Mining for Empty Rectangles in Large Data Sets

Jeff Edmonds?, Jarek Gryz!, Dongming Liang!, and Renée J. Miller?

! York University
2 University of Toronto

Abstract. Many data mining approaches focus on the discovery of sim-
ilar (and frequent) data values in large data sets. We present an al-
ternative, but complementary approach in which we search for empty
regions in the data. We consider the problem of finding all maximal
empty rectangles in large, two-dimensional data sets. We introduce a
novel, scalable algorithm for finding all such rectangles. The algorithm
achieves this with a single scan over a sorted data set and requires only
a small bounded amount of memory. We extend the algorithm to find
all maximal empty hyper-rectangles in a multi-dimensional space. We
consider the complexity of this search problem and present new bounds
on the number of maximal empty hyper-rectangles. We briefly overview
experimental results obtained by applying our algorithm to real and syn-
thetic data sets and describe one application of empty-space knowledge
to query optimization.

1 Introduction

Much work in data mining has focused on characterizing the similarity of data
values in large data sets. This work includes clustering or classification in which
different techniques are used to group and characterize the data. Such techniques
permit the development of more “parsimonious” versions of the data. Parsimony
may be measured by the degree of compression (size reduction) between the
original data and its mined characterization [3]. Parsimony may also be measured
by the semantic value of the characterization in revealing hidden patterns and
trends in the data [8, 1].

Consider the data of Figure 1 representing information about traffic infrac-
tions (tickets), vehicle registrations, and drivers. Using association rules, one may
discover that Officer Seth gave out mostly speeding tickets [1] or that drivers of
BMWs usually get speeding tickets over $100 [11]. Using clustering one may dis-
cover that many expensive (over $500) speeding tickets were given out to drivers
of BMW’s [14]. Using fascicles, one may discover that officers Seth, Murray and
Jones gave out tickets for similar amounts on similar days [8].

The data patterns discovered by these techniques are defined by some mea-
sure of similarity (data values must be identical or similar to appear together in
a pattern) and some measure of degree of frequency or occurrence (a pattern is
only interesting if a sufficient number of data values manifest the pattern or, in
the case of outlier detection, if very few values manifest the pattern).

Registration Tickets Drivers

RegNum | Model | Owner Tid| Officer| RegNum| Date|Infraction Amt| DLNum| |DLNum |Name | DOB
R43999 | Saab9.5W| Owen 119 | Seth R43999 | 1/2/99 | Speed 100 | G4337 G16999 | Smith [1970-03-22
R44000 | HondaCW| Wang 249 | Murray | RO0222 | 2/2/95 | Parking 30 | G7123 G65000 | Simon [1908-03-05

Fig. 1. Schema and Data of a Traffic Infraction Database

In this paper, we propose an alternative, but complementary approach to
characterizing data. Specifically, we focus on finding and characterizing empty
regions in the data. In the above data set, we would like to discover if there
are certain ranges of the attributes that never appear together. For example,
it may be the case that no tickets were issued to BMW Z3 series cars before
1997 or that no tickets for over $1,000 were issued before 1990 or that there is
no record of any tickets issued after 1990 for drivers born before 1920. Some of
these empty regions may be foreseeable (perhaps BMW Z3 series cars were first
produced in 1997). Others may have more complex or uncertain causes (perhaps
older drivers tend to drive less and more defensively).

Clearly, knowledge of empty regions may be valuable in and of itself as it
may reveal unknown correlations between data values which can be exploited in
applications.! For example, if a DBA determines that a certain empty region is
a time invariant constraint, then it may be modeled as an integrity constraint.
Knowing that no tickets for over $1,000 were issued before 1990, a DBA of a re-
lational DBMS can add a check constraint to the Tickets table. Such constraints
have been exploited in semantic query optimization [5].

To maximize the use of empty space knowledge, our goal in this work is to not
only find empty regions in the data, but to fully characterize that empty space.
Specifically, we discover the set of all maximal empty rectangles. In Section 2,
we formally introduce this problem and place our work in the context of related
work from the computational geometry and artificial intelligence communities.
In Section 3, we present an algorithm for finding the set of all maximal empty
rectangles in a two-dimensional data set. Unlike previous work in this area, we
focus on providing an algorithm that scales well to large data sets. Our algorithm
requires a single scan of a sorted data set and uses a small, bounded amount of
memory to compute the set of all maximal empty rectangles. In contrast, related
algorithms require space that is at least on the order of the size of the data set.
We extend the algorithm to multiple dimensions and present complexity results
along with bounds on the number of maximal hyper-rectangles. In Section 4, we
present the results of experiments performed on both synthetic and real data
showing the scalability of our mining algorithm. We also consider the nature
and quantity of empty rectangles that can occur in large, real databases. We
conclude in Section 5.

1 [10] describe applications of such correlations in a medical domain.

2 Problem Definition and Related Work

Consider a data set D consisting of a set of tuples (vg,v,) over two totally
ordered domains. Let X and Y denote the set of distinct values in the data set
in each of the dimensions. We can depict the data set as an |X| x |Y| matrix
M of 0’s and 1’s. There is a 1 in position (z,y) of the matrix if and only if
(vg,vy) € D where v, is the " smallest value in X and v, the y** smallest in
Y.

An empty rectangle is mazimal 2 if it cannot be extended along either the
X or Y axis because there is at least one l-entry on each of the borders of the
rectangle. Although it appears that there may be a huge number of overlapping
maximal rectangles, [12] proves that the number is at most O(|D|?), and that
for a random placement of the 1-entries the expected value is O(|D|log |D|) [12].
We prove that the number is at most O(]X||Y]|) (Theorem 4).

A related problem attempts to find the minimum number of rectangles (either
overlapping or not) that covers all the 0’s in the matrix. This problem is a
special case of the problem known as Rectilinear Picture Compression and is
NP-complete [7]. Hence, it is impractical for use in large data sets.

The problem of finding empty rectangles or hyper-rectangles has been stud-
ied in both the machine learning [10] and computational geometry literature
[12,2,4,13]. Liu et al motivate the use of empty space knowledge for discovering
constraints (in their terms, impossible combinations of values) [10]. However, the
proposed algorithm is memory-based and not optimized for large datasets. As the
data is scanned, a data structure is kept storing all maximal hyper-rectangles.
The algorithm runs in O(|D|*(4=Yd?(log | D|)?) where d is the number of dimen-
sions in the data set. Even in two dimensions (d = 2) this algorithm is impractical
for large datasets. In an attempt to address both the time and space complexity,
the authors propose only maintaining maximal empty hyper-rectangles that ex-
ceed an a priori set minimum size. This heuristic is only effective if this minimum
size is set sufficiently small. Furthermore, as our experiments on real dataset will
show, for a given size, there are typically many maximal empty rectangles that
are largely overlapping. Hence, this heuristic may yield a set of large, but almost
identical rectangles. This reduces the effectiveness of the algorithm for a large
class of data mining applications where the number of discovered regions is less
important that the distinctiveness of the regions. Other heuristic approaches
have been proposed that use decision tree classifiers to (approximately) separate
occupied from unoccupied space then post-process the discovered regions to de-
termine maximal empty rectangles [9]. Unlike our approach, these heuristics do
not guarantee that all maximal empty rectangles are found.

This problem has also been studied in the computational geometry literature
[12,2,4,13] where the primary goal has been to produce run time bounds. These
algorithms find all maximal empty rectangles in time O(|D|log|D| + s) and
space O(|D]), where |D| is the size of the data set and s denotes the number
of maximal empty rectangles. Such algorithms are particularly effective if the

% Do not confuse maximal with maximum (largest).

data set is very sparse and there happens to be only a few maximal rectangles.
However, these algorithms do not scale well for large data sets because of their
space requirements. The algorithms must continually access and modify a data
structure that is as large as the data set itself. Because in practice this will not
fit in memory, an infeasible amount of disk access is required on large data sets.

The setting of the algorithm in [13] is different because it considers points
in the real plane instead of 1-entries in a matrix. The only difference that this
amounts to is that they assume that points have distinct X and Y coordinates.
This is potentially a problem for a database application since it would not allow
any duplicate values in data (along any dimension).

Despite the extensive literature on this problem, none of the known algo-
rithms are effective for large data sets. Even for two-dimensional data sets, the
only known technique for scaling these algorithms is to provide a fixed bound on
the size of the empty rectangles discovered, a technique which severally limits
the application of the discovered results.

Our first contribution to this problem is an algorithm for finding all maximal
empty rectangles in a two-dimensional space that can perform efficiently in a
bounded amount of memory and is scalable to a large, non-memory resident data
set. Unlike the algorithm of [10], our algorithm requires the data be processed
in sorted order. However, sorting is a highly optimized operation within modern
DBMS and by taking advantage of existing scalable sorting techniques, we have
produced an algorithm with running time O(|X||Y’|) that requires only a single
scan over the sorted data. Furthermore, the memory requirements are ©(|X|),
which is an order of magnitude smaller than the size O(]X||Y|) of both the
input and the output. (We assume without loss of generality that |X| < |Y].)
If the memory available is not sufficient, our algorithm could be modified to
run on a portion of the matrix at a time at the cost of extra scans of the
data set. Our second main contribution is an extension of our algorithm to
find all maximal empty hyper-rectangles in multi-dimensional data. The space
and time trade-off compare favorably to those of the heuristic algorithm of [10]
(the time complexity of our extended algorithm is O(d|D|*(¢~)) and the space
requirements are O(d?|D|?~!)), but are worse than those of incomplete classifier-
based algorithms [9].

3 Algorithm for Finding All Maximal Empty Rectangles

This section presents an elegant algorithm for finding all maximal empty regions
within a two dimensional data set. Although the binary matrix M representation
of the data set D is never actually constructed, for simplicity we describe the
algorithm completely in terms of M. In doing so, however, we must insure that
only one pass is made through the data set D.

The main structure of the algorithm is to consider each 0-entry (z,y) of M
one at a time row by row. Although the O-entries are not explicitly stored, this is
simulated as follows. We assume that the set X of distinct values in the (smaller)
dimension is small enough to store in memory. The data set D is stored on disk

sorted with respect to Y, X. Tuples from D will be read sequentially off the disk
in this sorted order. When the next tuple (vg, vy) € D is read from disk, we will
be able to deduce the block of 0-entries in the row before this 1-entry.

When considering the 0-entry (z,y), the algorithm needs to look ahead by
querying the matrix entries (x + 1,y) and (z,y + 1). This is handled by having
the single pass through the data set actually occur one row in advance. This
extra row of the matrix is small enough to be stored in memory. Similarly, when
considering the 0-entry (z,y), the algorithm will have to look back and query
information about the parts of the matrix already read. To avoid re-reading the
data set, all such information is retained in memory.

The main data structure maintained by the algorithm is the mazimal stair-
case, staircase(x,y), which stores the shape of the maximal staircase shaped
block of 0-entries starting at entry (z,y) and extending up and to the left as far
as possible. See Figure 2. Note that the bottom-right entry separating two steps
of the staircase is a l-entry. This entry prevents the two adjoining steps from
extending up or to the left and prevents another step forming between them.

loopy=1..n
loop x=1..m
(I Construct staircase (X,y)

(1) Output al maximal O-rectangles with <x,y>
as the bottom-right corner

Fig. 2. The maximal staircase for (z,y). Fig. 3. Algorithm Structure.

The purpose of constructing the staircase(x,y) is to output all maximal
rectangles that lie entirely within that staircase and whose bottom right corner
is (z,y). The algorithm (Figure 3) traverses the matrix left-to-right and top-to-
bottom creating a staircase for every entry in the matrix. We now describe the
construction of the staircase and the production of maximal empty rectangles in
detail.

3.1 Constructing staircase(x,y)

The maximal staircase, staircase(x,y), is specified by the coordinates of the top-

left corner (z;, y;) of each of its steps. This sequence of steps ((z1,y1) ,- .-, (Tr, Yr))
is stored in a stack, with the top step (z,,y,) on the top of the stack.

The maximal staircase, staircase(x,y) = {({(x1,y1),.-.,{Tr,yr)), is easily
constructed from the staircase, staircase(z—1,y) = ((«1,y1),-..,(zl,y.)) as

follows. See Figure 4. We start by computing y,., which will be the Y-coordinate
for the highest entry in staircase(z,y). If the (z,y) entry itself is a 1, then
staircase(x,y) is empty. Otherwise, continue moving up through column z from
(x,y) as long as the entry contains a 0. The entry y,. is the Y-coordinate of the

last O-entry in column x above {(x,y) before the first 1-entry is found. How the
rest of staircase(x,y) is constructed depends on how the new height of top step
yr compares with the old one ;..

=<

Yy

<

<
<

xI0O000 0000 0000 OFr

X
N
x 9000 0000000k

ol
o

@ (b)

Fig.4. The three cases in constructing maximal staircase, staircase(z,y), from
staircase(z—1,y).

Case y, < y..: Figure 4(a). If the new top step is higher than the old top step,
then the new staircase staircase(x,y) is the same as the old one staircase(z—
1,y) except one extra high step is added on the right. This step will have
width of only one column and its top-left corner will be (z,y,). In this case,
staircase(z,y) is constructed from staircase(x—1,y) simply by pushing this
new step (z,y,) onto the top of the stack.

Case y, = y,.: Figure 4(b). If the new top step has the exact same height as
the old top step, then the new staircase staircase(x,y) is the same as the old
one staircase(z—1,y) except that this top step is extended one column to
the right. Because the data structure staircase(x,y) stores only the top-left
corners of each step, no change to the data structure is required.

Case y, > y.,: Figure 4(c). If the new top step is lower then the old top step,
then all the old steps that are higher then this new highest step must be
deleted. The last deleted step is replaced with the new highest step. The
new highest step will have top edge at y, and will extend to the left as
far as the last step (z},y}) to be deleted. Hence, top-left corner of this
new top step will be at location (zl,,y,). In this case, staircase(x,y) is
constructed from staircase(x —1,y) simply by popping off the stack the
steps (2).,yl), (:U;,,_l,y;,_1>,...,(m;,,y;,) as long as y, > y|. Finally, the
new top step («,y,) is pushed on top.

One key thing to note is that when constructing staircase(x,y) from staircase(z—
1,y), at most one new step is created.

3.2 Outputting the Maximal O-rectangles

The goal of the main loop is to output all maximal O-rectangles with (z,y) as the
bottom-right corner. This is done by outputting all steps of staircase(x,y) that

cannot be extended down or to the right. Whether such a step can be extended
depends on where the first 1-entry is located within row y+1 and where it is
within column x+1. Consider the largest block of 0-entries in row y+1 starting
at entry (z,y+1) and extending to the left. Let z, be the X-coordinate of this
left most 0-entry (see Figure 5). Similarly, consider the largest block of 0-entries
in column z+1 starting at entry (z+1,y) and extending up. Let y. be the Y-
coordinate of this top most 0-entry. The following theorem states which of the
rectangles within the staircase(x,y) are maximal.

Theorem 1. Consider a step in staircase(x,y) with top-left corner (x;,y;). The
rectangle (x;, x,y;,y) is mazimal if and only if v; < x, and y; < Yx-

Proof. The step (x;,y;) of staircase(x,y) forms the rectangle (x;,x,y;, y). If
x; > T4, then this rectangle is sufficiently skinny to be extended down into the
block of O-entries in row y+1. For example, the highest step in Figure 5 satisfies
this condition. On the other hand, if z; < ., then this rectangle cannot be
extended down because it is blocked by the l-entry located at (z.—1,y+1).
Similarly, the rectangle is sufficiently short to be extended to the right into the
block of 0-entries in column z+1 only if y; > y.. See the lowest step in Figure 5.
Hence, the rectangle is maximal if and only if z; < x, and y; < y..

To output the steps that are maximal 0-rectangles, pop the steps (z,,y,),
(r1,Yr1), - .. from the stack. The z; values will get progressively smaller and
the y; values will get progressively larger. Hence, the steps can be divided into
three intervals. At first, the steps may have the property x; > x.. As said,
these steps are too skinny to be maximal. Eventually, the z; of the steps will
decrease until z; < x,. Then there may be an interval of steps for which z; < x,
and y; < y.. These steps are maximal. For these steps output the rectangle
(xi,,yi,y). However, y; may continue to increase until y; > y.. The remaining
steps will be too short to be maximal.

The staircase steps in the third interval do not need to be popped, that is,
after y; > y., because they are not maximal. These stay on the stack. Conve-
niently the steps from the first and second interval, that is, while y; < y«, can be
thrown way as they are popped off the stack, because they are precisely the steps
that are thrown away when constructing staircase(x+1,y) from staircase(x,y).
(Recall that the next step after outputting the maximal steps in staircase(z,y)
is to construct staircase(z+1,y) from staircase(zx,y).)

The reason these staircase steps are precisely the ones to be deleted is as
follows. Note that the value y, used to know which steps in staircase(z,y) are
maximal and the y,. used in the construction of staircase(z+1,y) are both the Y-
coordinate of the top most 0-entry in the block of 0-entries in column a+1 starting
at entry (x+1,y) and extending up. Hence, y. from staircase(x,y) is the same
as y, for staircase(z+1,y). It follows that in constructing staircase(z+1,y), the
steps in stair(z,y) are popped and deleted as long as y; < y« = y,- (Figure 4(c)).

3.3 Time and Space Complexity
Theorem 2. The time complexity of the algorithm is O(nm).

narrow
extends down

X (x-1y) = X (Xy) x-1y), X,(xy) = inf
maximal \ L . 8 % (x-1y), x(xy)
”)Y y+1_1000000]0 100000011
x-1 x x-1 X
! |
extends
right \
1
1] 0 Y
[Cx) 0
1 xy)|o
. +1
X 10000 ¥

Fig. 5. Computing staircase(z,y). Fig. 6. Computing z.(z,y) from z.(z—1,y).

Proof. Most of the algorithm is clearly constant time per (z,y) iteration of the
main loop. Two tasks however might take more time: (1) computing z, and y.
and (2) popping the steps off the stack to check if they are maximal. We consider
each task in turn.

Computing =, and y. = y, For each entry (z,y) in the matrix (that has a
0-entry), we must construct staircase(x,y) and then determine which steps in
it are maximal O-rectangles. To construct staircase(x,y), we used the values y,
and to determine which steps are maximal, we used the values z, and y.. To
distinguish between these for different (z,y), let us now refer to these values as
yr(x,y), z«(x,y), and y.(z,y). There are relationships between these values. For
example, we just saw that y,.(x+1,y) = y.(z,).

We want the time complexity of the entire algorithm to be O(nm) (where
n = |X| and m = |Y|). Hence, we must be able to compute each z,(z,y),
and y.(z,y) in constant time. Computing them directly can take too much time.
However, x(z,y) can be computed in constant time from x, (z—1,y) and y.(x, y)
can be computed similarly from y. (x, y—1). These values x.(z—1,y) and y. (z, y—1)
were computed in earlier iterations and must be saved at that point in time. All
previous z, and y. values, however, do not need to be saved, only the z, from
the previous iteration and the y, from each (z',y—1) in the previous row of
iterations.

To see how z,(z,y) can be computed from z.(z—1, y), see Figure 6. The value
of z.(z,y) is the X-coordinate of the left most O-entry in the block of 0-entries
in row y+1 starting at entry (z,y+1) and extending to the left. So, z.(z—1,y)
is the same except it considers the block extending to the left of (x—1,y+1).
Therefore, if entry (x,y+1) contains a 0, then z.(x,y) = z.(x—1,y). On the
other hand, if entry (z,y+1) contains a 1, then z.(z,y) is not well defined. We
could set it to z+1 or to co. Computing y.(z,y) from y.(z,y—1) is similar.
Popping steps off the stack The second task that might take more time is
popping the steps off the stack to check if they are maximal, deleting them if
they are too skinny, and outputting and deleting them if they are maximal. For
a particular (z,y) iteration, an arbitrary number of steps may be popped. This
takes more than a constant amount of time for this iteration. However, when
amortized over all iterations, at most one step is popped per iteration.

Consider the life of a particular step. During some iteration it is created and
pushed onto the stack. Later it is popped off. Each (x,y) iteration creates at
most one new step and then only if the (x,y) entry is 0. Hence, the total number
of steps created is at most the number of O-entries in the matrix. As well, because
each of these steps is popped at most once in its life and output as a maximal
O-rectangle at most once, we can conclude that the total number of times a step
is popped and the total number of maximal O-rectangles are both at most the
number of 0-entries in the matrix.

It follows that the entire computation requires only O(nm) time (where n =
|X| and m = |Y]).

Theorem 3. The algorithm requires O(min(n,m)) space.

Proof. If the matrix is too large to fit into main memory, the algorithm is such
that one pass through the matrix is sufficient. Other than the current (z,y)-
entry of the matrix, only O(min(n, m)) additional memory is required. The stack
for staircase(z,y) contains neither more steps than the number of rows nor
more than the number of columns. Hence, |staircase(z,y)| = O(min(n,m)).
The previous value for z, requires O(1) space. The previous row of y,. values
requires O(n) space, but the matrix can be transposed so that there are fewer
rows than columns.

3.4 Number and Distribution of Maximal 0-Rectangles
Theorem 4. The number of mazimal 0-rectangles is at most O(nm).
Proof. Follows directly from the proof of Theorem 2.

We now demonstrate two very different matrices that have O(nm) maximal
O-rectangles. See Figure 7. The first matrix simply has O(nm) 0-entries each of
which is surrounded on all sides by l-entries. Each such 0-entry is in itself a
maximal O-rectangle.

For the second construction, consider the n by n matrix with two diagonals of
l-entries. One from the middle of the left side to the middle of the bottom. The
other from the middle of the top to the middle of the right side. The remaining
entries are 0. Choose any of the § 0-entries along the bottom 1-diagonal and any
of the § 0-entries along the top 1-diagonal. The rectangle with these two O-entries
as corners is a maximal O-rectangle. There are O(n?) of these. Attaching ™ of
these matrices in a row will give you an n by m matrix with 20 (n?) = O(nm)
maximal O-entries.

Actual data generally has structure to it and hence contains large 0-rectangles.
We found this to be true in all our experiments (see Section 4). However, a ran-
domly chosen matrix does not contain large O-rectangles.

Theorem 5. Let M be a n X n matrix where each entry is chosen to be 1
independently at random with probability o; = % The probability of it having
a O-rectangle of size s is at most p = (1 — ay)*n® and the expected number of
disjoint O-rectangle of size s is at least E = (1 — a1)®n?/s.

T

Fig. 7. Two matrices with O(nm) maximal 0-rectangles

Proof. A fixed rectangle of size s obtains all 0’s with probability (1 — «ay)?®.
There are at most n® different rectangles of size s in an n x n matrix. Hence, the
probability that at least one of them is all 0’s is at most p = (1 — a1)®n®. The
number of disjoint square rectangles within a n x n matrix is n?/s. The expected
number of these that are all 0’s is E = (1 — a;)*n?/s.

Ezample 1. If the density of 1’s is only a1 = 7555 000 then the probability of having

a O-rectangle of size s = -[3In(n) + In(;)] = 3,0001n(n) + 7,000 is at most

p = 1a5; and the expected number of O-rectangle of size s = %1[2 In(n) —

Inln(n) — ln(%)] = 2,0001In(n) — 1000 Inln(n) — 14, 500 is at least 1000.
As a second example, the probability of having a O-rectangle of size s = ¢ -
n? = 100077, is at most p = 14555 000 when the number of 1’s is at least N = a1n? =

%[3 In(n) + ln(;)] = 3,000 ln() + 7,000. The expected number of this size is at
least £ = 100 when the number of 1’s is at most N1 = ain® = ¢ In(;5) = 2,300.

The expected number of rectangles can be derived as a consequence of The-
orem 5 as E(s) < O(min(N; log N1, Np)) (where Ny is the number of 1-entries
and Ny the number of 0-entries). This value increases almost linearly with N; as
N log N7 until Ny log N7 = Ny = n?/2 and then decreases linearly with n? — Nj.

3.5 Multi-Dimensional Matrices

The algorithm that finds all maximal O-rectangles in a given two dimensional
matrix can be extended to find all maximal d-dimensional O-rectangles within a
given d-dimensional matrix. In the 2-dimensional case, we looped through the
entries (x,y) of the matrix, maintaining the mazimal staircase, staircase(x,y)
(see Figure 2). This consists of a set of steps. Each such step is a O-rectangle
(i, x,yi,y) that cannot be extended by decreasing the z; or the y; coordinates.
There are at most O(n) such “stairs”, because their lower points (z;, y;) lie along
a 1-dimensional diagonal. In the 3-dimensional case, such a maximal staircase,
staircase(x,y, z) looks like one quadrant of a pyramid. Assuming (for nota-
tional simplicity) that every dimension has size n, then there are at most O(n?)
stairs, because their lower points (x;,y;, 2;) lie along a 2-dimensional diagonal.
In general, staircase(w1,xs,...x4) consists of the set of at most O(n??!) rect-
angles (steps) that have (z1,xs,...24) as the upper corner and that cannot be
extended by decreasing any coordinate.

In the 2-dimensional case, we counstruct staircase(x,y) from staircase(x —
1,y) by imposing what amounts to a 1-dimensional staircase on to its side (see
Figure 4). This 1-dimensional staircase consists of a single step rooted at {x,y)
and extending in the y dimension to y,.. The staircase was constructed from the 1-
dimensional staircase rooted at (z,y—1) by extending it with the 0-dimensional
staircase counsisting only of the single entry (x,y). The 1-dimensional staircase
rooted at (z,y—1) had been constructed earlier in the algorithm and had been
saved in memory. The algorithm saves a line of n such 1-dimensional staircases.

In the 3-dimensional case, the algorithm saves the one 3-dimensional stair-
case staircase(x —1,y,z), a line of n 2-dimensional staircases, and a plane
of n? 1-dimensional staircases, and has access to a cube of n® 0-dimensional
staircases consisting of the entries of the matrix. Each iteration, it constructs
the 3-dimensional staircase(wx,y,z) from the previously saved 3-dimensional
staircase(x—1,y, z) by imposing a 2-dimensional staircase on to its side. This 2-
dimensional staircase is rooted at (z,y, z) and extends in the y, z plain. It is con-
structed from the previously saved 2-dimensional staircase rooted at (z,y—1, z)
by imposing a 1-dimensional staircase on to its side. This 1-dimensional staircase
is rooted at (x,y,z) and extends in the z dimension. It is constructed from the
previously saved 1-dimensional rooted at (x,y, z—1) by imposing a 0-dimensional
staircase. This 0-dimensional staircase consists of the single entry (z,y, z). This
pattern is extended for the d-dimensional case.

The running time, O(Ny d n®?), is dominated by the time to impose the
d—1-dimensional staircase onto the side of the d-dimensional one. With the right
data structure, this can be done in time proportional to the size of the d—1-
dimensional staircase, which as stated is O(d n%?). Doing this for every 0-entry
(z,y, 2) requires a total of O(Ny d n®?2) time.

When constructing staircase(z,y,z) from staircase(z —1,y,z) some new
stairs are added and some are deleted. The deleted ones are potential maximal
rectangles. Because they are steps, we know that they cannot be extended by
decreasing any of the dimensions. The reason that they are being deleted is
because they cannot be extended by increasing the x dimension. What remains to
be determined is whether or not they can be extended by increasing either the y
or the z dimension. In the 2-dimensional case, there is only additional dimension
to check and this is done easily by reading one row ahead of the current entry
(,y). In the 3-dimensional case this is harder. One possible solution is to read
one y, z plane ahead. An easier solution is as follows.

The algorithm has three phases. The first phase proceeds as described above
storing all large O-rectangles that cannot be extended by decreasing any of the
dimensions (or by increasing the x dimension). The second phase turns the
matrix upside down and does the same. This produces all large 0-rectangles that
cannot be extended by increasing any of the dimensions (or by decreasing the x
dimension). The third phase finds the intersection of these two sets by sorting
them and merging them together. These rectangles are maximal because they
cannot be extended by decreasing or by increasing any of the dimensions. This

algorithm makes only two passes through the matrix and uses only O(d n®™?)
space.

Theorem 6. The time complexity of the algorithm is O(Ny d n®2) < O(d n*%?2)
and space complexity O(d nt™t).

Theorem 7. The number of mazimal 0-hyper-rectangles in a d-dimensional ma-
triz is O(n?¢2),

Proof. The upper bound on the number of maximal rectangles is given by the
running time of the algorithm that produces them all. The lower bound is proved
by constructing a matrix that has 2(n???) such rectangles. The construction is
very similar to that for the d = 2 case given in Figure 7, except that the lower
and the upper diagonals each consist of a d—1-dimensional plain of n% points.
Taking most combinations of one point from the bottom plane and one from the
top produces 2(n4* x n?1) = 2(n?*?) maximal rectangles.

The number of such maximal hyper-rectangles and hence the time to produce
them increases exponentially with d. For d = 2 dimensions, this is ©(n?) as seen
before. For d = 3 dimensions, it is already ©@(n*), which is not likely practical
in general for large data sets.

4 Performance of Mining Algorithm

In this section, we present two sets of experiments using our mining algorithm.
The first set of experiments was designed to verify the claims of the algorithm’s
scalability and usefulness on large data sets. These tests were run against syn-
thetic data. In the second set of experiments, we used a real database with data
from a health insurance company. The goal of these experiments was to charac-
terize real data sets in terms of the number, sizes, and overlaps of the discovered
empty rectangles (we would expect real data sets to exhibit different character-
istics than synthetic data sets such as the TPC-D benchmark). The experiments
reported here were run on an (admittedly slow) multi-user 42MHz IBM RISC
System/6000 machine with 256 MB RAM.

4.1 Scaling Characteristics

The performance of the algorithm depends on the number of tuples T' = |D|
(which in matrix representation is the number of l-entries), the number n of
distinct values of X, the number m of distinct values of Y, and the number of
maximal empty rectangles R. We report the runtime and the number of maximal
empty rectangles R (where applicable).

Runtime (sec) Empty Rectangles

2000

1000

Effect of T, the number of tuples, on Runtime To test the scalability of the
algorithm with respect to the data set size, we held the data density (that is, the
ratio of T to n % m) constant at one fifth. We also held n constant at 1000 since
our algorithm maintains a data structure of O(n) size. We found these numbers
to be in the middle of the ranges of the values for our real data sets. The data
set is a randomly generated set of points. Initially, m is set to 500 and 7' to
100,000 tuples. Figure 8 plots the runtime of the algorithm with respect to the
number of tuples 7'. The performance scales linearly as expected. The number
of maximal empty rectangles also scales almost linearly with 7" as our analytic
results of Section 3.4 predicts.

Number of Maximal Runtime (min)

120
EY

© /
™

0
500k ™ 15M ™ 500k i 15M M

50M 100M 150M 200M

Number of Tuples Number of Tuples Size of Matrix

Fig.9. Random data as
Fig. 8. Random data under constant n as T increases. the matrix size is in-
creased (constant T').

Effect of Data Density on Runtime Note that the algorithm requires only a
single pass over the data which is why we expected this linear scale up for the
previous experiment. However, the in memory processing time is O(nm) which
may, for sparse data be significantly more than the size of the data. Hence, we
verified experimentally that the algorithm’s performance is dominated by the
single pass over the data, not by the O(n) in memory computations required
for each row. In this experiment, we kept both 7" and n constant and increased
m. As we do, we increase the sparsity of the matrix. We expect the runtime
performance to increase but the degree of this increase quantifies the extent to
which the processing time dominates the I/O. Figure 9 plots the runtime of the
algorithm with respect to the size of the matrix.

Effect of R, the number of maximal empty rectangles, on Runtime Since the
data was generated randomly in the first experiment, we could not precisely
control the number of empty rectangles. In this next experiment, this number
was tightly controlled. We generated a sequence of datasets shown for clarity in
matrix representation in Figure 10.

Let m = 1000, n = 2000, 7" = 1,000,000. We start with a matrix that has
1000 colums filled with 1-entries separated by 1000 columns filled with O-entries
(for a total of 2000 columns). For each new test, we cluster the columns so that

the number of spaces separating them decreases. We do this until there is one
big square 1000x1000 filled with 1-entries, and another large square 1000x1000
filled with 0s. Thus, the number of empty rectangles decreases from 1000 to 1.
We would expect that R should not affect the performance of the algorithm and
this is verified by the results (Figure 10).

Time (min)

0|

height
1000 1 O 0 1 e 1 0 40
entries
1000 columns of 1's intermixed 1000 clustered columns of 1's 0 500 1000
with 1000 columns of 0's 1000 clustered columns of 0's

Number of empty rectangles

Fig. 10. Data sets and performance as the number of maximal empty rectangles R is
increased.

Effect of n on the Runtime We also tested the performance of the algorithm
with respect to the number of distinct X values, n. Here, we kept T constant
at 1,000,000 and R constant at 1,000 and varied both n and m. To achieve this,

we constructed a sequence of data sets shown again in matrix representation in
Figure 11(a).

Time (h)
width of each columniisi

-~ 4

3
height
1000/i
entries

o1 .. 1[0 2

1k % & 8 16k 32k
1000 columns of 1's

1000 columns of 0's

Number of distinct values of X (log scale)

@ (b)

Fig. 11. Synthetic data under constant R and 7'. Runtime is plotted versus n.

For the first matrix, i is set to 1 so the data contains 1000 columns of 1-entries,
each a single entry wide. Each column was separated by a single column of all 0’s
(all columns are initially 1000 entries high). In the second matrix, the height of all
columus is reduced by half (to 500 entries). The width of each column (both the
columns containing 1’s and the columns containing 0’s) is doubled. This keeps
the number of tuples constant, while increasing to 2000 the number of distinct
X values. The number of columns with 0’s does not change (only their width
increases), hence the number of discovered empty rectangles remains constant.

The process of reducing the height of the columns and multiplying their number
is continued until all columns are of height 4.

The performance of the algorithm, as shown in Figure 11(b), deteriorates
as expected with increasing n. Specifically, when the size of the data structures
used grows beyond the size of memory, the data structures must be swapped
in and out of memory. To avoid this, for data sets over two very large domains
(recall that n is the minimum number of distinct values in the two attributes),
the data values will need to be grouped using, for example, a standard binning
or histogram technique to reduce the number of distinct values of the smallest
attribute domain.

4.2 Empty Space Characteristics of Real Datasets

One of the primary motivations for our work was the observation that knowl-
edge of empty regions can be used to great advantage in query optimization [5].
Specifically, range queries can be rewritten into more restrictive queries that can
be evaluated faster. Furthermore, empty rectangles (or hyper-rectangles) can
be modeled as simple materialized views in SQL. By storing such views (which
amounts to storing their definition since their extents are empty), we can exploit
existing work on answering queries using views to achieve these query optimiza-
tion benefits. So we can rewrite queries to use empty space knowledge without
changing the underlying query optimizer.

Test| n m T R |Runtime||% size of largest 5 empty rectangles
(sec) 1(12]3)|4 5
1| 525 8 | 3683 | 269 8 74173169 | 7 7
2 6 |37716| 39572 | 29323 78 68 | 58 | 40 | 37 28
3 3 | 1503 | 3061 | 650 6 97 | 94 | 80 |12.2 0.04
4 | 525 | 423 | 42854 | 13850 86 91.6/91.6/91.3|91.3 83.1
| 5 [14733]23292]181249[801427] 10956 [| 95 [94 [90 [90] 89 |

Table 1. Real data characteristics

To begin understanding the performance implications of such an approach,
we sought to characterize the size and distribution of empty rectangles that occur
in real data sets. We took a large relational database of health insurance data
and examined the query workload. We selected queries with range restrictions
on two attributes (from different relations). We then mined the underlying data
for empty rectangles. The results are presented in Table 1. For each pair of
attributes, we report n, m, the number of tuples in the dataset T, the total
number of empty rectangles R, the time to discover all of them (Runtime), and
the sizes of the five largest rectangles (the size is reported relative to the size of
the dataset). In all the tests, extremely large maximal rectangles were detected.
Furthermore, the query workload contained queries that ranged over large parts

of this empty space so our optimization techniques were effective [6]. For Test 1,
we plot the distribution of all rectangles with respect to their sizes in Figure 12.

<001 .001-.01.01-.1 1-1 1-10 >10
Size of empty rectangle (% of total space)

Fig. 12. Distribution of maximal empty rectangles in real data set.

5 Conclusions

We developed an efficient and scalable algorithm that discovers all maximal
empty rectangles with a single scan over a sorted two-dimensional data set. Pre-
viously proposed algorithms were not practical for large datasets since they did
not scale (they required space proportional to the dataset size). We presented
an extension of our algorithm to multi-dimensional data and we presented new
results on the time and space complexity of these problems. Our mining algo-
rithm can be used both to characterize the empty space within the data and to
characterize any homogeneous regions in the data, including the data itself. By
interchanging the roles of 0’s and 1’s in the algorithm, we can find the set of
all maximal rectangles that are completely full (that is, they contain no empty
space) and that cannot be extended without incorporating some empty space.
Knowledge of empty rectangles may be valuable in and of itself as it may reveal
unknown correlations or dependencies between data values and we have begun
to study how it may be fully exploited in query optimization [6].

References

1. R. Agrawal, T. Imielinksi, and A. Swami. Mining Association Rules between Sets
of Items in Large Databases. ACM SIGMOD, 22(2), June 1993.

2. M. J. Atallah and Fredrickson G. N. A note on finding a maximum empty rectangle.
Discrete Applied Mathematics, (13):87-91, 1986.

3. D. Barbard, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein, Y. E.
Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A. Ross, and
K. C. Sevcik. The New Jersey Data Reduction Report. Data Engineering Bulletin,
20(4):3-45, 1997.

4. Bernard Chazelle, Robert L. (Scot) Drysdale III, and D. T. Lee. Computing the
largest empty rectangle. SIAM J. Comput., 15(1):550-555, 1986.

5. Q. Cheng, J. Gryz, F. Koo, C. Leung, L. Liu, X. Qian, and B. Schiefer. Implemen-
tation of two semantic query optimization techniques in DB2 universal database.
In Proceedings of the 25th VLDB, pages 687698, Edinburgh, Scotland, 1999.

10.

11.

12.

13.

14.

J. Edmonds, J. Gryz, D. Liang, and R. J. Miller. Mining for Empty Rectangles in
Large Data Sets (Eztended Version). Technical Report CSRG-410, Department of
Computer Science, University of Toronto, 2000.

M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Co., New York, 1979.

H. V. Jagadish, J. Madar, and R. T. Ng. Semantic Compression and Pattern
Extraction with Fascicles. In Proc. of VLDB, pages 186-197, 1999.

B. Liu, K. Wang, L.-F. Mun, and X.-Z. Qi. Using Decision Tree Induction for Dis-
covering Holes in Data. In 5th Pacific Rim International Conference on Artificial
Intelligence, pages 182-193, 1998.

Bing Liu, Liang-Ping Ku, and Wynne Hsu. Discovering interesting holes in data.
In Proceedings of IJCAI pages 930-935, Nagoya, Japan, 1997. Morgan Kaufmann.
R. J. Miller and Y. Yang. Association Rules over Interval Data. ACM SIGMOD,
26(2):452-461, May 1997.

A.Namaad, W. L. Hsu, and D. T. Lee. On the maximum empty rectangle problem.
Applied Discrete Mathematics, (8):267-277, 1984.

M. Orlowski. A New Algorithm for the Largest Empty Rectangle Problem. Algo-
rithmica, 5(1):65-73, 1990.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering
Method for Very Large Databases. ACM SIGMOD, 25(2), June 1996.

