
Mining for Empty Rectangles in Large Data SetsJe� Edmonds1, Jarek Gryz1, Dongming Liang1, and Ren�ee J. Miller21 York University2 University of TorontoAbstract. Many data mining approaches focus on the discovery of sim-ilar (and frequent) data values in large data sets. We present an al-ternative, but complementary approach in which we search for emptyregions in the data. We consider the problem of �nding all maximalempty rectangles in large, two-dimensional data sets. We introduce anovel, scalable algorithm for �nding all such rectangles. The algorithmachieves this with a single scan over a sorted data set and requires onlya small bounded amount of memory. We extend the algorithm to �ndall maximal empty hyper-rectangles in a multi-dimensional space. Weconsider the complexity of this search problem and present new boundson the number of maximal empty hyper-rectangles. We brie
y overviewexperimental results obtained by applying our algorithm to real and syn-thetic data sets and describe one application of empty-space knowledgeto query optimization.1 IntroductionMuch work in data mining has focused on characterizing the similarity of datavalues in large data sets. This work includes clustering or classi�cation in whichdi�erent techniques are used to group and characterize the data. Such techniquespermit the development of more \parsimonious" versions of the data. Parsimonymay be measured by the degree of compression (size reduction) between theoriginal data and its mined characterization [3]. Parsimonymay also be measuredby the semantic value of the characterization in revealing hidden patterns andtrends in the data [8, 1].Consider the data of Figure 1 representing information about tra�c infrac-tions (tickets), vehicle registrations, and drivers. Using association rules, one maydiscover that O�cer Seth gave out mostly speeding tickets [1] or that drivers ofBMWs usually get speeding tickets over $100 [11]. Using clustering one may dis-cover that many expensive (over $500) speeding tickets were given out to driversof BMW's [14]. Using fascicles, one may discover that o�cers Seth, Murray andJones gave out tickets for similar amounts on similar days [8].The data patterns discovered by these techniques are de�ned by some mea-sure of similarity (data values must be identical or similar to appear together ina pattern) and some measure of degree of frequency or occurrence (a pattern isonly interesting if a su�cient number of data values manifest the pattern or, inthe case of outlier detection, if very few values manifest the pattern).

RegNum Model Owner

R43999 Saab9.5W Owen
R44000 HondaCW Wang
.... ...

119 Seth R43999 1/1/99 Speed 100 G4337
249 Murray R00222 2/2/95 Parking 30 G7123

Tid Officer RegNum Date Infraction Amt DLNum

....

DLNum Name DOB

G16999 Smith 1970-03-22
G65000 Simon 1908-03-05

Registration Tickets Drivers

Fig. 1. Schema and Data of a Tra�c Infraction DatabaseIn this paper, we propose an alternative, but complementary approach tocharacterizing data. Speci�cally, we focus on �nding and characterizing emptyregions in the data. In the above data set, we would like to discover if thereare certain ranges of the attributes that never appear together. For example,it may be the case that no tickets were issued to BMW Z3 series cars before1997 or that no tickets for over $1,000 were issued before 1990 or that there isno record of any tickets issued after 1990 for drivers born before 1920. Some ofthese empty regions may be foreseeable (perhaps BMW Z3 series cars were �rstproduced in 1997). Others may have more complex or uncertain causes (perhapsolder drivers tend to drive less and more defensively).Clearly, knowledge of empty regions may be valuable in and of itself as itmay reveal unknown correlations between data values which can be exploited inapplications.1 For example, if a DBA determines that a certain empty region isa time invariant constraint, then it may be modeled as an integrity constraint.Knowing that no tickets for over $1,000 were issued before 1990, a DBA of a re-lational DBMS can add a check constraint to the Tickets table. Such constraintshave been exploited in semantic query optimization [5].To maximize the use of empty space knowledge, our goal in this work is to notonly �nd empty regions in the data, but to fully characterize that empty space.Speci�cally, we discover the set of all maximal empty rectangles. In Section 2,we formally introduce this problem and place our work in the context of relatedwork from the computational geometry and arti�cial intelligence communities.In Section 3, we present an algorithm for �nding the set of all maximal emptyrectangles in a two-dimensional data set. Unlike previous work in this area, wefocus on providing an algorithm that scales well to large data sets. Our algorithmrequires a single scan of a sorted data set and uses a small, bounded amount ofmemory to compute the set of all maximal empty rectangles. In contrast, relatedalgorithms require space that is at least on the order of the size of the data set.We extend the algorithm to multiple dimensions and present complexity resultsalong with bounds on the number of maximal hyper-rectangles. In Section 4, wepresent the results of experiments performed on both synthetic and real datashowing the scalability of our mining algorithm. We also consider the natureand quantity of empty rectangles that can occur in large, real databases. Weconclude in Section 5.1 [10] describe applications of such correlations in a medical domain.

2 Problem De�nition and Related WorkConsider a data set D consisting of a set of tuples hvx; vyi over two totallyordered domains. Let X and Y denote the set of distinct values in the data setin each of the dimensions. We can depict the data set as an jX j � jY j matrixM of 0's and 1's. There is a 1 in position hx; yi of the matrix if and only ifhvx; vyi 2 D where vx is the xth smallest value in X and vy the yth smallest inY . An empty rectangle is maximal 2 if it cannot be extended along either theX or Y axis because there is at least one 1-entry on each of the borders of therectangle. Although it appears that there may be a huge number of overlappingmaximal rectangles, [12] proves that the number is at most O(jDj2), and thatfor a random placement of the 1-entries the expected value is O(jDj log jDj) [12].We prove that the number is at most O(jX jjY j) (Theorem 4).A related problem attempts to �nd the minimum number of rectangles (eitheroverlapping or not) that covers all the 0's in the matrix. This problem is aspecial case of the problem known as Rectilinear Picture Compression and isNP-complete [7]. Hence, it is impractical for use in large data sets.The problem of �nding empty rectangles or hyper-rectangles has been stud-ied in both the machine learning [10] and computational geometry literature[12, 2, 4, 13]. Liu et al motivate the use of empty space knowledge for discoveringconstraints (in their terms, impossible combinations of values) [10]. However, theproposed algorithm is memory-based and not optimized for large datasets. As thedata is scanned, a data structure is kept storing all maximal hyper-rectangles.The algorithm runs in O(jDj2(d�1)d3(log jDj)2) where d is the number of dimen-sions in the data set. Even in two dimensions (d = 2) this algorithm is impracticalfor large datasets. In an attempt to address both the time and space complexity,the authors propose only maintaining maximal empty hyper-rectangles that ex-ceed an a priori set minimum size. This heuristic is only e�ective if this minimumsize is set su�ciently small. Furthermore, as our experiments on real dataset willshow, for a given size, there are typically many maximal empty rectangles thatare largely overlapping. Hence, this heuristic may yield a set of large, but almostidentical rectangles. This reduces the e�ectiveness of the algorithm for a largeclass of data mining applications where the number of discovered regions is lessimportant that the distinctiveness of the regions. Other heuristic approacheshave been proposed that use decision tree classi�ers to (approximately) separateoccupied from unoccupied space then post-process the discovered regions to de-termine maximal empty rectangles [9]. Unlike our approach, these heuristics donot guarantee that all maximal empty rectangles are found.This problem has also been studied in the computational geometry literature[12, 2, 4, 13] where the primary goal has been to produce run time bounds. Thesealgorithms �nd all maximal empty rectangles in time O(jDj log jDj + s) andspace O(jDj), where jDj is the size of the data set and s denotes the numberof maximal empty rectangles. Such algorithms are particularly e�ective if the2 Do not confuse maximal with maximum (largest).

data set is very sparse and there happens to be only a few maximal rectangles.However, these algorithms do not scale well for large data sets because of theirspace requirements. The algorithms must continually access and modify a datastructure that is as large as the data set itself. Because in practice this will not�t in memory, an infeasible amount of disk access is required on large data sets.The setting of the algorithm in [13] is di�erent because it considers pointsin the real plane instead of 1-entries in a matrix. The only di�erence that thisamounts to is that they assume that points have distinct X and Y coordinates.This is potentially a problem for a database application since it would not allowany duplicate values in data (along any dimension).Despite the extensive literature on this problem, none of the known algo-rithms are e�ective for large data sets. Even for two-dimensional data sets, theonly known technique for scaling these algorithms is to provide a �xed bound onthe size of the empty rectangles discovered, a technique which severally limitsthe application of the discovered results.Our �rst contribution to this problem is an algorithm for �nding all maximalempty rectangles in a two-dimensional space that can perform e�ciently in abounded amount of memory and is scalable to a large, non-memory resident dataset. Unlike the algorithm of [10], our algorithm requires the data be processedin sorted order. However, sorting is a highly optimized operation within modernDBMS and by taking advantage of existing scalable sorting techniques, we haveproduced an algorithm with running time O(jX jjY j) that requires only a singlescan over the sorted data. Furthermore, the memory requirements are �(jX j),which is an order of magnitude smaller than the size O(jX jjY j) of both theinput and the output. (We assume without loss of generality that jX j � jY j.)If the memory available is not su�cient, our algorithm could be modi�ed torun on a portion of the matrix at a time at the cost of extra scans of thedata set. Our second main contribution is an extension of our algorithm to�nd all maximal empty hyper-rectangles in multi-dimensional data. The spaceand time trade-o� compare favorably to those of the heuristic algorithm of [10](the time complexity of our extended algorithm is O(djDj2(d�1)) and the spacerequirements are O(d2jDjd�1)), but are worse than those of incomplete classi�er-based algorithms [9].3 Algorithm for Finding All Maximal Empty RectanglesThis section presents an elegant algorithm for �nding all maximal empty regionswithin a two dimensional data set. Although the binary matrixM representationof the data set D is never actually constructed, for simplicity we describe thealgorithm completely in terms of M . In doing so, however, we must insure thatonly one pass is made through the data set D.The main structure of the algorithm is to consider each 0-entry hx; yi of Mone at a time row by row. Although the 0-entries are not explicitly stored, this issimulated as follows. We assume that the set X of distinct values in the (smaller)dimension is small enough to store in memory. The data set D is stored on disk

sorted with respect to Y;X . Tuples from D will be read sequentially o� the diskin this sorted order. When the next tuple hvx; vyi 2 D is read from disk, we willbe able to deduce the block of 0-entries in the row before this 1-entry.When considering the 0-entry hx; yi, the algorithm needs to look ahead byquerying the matrix entries hx+ 1; yi and hx; y + 1i. This is handled by havingthe single pass through the data set actually occur one row in advance. Thisextra row of the matrix is small enough to be stored in memory. Similarly, whenconsidering the 0-entry hx; yi, the algorithm will have to look back and queryinformation about the parts of the matrix already read. To avoid re-reading thedata set, all such information is retained in memory.The main data structure maintained by the algorithm is the maximal stair-case, staircase(x; y), which stores the shape of the maximal staircase shapedblock of 0-entries starting at entry hx; yi and extending up and to the left as faras possible. See Figure 2. Note that the bottom-right entry separating two stepsof the staircase is a 1-entry. This entry prevents the two adjoining steps fromextending up or to the left and prevents another step forming between them.
loop x = 1 ... m

loop y = 1 ... n

(II) Output all maximal 0-rectangles with <x,y>
 as the bottom-right corner

(I) Construct staircase (x,y)
1

1
1

1

(x,y)1

1

0Fig. 2. The maximal staircase for hx; yi. Fig. 3. Algorithm Structure.The purpose of constructing the staircase(x; y) is to output all maximalrectangles that lie entirely within that staircase and whose bottom right corneris hx; yi. The algorithm (Figure 3) traverses the matrix left-to-right and top-to-bottom creating a staircase for every entry in the matrix. We now describe theconstruction of the staircase and the production of maximal empty rectangles indetail.3.1 Constructing staircase(x; y)The maximal staircase, staircase(x; y), is speci�ed by the coordinates of the top-left corner hxi; yii of each of its steps. This sequence of steps hhx1; y1i ; : : : ; hxr; yriiis stored in a stack, with the top step hxr; yri on the top of the stack.The maximal staircase, staircase(x; y) = hhx1; y1i ; : : : ; hxr; yrii, is easilyconstructed from the staircase, staircase(x�1; y) = hhx01; y01i ; : : : ; hx0r0 ; y0r0ii asfollows. See Figure 4. We start by computing yr, which will be the Y-coordinatefor the highest entry in staircase(x; y). If the hx; yi entry itself is a 1, thenstaircase(x; y) is empty. Otherwise, continue moving up through column x fromhx; yi as long as the entry contains a 0. The entry yr is the Y-coordinate of the

last 0-entry in column x above hx; yi before the �rst 1-entry is found. How therest of staircase(x; y) is constructed depends on how the new height of top stepyr compares with the old one y0r0 .
(c)(a) (b)

0

0
1

00
0
0

0
0
0

0

0

0
0

y
r

y

0

x

0 r

x-1 xx-1

y’r’y’r’ y’r’

Y Y Y

y
r

x-1

i’ r

x

0

(x’ ,y)

0
0
0

0
0
0

0
0
1

0

0
0

0
1

Delete

00 0

Fig. 4. The three cases in constructing maximal staircase, staircase(x; y), fromstaircase(x�1; y).Case yr < y0r0: Figure 4(a). If the new top step is higher than the old top step,then the new staircase staircase(x; y) is the same as the old one staircase(x�1; y) except one extra high step is added on the right. This step will havewidth of only one column and its top-left corner will be hx; yri. In this case,staircase(x; y) is constructed from staircase(x�1; y) simply by pushing thisnew step hx; yri onto the top of the stack.Case yr = y0r0: Figure 4(b). If the new top step has the exact same height asthe old top step, then the new staircase staircase(x; y) is the same as the oldone staircase(x�1; y) except that this top step is extended one column tothe right. Because the data structure staircase(x; y) stores only the top-leftcorners of each step, no change to the data structure is required.Case yr > y0r0: Figure 4(c). If the new top step is lower then the old top step,then all the old steps that are higher then this new highest step must bedeleted. The last deleted step is replaced with the new highest step. Thenew highest step will have top edge at yr and will extend to the left asfar as the last step hx0i0 ; y0i0i to be deleted. Hence, top-left corner of thisnew top step will be at location hx0i0 ; yri. In this case, staircase(x; y) isconstructed from staircase(x� 1; y) simply by popping o� the stack thesteps hx0r0 ; y0r0i ;
x0r0�1; y0r0�1� ; : : : ; hx0i0 ; y0i0i as long as yr > y0i. Finally, thenew top step hx0i0 ; yri is pushed on top.One key thing to note is that when constructing staircase(x; y) from staircase(x�1; y), at most one new step is created.3.2 Outputting the Maximal 0-rectanglesThe goal of the main loop is to output all maximal 0-rectangles with hx; yi as thebottom-right corner. This is done by outputting all steps of staircase(x; y) that

cannot be extended down or to the right. Whether such a step can be extendeddepends on where the �rst 1-entry is located within row y+1 and where it iswithin column x+1. Consider the largest block of 0-entries in row y+1 startingat entry hx; y+1i and extending to the left. Let x� be the X-coordinate of thisleft most 0-entry (see Figure 5). Similarly, consider the largest block of 0-entriesin column x+1 starting at entry hx+1; yi and extending up. Let y� be the Y-coordinate of this top most 0-entry. The following theorem states which of therectangles within the staircase(x; y) are maximal.Theorem 1. Consider a step in staircase(x; y) with top-left corner hxi; yii. Therectangle hxi; x; yi; yi is maximal if and only if xi < x� and yi < y�.Proof. The step hxi; yii of staircase(x; y) forms the rectangle hxi; x; yi; yi. Ifxi � x�, then this rectangle is su�ciently skinny to be extended down into theblock of 0-entries in row y+1. For example, the highest step in Figure 5 satis�esthis condition. On the other hand, if xi < x�, then this rectangle cannot beextended down because it is blocked by the 1-entry located at hx��1; y+1i.Similarly, the rectangle is su�ciently short to be extended to the right into theblock of 0-entries in column x+1 only if yi � y�. See the lowest step in Figure 5.Hence, the rectangle is maximal if and only if xi < x� and yi < y�.To output the steps that are maximal 0-rectangles, pop the steps hxr; yri ;hxr�1; yr�1i ; : : : from the stack. The xi values will get progressively smaller andthe yi values will get progressively larger. Hence, the steps can be divided intothree intervals. At �rst, the steps may have the property xi � x�. As said,these steps are too skinny to be maximal. Eventually, the xi of the steps willdecrease until xi < x�. Then there may be an interval of steps for which xi < x�and yi < y�. These steps are maximal. For these steps output the rectanglehxi; x; yi; yi. However, yi may continue to increase until yi � y�. The remainingsteps will be too short to be maximal.The staircase steps in the third interval do not need to be popped, that is,after yi � y�, because they are not maximal. These stay on the stack. Conve-niently the steps from the �rst and second interval, that is, while yi < y�, can bethrown way as they are popped o� the stack, because they are precisely the stepsthat are thrown away when constructing staircase(x+1; y) from staircase(x; y).(Recall that the next step after outputting the maximal steps in staircase(x; y)is to construct staircase(x+1; y) from staircase(x; y).)The reason these staircase steps are precisely the ones to be deleted is asfollows. Note that the value y� used to know which steps in staircase(x; y) aremaximal and the yr used in the construction of staircase(x+1; y) are both the Y-coordinate of the top most 0-entry in the block of 0-entries in column x+1 startingat entry hx+1; yi and extending up. Hence, y� from staircase(x; y) is the sameas yr for staircase(x+1; y). It follows that in constructing staircase(x+1; y), thesteps in stair(x; y) are popped and deleted as long as yi < y� = yr (Figure 4(c)).3.3 Time and Space ComplexityTheorem 2. The time complexity of the algorithm is O(nm).

1 0 0 0 0

0
0
0
1

0

y
*

x*

11(x ,y)

rr(x ,y)

1

1

1
1

1

1maximal

(x,y)

0

x+1

*
x (x-1,y) =

*
x (x,y)

*
x (x-1,y), x (x,y) = inf

*

1 0 0 0 0 0 0 1
x-1 x

1 0 0 0 0 0 0 0
xx-1

y+1

y+1

extends down
narrow

short
extends

right

Y

XFig. 5. Computing staircase(x; y). Fig. 6. Computing x�(x; y) from x�(x�1; y).Proof. Most of the algorithm is clearly constant time per hx; yi iteration of themain loop. Two tasks however might take more time: (1) computing x� and y�and (2) popping the steps o� the stack to check if they are maximal. We considereach task in turn.Computing x� and y� = yr For each entry hx; yi in the matrix (that has a0-entry), we must construct staircase(x; y) and then determine which steps init are maximal 0-rectangles. To construct staircase(x; y), we used the values yrand to determine which steps are maximal, we used the values x� and y�. Todistinguish between these for di�erent hx; yi, let us now refer to these values asyr(x; y), x�(x; y), and y�(x; y). There are relationships between these values. Forexample, we just saw that yr(x+1; y) = y�(x; y).We want the time complexity of the entire algorithm to be O(nm) (wheren = jX j and m = jY j). Hence, we must be able to compute each x�(x; y),and y�(x; y) in constant time. Computing them directly can take too much time.However, x�(x; y) can be computed in constant time from x�(x�1; y) and y�(x; y)can be computed similarly from y�(x; y�1). These values x�(x�1; y) and y�(x; y�1)were computed in earlier iterations and must be saved at that point in time. Allprevious x� and y� values, however, do not need to be saved, only the x� fromthe previous iteration and the y� from each hx0; y�1i in the previous row ofiterations.To see how x�(x; y) can be computed from x�(x�1; y), see Figure 6. The valueof x�(x; y) is the X-coordinate of the left most 0-entry in the block of 0-entriesin row y+1 starting at entry hx; y+1i and extending to the left. So, x�(x�1; y)is the same except it considers the block extending to the left of hx�1; y+1i.Therefore, if entry hx; y+1i contains a 0, then x�(x; y) = x�(x�1; y). On theother hand, if entry hx; y+1i contains a 1, then x�(x; y) is not well de�ned. Wecould set it to x+1 or to 1. Computing y�(x; y) from y�(x; y�1) is similar.Popping steps o� the stack The second task that might take more time ispopping the steps o� the stack to check if they are maximal, deleting them ifthey are too skinny, and outputting and deleting them if they are maximal. Fora particular hx; yi iteration, an arbitrary number of steps may be popped. Thistakes more than a constant amount of time for this iteration. However, whenamortized over all iterations, at most one step is popped per iteration.

Consider the life of a particular step. During some iteration it is created andpushed onto the stack. Later it is popped o�. Each hx; yi iteration creates atmost one new step and then only if the hx; yi entry is 0. Hence, the total numberof steps created is at most the number of 0-entries in the matrix. As well, becauseeach of these steps is popped at most once in its life and output as a maximal0-rectangle at most once, we can conclude that the total number of times a stepis popped and the total number of maximal 0-rectangles are both at most thenumber of 0-entries in the matrix.It follows that the entire computation requires only O(nm) time (where n =jX j and m = jY j).Theorem 3. The algorithm requires O(min(n;m)) space.Proof. If the matrix is too large to �t into main memory, the algorithm is suchthat one pass through the matrix is su�cient. Other than the current hx; yi-entry of the matrix, only O(min(n;m)) additional memory is required. The stackfor staircase(x; y) contains neither more steps than the number of rows normore than the number of columns. Hence, jstaircase(x; y)j = O(min(n;m)).The previous value for x� requires O(1) space. The previous row of y� valuesrequires O(n) space, but the matrix can be transposed so that there are fewerrows than columns.3.4 Number and Distribution of Maximal 0-RectanglesTheorem 4. The number of maximal 0-rectangles is at most O(nm).Proof. Follows directly from the proof of Theorem 2.We now demonstrate two very di�erent matrices that have O(nm) maximal0-rectangles. See Figure 7. The �rst matrix simply has O(nm) 0-entries each ofwhich is surrounded on all sides by 1-entries. Each such 0-entry is in itself amaximal 0-rectangle.For the second construction, consider the n by n matrix with two diagonals of1-entries. One from the middle of the left side to the middle of the bottom. Theother from the middle of the top to the middle of the right side. The remainingentries are 0. Choose any of the n2 0-entries along the bottom 1-diagonal and anyof the n2 0-entries along the top 1-diagonal. The rectangle with these two 0-entriesas corners is a maximal 0-rectangle. There are O(n2) of these. Attaching mn ofthese matrices in a row will give you an n by m matrix with mnO(n2) = O(nm)maximal 0-entries.Actual data generally has structure to it and hence contains large 0-rectangles.We found this to be true in all our experiments (see Section 4). However, a ran-domly chosen matrix does not contain large 0-rectangles.Theorem 5. Let M be a n � n matrix where each entry is chosen to be 1independently at random with probability �1 = N1n2 . The probability of it havinga 0-rectangle of size s is at most p = (1 � �1)sn3 and the expected number ofdisjoint 0-rectangle of size s is at least E = (1� �1)sn2=s.

01
1

1
1

01
1

1
1

01
1

1
1

01
1

1
1

01
1

1
1

01
1

1
1

01
1

1
1

01
1

1
1 1

1
1

1
1

1

1
1

1
1

1
1

0Fig. 7. Two matrices with O(nm) maximal 0-rectanglesProof. A �xed rectangle of size s obtains all 0's with probability (1 � �1)s.There are at most n3 di�erent rectangles of size s in an n�n matrix. Hence, theprobability that at least one of them is all 0's is at most p = (1 � �1)sn3. Thenumber of disjoint square rectangles within a n�n matrix is n2=s. The expectednumber of these that are all 0's is E = (1� �1)sn2=s.Example 1. If the density of 1's is only �1 = 11;000 then the probability of havinga 0-rectangle of size s = 1�1 [3 ln(n) + ln(1p)] = 3; 000 ln(n) + 7; 000 is at mostp = 11;000 and the expected number of 0-rectangle of size s = 1�1 [2 ln(n) �ln ln(n)� ln(2E�1)] = 2; 000 ln(n)� 1000 ln ln(n)� 14; 500 is at least 1000.As a second example, the probability of having a 0-rectangle of size s = q �n2 = 11000n2 is at most p = 11;000 when the number of 1's is at least N1 = �1n2 =1q [3 ln(n) + ln(1p)] = 3; 000 ln(n) + 7; 000. The expected number of this size is atleast E = 100 when the number of 1's is at most N1 = �1n2 = 1q ln(1qE) = 2; 300.The expected number of rectangles can be derived as a consequence of The-orem 5 as E(s) � O(min(N1 logN1; N0)) (where N1 is the number of 1-entriesand N0 the number of 0-entries). This value increases almost linearly with N1 asN1 logN1 until N1 logN1 = N0 = n2=2 and then decreases linearly with n2�N1.3.5 Multi-Dimensional MatricesThe algorithm that �nds all maximal 0-rectangles in a given two dimensionalmatrix can be extended to �nd all maximal d-dimensional 0-rectangles within agiven d-dimensional matrix. In the 2-dimensional case, we looped through theentries hx; yi of the matrix, maintaining the maximal staircase, staircase(x; y)(see Figure 2). This consists of a set of steps. Each such step is a 0-rectanglehxi; x; yi; yi that cannot be extended by decreasing the xi or the yi coordinates.There are at most O(n) such \stairs", because their lower points hxi; yii lie alonga 1-dimensional diagonal. In the 3-dimensional case, such a maximal staircase,staircase(x; y; z) looks like one quadrant of a pyramid. Assuming (for nota-tional simplicity) that every dimension has size n, then there are at most O(n2)stairs, because their lower points hxi; yi; zii lie along a 2-dimensional diagonal.In general, staircase(x1; x2; : : : xd) consists of the set of at most O(nd�1) rect-angles (steps) that have hx1; x2; : : : xdi as the upper corner and that cannot beextended by decreasing any coordinate.

In the 2-dimensional case, we construct staircase(x; y) from staircase(x�1; y) by imposing what amounts to a 1-dimensional staircase on to its side (seeFigure 4). This 1-dimensional staircase consists of a single step rooted at hx; yiand extending in the y dimension to yr. The staircase was constructed from the 1-dimensional staircase rooted at hx; y�1i by extending it with the 0-dimensionalstaircase consisting only of the single entry hx; yi. The 1-dimensional staircaserooted at hx; y�1i had been constructed earlier in the algorithm and had beensaved in memory. The algorithm saves a line of n such 1-dimensional staircases.In the 3-dimensional case, the algorithm saves the one 3-dimensional stair-case staircase(x� 1; y; z), a line of n 2-dimensional staircases, and a planeof n2 1-dimensional staircases, and has access to a cube of n3 0-dimensionalstaircases consisting of the entries of the matrix. Each iteration, it constructsthe 3-dimensional staircase(x; y; z) from the previously saved 3-dimensionalstaircase(x�1; y; z) by imposing a 2-dimensional staircase on to its side. This 2-dimensional staircase is rooted at hx; y; zi and extends in the y; z plain. It is con-structed from the previously saved 2-dimensional staircase rooted at hx; y�1; ziby imposing a 1-dimensional staircase on to its side. This 1-dimensional staircaseis rooted at hx; y; zi and extends in the z dimension. It is constructed from thepreviously saved 1-dimensional rooted at hx; y; z�1i by imposing a 0-dimensionalstaircase. This 0-dimensional staircase consists of the single entry hx; y; zi. Thispattern is extended for the d-dimensional case.The running time, O(N0 d nd�2), is dominated by the time to impose thed�1-dimensional staircase onto the side of the d-dimensional one. With the rightdata structure, this can be done in time proportional to the size of the d�1-dimensional staircase, which as stated is O(d nd�2). Doing this for every 0-entryhx; y; zi requires a total of O(N0 d nd�2) time.When constructing staircase(x; y; z) from staircase(x� 1; y; z) some newstairs are added and some are deleted. The deleted ones are potential maximalrectangles. Because they are steps, we know that they cannot be extended bydecreasing any of the dimensions. The reason that they are being deleted isbecause they cannot be extended by increasing the x dimension. What remains tobe determined is whether or not they can be extended by increasing either the yor the z dimension. In the 2-dimensional case, there is only additional dimensionto check and this is done easily by reading one row ahead of the current entryhx; yi. In the 3-dimensional case this is harder. One possible solution is to readone y; z plane ahead. An easier solution is as follows.The algorithm has three phases. The �rst phase proceeds as described abovestoring all large 0-rectangles that cannot be extended by decreasing any of thedimensions (or by increasing the x dimension). The second phase turns thematrix upside down and does the same. This produces all large 0-rectangles thatcannot be extended by increasing any of the dimensions (or by decreasing the xdimension). The third phase �nds the intersection of these two sets by sortingthem and merging them together. These rectangles are maximal because theycannot be extended by decreasing or by increasing any of the dimensions. This

algorithm makes only two passes through the matrix and uses only O(d nd�1)space.Theorem 6. The time complexity of the algorithm is O(N0 d nd�2) � O(d n2d�2)and space complexity O(d nd�1).Theorem 7. The number of maximal 0-hyper-rectangles in a d-dimensional ma-trix is �(n2d�2).Proof. The upper bound on the number of maximal rectangles is given by therunning time of the algorithm that produces them all. The lower bound is provedby constructing a matrix that has
(n2d�2) such rectangles. The construction isvery similar to that for the d = 2 case given in Figure 7, except that the lowerand the upper diagonals each consist of a d�1-dimensional plain of nd�1 points.Taking most combinations of one point from the bottom plane and one from thetop produces
(nd�1 � nd�1) =
(n2d�2) maximal rectangles.The number of such maximal hyper-rectangles and hence the time to producethem increases exponentially with d. For d = 2 dimensions, this is �(n2) as seenbefore. For d = 3 dimensions, it is already �(n4), which is not likely practicalin general for large data sets.4 Performance of Mining AlgorithmIn this section, we present two sets of experiments using our mining algorithm.The �rst set of experiments was designed to verify the claims of the algorithm'sscalability and usefulness on large data sets. These tests were run against syn-thetic data. In the second set of experiments, we used a real database with datafrom a health insurance company. The goal of these experiments was to charac-terize real data sets in terms of the number, sizes, and overlaps of the discoveredempty rectangles (we would expect real data sets to exhibit di�erent character-istics than synthetic data sets such as the TPC-D benchmark). The experimentsreported here were run on an (admittedly slow) multi-user 42MHz IBM RISCSystem/6000 machine with 256 MB RAM.4.1 Scaling CharacteristicsThe performance of the algorithm depends on the number of tuples T = jDj(which in matrix representation is the number of 1-entries), the number n ofdistinct values of X , the number m of distinct values of Y , and the number ofmaximal empty rectangles R. We report the runtime and the number of maximalempty rectangles R (where applicable).

E�ect of T , the number of tuples, on Runtime To test the scalability of thealgorithm with respect to the data set size, we held the data density (that is, theratio of T to n �m) constant at one �fth. We also held n constant at 1000 sinceour algorithm maintains a data structure of O(n) size. We found these numbersto be in the middle of the ranges of the values for our real data sets. The dataset is a randomly generated set of points. Initially, m is set to 500 and T to100,000 tuples. Figure 8 plots the runtime of the algorithm with respect to thenumber of tuples T . The performance scales linearly as expected. The numberof maximal empty rectangles also scales almost linearly with T as our analyticresults of Section 3.4 predicts.
Size of Matrix

100M

0

50M 150M 200M

60

120

Runtime (min)Runtime (sec)

Number of Tuples

2M1M500k 1.5M

2000

1000

0

2M1M500k 1.5M

0

1M

Number of Tuples

2M

Number of Maximal
Empty Rectangles

Fig. 8. Random data under constant n as T increases. Fig. 9. Random data asthe matrix size is in-creased (constant T).E�ect of Data Density on Runtime Note that the algorithm requires only asingle pass over the data which is why we expected this linear scale up for theprevious experiment. However, the in memory processing time is O(nm) whichmay, for sparse data be signi�cantly more than the size of the data. Hence, weveri�ed experimentally that the algorithm's performance is dominated by thesingle pass over the data, not by the O(n) in memory computations requiredfor each row. In this experiment, we kept both T and n constant and increasedm. As we do, we increase the sparsity of the matrix. We expect the runtimeperformance to increase but the degree of this increase quanti�es the extent towhich the processing time dominates the I/O. Figure 9 plots the runtime of thealgorithm with respect to the size of the matrix.E�ect of R, the number of maximal empty rectangles, on Runtime Since thedata was generated randomly in the �rst experiment, we could not preciselycontrol the number of empty rectangles. In this next experiment, this numberwas tightly controlled. We generated a sequence of datasets shown for clarity inmatrix representation in Figure 10.Let m = 1000; n = 2000; T = 1; 000; 000. We start with a matrix that has1000 colums �lled with 1-entries separated by 1000 columns �lled with 0-entries(for a total of 2000 columns). For each new test, we cluster the columns so that

the number of spaces separating them decreases. We do this until there is onebig square 1000x1000 �lled with 1-entries, and another large square 1000x1000�lled with 0s. Thus, the number of empty rectangles decreases from 1000 to 1.We would expect that R should not a�ect the performance of the algorithm andthis is veri�ed by the results (Figure 10).
1 0 0 1...

height

1000
entries

1 0

1000 clustered columns of 1’s

. . .

1000 columns of 1’s intermixed

with 1000 columns of 0’s 1000 clustered columns of 0’s

1 0 0 1...
height

1000
entries

1 0

1000 clustered columns of 1’s

. . .

1000 columns of 1’s intermixed

with 1000 columns of 0’s 1000 clustered columns of 0’s

0

Time (min)

40

1000500

50

Number of empty rectanglesFig. 10. Data sets and performance as the number of maximal empty rectangles R isincreased.E�ect of n on the Runtime We also tested the performance of the algorithmwith respect to the number of distinct X values, n. Here, we kept T constantat 1,000,000 and R constant at 1,000 and varied both n and m. To achieve this,we constructed a sequence of data sets shown again in matrix representation inFigure 11(a).
0 1 1 0...

}

1k

0

Time (h)

1

2

3

4

8k 16k 32k2k 4k

Number of distinct values of X (log scale)

height

entries

i

1000/i

1000 columns of 1’s

1000 columns of 0’s

width of each column is

(a) (b)Fig. 11. Synthetic data under constant R and T . Runtime is plotted versus n.For the �rst matrix, i is set to 1 so the data contains 1000 columns of 1-entries,each a single entry wide. Each column was separated by a single column of all 0's(all columns are initially 1000 entries high). In the second matrix, the height of allcolumns is reduced by half (to 500 entries). The width of each column (both thecolumns containing 1's and the columns containing 0's) is doubled. This keepsthe number of tuples constant, while increasing to 2000 the number of distinctX values. The number of columns with 0's does not change (only their widthincreases), hence the number of discovered empty rectangles remains constant.

The process of reducing the height of the columns and multiplying their numberis continued until all columns are of height 4.The performance of the algorithm, as shown in Figure 11(b), deterioratesas expected with increasing n. Speci�cally, when the size of the data structuresused grows beyond the size of memory, the data structures must be swappedin and out of memory. To avoid this, for data sets over two very large domains(recall that n is the minimum number of distinct values in the two attributes),the data values will need to be grouped using, for example, a standard binningor histogram technique to reduce the number of distinct values of the smallestattribute domain.4.2 Empty Space Characteristics of Real DatasetsOne of the primary motivations for our work was the observation that knowl-edge of empty regions can be used to great advantage in query optimization [5].Speci�cally, range queries can be rewritten into more restrictive queries that canbe evaluated faster. Furthermore, empty rectangles (or hyper-rectangles) canbe modeled as simple materialized views in SQL. By storing such views (whichamounts to storing their de�nition since their extents are empty), we can exploitexisting work on answering queries using views to achieve these query optimiza-tion bene�ts. So we can rewrite queries to use empty space knowledge withoutchanging the underlying query optimizer.Test n m T R Runtime % size of largest 5 empty rectangles(sec) 1 2 3 4 51 525 8 3683 269 8 74 73 69 7 72 6 37716 39572 29323 78 68 58 40 37 283 3 1503 3061 650 6 97 94 80 12.2 0.044 525 423 42854 13850 86 91.6 91.6 91.3 91.3 83.15 14733 23292 181249 801427 10956 95 94 90 90 89Table 1. Real data characteristicsTo begin understanding the performance implications of such an approach,we sought to characterize the size and distribution of empty rectangles that occurin real data sets. We took a large relational database of health insurance dataand examined the query workload. We selected queries with range restrictionson two attributes (from di�erent relations). We then mined the underlying datafor empty rectangles. The results are presented in Table 1. For each pair ofattributes, we report n, m, the number of tuples in the dataset T , the totalnumber of empty rectangles R, the time to discover all of them (Runtime), andthe sizes of the �ve largest rectangles (the size is reported relative to the size ofthe dataset). In all the tests, extremely large maximal rectangles were detected.Furthermore, the query workload contained queries that ranged over large parts

of this empty space so our optimization techniques were e�ective [6]. For Test 1,we plot the distribution of all rectangles with respect to their sizes in Figure 12.
100

Size of empty rectangle (% of total space)

Rectangles

20

40

60

80

>101-10.1 -1.001 - .01<.001 .01 - .1Fig. 12. Distribution of maximal empty rectangles in real data set.5 ConclusionsWe developed an e�cient and scalable algorithm that discovers all maximalempty rectangles with a single scan over a sorted two-dimensional data set. Pre-viously proposed algorithms were not practical for large datasets since they didnot scale (they required space proportional to the dataset size). We presentedan extension of our algorithm to multi-dimensional data and we presented newresults on the time and space complexity of these problems. Our mining algo-rithm can be used both to characterize the empty space within the data and tocharacterize any homogeneous regions in the data, including the data itself. Byinterchanging the roles of 0's and 1's in the algorithm, we can �nd the set ofall maximal rectangles that are completely full (that is, they contain no emptyspace) and that cannot be extended without incorporating some empty space.Knowledge of empty rectangles may be valuable in and of itself as it may revealunknown correlations or dependencies between data values and we have begunto study how it may be fully exploited in query optimization [6].References1. R. Agrawal, T. Imielinksi, and A. Swami. Mining Association Rules between Setsof Items in Large Databases. ACM SIGMOD, 22(2), June 1993.2. M. J. Atallah and Fredrickson G. N. A note on �nding a maximum empty rectangle.Discrete Applied Mathematics, (13):87{91, 1986.3. D. Barbar�a, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein, Y. E.Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A. Ross, andK. C. Sevcik. The New Jersey Data Reduction Report. Data Engineering Bulletin,20(4):3{45, 1997.4. Bernard Chazelle, Robert L. (Scot) Drysdale III, and D. T. Lee. Computing thelargest empty rectangle. SIAM J. Comput., 15(1):550{555, 1986.5. Q. Cheng, J. Gryz, F. Koo, C. Leung, L. Liu, X. Qian, and B. Schiefer. Implemen-tation of two semantic query optimization techniques in DB2 universal database.In Proceedings of the 25th VLDB, pages 687{698, Edinburgh, Scotland, 1999.

6. J. Edmonds, J. Gryz, D. Liang, and R. J. Miller. Mining for Empty Rectangles inLarge Data Sets (Extended Version). Technical Report CSRG-410, Department ofComputer Science, University of Toronto, 2000.7. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freemanand Co., New York, 1979.8. H. V. Jagadish, J. Madar, and R. T. Ng. Semantic Compression and PatternExtraction with Fascicles. In Proc. of VLDB, pages 186{197, 1999.9. B. Liu, K. Wang, L.-F. Mun, and X.-Z. Qi. Using Decision Tree Induction for Dis-covering Holes in Data. In 5th Paci�c Rim International Conference on Arti�cialIntelligence, pages 182{193, 1998.10. Bing Liu, Liang-Ping Ku, and Wynne Hsu. Discovering interesting holes in data.In Proceedings of IJCAI, pages 930{935, Nagoya, Japan, 1997. Morgan Kaufmann.11. R. J. Miller and Y. Yang. Association Rules over Interval Data. ACM SIGMOD,26(2):452{461, May 1997.12. A. Namaad, W. L. Hsu, and D. T. Lee. On the maximum empty rectangle problem.Applied Discrete Mathematics, (8):267{277, 1984.13. M. Orlowski. A New Algorithm for the Largest Empty Rectangle Problem. Algo-rithmica, 5(1):65{73, 1990.14. T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An E�cient Data ClusteringMethod for Very Large Databases. ACM SIGMOD, 25(2), June 1996.

