is moved to the bottom of a hard tooth. There-fore, PrG2D0 h G 2 A i = PrG2D0 h G makes �2� progress in the �rst T 0max time steps and G 2 st-conn i= 12 � PrG2D0 h G makes �2� progress in the �rst T 0max time steps ��� G 2 st-conn i . By the de�ni-tions, PrG2D0 h G 2 bA i = PrG2D0 h G 2 A i . Therefore, PrG2D0 h G 2 A [bA i = 2� PrG2D0 h G 2A i . Bounding B is easy. It is a subset of st-conn and hence PrG2D0 h G 2 B i � 12 . For each inputG 2 B, the number of inputs added to cB0 is jeasyteethG j = �2� plus at most �2� for the hard teeth.However, the probability of Gj�r=1 is 1� of the probability of the corresponding G. It follows thatPrG2D0 h G 2 cB0 i � � 1�� � �2� + �2��PrG2D0 h G 2 B i � � 1�� (��) �12� � �2 . The lemma follows.We require a version of Lemma 11 as well.Lemma 110 If h � jeasyteethG j2 , then PrG2D0 h 9 bP that makes � 2�c + p progress for G ��� G 2st-conn i � 2(1+o(1))S � 2�0:38�c:The fact that jeasyteethG j and jhardteethG j have changed in the de�nition of D0 changes theparameters but does not change the proof of this lemma. The fact that D0 contains both inputsin st-conn and in st-conn does not change the proof either, because the lemma has been stated interms of the conditional probability that G 2 st-conn. Therefore, the proof of this lemma is thatsame as that in Section 5.8.Proof of Theorem 10: l = n� , h = jeasyteethG j2 = �4�, c = hl = ��24n , and � = 2 jhardteethGjm � 2�m .Set � = 1:75�� 13m 13n 13S 13 in order to insure that 0:38�c = 0:38 ��32mn = 1:01S. Finally, set the timebound T 0max to 0:07 � 43m 23 n 23S 13 = �ml8:04 = �mn8:04�. By Lemma 12,PrG2D0 h TG � T 0max and G 2 Corr i� 12 + �2 + PrG2D0 h G makes �2� progress in the �rst T 0max time steps ��� G 2 st-conn i54

� 12 + �2 + PrG2D0 h 9 bP that makes � �2�T 0maxh progress for G ��� G 2 st-conn i :Because ��=2T 0max=h = 2:01�2 �m��hl � = 2:01�c � 2�c+ Slog n � 2�c+ p; it follows that thisprobability is no more than12 + �2 + PrG2D0 h 9 bP that makes � 2�c+ p progress for G ��� G 2 st-conn i (by Lemma 110)� 12 + �2 + 2(1+o(1))S � 2�0:38�c (by the defn of �)� 12 + �2 + 2(1+o(1))S � 2�1:01S� 12 + �: �What remains is to prove Lemma 10. This requires the use of Cherno� bounds.5.7 TrialsA well known theorem by Cherno� [Sp92] is that given a number of independent trials, the proba-bility of having twice the expected number of successes is exponentially small.Lemma 13 Suppose that xr 2 f0; 1g is 1 with probability � independently for each r 2 C. Thenfor every � > 0, Pr h��� Pr2C xr � �jCj ��� � ��jCji � 2�k��jCj,where k� = min �� ln �e� (1 + �)�(1+�)� ; �22 �.For example, for � = 1, k� > 0:38. Moreover, for every � � 1, Pr h Pr2C xr � 2��jCj i � 2�0:38��jCj.This becomes more complicated if the trials are not independent. However, if each trial has lowprobability of success no matter what outcomes of the other trails have, then the lemma still holds.Lemma 14 For each r 2 C, let bxr 2 f0; 1g be the random variable indicating the success of the rthtrial. For each r 2 C and O 2 f0; 1gC�frg, let Zhr;Oi = Pr hbxr = 1 ��� Oi, where O indicates thatthe other trials have the stated outcome. If 8r;O; Zhr;Oi � �, then for every � � 1, Pr h Pr2C bxr �2��jCj i � 2�0:38��jCjThe following proof by Hisao Tamaki [Tam93] uses the fact the bxr events are probabilisticallydominated by the xr events.Proof of Lemma 14 [Tam93]: It is su�cient to prove that for all trials r 2 [1::jCj] and for allintegers k,Pr24 Xi2[1::r] bxi � k35 � Pr24 Xi2[1::r]xi � k35 :55

This is proved by induction on r. It is trivially true for r = 0. Now assume it is true for r � 1.Then Pr24 Xi2[1::r] bxi � k35= Pr24 Xi2[1::r�1] bxi � k35 + Pr24bxr = 1 ���� Xi2[1::r�1] bxi = k � 135 � Pr24 Xi2[1::r�1] bxi = k � 135� Pr24 Xi2[1::r�1]xi � k35 + � � Pr24 Xi2[1::r�1]xi = k � 135= Pr 24 Xi2[1::r]xi � k35 :5.8 The Probability of Finding a Hard ToothThe goal of this section is to prove that lots of non-free progress is made by the sub-branchingprogram bP, on very few comb graph inputs. Namely,Lemma 10 If h � jeasyteethG j2 , then PrG2D h jCG \ hardteethG j � 2�c i � 2�0:38�c, where � = �m .Proof of Lemma 10: Note that the set of teeth CG depends on the input G only as far as whichcomputation path it follows. Therefore, it is well de�ned to instead refer to the set C . Becauseevery input follows one and only one computation path through bP , it is su�cient to prove thatfor every path , a lot of progress is made for very few of the inputs that follow the computationpath . Speci�cally, for each path through bP, we prove that PrG2D h jC \ hardteethG j �2�c ��� G follows i � 2�0:38�c.Each tooth r 2 C can be thought of as a trial. The rth trial consists of choosing a randominput G subject to the condition that G follows the computation path . The trial succeeds ifthe rth tooth is hard. For each trial r 2 C and each O 2 fsucceeds; failsgC�frg, let Zh;r;Oi =PrG2D h r 2 hardteethG ��� G follows and satis�es O i , where O indicates the condition thatthe other trials have the stated outcome. We will proceed to prove that for each r and each O,Zh;r;Oi � �m = �.In order to bound Zh;r;Oi, �x r 2 C and the outcomes O 2 f0; 1gC�frg for the other trials.The �rst step is to understand the condition \G follows ". Recall that each node of a branchingprogram queries at most one of the variables y1; : : : ; ym; �1; : : : ; �� and the input G follows thebranch corresponding to the value learned. Therefore, a computation path can be speci�ed bystating the collection of variables queried and their values. For example, = fyj = r; : : : ; yj0 =r0; �r00 = 0; : : : ; �r000 = 0g. Recall, that in the input distribution D, only inputs G 62 st-conn areconsidered, i.e. for all r 2 [1::�]; �r = 0. Therefore, in all the paths considered, this will be thecase. Hence, the �'s will be omitted.Because r 2 C , we know that at the beginning of the sub-branching program bP , the rth toothdoes not contain a pebble and at some point in the computation a pebble arrives at the bottomof this tooth. Therefore, by Lemma 8, we know a pebble must enter the rth tooth via one of the56

connecting edges during the computation path . Without loss of generality, let the connectingedge in question be ej . Recall that when a pebble walks the connecting edge ej into the top ofthe rth tooth, the branching program learns that yj = r. Hence, the condition that \G follows "includes the condition that yj = r.How does this condition by itself a�ect the probability that r is in hardteethG? From the def-inition of hardedgesG, we know that if yj = r, then yj 2 hardedgesG if and only if r 2 hardteethG.This gives us that PrG2D h r 2 hardteethG ��� yj = r i = PrG2D h yj 2 hardedgesG ��� yj = r i .This is equal to PrG2D h yj 2 hardedgesG i , because we know that yj has some value and there is asymmetry amongst all the possible values. Hence, telling you that yj = r gives you no informationabout whether yj 2 hardedgesG. Finally, PrG2D h yj 2 hardedgesG i = �=2m , because �2 of thevariables y1; : : : ; ym are randomly chosen to be in hardedgesG.What remains is to consider the additional e�ects of the other conditions. Note that if �xes more than one y variable to r, then PrG2D h r 2 hardteethG ��� G follows i = 0, which istrivially � �. Therefore, suppose that does not assign any other variable to r and let b = fyj0 =r0; : : : ; yj00 = r00g be all the assignments of the y variables made by , excluding yj . Hence,Zh;r;Oi = PrG2D h r 2 hardteethG ��� yj = r and b and O i= PrG2D h r 2 hardteethG and yj = r and b and O iPrG2D h yj = r and b and O iDe�ne Rb � [1::�] � frg to be the teeth that are included in the computation path b = fyj0 =r0; : : : ; yj00 = r00g. There is nothing special about the tooth r except that it is not mentioned in bor in O. Therefore, for all r0 62 Rb ;PrG2D h r 2 hardteethG and yj = r and b and O i= PrG2D h r0 2 hardteethG and yj = r0 and b and O i andPrG2D h yj = r and b and O i = PrG2D h yj = r0 and b and O i :From this we get thatZh;r;Oi = 1��jRb jPr0 62Rb PrG2D h r0 2 hardteethG and yj = r0 and b and O i1��jRb jPr0 62Rb PrG2D h yj = r0 and b and O i= PrG2D h yj 2 hardedgesG and yj is not assigned a tooth in Rb and b and O iPrG2D h yj is not assigned a tooth in Rb and b and O i= PrG2D h yj 2 hardedgesG and yj is not assigned a tooth in Rb ��� b and O iPrG2D h yj is not assigned a tooth in Rb ��� b and O i (5.1)The following claims bound certain probabilities.57

Claim 4 PrG2D h yj 2 hardedgesG ��� b and O i � �2 (m� h) :Proof of Claim 4: The condition O �xes for each tooth in C � frg whether it is easy orhard. De�ne O0 so that it �xes this for all of the teeth [1::�] in a way that is consistent with O.De�ne Yb � fy1; : : : ; ymg to be the variables that are assigned values in the computation pathb = fyj0 = r0; : : : ; yj00 = r00g and partition these variables into Yb;e and Yb;h according to which are�xed to teeth that O0 �xes to be easy and which that it �xes to be hard. Note yj is contained inneither of these sets.Conditioning on the fact that the variables in Yb;e are easy and those in Yb;h are hard e�ectsthe probability that yj is hard. However, beyond this, the conditions b and O0 do not e�ect thisprobability. Which of the variables y1; : : : ; ym are chosen to be in hardedgesG is independentwhich teeth are easy or hard and hence independent of O0. Once a variable in Yb;e is �xed tobe easy, it is assigned a tooth independent of whether yj is hard. Similarly, for the variables inYb;h. Hence, the fact that b �xes the teeth assigned to the variables in Yb;e [Yb;h does not e�ectthis probability, beyond �xing whether the variables are hard or easy. It follows that PrG2D h yj 2hardedgesG ��� b and O0 i = PrG2D h yj 2 hardedgesG ��� Yb;e are easy and Yb;h are hard i .Recall that according to the distribution D, �2 of the variables y1; : : : ; ym are randomly cho-sen to be in hardedgesG. If we know that those in Yb;e are easy and Yb;h are hard, then whatremains is to choose �2 � jYb;hj of the m � jYb;ej � jYb;hj variables to be the remaining hard vari-ables. The variable yj 62 Yb is one of these to be selected from. It follows that PrG2D h yj 2hardedgesG ��� Yb;e are easy and Yb;h are hard i = �=2�jYb;hjm�jYb;ej�jYb;hj . Note that jYb;ej + jYb;hj =jYb j � h, because bP is of height h. The worst case is when jYb;ej = h and jYb;hj = 0. giving thatPrG2D h yj 2 hardedgesG ��� b and O0 i � �2(m�h) . Because this is true for every extension O0, it isalso true for O.Claim 5 PrG2D h yj is assigned a tooth in Rb ��� yj 62 hardedgesG and b and O i � 12.Proof of Claim 5: Suppose that the teeth are partitioned into hardteethG and easyteethGaccording to O, the connecting edges are partitioned into hardedgesG and easyedgesG �xing yj tobe in easyedgesG, and the variables y1; : : : ; ym other than yj have been assigned teeth according tob. The variable yj is then given a random value from easyteethG . The probability that it is assigneda tooth from the set Rb is jRb\easyteethGjjeasyteethG j � jRb jjeasyteethG j � 12 , because jRbj � h = jeasyteethG j2 .These two claims can be combined to givePrG2D h yj 62 hardedgesG and yj is not assigned a tooth in Rb ��� b and O i= PrG2D h yj is not assigned a tooth in Rb ��� yj 62 hardedgesG and b and O i� PrG2D h yj 62 hardedgesG ��� b and O i� (1� 1=2)� �1� �2 (m� h)� (5.2)58

To conclude, note that the denominator of (5.1) is sum of the numerator and (5.2). Also notethat the numerator PrG2D h yj 2 hardedgesG and yj is not assigned a tooth in Rb ��� b and O i� PrG2D h yj 2 hardedgesG ��� b and O i � �2(m�h) . This givesZh;r;Oi � �2(m�h)�2(m�h) + �1� �2(m�h)� =2 = �m � h+ �2 � �m = �:We are now able to complete the proof of the lemma. Each tooth r 2 C is thought of as atrial. The rth trial consists of choosing a random input G subject to the condition that G follows thecomputation path . The trial succeeds if the rth tooth is hard. For each trial r 2 C and each O 2f0; 1gC�frg, Zh;r;Oi = PrG2D h r 2 hardteethG ��� G follows and satis�es O i � �m = �. Thetotal number of successes is jC\hardteethGj. Therefore, by Lemma 14, PrG2D h jC\hardteethGj �2��jCj ��� G follows i � 2�0:38��jCj. (The fact that the probabilities in the statement of the lemmaare conditioned on hG follows i does not e�ect the result, because every probability is conditionedin the same way.) Let � = cjC j . Section 5.5 proved that jCj � hl = c. Therefore, � � 1 and hencePrG2D h jC \ hardteethG j � 2�c ��� G follows i � 2�0:38�c.

59

Chapter 6Future WorkIn this chapter, I outline the directions in which the work in this thesis might be improved, describesome possible approaches and discuss some of their limitations.6.1 Undirected GraphsFor undirected graphs, the future goals are to increase the number of pebbles beyond O � lognlog logn�and to increase the amount of time beyond n � 2
� log nlog log n�. Two approaches are to use the yswatter techniques and to use the comb graph techniques.The lower bound for the recursive y swatter graph of n � 2
� log nlog log n� is tight for a helper-JAG even with worst case analysis, when all shl;ii; thl;ii nodes are distinguished. This could be doneby removing the helper or by making the shl;ii; thl;ii nodes indistinguishable. It is my belief thatthe complexity on a regular JAG is actually � �n2�. The helper-JAG algorithms arise from thesurprising protocol for the helper-parity game, in which the helper compacts a tremendous amountof useful information about the input into very few bits. I conjecture that a JAG is not able to dothis compacting in o �n2� time.Some recent work suggests that the result can be improved possibly even n2�� by making thenodes shl;ii and thl;ii indistinguishable. With this change, a JAG is unable to \ask a parity question"with one pebble, because when the pebble comes down the handle it does not know whether shl;iior thl;ii is reached. Moreover, the JAG does not know which direction he is going in the line of d yswatters and hence is e�ectively taking a random walk on the line. In general, a random walk oflength d takes d2 time, however, the JAG does have some information about the direction traveled.Hence, it is not totally clear what result will be obtained. Possibly it can be proved that the timeto traverse the line is bounded by d2��. This would give a result of
 �n2���.It is unlikely that a lower bound with the number of pebbles increased beyond logn can beproved using the y swatter graph. The technique, as does the Cook and Racko� proof [CR80],allows for an extra pebble for each level of recursion. A graph with n nodes cannot be constructedwith more than log2 n levels of recursion. The only non-trivial lower bound for more than O (logn)jumping pebbles is the lower bound for comb graphs given in Chapters 4 and 5. These are howeverfor directed st-connectivity. There are a number of problems with trying to extend these techniques60

to undirected graphs. The �rst issue is that on an undirected version of the comb graph, pebbleswould be able to trivially travel from t backwards to s. This problem can be solved by have in twoidentical copies of the graph connected at the t nodes. The new questions is whether s and s0 areconnected. The advantage of this is that all pebbles then are placed on one of the s nodes. Anotherproblem is that the JAG can di�erentiate between the teeth by learning the degrees of their topnodes. In the JAG (but not the NNJAG) setting, I am able to give the JAG a comb graph forwhich these degrees are all the same. This is done by proving a lower bound on the partition gamewhen the input is guaranteed to be a partition of the m connecting edges into � parts of equalsides. (This is non-trivial.) A third problem arrises from the labels on the edges from the tops ofthe teeth to the back nodes. In fact, the following is a 3 pebble, linear time deterministic algorithmfor undirected comb graphs.For each back node vimove two pebbles P1 and P2 to vimove P1 into tooth connected to vimove P1 back up to the back nodes through the edge labeled 1.If P1 �nds P2 thenwe know that the edged connected to vi has label 1move P1 back into the tooth,down to the bottom,look for node tend ifend forEvery tooth is connected to some back node vi via the edge labeled 1. Therefore, every tooth willbe traversed once and only once.6.2 Directed GraphsRecently Greg Barnes and I [BE93] increased the time-space tradeo� for directed graphs fromT � S 13 2
 �n 43 � to T � S 2 n2logO(1) n on a NNJAG. The techniques are similar to those inChapter 4, but use a more complicated family of graphs.Although there are algorithms for undirected st-connectivity with T � S 2
 �n2 logO(1) n�,for the directed case, known algorithms that use sub-linear space, use much more than n2 time.Therefore, it might be possible to increase the time-space tradeo� to ! �n2� and show that directedst-connectivity is strictly harder than undirected st-connectivity. However, neither the proof byCook and Racko� [CR80] nor those in Chapters 4 and 5 are able to do this since for the families ofdirected graphs considered, st-connectivity can be solved in O �n2� time. The techniques used inChapters 4 and 5 only use the fact that, for directed graphs, the model is not able to follow edgesbackwards. Cook and Racko�'s JAG space lower bound [CR80] use this fact as well, but in a verydi�erent way. They use the fact that when a pebble traverses a directed edge, it cannot get backunless there is a pebble left above it for it to jump to. The techniques used for the comb graph,on the other hand, could let the pebbles retrace their steps. They use the fact that the JAG witha pebble on a node uhr;1i cannot know what or how many edges point to this node. Therefore, theJAG does not know whether it has already done the work of traversing down the rth tooth.61

The last and most signi�cant future goal is to prove the same lower bounds on a general modelof computation. Recall that the restriction on the NNJAG is that it lacks random access to its input.I am able to push the techniques used in Chapter 5 further, by extending the T � S 13 2
 �n 43�lower bound to a model that allows random access to its input. This model is an (r-way) branchingprogram with a reasonable restriction on what information the model can store. I can also provethis bound for the unrestricted (r-way) branching program, but for a computation problem similarto st-connectivity that requires the computation to output for each tooth whether s is connectedto t via this tooth. The main di�culty in proving a lower bound on a branching program for adecision problem seems to be de�ning a good measure of the progress of a computation.

62

Chapter 7Glossary JAG and NNJAG model (Section 1.1)G input graphn number of nodes in the graphm number of edges in the graphs distinguished node of input graph to st-connectivityt distinguished node of input graph to st-connectivityv arbitrary node of graphp number of pebblesP 2 [1::p] a pebbleq number of statesQ 2 [1::q] a state� 2 [1::n]p speci�es the location of each pebbleR 2 f0; 1g� random bit string usedT computation time or a speci�c time stepS = p log2 n+ log2 q space used by the JAGone-sided error the probabilistic algorithm must give the correct answerfor every input in the languagetwo-sided error the probabilistic algorithm must give the correct answerwith high probability for every inputlog all logarithms are base 2The Helper-Parity Game (Chapter 2)r number of bits of input per game instanced number of game instancesb number of bits of help from the helper~� = h�1; : : : ; �di 2 (f0; 1gr�f0rg)dinput to helper-parity game63

M (~�) message sent by helper in helper-parity gamech~�;ii the number of questions asked about the ith game instance on input ~�c~� 1dPi2[1::d] ch~�;iiRecursive line of y swatter (Chapter 3)H the traversal graph of a st-connectivity computationr number of switches per y swatter graphh2 length of the handled number of y swatters per lineL number of levels of recursionl a speci�c level of recursion~�l = D�hl;1i; : : : ; �hl;diE 2 (f0; 1gr�f0rg)dindicates switches for the lth level~ = h~�1; : : : ; ~�l�1i the structure of the \super edges"~� = h~�l+1; : : : ; ~�Li the \context" in which the line of y swatter appearsG �~; ~�l; ~�� the recursive y swatter graphComb Graph (Chapter 4-5)v1; : : : ; vn the back nodes of the comb graphe1; : : : ; em the connecting edges� the number of teethl = n� the length of the teethr indexes a speci�c toothuhr;1i; : : : ; uhr;li the rth toothy1; ::ym 2 [1::�] speci�es which tooth the connecting edge ei is connected to�r 2 f0; 1g speci�es whether the bottom of tooth r is connected to tNNJAG Lower Bound (Chapter 5)D � st-conn probability distribution on graphseasyteethG set of teeth attached to many connecting edgeshardteethG set of teeth attached to few connecting edgeseasyedgesG set of connecting edges attached to teeth in easyteethGhardedgesG set of connecting edges attached to teeth in hardteethG� = �n probability yi 2 hardedgesGProgress the number of hard teeth that have had a pebbleon its bottom node at some point in time so far64

ThG;Ri the computation time for input G and random bits RCorr set of hG;Ri for which the correct answer is givenP branching program for random string R 2 f0; 1g�hQ;�; T i con�guration node of PbP sub-branching program of Ph = jeasyteethGj2 = �4 height of sub-branching programF � [1::�] the set of teeth that contain pebbles at the root of bP, jFj � pCG � [1::�] the set of teeth that do not contain pebbles at the root of bP ,yet whose bottoms contain a pebble at some pointduring the computation by bP on Gc = hl upper bound on jCGjcomputation path path traced by input through a branching program = fyj = r; : : : ; yj0 = r0; �r00 = 0; : : : ; �r000 = 0gcomputation path through bPb = fy0j = r0; : : : ; yj00 = r00gbe all the assignments of the y variable in ,excluding those that are assigned rRb � [1::�]� frg the teeth that are included in bO 2 f0; 1gC�frg outcome of the trials other then r

65

Bibliography[Ab86] K. Abrahamson. Time-space tradeo�s for branching programs contrasted withthose for straight-line programs. In 27th Annual Symposium on Foundations ofComputer Science, pages 402{409, Toronto, Ontario, October 1986.[Ad78] L. Adleman. Two theorems on random polynomial time. In 19th Annual Sympo-sium on Foundations of Computer Science, pages 75{83, Ann Arbor, MI, October1978. IEEE.[AKLLR79] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov�asz, and C. Racko�. Randomwalks, universal traversal sequences, and the complexity of maze problems. In20th Annual Symposium on Foundations of Computer Science, pages 218{223,San Juan, Puerto Rico, October 1979. IEEE.[BNS89] L�aszl�o Babai, Noam Nisan, and M�ari�o Szegedy. Multiparty protocols, pseudoran-dom generators for logspace, and time-space trade-o�s. Journal of Computer andSystem Sciences, 45(2):204{232, October 1992.[BBRS92] G. Barnes, J. Buss, W. Ruzzo, and B .Schieber. A sublinear space, polynomialtime algorithm for directed s-t connectivity. In Proceedings of the Seventh AnnualConference, Structure in Complexity Theory, pages 27{33, Boston, MA, June1992.[BE93] Greg Barnes, Je� Edmonds. Time-Space Lower Bounds for Directed s-t Connec-tivity on JAG Models To appear in 34st Annual Symposium on Foundations ofComputer Science, Palo Alto, CA, Nov. 1993.[BF93] G. Barnes, and U. Feige. Short random walks on graphs. In Proceedings of theTwenty Fifth Annual ACM Symposium on Theory of Computing, San Diego, CA,May 1993.[Be91] P. Beame. A general time-space tradeo� for �nding unique elements. SIAMJournal on Computing, 20(2):270{277, 1991.[BBRRT90] P. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa. Time-spacetradeo�s for undirected graph connectivity. In 31st Annual Symposium on Foun-dations of Computer Science, pages 429{438, St. Louis, MO, October 1990. Fullversion submitted for journal publication.[BS83] Piotr Berman and Janos Simon. Lower bounds on graph threading by probabilisticmachines. In 24th Annual Symposium on Foundations of Computer Science, pages304{311, Tucson, AZ, November 1983. IEEE.66

[Bo82] Allan Borodin. Structured vs. general models in computational complexity. L'En-seignement Math�ematique, XXVIII(3-4):171{190, July-December 1982.[BC82] A. Borodin and S. A. Cook. A time-space tradeo� for sorting on a general se-quential model of computation. SIAM Journal on Computing, 11(2):287{297,May 1982.[BFMUW87] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson. A time-space tradeo� for element distinctness. SIAM Journal on Computing, 16(1):97{99,February 1987.[BFKLT81] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa. Atime-space tradeo� for sorting on non-oblivious machines. Journal of Computerand System Sciences, 22(3):351{364, June 1981.[BRT92] A. Borodin, W. L. Ruzzo, and M. Tompa. Lower bounds on the length of universaltraversal sequences. Journal of Computer and System Sciences, 45(2):180{203,October 1992.[BKRU89] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal. Trading space for timein undirected s-t connectivity. In Proceedings of the Twenty First Annual ACMSymposium on Theory of Computing, pages 543{549, Seattle, WA, May 1989.[CRRST89] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. Theelectrical resistance of a graph captures its commute and cover times. In Pro-ceedings of the Twenty First Annual ACM Symposium on Theory of Computing,pages 574{586, Seattle, WA, May 1989.[Co66] Alan Cobham. The recognition problem for the set of perfect squares. ResearchPaper RC-1704, IBM Watson Research Center, 1966.[CR80] S. A. Cook and C. W. Racko�. Space lower bounds for maze threadability onrestricted machines. SIAM Journal on Computing, 9(3):636{652, August 1980.[Ed93a] Je� Edmonds. Time-space trade-o�s for undirected st-connectivity on a JAG. InProceedings of the Twenty Fifth Annual ACM Symposium on Theory of Comput-ing, page 718-727, San Diego, CA, May 1993.[Ed93b] Je� Edmonds. Trading non-deterministic help for deterministic time in multipleinstances of a game. Manuscript.[Ed93c] Je� Edmonds.
 �n4=3� time-space trade-o�s for directed st-connectivity on aJAG and other more powerful models. Submitted to 34st Annual Symposium onFoundations of Computer Science, Palo Alto, CA, Nov. 1993.[Im93] Russell Impagliazzo. Personal conversation.[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In30th Annual Symposium on Foundations of Computer Science, pages 248{253,Research Triangle Park, NC, October 1989. IEEE.67

[KLNS89] Je� D. Kahn, Nathan Linial, Noam Nisan, and Michael E. Saks. On the covertime of random walks on graphs. Journal of Theoretical Probability, 2(1):121{128,January 1989.[Ni92] Noam Nisan. RL � SC . In Proceedings of the Twenty Fourth Annual ACMSymposium on Theory of Computing, pages 619{623, Victoria, B.C., Canada,May 1992.[NSW92] Noam Nisan, Endre Szemer�edi, and Avi Wigderson. Undirected Connectivityin O(log1:5 n) Space In 33rd Annual Symposium on Foundations of ComputerScience, Pittsburgh, PA, October 1992. IEEE.[Po93a] C. K. Poon. A sublinear space, polynomial time algorithm for directed st-connectivity on the JAG model. Manuscript.[Po93b] C. K. Poon. Space Bounds For Graph Connectivity Problems On Node-namedJAGs and Node-ordered JAGs. To appear in 34st Annual Symposium on Foun-dations of Computer Science, Palo Alto, CA, Nov. 1993.[R93] Steven Rudich. personal communication.[Sa70] W. J. Savitch. Relationships between nondeterministic and deterministic tapecomplexities. Journal of Computer and System Sciences, 4(2):177{192, 1970.[Sa73] W. J. Savitch. Maze recognizing automata and nondeterministic tape complexity.Journal of Computer and System Sciences, 7(4):389{403, 1973.[Sp92] N. A. Spencer. The probabilistic Method. John Wiley and Sons, Inc., page 239,1992.[Tam93] Hisao Tamaki. personal communication.[Tar72] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal onComputing, 1(2):146{160, June 1972.[Tm80] Martin Tompa. Time-space tradeo�s for computing functions, using connectivityproperties of their circuits. Journal of Computer and System Sciences, 20:118{132, April 1980.[Wi92] A. Wigderson. The Complexity of Graph Connectivity. Proceedings of the 17thSymposium on the Mathematical Foundations of Computer Science, 1992.[Ye84] Y. Yesha. Time-space tradeo�s for matrix multiplication and the discrete Fouriertransform on any general sequential random-access computer. Journal of Com-puter and System Sciences, 29:183{197, 1984.[Ya77] A. C. Yao. Probabilistic computations: Toward a uni�ed measure of complexity.In 18th Annual Symposium on Foundations of Computer Science, pages 222{227,Providence, RI, October 1977. IEEE.[Ya88] A. C. Yao. Near-optimal time-space tradeo� for element distinctness. In 29thAnnual Symposium on Foundations of Computer Science, pages 91{97, WhitePlains, NY, October 1988. IEEE.68

