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“A woman can’t be too rich or too thin.”

Wallis Simpson, Duchess of Windsor

Abstract

We consider the well-known cake cutting problem in which a protocol wants to divide a cake among
n ≥ 2 players in such a way that each player believes that they got afair share. The standard Robertson-
Webb model allows the protocol to make two types of queries, Evaluation and Cut, to the players. A
deterministic divide-and-conquer protocol with complexity O(n logn) is known. Improving on previous
lower bounds, we provide anΩ(n log n) lower bound on the complexity of any deterministic protocol,
even if the protocol is allowed to assign to a player a piece that is a union of intervals and only guarantee
approximate fairness. We accomplish this by lower boundingthe complexity to find for a single player,
a piece of cake that is both rich in value, and thin in width. Wethen introduce a version of cake cutting
in which the players are able to cut with only finite precision. In this case, we can extend theΩ(n logn)
lower bound to include randomized protocols.

1 Introduction

Our setting is a collection of self-interested entities whodesire to partition a disparate collection of items of
value. Imagine heirs of an estate wanting to divide the possessions of the newly departed. Or imagine the
creditors of a bankrupt company, such as Enron, wanting to split up the company’s remaining assets. The
entities may well value the items differently. For example,one can imagine different heirs of an estate not
necessarily agreeing on the relative value a baseball signed by Pete Rose, a worn leather lazy boy recliner, a
mint condition classic Farrah Fawcett poster, etc. The goalis devise a protocol to split up the items fairly, that
is, so every entity believes that he/she gets a fair share based on how he/she values the objects. Achieving
this goal is potentially complicated by the fact that the entities may well be greedy, deceitful, treacherous,
etc. They may not be honest about how they value the objects, they may collude together to cheat another
entity, etc. So we seek a protocol that guarantees a fair share to everyone that is honest. If someone tries to
cheat or lie, then they cannot blame the protocol if they don’t end up with a fair share.

In the literature, this problem falls under the rubric of cake cutting [1, 6]. (This is motivated by the well
known phenomenon that some people value the frosting more than others.) The cake cutting problem arose
from the 1940’s school of Polish mathematicians. Since thenthe problem has blossomed and been widely
popularized [6]. Most people find cake cutting problems psychologically and socially interesting, and some
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quick Googling reveals that cake cutting algorithms, and their analysis, are commonly covered by many
SODA regulars in their algorithms and discrete mathematicscourses.

Cake cutting in formalized in the following manner. The objects of value are ordered in some arbitrary
way, and then abstracted away into subintervals of the interval [0, 1], which is the cake. Each entity/player
has a value functionV that specifies how much that player values a particular subinterval, or more precisely,
the objects in the subinterval. This is a reasonable model ifthe value of each item is small relative to the total
value of the items. The protocol can query players about their value functions, which are initially unknown
to the protocol. In the standard Robertson-Webb model [6, 7], the two types of queries are Evaluation and
Cut. In an Evaluation query, a player is asked how much he values a subinterval. In a Cut query, the player
is asked to identify an interval, with a fixed left endpoint, of a particular value.

1.1 Previous Results

Sgall and Woeginger [7] provide a nice brief overview of results in this area. Books by Robertson and Webb
[6] and Brams and Taylor [1] provide more extensive overviews.

Let first consider upper bound results. A deterministic protocol that usesΘ(n2) cuts was described
in 1948 by Steinhaus in [8]. In 1984, Evan and Paz [2] gave a deterministic divide and conquer protocol
that usesΘ(n logn) cuts. Further, they gave a randomized protocol that usesΘ(n) cuts andΘ(n logn)

evaluations.
Approximately fair protocols were introduced by Roberson and Webb [5]. We say that a protocol is

c-fair if it guarantees each honest player a piece of cake that he believes has value at least1cn . There is a
deterministic protocol that achievesO(1)-fairness withΘ(n) cuts andΘ(n2) evaluations [5, 3, 9].

Traditionally, much of the research has focused on minimizing the number of cuts, without too much
regard for the number of evaluations. In the settings that weare interested in, e.g. heirs splitting an inher-
itance, there is no good reason to assume that evaluation queries are especially easier or cheaper than cut
queries. It is not clear why the initial focus was on minimizing cuts. One possibility is concern that too
many cuts would lead to crumbling of a literal cake. In any case, we will view evaluation and cut queries as
equally expensive.

Thus one can summarize the known upper bound results as follows. There is a deterministic protocol
with complexityO(n logn) that guarantees exact fairness. No protocol that uses a linear number of queries
is known, even if randomization is allowed, and even if the protocol need only guaranteeO(1)-fairness.

So a natural avenue for investigation is to attempt to prove an Ω(n logn) lower bound on the complexity
of any cake cutting protocol. The most obvious way to prove such a lower bound is to try to reduce sorting (or
more precisely, learning an unknown permutation) to cake cutting. A first step in this direction was taken
by Magdon-Ismail, Busch, and Krishnamoothy [4], who were able to show that any protocol must make
Ω(n logn) comparisons to compute the assignment. So this result did not really lower bound the number of
queries. A second step in this direction was taken by Sgall and Woeginger [7] who give a more complicated
reduction from sorting to show anΩ(n logn) lower bound on the complexity of any deterministic protocol
that is required to assign to each player a piece that is a single subinterval of the cake. On the positive
side, all known protocols have this property. On the other hand, there is no natural reason to impose this
restriction in the settings that we are interested in. That is, it is perfectly reasonable to assign to an inheritor
a collection of items that are not consecutive in the initialarbitrary ordering of the items. The lower bound
of Sgall and Woeginger [7] can be seen to hold against randomized protocols. However, note that neither of
these lower bounds [4, 7] hold if the protocol is only required to achieve approximate fairness.
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1.2 Our Results

In section 2, we give a lower bound ofΩ(n logn) on the complexity of any deterministic protocol for
cake cutting, which is the firstω(n) lower bound in the general Robertson-Webb model. Our lower bound
improves on the results in [7] in two ways: (1) it applies to protocols that may assign to a player a piece that
is a union of intervals, and (2) it applies to protocols that only guaranteen1−δ approximate fairness, that is,
players can be allocated pieces with value as low as1

cn = 1
n2−δ .

We believe that the main reasons why earlier lower bounds were not stronger is that they essentially
attempted to reduce from sorting, which does seem to capturethe difficulty of cake cutting in the general
model. Instead, we observe that not only are the players required to find a piece that is rich in value, but if
their pieces are not to overlap then most players need a piecethat is thin in width. We obtain ourΩ(n logn)

lower bound by showing a lower bound ofΩ(logn) on the complexity of a single player finding a piece
that is both thin and rich, where thin means that the width at most 2

n , and rich means that the value at least
1
cn . It is easy to see how to find a piece that is thin and rich inO(1) time using a randomized algorithm.
With probability at least12 , the interval[Cut(0, i

n ), Cut(0, i+1
n )] is thin and rich ifi is selected uniformly at

random from[0, n− 1]. Thus our deterministic lower bound does not extend to randomized algorithms.
To our knowledge, all the literature to date has assumed thatplayers can answer cut and evaluation

queries with exact precision. This is probably not so realistic in some settings, for example, it is probably
too much to ask an inheritor to value an arbitrary subcollection of items to within a penny. For this reason,
we introduce what we call approximate cut queries to which a player need only return an interval of cake
of value within a1+ ǫ factor of the requested value. To our knowledge, no one to date has considered
approximate queries.

In section 3, we prove that ifǫ is a constant, then there is anΩ(n logn) lower bound on the complexity
of any randomized protocol for cake cutting with approximate cuts (with relative error1+ ǫ) and exact eval-
uation queries, even if onlyn1−δ-fairness is required. The fact that the protocol is allowedexact evaluations,
but only approximate cuts, demonstrates the asymmetric power of these two operations. This lower bound
is oblivious in that our adversary doesn’t change the lower bound instance in response to random events
internal to the protocol.

We believe that the main contribution of this paper, beyond the explicit lower bounds, is the identification
of the importance of the problem of finding thin rich pieces. We also believe that the concept of approximate
queries is interesting, and worthy of further investigation.

1.3 Formal Problem Statement

The cake consists of the interval[0, 1]. Each playerp, 1 ≤ p ≤ n, has value functionVp(x1, x2) which
specifies a value in the range[0, 1] that a player assigns to the subinterval[x1, x2]. Player values are scaled
so that they each have value 1 for the whole cake, that is,Vp(0, 1) = 1. The value function should be
additive, that is,∀x1 ≤ x2 ≤ x3 ∈ [0, 1], Vp(x1, x2) + Vp(x2, x3) = Vp(x1, x3). In this paper, apieceof
cake is a collection of subintervals, not necessarily a single subinterval. Further, the ends of each subinterval
in a piece must have been at one of the ends of a cut. The value ofa piece of cake is then just the sum of the
values of the subintervals of the piece. The value functionsare initially unknown to the protocol.

The protocol’s goal is to assign to each playerp a pieceCp of the cake. The pieces must be disjoint, that
is, Cp andCq must be disjoint for all playersp 6= q. Further the protocol should bec-fair to each player
p, that is, it must be the case that the value ofCp according toVp is at leastcn . Thus one gets different
variations to the problem depending on the value ofc.

In order to achieve its goal in the Robertson and Webb model, the protocol may repeatedly ask any
player one of two types of queries:
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• AEvalp(ǫ, x1, x2): This1+ǫ approximate evaluation query to playerp returns an(1+ǫ)-approximate
value of the interval[x1, x2] of the cake for playerp. That is, 1

1+ǫVp(x1, x2) ≤ AEvalp(ǫ, x1, x2) ≤

(1 + ǫ)Vp(x1, x2). An exact evaluation query,Evalp(x1, x2), is equivalent toAEvalp(0, x1, x2).

• ACutp(ǫ, x1, α): The1 + ǫ approximate cut query returns anx2 ≥ x1 such that the interval of cake
[x1, x2] has value approximatelyα according to playerp’s value functionVp. More precisely,x2

satisfies 1
1+ǫVp(x1, x2) ≤ α ≤ (1+ ǫ)Vp(x1, x2). An exact cut query,Cutp(ǫ, x1, α), is equivalent to

ACutp(0, x1, α).

The protocol may be adaptive in the sense that the protocol need only decide on theith query after it
has seen the outcome of the firsti − 1 queries and when randomized on coin flips. The complexity of a
protocol is the worst-case, over all possible valuation functions, of the expected number of queries needed
to accomplish its goal. For cake cutting, Las Vegas and MonteCarlo algorithms are of equal power; Since
the complexity of verifying the correctness of an assignment has linear complexity, a Monte Carlo algorithm
can be converted into a Las Vegas algorithm.

Sgall and Woeginger [7] point out, cut and evaluation queries can efficiently simulate all other types
of queries used in protocols in the literature, e.g. cuttingthe cake into two parts with a specified ratio of
value. There are many technical issues that must be considered when formally defining the “right” model.
A nice discussion of these issues can be found in Sgall and Woeginger [7]. For example, in the standard
model, after a cut, each piece is re-indexed to[0, 1]. As we are proving lower bounds, it is more convenient
to continue to index with respect to the entire cake. Severalissues that are relevant when proving upper
bounds – for example, further niceness properties on the value functions, and robustness against cheating –
are not particularly relevant to us here. Our value functions satisfy every niceness property considered in the
literature. To prove our lower bound, it suffices to consideronly the case when all players are honest. Our
lower bounds are robust against reasonable minor modifications to the model.

2 The Deterministic Lower Bound

This section is devoted to proving the following theorem:

Theorem 1. The complexity of any deterministic protocol for cake cutting isΩ(n(logn− log c)), even with
exact queries and onlyc-approximate fairness is required. Note that this bound isΩ(n logn) even when
c = n1−δ .

We now consider a new game, that we call the thin-rich game, which takes place in the same setting as
the cake cutting game. We then show that a bound ofΩ(logn − log c) on the complexity of thin-rich will
give a lower bound ofΩ(n(logn − log c)) for cake cutting.

Thin-Rich Game: This game involves a single player. We say that a piece of cakeis thin if it has width
at most2n . We say a piece isrich if it has value at least1cn for this player. The goal for the protocol is to
identify a thin rich piece of cake.

Lemma 2. If the deterministic complexity of thin-rich isT (n) then the deterministic complexity for cake
cutting game isΩ(nT (n)).

Proof. In our model for the cake problem, it is equivalent to assume that each of then players is in a separate
black box. The only interaction between them is via the sequence of queries given by protocol. Based on
the previous answers proved by the players, the protocol chooses one player and either a evaluation or cut
query for this player, to which the player responds. In the end, the protocol assigns each player a piece of
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the cake. Now consider this interaction from the perspective of one of the players. As far as he can tell, he
is interacting with one deterministic protocol for the single player thin-rich game. From our assumption, if
this player receives fewer thanT (n) queries, than there is a cake value distribution such that the piece of
cake allocated to the player is not both thin and rich. If the cake cutting protocol makes fewer than1

2nT (n)
queries, then this is the case for more than half of the players. If any player fails to obtain a rich piece, the
protocol fails. If more than half the players fail to obtain athin piece, then the resulting pieces cannot be
disjoint.

2.1 Value Trees

In this subsection we define what we callvalue treesand explain how a cake value distribution is derived
from a value tree. Assumen ≥ 6 is twice an integer power of 3. The tree is a balanced 3-ary rooted tree
with n

2 leaves, depthL = log3
n
2 , and a valueV (u) for each node. For each internal nodeu, its left, middle,

and right children are denotedl(u), m(u), andr(u). Two of these three edges are labeled1
4 and are called

light edges, and the remaining edge is labeled1
2 and is called aheavy edge. The valueV (u) of node is the

product of the edge labels along the path from the root tou. Note thatu’s value is the sum of its children’s
values, i.e.V (u) = 1

4V (u) + 1
4V (u) + 1

2V (u) = V (l(u)) + V (m(u)) + V (r(u)). Let ℓ(u) denote the
number of edges in the path from the root to the nodeu. Let q(u) denote the number of these that are heavy
edges. It follows thatV (u) = ( 1

2)q(u)( 1
4)ℓ(u)−q(u).

The cake is partitioned inton2 thin intervals, namely fori ∈ [1, n
2 ], the ith interval of width 2

n is
[

2(i−1)
n , 2i

n

]

. Thesen
2 intervals are associated with the leaves of the value tree. We associate with each

internal nodeu, the interval of cake that is the union of the leaves of the subtree rooted atu. The width of
this interval isW (u) = 3−ℓ(u), and its value is given byV (u). If u is a leaf, then this value is spread evenly
over this interval.

The intuition may be useful. The canonical thin-rich piece,which is the goal of a protocol to find,
consists a leafu with densityD(u) = V (u)

W (u)
= 1/cn

2/n
= 2

c . Towards this goal, the protocol must find nodes
in the tree that are both low in the tree and dense. In order fora node to have high density, the path from the
root to it must have lots of heavy edges, namely

D(u) =
V (u)

W (u)
=

(

1
2

)q(u) (1
4

)ℓ(u)−q(u)

(

1
3

)ℓ(u)
≥

2

c

Or equivalently,
q(u) ≥ log2(

4
3)ℓ(u) − log2 c > 4

10ℓ(u)− log2 c

The obviousO(logn) time protocol, starts at the root, which has densityD(u) = 1, and follows the unique
path consisting of only heavy edges down the tree. If a deterministic protocol attempts to circumvent this
process by leaping to a lower node, then the adversary can simply fix the edges in the path to this node to
be light. If a randomized protocol selects a random node, then each edge is heavy with probability1

3 giving
q(u) = 1

3ℓ(u), which is much less than theq(u) = 4
10ℓ(u) − log2 c needed for it to be rich.

We say that a protocol for the thin-rich game isnormal if, when the input value distribution is derived
from a value tree, the protocol always returns a leaf of the value tree. We now show that, without loss of
generality, we may restrict our attention to normal protocols.

Lemma 3. If there is a deterministic protocolA for thin-rich with complexityT (n), then for value distribu-
tions derived from value trees, there is a normal deterministic protocolB with complexityO(T (n)).

Proof. Consider an arbitrary protocolA. Let I denote the collection of intervals returned byA. Because
overallI has density at least2c , at least oneI of these intervals inI does as well. Since the cardinality of
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I is at mostT (n), one such intervalI can be found in timeO(T (n)). Because this interval has width at
most 2

n , it overlaps with at most two leaves of the value tree. Because each leaf has uniform value along its
width, at least one of these two leaves must have density at least 2

c . The protocol must know the value of
each of the intervals inI (or as subinterval) or else this interval might have no value. Hence, with at most
one additional evaluation, the protocol has enough information to find this leaf.

As a protocol for thin-rich asks queries, it gains information about the value tree. In order to bound
the information learned, the lower bound adversary revealsthe labels of enough edges of the value tree to
provide the protocol with at least as much information as thethin-rich protocol gets from the query. Let
P = u0, . . . , uk be a path from the rootu0 of the value tree to a nodeuk. The nodeuk is said to berevealed
if all the labels on all the edges leading from a nodeui, 0 ≤ i ≤ k−1, to a child orui, are revealed. Lemma
4 quantifies what can be learned from revealed vertices.

Lemma 4.

• For any revealed nodeu, the valueV (u) of the interval of cake under it can be computed.

• Letu be a revealed node, letx be the leftmost point inu, andy the rightmost point inu. ThenV (0, x)
andV (0, y) can be computed.

• Let x be a point in a revealed leafu, and lety ≥ x be a point in a revealed leafv. ThenV (0, x) and
V (x, y) can be computed.

• Let u be a revealed leaf, letx1 is a point inu, and letα be a cake value. From this information, the
least common ancestor ofu and the nodev that contains the pointx2 satisfyingV (x1, x2) = α can
be computed.

Proof. We consider the items one by one. For the first item,V (u) is just the product of the edge labels
leading tou. Consider the second item. Letu0, . . . , u = uk be the path from the root tou. V (0, x) is then
just the sum of the values of the siblings to the left of aui, 1 ≤ i ≤ k, which may be computed by the
previous item.V (0, y) is thenV (0, x) + V (u). Consider the third item. Letx′ be the left most point in
the leafu. Because the value of the cake is uniform on leaves,V (x′, x) = x−x′

2/n · V (u). ThenV (0, x) =

V (0, x′)+ V (x′, x) andV (x, y) = V (0, y)−V (0, x). Consider the fourth item. Letu0, . . . , uL = u be the
path from the root to the leafu containingx1. Proceed up the tree fromu, computingV (x1, yi) whereyi is
the right most point underui. HereV (x1, yL) = yL−x1

2/n · V (u) andV (x1, yi) is V (x1, yi+1) plus the sum
the values of the children ofui that are to the right ofui+1. When the sum exceedsα, thenui is the least
common ancestor.

Lemma 5. The deterministic complexity of thin-rich isΩ(logn − log c).

Proof. We lower bound the complexity of a normal protocolA on a value tree distribution. We maintain a
number of invariants. First, is that the protocolA, knows nothing about the value tree except for the edges
that have been revealed by the adversary. Second, for each node, either none or all three of its outgoing edges
have been revealed. Third, at each point in time the set of revealed nodes forms of a connected component
of the value tree that contains the root. Finally, afterk queries, any root to leaf path contains at most2k
edges revealed to be heavy. Initially, these invariants aretrivially true.

Suppose that on thekth query, the protocolA makes the queryEval(x1, x2). Let u0, . . .uL be the
path from the root to the leaf containingx1. Let ui be the lowest revealed node in this path. The edges in
ui, . . .uL are revealed to be light. For each of these nodes, when its outgoing edge is revealed to be light,
one of its other two outgoing edges is reveal to be light and the other heavy. Note that this automatically
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reveals not only all the nodes in this path, but also reveals all the children of the nodes in this path. This
same process is then repeated forx2. By Lemma 4,A will then have enough information to compute the
answer to thisEval query. It is easy to verify that the invariants are maintained.

Now suppose that on thekth query, the protocolA makes the queryCut(x1, α). As done for anEval
query, the “forked” path from the root to the leaf containingx1 is revealed. As given by Lemma 4, letui be
the least common ancestor of the leaf containingx1 and the leaf containing the unknown pointx2 satisfying
V (x1, x2) = α. We will now describe how to recursively determine and reveal the pathU from ui to x2 in
such a way that all these edges on this path are light. Letv denote the first unrevealed node inU . Letβ be the
value of cake thatA seeks from the subtree rooted atv. This is well defined by Lemma 4. Ifβ

V (v)
≤ 1

2 , then

the three edges leading to children ofv are labeled[ 14 , 1
4 , 1

2 ], otherwise, they are labeled[ 12 , 1
4 , 1

4 ]. Note that
either way, the next edge inU will be a light edge. This process ends whenv becomes the leaf containing
x2. By Lemma 4,A now has enough information to determine the value ofx2. It is easy to verify that all
invariants are maintained.

Suppose that the protocol terminates after( 4
10L − log2 c)/2 queries claiming that a leaf nodeu is rich.

The second invariant states that at most4
10L− log2 c edges on the path from the root tou have been revealed

to be rich. By making the rest of the edges in this path light, we can makeu not rich. This then contradicts
the correctness ofA.

3 The Randomized Lower Bound

This section is devoted to proving the following theorem.

Theorem 6. If a protocol can only make1 + ǫ approximate queries, andc-fairness is required, then the
complexity of any randomized protocol for cake cutting isΩ(n log n

c / log 1
ǫ ).

Our proof uses Yao’s technique, which states that it is sufficient to exhibit an input distribution on which
the average-case time of every deterministic protocol isΩ(n log n

c / log 1
ǫ ). Our input distribution, chooses

independently for each player arandom value treefrom which to derive his value distribution. This is done
by choosing independently for each node in the tree, one of its outgoing edges to be heavy. We again reduce
cake cutting to the thin-rich game.

Lemma 7. Assume that any protocol for the thin-rich game that makes fewer thanT (n) queries fails to
obtain a thin-rich piece with probability at least34 when given a random value distribution. If follows that
any protocol for cake cutting that makes fewer than1

4nT (n) queries fails with high probability when the
players are given independently chosen value distributions.

Proof. As we did in the proof of Lemma 2, assume that each player is a separate black box. From our
assumption, if this player receives fewer thanT (n) queries, then he fails to obtain a thin-rich piece with
probability 3

4 . If the cake cutting protocol makes fewer than1
4nT (n) queries, then this is the case for more

than3
4n of the players. Hence, the expected number of players that donot obtain a thin-rich piece is at least

9
16n and because these events are independent, with high probability more than half the players fail. As done
before, this means that the players pieces cannot be rich andnon-overlapping.

3.1 The Path and Triangle Game

As in the deterministic lower bound, we may restrict our attention to normal thin-rich protocols, that is,
those that return a leaf in the value tree. We now introduce a game, the path and triangle game, that we show
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captures the complexity of finding path in the value tree thatis sufficiently rich in heavy edges to give a rich
leaf.

Definition of the Path and Triangle Game:The protocol is given a value tree, except that it does not know
the value of the labels. The protocol makes a sequence of queries, where each query is either a path query or
a triangle query. Both types of queries specify a nodeu in the tree. In response to a path query, the labels on
all of the edges incident to a node on the path from the root tou are revealed to the protocol. In response to
a triangle query, the labels on all the edges, on all the pathsleading fromu to descendants ofu, up to depth
γ = 2 + lg(1

ǫ ), in the subtree rooted atu, are revealed to the protocol. The protocol’s goal is to find arich
path, i.e. one with at least410L − log2 c heavy edges. The complexity of a particular protocol is the number
of path and triangle queries needed to accomplish this goal.

3.2 From Thin-Rich to Path and Triangle

We now show how to reduce the thin-rich game to the path and triangle game.

Lemma 8. If the complexity of the path and triangle game is lower bounded byT (n) for a random value
tree, then the complexity of thin-rich game isΩ(T (n)) when the value distribution is derived from a random
value tree.

Proof. We will prove the contrapositive, that is, a thin-rich protocol A with complexityT (n) implies the
existence of a protocolB for the the path and triangle game with complexityO(T (n)). We constructB by
simulatingA.

Suppose that protocolA makes the queryEval(x1, x2). ProtocolB then makes two path queries: one
query to the leaf containingx1 and one query to the leaf containingx2. The valueV (x1, x2) can then be
computed by Lemma 4, and is then returned toA as the result to theEval query.

= ux1 L mv

v

root = u0

ur

s

v = v 0u
r+1

2x

w t

Figure 1: The two path queries and one triangle query associated with an approximate cut

Suppose that protocolA makes the queryACut(ǫ, x1, α). Let x2 denote the point thatA seeks, that is
the point such thatV (x1, x2) = α. Note that at this point in time, neitherA norB may know the exact value
of x2, but nevertheless we wish to reason aboutx2. ProtocolB then makes at most two path queries and at
most one triangle query. After these queries, protocolB will have enough information to provide protocol
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A with a pointy such thatV (x1, y) is sufficiently close toα. We now define these three queries. Figure 1
may be useful in understanding the queries.

The First Path Query: Let u0, u1, . . . , uL be the sequence of nodes along the path from the root to the leaf
containingx1 in the tree. The first path query is to the nodeuL. If both x1 andx2 are inuL thenB may
returnx2. If x2 is not in the leafuL, thenB makes a second path query.

The Second Path Query:Using Lemma 4, ProtocolB computes the least common ancestorur of the leaf
containingx1 and the leaf containingx2. All of the children ofur must be revealed sinceur+1 is on the
revealed path from the root tox1. Let v be the child ofur containingx2. The second path query is to the
leftmost leafvm in the subtree rooted atv. Let v = v0, v1, . . .vm be the nodes along the path fromv to vm

The Triangle Query: Again using Lemma 4, ProtocolB computes the least common ancestorvs of vm and
the leaf containingx2. The triangle query is to the nodevs.

Computing the Result: If the height ofvs ≤ γ then the leaf containingx2 is known toB. The value ofx2

can then can be computed by Lemma 4 and is returned to protocolA. Otherwise, letw1, w2, . . . , w2γ be the
descendants ofvs of depthγ in the subtree rooted atvs. Let wt be the node such thatx2 is in the subtree
rooted atwt. The pointy returned by protocolB will any point in the intervalwt.

We now argue the correctness of the result returned by protocol B. Because bothx2 andy are underwt,
the errorV (x1, y)− α will be at mostV (wt). We haveV (wt) ≤ ( 1

2)γV (vs), sincewt is γ edges belowvs

and every edge has a label of at most1
2 . We haveV (vs) ≤ 4V (l(v2s), because the edge to the left child

l(vs) of vs has a label of at least14 . We have4( 1
2)γ ≤ ǫ, by the definition ofγ = 2 + lg( 1

ǫ ). We have
V (l(v2s) ≤ α, since the interval underl(vs) is totally contained in the interval of valueα to the right ofx1.
Combining these gives thatV (wt) ≤ ǫα. This completes simulation of theACut(ǫ, x1, α) query.

In the end, protocolA finds a rich leaf, which provides protocolB with a rich path.

3.3 The Analysis of the Path and Triangle Game

This section is devoted to proving that with probabilityΩ(1) the complexity of every randomized protocol
for the path and triangle game isΩ(log n

c / log 1
ǫ ) if the input is a random value tree. LetDet be the set of

nodesu which have been revealed, i.e. labels on path tou are known. We define a potential functionF (u)

on a nodeu by ( 11
4 q(u)−ℓ(u)). Note that for a random node,q(u) = 1

3ℓ(u) andF (u) = 11
4

1
3ℓ(u)−ℓ(u) =

− 1
12ℓ(u), but for a rich pathq(u) ≈ 4

10ℓ(u) andF (u) ≈ 11
4

4
10L− L = 1

10L. We define a potential function
F for the state of the game byF = maxu∈Det F (u). Initially Det consists of only the root. Asℓ(root) = 0,
andq(root) = 0, it is the case that initiallyF = 0. We now bound the expected change in the value of the
potential function as the result of a single query.

Lemma 9. There exists a constantβ, such that the expected change inF as the result of one query is at
most2γ + β.

Proof. First consider the path operation. The player specifies one leafx and learns the labels on the pathU
from the root tox (plus the labels on the other edges that lead from a nodey onU to a child ofy). Let u be
the last node inU that was inDet before the path query. Letv be the node for whichF is maximized after
the path query. WhenF changes, there are two cases. First assume thatv is in on the pathU . Let ℓ′ be the
number of edges fromu to v andq′ be the number of these which are heavy. HenceF ′, the amount thatF
increases by, is11q′

4 − ℓ′. Note thatF ′ ≥ f is equivalent toq′ ≥ 4f ′

11 + 4l′

11 . We then use this to bound the

9



expected value ofF ′.

E
[

F ′
]

=

∫

f≥0

f · Pr
[

F ′ = f
]

=

∫

f≥0
Pr
[

F ′ ≥ f
]

≤

∫

f≥0

∑

m≥f

Pr

[

ℓ′ = m and q′ ≥
4f ′

11
+

4m

11

]

=

∫

f≥0

∑

m≥f

Pr

[

ℓ′ = m and q′ ≥

(

1 +

(

12f

11m
+

1

11

))

m

3

]

If ℓ′ is fixed to bem, thenq′ is binomially distributed with meanm3 . Using a Chernoff bounds we know that

Pr
[

q′ ≥ (1 + δ) m
3

]

≤ e−δ2m/6. In our case,δ =
(

12f
11m + 1

11

)

. Hence,

E
[

F ′
]

≤

∫

f≥0

∑

m≥f

exp

(

−

(

12f

11m
+

1

11

)2

·
m

6

)

=

∫

f≥0

∑

m≥f

exp

(

−24f2

121m

)

· exp

(

−4f

121

)

· exp

(

−m

726

)

=
∑

m≥0

exp

(

−m

726

)
∫

0≤f≤m
exp

(

−24f2

121m

)

· exp

(

−4f

121

)

=
∑

m≥0

exp

(

−m

726

)

· O

(

exp

(

−24

121m

))

=
∑

m≥0

exp

(

−m

726

)

· O(1)

= O(1)

This completes that case when the nodev for which F is maximized is in on the pathU . The only
remaining case is whenv is a child of a node on the pathU . For such nodes,q(v) can be at most one more
than the value ofF on v’s parent. Thus the expected change ofF of siblings of nodes inU is at most an
additive constant more than the expected change on the nodesin U .

Now consider a triangle operation to a nodeu. The protocols learns all the labels to a depthγ belowu.
For any nodev, this increasesq(v) by at mostγ. The increase inℓ(v) has to be at least the increase ofq(v).
ThusF can increase by at most( 11γ

4 − γ) ≤ 2γ.

We are now ready to establish the lower bound for the path and triangle game.

Lemma 10. Any protocol for the path and triangle game that makes fewer thanT (n) = Ω(log n
c / log 1

ǫ )
queries fails with probability at least34 to find a rich path.

Proof. Finding a rich path involves finding a leafu with q(u) ≥
(

4
10L − lg 2c

)

, l(u) = L, andF (u) =
11
4 q(u) − l(u) ≥ 11

4

(

4
10L − lg 2c

)

− L =
(

1
10L − 11

4 lg 2c
)

. However, Lemma 9 proves that at each time
step, the expected change inF , is at most2γ + β. Therefore, after fewer thanT (n) queries,E[F ], the
expected value ofF , is at most(2γ +β)T (n). By Markov’s inequality, the probability thatF ≥ 4E[F ] is at

10



most 1
4 . Hence, settingT (n) = 1

4(2γ+β)

(

1
10L − 11

4 lg 2c
)

gives a contradiction. Plugging inγ = 2 + lg(1
ǫ )

andβ = O(1) givesT (n) = Ω(log n
c / log 1

ǫ ) as required.

We finish with a few comments on the tightness of our lower bounds with approximate queries. If exact
queries are replaced by1+ ǫ-approximate queries, then theΘ(n logn) time divide and conquer protocol
returns only(1+ǫ)log(n)-fair pieces, because the error accumulates multiplicatively at each of thelog(n)

levels of recursion. Doing the same for theΘ(n2) time protocol introduces only1+ǫ error to the final fairness.
If the model allows only1+ǫ-approximate queries, for some constantǫ, but requires only(1+ǫ)log(n) <<

n1−δ-fairness, then our lower bound ofΩ(n logn) is tight. If the model allows only1+ 1
logn -approximate

queries and requiresO(1)-fairness, then our lower bound ofΩ(n logn log logn) is off by at most alog log n

term. The outstanding open question in this area is the exactcomplexity of achievingO(1)-fairness with
O(1+ǫ)-approximate queires.
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