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Abstract

We give a randomized algorithm for the well known caking iogttproblem that achieves approx-
imate fairness, and has complex@n). The heart of this this result involves extending the stashda
offline multiple-choice balls and bins analysis to the cabens the underlying resources/bins/machines
have different utilities to different players/balls/jobs
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1 Introduction

The protocol’'s goal in the well known cake cutting problemddairly apportion some resources among
n players. Here we consider a continuous resource, modelgthuwy great loss of generality, by the unit
interval. We assume that each playdras an initially unknown value functiot, that specifies how player
p values each subinterval of the unit interval. A portion isngon of disjoint subintervals, and the value
function is additive, so that the value of a portion is the safrthe values of the underlying subintervals. A
player believes that a portion ésfair if that portion has value at leastof the total value of cake according
to his value function. In the standard model, the protocalliewed to make two types of queries to the
players. In an evaluation query, the protocol asks a plagermuch he values a particular subinterval of
the cake. In a cut query, the protocol asks the player toifgdiie shortest subinterval with a fixed value
and a fixed left endpoint. We are interested in the query cenxityl of a protocol, which is the worst-case
number of queries required to achieve a fair allocation &mheplayer that follows the protocol.

The cake cutting problem originated in 1940’s Polish matdtiza community. Since then the problem
has blossomed and been widely popularized. The motivationding cake as a resource is the well known
phenomenon that some people prefer frosting, while othersotl Cake cutting, and related fair allocation
problems, are of wide interest in both social sciences arttienaatical sciences. Sgall and Woeginger [11]
provide a nice brief overview. There are several books @ritin fair allocation problems, such as cake
cutting, that give more extensive overviews, see for exarfl10]. Some quick Googling reveals that cake
cutting algorithms, and their analysis, are commonly ceddry computer scientists in their algorithms and
discrete mathematics courses.

A deterministic 1-fair protocol with complexityd(n?) was described in 1948 by Steinhaus in [12].
In 1984, Evan and Paz [5] gave a deterministic divide and wend-fair protocol that has complexity
©(nlogn). Recently, there has been several lower bound results keraatting. In particular, we showed
that the Even-Paz algorithm is optimal for deterministitait-protocols [4]. That is, every deterministic
1-fair protocol for cake cutting has complexi}(n logn). This lower bound also applies to deterministic
protocols that need only only guarante€l )-fairness. Sgall and Woeginger [11] showed that every rando
ized 1-fair protocol has complexi(n log n) if every portion is restricted to be a contiguous subinteo¥a
the cake. We showed that every randomiz¥d )-fair protocol has complexit§2(n log n) if there is a small
relative error in the response to the queries [4].

A natural open question is then whether there exists a pobteith linear complexity for the any of the
variants of cake cutting considered in the literature. la gaper we answer this question in the affirmative.
Our protocol is randomized, requires exact answers to teeeg) guarantees onfy(1)-fairness, and does
not in general assign a contiguous subinterval to each plaieat is, we show that linear complexity is
obtainable in the variant that is most in the protocol’s favddditionally, we show that(n)-complexity
is still achievable even if there is a small relative errothip response to the queries, as long as the error
that results from a cut query is independent of value in theygu\Ve call this a weak adversary. All of the
known results are summarized in Table 1.

The heart of our cake cutting algorithm is the following Badad Allocation Lemma in the cake model
that generalizes the standard multiple-choice balls ansl iiodel [8].

Lemma 1 (Balanced Allocation). Leta > 10 be some sufficiently large constant. Eactgflayers has

a partition of the unit interval0, 1], or cake, intoan disjoint candidate subintervals/pieces. Each player
independent pickd’ = 2d = 4 of his pieces uniformly at random, with replacement. Themeths an
efficient method that, with probability(1), picks one of the@’ pieces for each player, so that every point on
the unit interval is covered b§ (1) pieces.



Deterministic Exact Standard Exact Contiguous

VS. VS. VS. VS. VS. Complexity | Reference
Randomized| Approximate| Weak | Approximate| Non-contiguous

Protocol Queries | Adversary| Fairness Portions

* Exact * * O(nlogn) [5]

* * Exact Contiguous | Q(nlogn) [11]
Deterministic * * * Q(nlogn) [4]

* Approximate| Standard * * Q(nlogn) [4]
Randomized Exact Approximate | Non-contiguous O(n) This paper
Randomized * Weak | Approximate| Non-contiguous| O(n) This paper

Table 1: Summary of known results. An asterisk means thatethdat holds for both choices.

In the analogous multiple-choice balls and bins model, gdayer independently selects of an dis-
crete bins uniformly at random. This balls and bins modegjisvealent to the special case of the cake model
in which all the partitions are identical. It is a folkloresrgt that in the balls and bins model, the maximum
load is©(logn) if d = 1; And if d' > 1, then with one can with high probability pick one of tiiepieces
for each player in such a way that each bin only has 1 ball. @nesgen get maximum load(log log n) if
the assignment has to be made online player by player [2].

Analysis of balls and bins models have found wide applicatioareas such as load balancing [8]. In
these situations, a ball represents a job that can be adsignarious bins/machines. Roughly speaking,
load balancing of identical machines is to balls and bindpad balancing on unrelated machines is to
cake cutting. Unrelated machines is one of the standard Isodéhe load balancing literature [1]. In the
unrelated machines model there is a spgedthat a machine can work on a joly. Assume that jobs can
use more than one machine, and that machines can be shamdthEhtotal value of the machines to jpb
is )", s; 7, and ac-fair allocation for jobj would be a collection of machines, or portions of machinieat t
can together procegsat a speed op _, san So it seems to us reasonable to presume the the cake model,
and balanced allocation lemmas, should have interestipticapons in settings involving load balancing
on unrelated machines.

We now briefly discuss how our Balanced Allocation Lemma carubed to solve the cake cutting
problem (See Appendix Section 4 for more details). Thecandidate piece is th&* subinterval of value
%, which can be found by two cut queries. After the applicatibithe Balanced Allocation Lemma, any
standard fair allocation algorithm can be used to divide pmrgion of the cake desired by more than one
player.

1.1 Related Results

The first step towards obtaining &1 logn) lower bound on the complexity of cake cutting was taken
by Magdon-Ismail, Busch, and Krishnamoothy [7], who weréedb show that any protocol must make
Q(nlogn) comparisons to compute the assignment. So this result dateaddress query complexity.
Approximately fair protocols were introduced by Robertsord Webb [9]. Traditionally, much of the
research has focused on minimizing the number of cuts, prasly out of concern that too many cuts
would lead to crumbling of a literal cake. There is a deteistic protocol that achieve@(1)-fairness with
O(n) cuts andd(n?) evaluations [9, 6, 13]. There are several other objectitiedied in the cake cutting



setting, most notably, max-min fairness, and envy-freméss.
The literature on balanced allocations is also rather lafyaice survey is given in [8]. We are not
aware of any other results on balanced allocations for ateglmachines.

2 Intuition

In this section we try to give some intuition and a road magterproof of our Balanced Allocation Lemma.
We start with an example instance, see Figure 1 that denadestseveral interesting features of the cake
model and our analysis. Each of the rows consists ofitheubintervals of the players. The:/2 A players
havean candidate pieces of identical length. Then foe [1, \/g], there is a group o{/% B; players.
Half of a B;’s candidate pieces overlap with th&" piece of thed players, and half with thei+ 15 piece

of the A players.

>
R~
I

Figure 1: An example in which player’s intervals overlap innmcomplex ways.

One immediate observation is that maximum load equal to dltréem the standard multiple-choice
balls and bins model will not carry over to the cake model. @ this, note that with high probability, one
of the A players chooses all of hig pieces from his firsﬁ\/g candidate pieces. Call this playgf. Also
with high probability, for eachl’ pieces of4’, there is aB; player that has all of’ pieces overlapping with
it. This explains the need to relax the maximum load bounohftato O(1).

The Implication Graph: To gain intuition, let us assume for the moment tilat= 2. Let c(p,iy denote
theit” € [1, an] candidate piece for player Leta(, 0 anday, ) be the two semifinal pieces selected for
playerp. We now define what we call the implication graph. The vestioéthe implication graph are the
2n piecesa, ,y, 1 < p <nand0 < r < 1. If pieceqa, , intersects piece, ,), then there is an directed
edge from piece, , to piecea, 1, and similarly froma,, .y to a(, ;. The intuition is that if playep
getsa, .y as his final piece, then playgmust get piece , ;) if p andg’s pieces are not going to overlap.
Similarly if ¢ getsa,, 5y, thenp must geta, ;_,y. As an example, Figure 2 gives a subset of the semifinal
pieces selected from the candidate pieces in Figure 1. Tketdd edges arising from this example are
given.

T P ——

a) b)

Figure 2: Two excerpts from an implication graph.

Pair Path: We define gair path in the implication graph to be a directed path between thepieoces for
one player, i.e. from some, .y to a, 1. In Figure 2.3, there are two such paths of length four froen th
A player’s left semifinal piece to his right and in Figure 2.lmfpaths of length two. Note that such paths are
problematic because they effectively say that if th@layer gets his left semifinal piece as his final piece
then he must get his right piece, which of course implies leathust get his right piece. We will show that
if the implication graphG does not contain any such pair paths, then the followingrdhgo selects a final
piece for each player in such a way that these final piecesgoend. (See Section 4.1.)
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Final Piece Selection Algorithm Description: We repeatedly pick an arbitrary playethat has not selected
a final piece. We pick the pieeg,, oy as the final piece fas. Further, we pick as final pieces all those pieces
in G that are reachable fromy, oy in G.

Independent Edges. To gain intuition, we now sketch a proof that the implicatgmaph does not contain a
pair path for the balls and bins model (each player's cabbecdbf an candidate pieces are identical). Note
that in the balls and bins model, every pair path has to beraftfeat least 3. Consider a possible pair
PAtN G (g o) s Apirt)s -+ - Cpr 1) Apo,1—ro) WIth k €dges in the implication graph. The probability that
a particular pair of node@a@mm, a<p17m>> has an edge between them, i.e. the probability that the datedi
piece chosen to be,, ., intersects with that chosen to bg, ;_,), is a—ln The presence or absence of
thesek edges in the implication graph are statistically indepahd&hus the probability that this particular
pair path appears in the implication graph is at rr(ocgég)k Since there are at moﬁ,?)k! possible pair
paths withk edges, the probability that there is pair path is at mo4t , (%?)krlw If o is sufficiently
large, then this probability is say at mdst2.

We now return to the general cake model. One difficulty is thatedges in the implication graph are
no longer independent. To see this, recall Figure 1. Theglntity that any two semifinal pieces over lap is
still O(a—ln). However, if one of amM player’s semifinal pieces overlaps with cBgplayer’s semifinal piece,
then we know that thisi player must have selected either Bi&* or 2i+ 1% candidate piece and hence it
very likely to also overlap with anothds; player’'s semifinal piece.

Pair Paths of Length > Three and Vees. Such dependencies can occur when there is what we call a vee
among the candidate pieces. We defingato consist of a triple of pieces, omenterpiece and twdase
pieces, with the property that the center piece interseuits &f the base two pieces. For example, see the
three left most pieces in Figure 2.a.

Note that in the balls and bins model, the expected numbereekvamong the semifinal pieces is
O((ZS")W) = O(n). And in the cake model, we will show that if the expected nundfevee’s among
the semifinal pieces i©(n), then with probability2(1) there will be no pair path with three of more
edges in the implication graph of the semifinal pieces. (Ssdi@ 4.3). Unfortunately, in the example
in Figure 1, it is the case that, with high probability, themher of vees among the semifinal pieces is
Q(v/n - (v/n)?) = Q(n3/?). The consequence of this is that, with high probabilityrehsill be pair paths
like those in Figure 2.a. One can also construct instancesesthe number of veesi¥n?) with probability
Q(1).

Getting the expected number of vee’s in the semifinal piecesdo O(n) necessitates thatl > 4.

Let us now explain how we accomplish this. The selection dlfpieces will occur in three instead of
two phases. First, each player independently at randondpsgsd’ = 2d quarterfinal pieces. These
are partitioned into twdracketsA, 5, and A4, ;, containingd pieces each. From each such bracket, we
choose one interval, denoted, ., to be asemifinalpiece. The semifinal piece is chosen to be the one
that intersects the smallest number of other candidatesgijeg, ;. Note that this processes is independent
for the different playerg and for each bracket. We will show then that the expected eurabvees in
the resulting2n semifinal pieces i$)(n) (see Section 4.2). We show that as a consequence of this, with
probability 2(1), the implication graph of the semifinal pieces does not éoragair path of length 3 or
longer.

Pair Paths of Length Two and Same-Player-Vees. Another difficulty is that the implication graph of the
semifinal pieces may, with high probability, have pair pathength two. See Figure 2.b. A pair path of
length two occurs if and only if the implication graph congwhat we call a same-player-vee.sAme-
player-veds a vee where both of the base pieces belong to the same.pldaris, there is a center piece
ap,y and two bases, oy anda, 1y. In the instance in Figure 1, it is the case that with high plolity
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there will be many same-player-vees.

To get around the problem of same-player-vees, we introthesame-player-vee graplith directed
edge(p, ¢) when these players are involved in a same-player-vee. We tfad with probabilityQ(1) there
are no paths in this graph containing= 2 edges. Hence the same-player-vee graph can be colore@ with
colors. (See Section 4.4). Therefore, with probabiliyl ), we can partition the players infopartitions in
such a way there is no same-player-vee involving two plaiyetise same partition.

Summary of Balanced Allocation Algorithm: We summarize our Balanced Allocation Algorithm.

¢ Independently, for each player € [1,n] and each- € [0, 1], randomly choosé of the candidate
piecesc, ;, to be in the quarterfinal bracket;,, ...

e In each quarterfinal bracket, .y, pick as the semifinal piece,, ,), the piece that intersects the
fewest other candidate pieceg ;). If we are unlucky and the Implication Graph contains a pathp
of length greater than 3, then start over. See Sections 4.2.8n

e Construct and vertex color the same-player-vee graph uemgreedy coloring algorithm using at
mostw = 2 colors. See Section 4.4. L8}, be the subgraph of the implication graph containing only
those players colorekl This ensures that Implication Graph restricted’facontains no pair paths of
length 2.

e For eachSy, pick the final piece for each player involved$i by applying the Final Piece Selection
Algorithm to Si,. See Section 4.1. Because the Implication Grap§;ooontains no pair paths of any
length, this algorithm ensures that these final pieces foin piayer are disjoint, i.e. for any point in
the cake, the final piece of at most one player fr§prcovers this point.

e Conclude that for any point in the cake, the final piece of astmo= 2 players cover this point. The
total probability of success is computed in Section 4.5.

In section 4.6 we extend this Balanced Allocation Algorittonthe case of approximate queries against
a weak adversary.

3 TheProofs

In this section we prove the various claims that we made inptlegious section. Each subsection can
essentially be read independently of the others.

4 Our Cake Cutting Algorithm

Before turning to our Balanced Allocation Lemma, let us explhow our cake cutting protocol uses our
Balanced Allocation Algorithm. Each playgihas an initially unknown value functiol, that specifies how
much that player values each subinterval of the unit intere imagine the player partitioning the cake
into an pieces each of valugg. Thei*" such candidate piece of cakg, ;) can be obtained using the two
queries(Cut, (0, =1), Cut, (0, -L)). Our cake cutting protocol uses our Balanced Allocationokitm to
obtain a final piece for each player such that every point efddike is covered by at mosk(1) of these
final pieces. Because each player chooses only a constabenafcandidate pieces, the query complexity
is ©(n). Because the probability of succes$iél ), they expect to repeat@(1) times until they succeed.
Once each player has one final piece, we need to divide thesegdiurther so that the players have disjoint
collections of cake intervals. This is done as follows. EBhwedinal pieces hav@n endpoints and these
endpoints partition the cake inf» pieces. Denote these kfy. For each piecg; and each playep, the
player either wants all of; or none of it. For each, let S; be the set of players wanting cake pigGe



Some playerp may appear in more than o, but we have thats;| < k = O(1), because every point of
the cake is covered by at mast1) of player’s final pieces. For each piegg the players inS; use any fair
algorithm to partitionf; between them. Each such application has comple3ity) since it only involves
©(1) players. This protocol guarantegs-fairness. Consider player For eachj for whichp € S;, let
v(p,j) denote the amount he values piggeNote Y~ v, ; = V,(U; f;) = Vy(his final piecg = .. When
fairly dividing f;, he receives a piece ¢f with value at Ieasf“,’f—’”. The total cake that he receives has total
valuezj U@TJ) = L. Note that unlike all previous cake cutting algorithmsstbne does not guarantee

— kan®

contiguous portions since a player’s final interval may belved many different such subintervals.

4.1 Final Piece Selection Algorithm

We show some structural properties of the implication griamly the correctness of the Final Piece Selec-
tion Algorithm.

In this subsection, we show how to select from each playexssemifinal pieces , 5, anda, ;y, one
final piece for each player. Recall that if semifinal pieegs, piecea, ) intersect, then there is an directed
edge in the implication grap& from a, .y t0 a(,1_,) and similarly froma, ) t0 a(, 1y The intuition
is that if playerp getsa,, .y as his final piece, then playermust get piece., ;) if p andqg’s pieces are
not going to overlap. Also recall that a pair path in this drépa directed path between the pair of pieces
for one player, i.e. from some,, ., to a(, 1. In the final piece selection algorithm we repeatedly pick an
arbitrary playerp that has not selected a final piece and give him the piggg. Further, we pick as final
pieces all those pieces (@ that are reachable fromy, o, in G. The goal of this subsection is the following
lemma.

Lemma 2. If there is a path in& fromay, ;) to a, ;) then there must be a path from, ; _,) to a(, 1 in
G.

Proof. By the way two edge are added at once, if there is an edgedipmto a, .y then there must be an
edge froma, ;) t0ay, 1y in G. The lemma then follows by induction. O

Lemma 3. If both the pieces, ¢y anda, 1) are reachable from a piece,, ,y in the implication graphG,
thenG has a pair path.

Proof. By Lemma 2, the existence of the path fram .., to a, ) implies the existence of a path fromy, 1
to a(, 1. But this means that there is a path frag ,) t0 a4 1) t0 a1y

Lemma 4. If an implication graphG of the semifinal pieces does not contain a pair path, then thal F
Piece Selection Algorithm selects a final piece for eachgslaynd these final pieces are disjoint.

Proof. Consider an iteration that starts by assigningl to playerp. This iteration will force the assign-
ment of at most one piece to any one player because by Lemneae3dan not be a playersuch that both
a0y @nday, 1y are reachable fromy, o). Similarly, if this same iteration forces playeto be assigned say
to a(q,0y, then we need to prove that he has not already been assigngdduring an earlier iteration. If
assigninga, oy forcesa, o), then there is a path from the one to the other. Hence, by LeRrtizere is
a path froma, ;) to a(, ;). Hence, ifa;, 1, had been previously assigned, then playsvould have been
forced toa, 1y and in this casg would not be involved in this current iteration. The disjoiess of the final
pieces follows from the definition of the implication graph. O



4.2 TheNumber of Vees

In this subsection we show that the number of ve&3(is) with probability2(1). Recall that aveeconsists
of a triple of semifinal pieces, oreenterpiecea, .y and twobasepiecesu, .y anday ¢y, With the property
that the center piece intersects both of the base two pieces.

Lemmab. Assume thain players have partitioned their cake into: pieces each. Lét, ; be the number of
pieces of the other players that overlap with piec# playerp. Then for any playep, > ", ¢,; < 2anm.

Lemma 6. The probability that semifinal piecg,, ,, overlaps with semifinal piece, , is at most%.

Proof. The number of pairgi, j} such that candidate pieeg, ;) intersects candidate pieeg, ; is at most
2an. Whend of the an candidate pieces for playgrare selected to be the quarterfinal pieced jp,, the

probability thatc, ; is among them i%fl—n. Hence, the probability that the semifinal piecg . is selected
to be this candidate piecg,, ;) is at most this. Similarly, that, . is ¢, ;. Finally, the probability that

ag, y Overlaps witha, , is than at mosgan - & . 4. = 24, O

an an an

Lemma 7. The expected number of vee'difis at mostf—ggn

Proof. Consider a particular player Again let/, ; denote the total number of candidate pieces overlap-
ping thei* candidate piece, ;, of the playerp. Without loss of generality, let us renumhes candidate
pieces in non-increasing order By, ;y, thatis,l, ; > £, ;1)

Forp € [n],i € [an], andr € [0, 1], let R, ; ) be the event that the candidatg ; is selected to be the
semifinal piecey, ,,. To understand this, let us review how this is chosen. Ftayerp randomly chooses
d candidate pieces to be in his quarterfinal brackefs.,. Then the semifinal piecg,, ,, is chosen to be the
one with the smallest, ; value or, by our ordering, the one with the largest index. dé¢ethe probability
of R, is the probability that/ indexes are randomly selected fram indexes and the largest selected
index isi. This givesProb[R,; ] = d - (&) - (52)41.

Let z, ., be the number of vee’s with,, ., as the center. There a(@g“) pairs of candidate pieces
that might be the two base pieceg ) anda, oy With the center piece, .y = ¢, ;). The probability that

both of this pair are semifinal pieces is at mp&t )”. Hence,Elz, , | Ripin) is at most(‘ei) (24)? <
2 2
2£< ) (an) :

an an d i—1 d—1 ) d 2
Blzpn] = ZProb[R@m] Bl | Rpin) < (@) ( an > $204) <@>

i=1

an

2d° 1,2
(anm) >

Lemma 5 bounds thgt ", /., ;y < 2an® = M. The nextlemma then bounds;" , %~ M7 s < ma=2M?2.

2d° d—2 2 8d°
E[m(p,r)] < <W> : (OZ’I’L) : (2an2) < ?

By linearity of expectation, the expected number of vees allés ZZ:1 271«:0 Elzgn] < 2n- Sd’. O



Lemmas8. If d >2,Vi € [I,m — 1] ¢; > £;41 > 0,andY " | ¢; = M, then> 1", 47102 < md=2)12,

Proof. We will start with some intuition. To maximize,_;" , i9~1/2, one wants to make th&in the last
term as big possible. By example/jf, = M, then}_" | i%~1¢? would bem?~1 M2, which is a factor ofn
more than we need to get the number of vees down fegm?) to O(n). However, the constrair > ;4
prevents this example and pressures all#beto be the same. If they are the same, tlien= % and
ST 42 = O(m?(4£)?) as required. We need some definitions to prove this forma#y.(,,.; = 0,
ands; = ¢; — ¢;,1 for 1 < i < m. Note that our constraint gives thgt> 0. Further moref; = Z;”:Z. 55
andM = >, ¢; = Y ", is;. Then lett; = is; so thatdM = >, ¢;. Now using basic algebra we
conclude that

2

m m m m m m m m min(j,k)
g id_lﬁg = E 4=t g 55 = E 41 E E 5j8K = E E 575k E 4=t
i=1 i=1 =i i—1 j=i k=i =1 k=1 i—1
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4.3 TheExistence of Pair Paths

In this subsection, we show that with probabili®f1), the implication graph doesn’t contain a pair path of
length three of more. Recall that if the semifinal pieegs,, anda, ,) intersect, then there is an directed
edge in the implication grap& from a, ,y t0 a(, 1) and froma,, , t0 a(, 1,y and that gair path is a
directed path between the two semifinal pieces for the samyepli.e. from some,,, .y t0 a(, _,y. The
next lemma is best understood by studying Figure 3.

a<pu’ —6a<p1,l—{a<p2,1—£a<p3,l—3ra<p4,l—r>

Figure 3: A pair path within the implication graph is given.pAir of nodes in the same column represents
the pairs of semi-final pieces for one player. The dotted £dge between semi-final pieces that overlap.
The solid directed edges are the resulting edges in thecatn graph.

Lemma 9. Consider a simple pair pat® = (a,, r): G(pyr1)s - - - Clpp 1.7 1)> Cpo,1—ro) ) OF lENgthk > 3.
LetV be the vee with center,,, ., and basesi;, . anda, ,, ). Fori € [1,k—2], letl; € G be
the event that semifinal pieceg,, ,,, anday,,, , 1—r,. ) intersect. Then

Prob[P € G| < Prob[V € G] -Hfijrob[Ii € G|

intersect with
) means that

Proof. The edges from;
both a ) anda@k

toag, ., andfromag, ., yt0ay, 1) Mmeanthat,
y- Hence, the ve& occurs. The edge from,, .., to a,

P0,70) P0,70)

pi,1—r1 —1,Tk—1 Di+1,Ti+1



Ay @NDag,, 1, ) intersect, i.el;. It follows thatProb[P € G] < Prob[V & eachl; € G]. What
remains is to prove that the evenfsand eacll; are independent. Whether a semifinal piece of playairsd

q intersect is independent of whether a semifinal piece oéuifit playerg’ andq’ intersect because these
event have nothing to do with each other. This remains truenvithe playerg andp’ are the same, but the
we are talking about different semifinal pieces of this ptagamely event; and/; ; are independent. This
is because the selection of the quarterfinal pieces for thekbtA , ;) and the selection gf's semifinal
piecea, o) Within this bracket is independent of this process for hieeosemifinal piece, ). O

Lemma 10. The probability that the implication grap& contains a pair path of length at least three is at

32d°

Proof. LetV be the set of all 3-tuples representing all possible vees and forV € V let P, (V) be the
set of all possible pair paths of lengttthat include the ve&’. The probability thati contains a pair path
of length at least three is at most

ZZ Z Prob[P € G (1)

k=3 VeV PePy(V)

< Z Z Z Prob[V € G] - TI¥=2Probl[I; € G] 2
k=3 VeV PeP,(V)
n 242 k—2

< Z Z Prob[V € G] Z <—> 3)
k=3 VeV PePL(V) an

(4)
242\

< ZZProbVGG(( ) )><—> ©)
k=3VeVy an
n 2d k—

< Z(Zn)k_?’ < > Z Prob[V € G] (6)
k=3 an vey
n o (2d2\"7? (1648

< l;’@n)k s <%> ( = n> (7
83 <~ 42\ 83 [4d? 1 32d°

= ?é(?) = ?( ><1—4d2/a> o2 (a — i) ®

The inequality in line 2 follows from Lemma 9 and line 3 fromrama 6. The inequality in line 5 holds
since there aré — 3 pieces inP that are not part of the vdé. The inequality in line 7 follows from Lemma
7. O
4.4 Coloring Same-Player-Vee Graphs

In this subsection we show that with probabiliy1), we can color the same-player-vee graph Wittolors
since this graph will have no paths of length= 2.

Lemma 11. The probability that the same-player-vee graph is@ct 2 colorable is at mosg&f + %2.



Recall that we put the directed edge ¢) in the same-player-vee graph if one of playsrtwo semifinal
pieces, namely, o) Or a, 1y, overlap with both of playeg’s two semifinal pieces, namety,, oy anda, 1.
Hence, a path of length 3 consists of semi-final PIECES,,y, a(p,.ra)s Aps,1—ra)s Aps,0)s ANDayy, 1y for
three playerg;, pe, andps, where botha,,, ,.,, anda,, 1., overlap witha,, ..y, and botha,,, ,, and

a(ps,1) Overlap withay,, ..,y We will consider the probability of such paths startingkveards.

Lemma 12. Suppose we are considering a set/otandidate pieces for the semi-final pieces, o
and @(ps1)- The probability that some player gets both of his semi finatgs from this set is at most

min(( dfl)z, 1).

Proof. If ¢ < an, then all?pieces in this set can be the candidate pieces for one plgy@he probability
that both of his semi-final pieces are in this set is as stafbas probability, however, can never be bigger
than one. O

Consider some candidate piecg, ; that potentially might be:,, ,,). Let/, denote the number

of other candidate pieces of overlapping it. Consider sofagepps. Let ¢

P1,1)
p2.51)> Sp2.qi+1) - -+ Epasgr)

be the candidate pieces of playerthat overlap with piece,, ;. Let%2 ) denote the number of other
candidate pieces of overlapping, ;,. What we would like to be true 533", £(,, ;) = £, 5~ Thisis true
in Figure 4.A.
A e SS=zs Dz o= o=
ee  ZEEIZEEEEZ
B Qp‘b
i e T =
C e

Figure 4: An pair path within the implication graph is givaPair of nodes in columns represent the pairs
of semi-final pieces for a player. The dotted edges are betwemi-final pieces that overlap. The solid
directed edges are the resulting edges in the implicatiaphgr

However, as seen in Figure 4.B, the left and right most pieggs,) andc,, ;. might have/,,, ;. and
ipy 5y @S big asan? and even excludlng thes il ]1+1 C(p,.5y Might be as big agj, — j; — 1) - ¢

Towards proving something Ilkgj Zi lndy = Lipr iy Consider some playes. Definel,
number of playeps’s candidate pieces that overlap, ;. Note that if/,
to have both of playeps’s semi-final pieces over lap with far,, ;. Hence, we can ignore playes

when con3|der|ng:<p2 j) as belnga<p27r2>. Hence, defin@(pmvp@ to bel,, jps) If Lipyjps) = 2 @nd zero
otherwise. Deflnd@M =2 £<p2,j7m>. Note this is the number of pieces that overigp ;, excluding
those pieces whose player only has one piece overlapping .

p17i>'
p2gws) = b then it is impossible

Lemma13. Theny /-l 7y, 5 < 2¢,

p1,i)°

Proof. First note that because we are not considering the left @ihd most candidate pieces,, ;) and
Cipy .5,y that overlap withe, ;, any piece that overlaps with,,, ;, also overlaps with, ;. (See Fig-
ure 4.C).

Itis sufficient to prove thaE{*;llJrl BA@Q jpa) is at most twice the number of tiig,, ;, pieces that overlap

¢(p, 5y that belong tgs. This is because foﬁ<p2,j7p3> to be non-zerops’s candidate pieces need to break at

10



some point within piece,,, ;,. Hence, each gfs’s candidate pieces (that is counted) overlaps with at most
two of the pieces,, ;) andc,, j1)- O

Lemma 14. Consider a candidate pieeg,, ;, such that there aré@[,1 ;) other candidate pieces overlapping
it and some other player,. The probability that there are semi-final pieces, .y, a(,, 0y, anday,, 1) for
some playe;bg, Wherea< overlaps withe, and botha ,, o) anda, overlap witha is at

d(y
mosti4 . [ L+ 1]

p3,1

p2,72) P1,0) p3,1) p2,72)

Proof. Consider a candidate pieeg,, ;, that overlaps withc(,, ;. The probability that candidate piece
C(po,5) 1S @ semi-final piece for playes is at most2d By Lemma 12, the probability that there are semi-final

piecesa,, o), anday,, 1, for some playeps which both overlap witte,, ;y is at mostmm((%) ,1).

It follows that the required probability is at most

Jr di, 2 jr—1 db 2
Zz—d.min Ty ) g <24 |y 3 min | (=222 ) 1) +1].
= an an an i+ an

By Lemma 137 T +1 mm < 2{,, ;- Hence, because of the quadratics in the sum, our sum is maxi-
mized by having a fe\A9<p2 j) as big as possible. But because of thie, there is no reason to makd@;2 7)

p2,J

bigger than*. Hence, the sum is maximized by settucu_aja”nl—z> of the values£<
zero. This gives the result

s,j) 10 %+ and the rest to

an an

2d(,,, ;
2d [1+ [ﬂ-mm(l,l)] +1] :

O

We will now add the requirement that player's other candidate piece,,, ;_,,, also overlaps with
and sum the resulting probability over all possible players

P1,%)

Lemma 15. Consider a candidate pieeg,, ; such that there aré,,, ; other candidate pieces overlapping
it. The probability that there are semi-final pieceg, ., @, ,1—rs)» A(ps,0), AN ay,, 1) for two playersp,

and p3, where bothaqp2 r2> anda,, 1, overlaps withc,, ;, and botha,, ¢y and a,, 1y overlap with
252

para) IS ALMOSE (! 1+ ]

&

Proof. The probability that a particular candidate piegg, ;, is playerps's semi-final piecey,, 1, is at

most-L. Denote the number of playes’s candidate pieces, ), Cps.j+1) - - - » C(pa.j,) that overlap with
piecec,, ;) to beg,, = jr — ji + 1. Because these all overlap wit}, ;, we have thagp2 Tpy = Lipy iy
Using Lemma 15, we get that the required probability is attmos

d Ad [ dlp, d 4d  [dlip, ) 4d2£%p17 ) an
el e | RN e | R ol el

p2 g(l)l 7Z>

O

We will now add the requirement thag,, ; is one of playemp,;’s semi-final pieces and sum up over ail
candidate pieces and over all playgss

11



Lemma 16. The probability that there are semi-final pieees, ,.,y, a(p, r2)s Aips,1—ra)s A(ps,0y ANA Ay, 1y
for three playersp;, p2, and p3, where botha,, ,.,, anda, overlap witha, and botha,,, o

anda,, 1, overlap witha,, .,y is at mostS% 4 8d?

a2

p2,1—7r2) p1,m1)!

p3,1) D2,72

Proof. As in the proof of Lemma 7, lef?, ; .y be the event that the candidatg, ;) is selected to be the
semifinal piecey, . Recall thatProb[R,; ] = d - (L) - (Z2)41. There aren ch0|ces for playep;.
Thus by Lemma 15, our desired probability is at most

n in:i i—1 d14d2€%p1,> 14 an
“~an \ an (an)3 dlip, 4
4d® - d-1 4> <~ - 1yd-1
( (on)d+3 ZE iy (0= 1) (om)d+2 Z£<p17i> (i—1)
i=1
Ad® d—200, 212 4> < Cyd-1
i=1

4d3 de2 e 212 4d? 4 [ 2an? 164>  8d?
n(m(an) (2om ) +W(an) < on >> = a3 +¥

an

IN

The second inequality follows by Lemma 8. The third inegydibllows from noting that, given that the
Cip,, Z> 's are nonincreasing, the sum is obviously maximized if e@ghy is equal. That is, each,, ;y =

2om O

an

Proof. (Lemma 11) If a node of the same-player-vee graph is at the dea directed edge colour it red, if
at the tail, blue, and otherwise arbitrarily. A node is ordycked to be both red and blue if there is a directed
path of lengthw = 2. Lemma 16 bounds the probability of this. O

45 Computing the Probability of Failure

We now determine the probability that our algorithm for getieg a balanced allocation is not successful.
The probability that the total same-player-vee graph i2rmdlorable is at mosi‘ll'5 +2r 8d2 . The probability

that the implication graph contains a pair path of lengtleetor more is at mos% Thus we get that

the probability that the maximum overlap of the final piecesibre thar? is at most'8% - 8¢ azf’iﬁgdg).

By settingd = 2, and then setting: > 10 to be sufficiently large, one can make this probability abily
small. Hence, the probability that our caking cutting aithon is not at leas2a-fair is at mostO(1/a?2).

4.6 Approximate Cutswith a Weak Adversary.

In this section, we show that even if the cut operations ahg @pproximate, then approximate fairness is
still achievable inD(n) complexity against a weak adversary, which must specifyetaive error without
knowing the value of the cake specified in the cut.

ACuty(e,x1,8): This1 + e approximate cut query returns an > z; such that the interval of cake
[z1, x2] has value approximately according to playep's value functionV,,. More preciselyx, satisfies
= Vo(@1,2) < B < (1+ )V (a1, a2).

12



Adaptive Error: We say thatACut, (e, 1, §) has anadaptive errorif each operation the algorithm first
providesz; andg and then the adversary, knowing the complete history, gesvthe worst case resuit
within the stated error.

Non-Adaptive Error: We say thatAdC'ut, (e, 21, 3) has anonadaptive erroif each operation the algorithm
first providesr; but nots. The weak adversary, knowing the complete history buthahooses a random
variable F for the error with some distribution in the ranbﬂi, 1+ €]. When the algorithm provides, the
operationACut, (e, z1, 3) returns the random variable = Cut,(z1, E - 3) such that/,,(z,z2) = E - S.

Theorem 17. [4] If a protocol can only makd + e approximate queries with an adaptive adversary, and
c-fairness is required, then the complexity of any randothiz@tocol for cake cutting i€)(n log %/ log %).

Theorem 18. If a protocol can only makeé + ¢ approximate queries against a weak adversary, then there
is a randomized protocol for cake cutting that achieglg )-fairness inO(n) time.

Proof. The algorithm as defined above chooses a random integé, on — 1] and cuts out a piece starting
atzy = Cut,(0, -L) and ending at, = Cut,(0, Z1) or equivalently atry = Cut,(z1, -L-). If the second
cut is replaced with the cuty = ACuty(e, 21, m) even with adaptive error, then the algorithm does
not change significantly. The piece returned is no wider sslaps with other player’s intervals are no more
likely and the associated value, though perhaps a factor efc)? more unfair, is still constant fair.

For the first cuts; = Cut,(0, -L-), if the algorithm instead chooses a random #eal[0, an — 1] instead
of a random integer, the algorithm does not change signtficaifhis then become a cut at a uniformly
chosen random valué = j € [0, 1]. If we replace this cut with an approximate cut with an noagive
adversary, it becomes a cut at valtle= E3. But because erraF is a random variable is independent of
3, ' is basically also a uniformly chosen random valtie= [0, 1]. To see, this consider some fixed value

b € [¢,1 — €] not too close to the endpoints. We have

b b+db

Pr[ﬂ’e[b,b+5bﬂ:/ Pr{ﬂe[e, s ]]-Pr[E:e]ée

e€lie, 1+

1+4e€

:/ @-Pr[E:e]ée:&)' / Mée .
e€[i-,14¢ € e€[r1,1+¢ e

1+e€? 1+4€’

This is a strange integration, but it is withii + ¢) of one and it is constant with respect &io Hence,
Pr (3 € [b,b+ 6b]] ~ db, meaning that’ is uniformly chosen withire, 1 — €. O
5 Conclusion

The are several lines of further inquiry. One could try to ioye our Balanced Allocation Lemma by
reducingd to 1, or by proving a high probability result. One could trydetermine if linear complexity is
obtainable for cake cutting if either exact fairness or guuus portions were required. But perhaps most
interesting is to see how other balanced allocation regulfse literature extend to the unrelated machines
case. The obvious first step would be to determine happehg isetquential/online case.
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