
Abstract

There has been considerable recent interest in probabilistic packet marking schemes for
sending information from nodes (routers) along one or more paths traveled by a stream of packets
to the end-host receiving that stream. Such schemes have a number of possible uses, including
tracing a sequence of network packets back to an anonymous source. A central consideration
for such schemes is the tradeoff between the number B of possible states of the marking bits in
a packet(B = 2b if b bits are allocated for the marking), the number of bits n of information
being sent by the nodes, and the expected number of packets T required to reconstruct this
information. For the case where the packets all travel along the same path, we prove a lower
bound of T ≥ Ω(B22n/(B−1)), roughly the square of an earlier lower bound of Adler.

For an upper bound, we consider a model where each of m nodes along a single path must
send one of s possible messages (thus n = m log2 s total bits are sent). We prove that T ≤
O(m ·22m(log

2
s)/(B−1)) suffices (the implicit constant depends on B and s); this almost matches

the lower bound, and is roughly the square root of an earlier upper bound of Adler. The new
bound holds for all B and s in two slightly relaxed models, while under the strictest requirements
we prove it only for some special values of B and s. This is related to a challenging geometric
problem: the existence of an s-reptile (B−1)-dimensional simplex, i.e. a simplex S that can
be tiled by s congruent simplices similar to S. We also arrive at interesting open problems
concerning matrices.

We also consider the case where the packets travel along multiple paths to the same desti-
nation. In this case, we present a new protocol and analysis technique that together allow us to
significantly generalize over previous work the scenarios where the protocol is effective.

1 Introduction

Probabilistic packet marking (PPM) is a recently discovered, powerful technique for extracting
information from nodes (typically routers) along a path travelled by a sequence of packets. In
PPM, a small number of header bits in each packet is reserved for this transfer of information,
and each node along the path can update these header bits. The goal is to inform the node of the
network that receives the sequence of packets of some information stored in a distributed fashion
across the nodes along the path. For example, a simple case is where each node along the path has a
single bit of information to send to the receiving node. The challenge (and power) of this technique
is that each of the intermediate nodes is required to perform this transmission in a memoryless
fashion: it can only update the header bits to a value based on its own piece of information, the
value of the header bits on the incoming packet, and some number of random bits.

The memoryless requirement is crucial in a network such as the Internet, where routers typically
handle a large number of simultaneous flows of packets, and thus it is not conceivable to have per-
flow state. This requirement also means that the nodes must mark the packets probabilistically.
PPM was first suggested in [4], with the first extensively analyzed protocols being introduced in
[17]. This early work used PPM to solve the IP Traceback problem: determine the source of a
stream of packets that hides its origin by “spoofing” the source node field in the packet header.
Solutions to the IP Traceback problem are crucial to combating Denial-of-Service attacks.

Such a scenario leads to two additional difficulties for designing a PPM scheme. First, a ma-
licious adversary sets the initial value of all header bits in the packet, including those allocated
to PPM, and thus this adversary will attempt to use this ability to hide the information being
transmitted. We henceforth refer to the node receiving the stream of packets, which is trying to
determine this information, as the victim. Second, many Denial-of-Service attacks are performed

1



in a distributed fashion, with multiple sources sending packets to the victim. In such a scenario,
a PPM scheme must be able to handle packets arriving at the victim along multiple paths, where
each path has different information to send to the victim, but the victim is not able to determine
the path travelled by a given packet.

The application of PPM to the IP Traceback problem has generated considerable interest in
this technique [6, 16, 19, 12, 8, 11, 9]. Furthermore, PPM has the potential to be useful in a number
of other scenarios as well: congestion control [2], robust routing [6], dynamic network configuration
[6], and identification of bottleneck routers [9].

In addition to the potential practical impact of PPM schemes, it turns out that designing
optimal PPM techniques is an interesting theoretical problem. In particular, [1] demonstrates that
there are inherent tradeoffs between the parameters s, B, m, k, and T , which are defined as follows.

• We assume that each node is given one element from a set of size s ≥ 2, and it must inform
the victim of which element it has.

• We also assume that the header bits can take on B different values. If all possible settings of
b binary bits are available, then B = 2b. Let us remark that in [20], an application of packet
marking to congestion control is described where B = 3, since two bits are available, but one
of the possible settings of these bits is reserved for another use.

• We assume that there are m nodes along a path.

• The parameter k represents the number of paths being used by the adversary.

• Finally, T is the number of packets that the victim must receive to reliably reconstruct the
messages from the nodes.

In [1], the following results quantifying the tradeoffs between these parameters are presented.
For the case where k = 1 (i.e., all packets travel along the same path), s = 2, and B = 2b for
an integer b, T ≤ 2(4+o(1))n/B packets are sufficient with high probability (here n = m). An
information-theoretic lower bound shows that T ≥ 2(1−o(1))n/B

*** Should we write these bounds more explicitly??
is necessary, for any values of s and m such that n = m log s. For the case of multiple paths,
B ≥ 2k − 1 must hold, regardless of how large T is. Furthermore, if the adversary sets the initial
marking bits to 0 in every packet, then there is a protocol with B ≤ 2k + 1.

In this paper, we provide several significant improvements to the results of [1]. For the case
of a single path, we prove a new lower bound, demonstrating that T ≥ Ω(B22n/(B−1)) packets are
necessary, for any values of s and m such that n = m log s. This value is roughly the square of the
lower bound shown in [1], and, for the case B = 2, matches an upper bound provided in [1].

For brevity, we call protocols (upper bounds) quasioptimal if T ≤ 2(2+o(1))n/(B−1) is sufficient
with high probability. For quasioptimality, we consider k, s and B fixed, and thus asymptotic
notation refers to m → ∞. Note that quasioptimality refers to the asymptotics of the exponent
and thus leaves plenty of room for improvement, especially for small values of m.

In our efforts to achieve quasioptimality, we provide a reduction from the PPM problem for a
given s and B to the problem of finding a (B − 1)-dimensional simplex that is an s-reptile; that is,
it can be partitioned into s equal sized pieces all congruent and similar to the whole. This allows
us to use known results on s-reptiles to provide quasioptimal protocols for various values of s and
B. In particular, we show that if B = 3 and s is of the form 2, i2, 3i2, or i2 + j2 for integers i and
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j or if B ≥ 4 is arbitrary and s = iB−1, then there is a quasioptimal protocol. The upper bound
provided by these protocols is roughly the square root of the bound shown in [1].

The reduction to finding s-reptiles also allows us to provide a new protocol for the scenario where
the marking bits are restricted in their initial distribution. This would be the case in cooperative
scenarios, such as applying PPM to congestion control, where the source of the packets sets the ini-
tial bits in a predictable fashion. We demonstrate that in this scenario, T ≤ O(s2B222m(log2 s)/(B−1))
is sufficient for any values of B and s. This differs from the new lower bound (which also applies to
this cooperative scenario) by a factor of only s2B, and thus the dependence on m is asymptotically
optimal for this scenario. A similar technique also achieves quasioptimality for any values of B and
s if the adversary sets the value of the initial bits, but the victim is allowed to lose the information
held by a few nodes farthest from it.

Finally, we turn to the case of multiple paths. We remove the assumption made in the protocols
of [1] that the adversary sets the initial marking bits to 0 in every packet. While such restrictions
on the initial distribution are natural for some scenarios of the single path case, the multiple path
case is mostly motivated by Denial-of-Service attacks, and thus the most relevant case is where a
malicious adversary is setting the initial value of the header bits. We here introduce a protocol
where B ≤ 2k + 1 is still sufficient, but this protocol makes two alternative assumptions that are
much more realistic in terms of the application of PPM to IP Traceback. First, we assume that
the element of the set of size s at each of the nodes are chosen randomly (instead of allowing
the adversary to choose worst case elements). Note that this is a reasonable assumption for IP
Traceback in the Internet, since an adversary cannot chose arbitrary nodes to corrupt; rather, it is
only able to target nodes that are compromised. Second, we assume that the intermediate nodes
have a small amount of information concerning their location along the path of attack. The exact
assumption is described below; this is also a reasonable assumption in the Internet. The lower
bound of B ≥ 2k − 1 from [1] still applies to this case.

2 Models for the PPM Problem

We first describe the model we use for the protocols. For the case of a single path of attack, we
assume that packets are traveling across a sequence of intermediate nodes. We shall refer to the
node on the path from the victim to the adversary at distance i from the victim as Ni (where the
victim is N0, and the adversary is Nm+1). Each node has one of exactly s values to send to the
victim. We shall refer to this information as W = w1w2 . . . wm, where wi ∈ [s] indicates the value
known by Ni.

Information is sent to the victim via the header bits in the packets traveling from the adversary
to the victim. We ignore the contents of each packet other than that allocated to PPM, and thus
we simply assume that each packet can take on exactly one of B values. Each node can update
the contents of each packet that it forwards towards the victim. However, this update can only be
based on the contents of the incoming packet, the value the node holds locally, and probabilistic
choices made by the node. The victim does have storage. Typically, we assume that the contents
of the packet received by the node Nm is set by a malicious adversary Nm+1. However, as was
described above, we sometimes assume that the initial distribution of packets is restricted.

For the case of multiple paths, we assume the same model, except that now there are up to
k different paths, each of which contains a different set of m nodes. Thus, there are as many as
km values that the victim must determine. Each packet travels along one of the k paths, and the
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contents of that packet can be updated by the nodes along that path. The adversary chooses which
path each packet travels on; the victim only sees the contents of the final packet it receives - it
does not know which path that packet traveled on. After receiving sufficiently many packets, the
victim attempts to determine the strings that were on paths used for a fraction of at least α

k of the
packets, for a parameter α ≤ 1. We provide more details on this model in Section 6.

For the lower bound, we assume a stronger model (i.e., a model where the problem is at least as
easy to solve as in the model for the protocols). For the lower bound model, we assume a system
consisting of only two parties, called the Victim and the Network, where we here capitalize Victim
to distinguish it from the victim of the upper bound model. The Network has an n-bit string to
send to the victim. No communication occurs from the victim to the Network. The Network is
allowed to send B-valued packets to the victim, but it is stateless: for each packet it sends, it has
no memory of the previous packets that it has sent. This lower bound model actually captures the
difficulty of sending information from a memoryless node using packets consisting of a bounded
number of bits.

Note that any protocol for the upper bound model implies a protocol for this model as well,
and thus lower bounds for this model imply lower bounds for the protocol model. In fact, it might
seem like this model is quite a bit more powerful: there is no adversary setting the initial bits of
the packets and all of the information to be transmitted is stored at a single node. Despite these
seeming advantages, we can prove lower bounds in this model that are close to matching the upper
bounds shown in the model for the protocols.

3 Protocols for a Single Path of Attack

Theorem 1 If (B, s) has one of the forms (2, i), (3, i2), (3, 3i2), (3, i2 + j2), (i, ji−1) for positive
integers i, j, then there is a protocol that recovers all values along the path with high probability as
long as the victim receives at least

T ≥ Cm · 22m(log2 s)/(B−1)

packets, with a suitable constant C depending on B and s. In particular, the protocol is quasioptimal.

Encoding in the probability distribution of packets. The basic idea, introduced in [1], is
to encode the given sequence W ∈ [s]n into the probability distribution of the packets received by
the victim. This probability distribution can be specified by a vector X = (x1, x2, . . . , xB), where
xu is the probability that a packet reaching the victim has value u ∈ [B]. Geometrically, such an
X can be regarded as a point of the (B − 1)-dimensional standard simplex

∆B−1 = {(x1, x2, . . . , xB) ∈ RB : x1, x2, . . . , xB ≥ 0, x1 + x2 + · · · + xB = 1}
in RB (for example, for B = 3, ∆2 is an equilateral triangle placed in R3).

If the victim receives sufficiently many packets, then he can “read off” the incoming distribution
X with a prescribed precision. This allows him to distinguish between different sets of possible
distributions, and is expressed quantitatively in the following lemma.

Lemma 2 Let X ∈ ∆B−1 be a distribution of the packets. Suppose that the victim receives T
packets generated according to X, let Zu be the number of received packets with value u, u ∈ [B],
and let Y = (Z1

T , Z2
T , . . . , ZB

T ). Let β > 0 and a > 0 be real parameters (that can be chosen at will)
and suppose that T ≥ a/β2. Then the probability that ‖X − Y ‖ ≥ β is at most 1/a.
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Proof: We calculate that the expectation E
[

‖X − Y ‖2
]

= 1/T ; then the claim follows from
Markov’s inequality. By linearity of expectation we have

E
[

‖X − Y ‖2
]

=
B
∑

u=1

E
[

(xu − Zu/T )2
]

= T−2
B
∑

u=1

E
[

(Txu − Zu)2
]

.

The term in the sum is the variance of Zu. Now Zu is the sum of T independent random variables,
each attaining value 1 with probability xu and value 0 with probability 1 − xu, and its variance is
thus bounded above by Txu. Hence E

[

‖X − Y ‖2
]

≤ T−1∑

u∈B xu = 1/T .
Protocols as affine maps. Now the main question is, how can the nodes encode their messages
into the probability distribution of packets received by the victim? Each node, being memoryless,
has no way of “knowing” the distribution of the incoming packets. It has to process one packet
at a time in a uniform way (but, of course, depending on the message w ∈ [s] it wants to send).
Having received a packet with value u, it must choose in a probabilistic way some value v to put in
the packet that it sends. Let pw,uv be the (fixed) probability that when it receives u ∈ [B], it sends
v ∈ [B]. The behavior of the node is fully specified by the choice of pw,uv for every w ∈ [s] and
u, v ∈ [B]. Any such choices that obey the natural restrictions pw,uv ∈ [0, 1] and

∑

v∈B pw,uv = 1
can be implemented.

Let us assume that the pw,uv are fixed, and that all nodes Ni, i = 1, 2, . . . ,m, follow the
same protocol given by these values. If the packets reaching Ni have some probability distribution
Xi ∈ ∆B−1, then the packets leaving it have the distribution Xi−1 given by

Xi−1,v =
∑

u∈[B]

pw,uv · Xi,u, (1)

where w ∈ [s] is the message Ni wants to send. In other words, we have Xi−1 = f(Xi), where
fw:∆B−1 → ∆B−1 is the affine map given by (1). We note that any affine map f :∆B−1 → ∆B−1

can appear as fw. Indeed, given such an f , the corresponding pw,uv is the vth coordinate of f(eu),
where eu = (0, 0, . . . , 0, 1, 0, . . . , 0) (with the 1 at position u) is the uth vertex of ∆B−1.

We prefer this way of regarding the protocol executed by the nodes as affine maps. Thus, by
a protocol for the nodes we mean an s-tuple F = (f1, f2, . . . , fs) of affine maps ∆B−1 → ∆B−1,
where fw is the map “executed” by a node with message w ∈ [s].

If the adversary (node Nm+1) sends packets to Nm with some distribution Xm, the path is
described by the string W = w1w2 · · ·wm ∈ [s]m, and each node Ni, i = 1, 2, . . . ,m, follows the
protocol F , then the distribution X0 “seen” by the victim is fW (Xm), where fW is the composed
map fw1 ◦ fw2 ◦ · · · ◦ fwm. In this section we assume Xm arbitrary, i.e., the adversary is free to
choose any initial distribution.

Definition 3 A protocol F as above has m-step resolution at least β if for every two distinct
strings W,W ′ ∈ [s]m, the (Euclidean) distance of the sets fW (∆B−1) and fW ′(∆B−1) is at least β.

By Lemma 2, if F has m-step resolution at least some β > 0, then the victim can reconstruct
the string sent by the m nodes (with probability close to 1) after receiving T = O(1/β2) packets,
no matter what initial distribution Xm the adversary chooses. Thus, in order to prove Theorem 1,
it suffices to exhibit protocols F with m-step resolution Ω(m−1s−m/(B−1)) for the values of B and s
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listed in the theorem. An easy volume argument shows that no protocol can have m-step resolution
better than O(s−m/(B−1)) (the constant in the O(·) notation may depend on B and s).
*** Even the lower bound of Ω(m−1/(B−1)s−m/(B−1)) can be proved, I believe. To be worked out. Jirka

An example. To describe our protocol constructions, we begin with an example where B = 3
and s = 2. Let a1 = e1, a2 = e2, a3 = e3 be the vertices of the equilateral triangle ∆2. First
we introduce two auxiliary affine maps g1, g2:∆

2 → ∆2. The map g1 is given by g1(a1) = a1,
g1(a2) = a3, and g1(a3) = ā = 1

2 (a1 + a2):

v1 v2

v3

w

∆

∆2∆1

The image g1(∆
2) is the gray triangle ∆1. Similarly, g2 is given by g2(a1) = a3, g2(a2) = a2,

g2(a3) = ā, and it maps ∆2 to ∆2.
For an affine map f :∆B−1 → ∆B−1, a point c ∈ ∆B−1, and a real number ε ∈ (0, 1), we

define the (1 − ε)-shrinking of f (with center c) as the affine map f̃ :∆B−1 → ∆B−1 given by
f̃(x) = f((1 − ε)(x − c) + c). Intuitively, we first shrink ∆B−1 by the factor 1 − ε from the center
c and then we apply f .

Continuing with our example, we let c be the center of gravity of ∆2, we choose a small ε > 0,
and we define fu as the (1− ε)-shrinking of gu, u = 1, 2. In the illustration below we have ε = 0.1,
f1 maps ∆2 to the shaded left triangle in the left figure and f2 maps it to the right shaded triangle:

For m = 4, the sets fW (∆2) for the 16 different strings W ∈ [s]m = [2]4 are the 16 small shaded
triangles in the right figure.

We claim that if we set ε = 1
m in the above construction, then the m-step resolution of F =

(f1, f2) is O(m−12−m/2); thus, it is quasioptimal (for s = 2 and B = 3). The definition below
captures properties of g1 and g2 used in the proof of this fact, and we state it for arbitrary B and
s.
α-tilings. First we introduce, for a map f :∆B−1 → ∆B−1, the quantity contr(f), which is defined
to be the smallest factor by which f contracts distances; that is,

contr(f) = inf
x,y∈∆B−1,x 6=y

‖f(x) − f(y)‖
‖x − y‖ .
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Definition 4 Let g1, g2, . . . , gs:∆
B−1 → ∆B−1 be affine maps such that the sets gu(∆B−1) for

u ∈ [s] have disjoint interiors. Let α ∈ (0, 1). We call (g1, g2, . . . , gs) an α-tiling (of ∆B−1) if for
all m ≥ 1 and for each W ∈ [s]m we have contr(gW ) ≥ δα−m for a positive constant δ (independent
of m but possibly depending on B, s, and the gu). An s−1/(B−1)-tiling is called an asymptotically

optimal tiling.

The following lemma shows that a suitable shrinking of an asymptotically optimal tiling leads
to quasioptimal protocols.

Lemma 5 Let (g1, . . . , gs) be an α-tiling of ∆B−1 and let c be an interior point of ∆B−1. For
a given m and u ∈ [s], let fu be the (1 − 1

m)-shrinking of gu with center c. Then the protocol
(f1, . . . , fs) has m-step resolution at least Ω(m−1αm) (implicit constants depending on the gu and
on c).

Proof: Let us write ε = 1
m . First we check that dist(fu(∆B−1), fv(∆

B−1)) ≥ βε for any u 6= v,
u, v ∈ [s], and a constant β > 0 independent of ε. Indeed, gu(∆B−1) is a simplex containing gu(c)
in its interior, thus fu(∆B−1) has distance at least βε, for a suitable β > 0, from the complement
Rd \ gu(∆B−1), and hence also from fv(∆

B−1) ⊆ gv(∆
B−1), since gu(∆B−1) and gv(∆

B−1) have
disjoint interiors.

Now we consider arbitrary words W and W ′ of length m and we let t be the first position where
they differ; that is, we can write W = UuV and W ′ = UvV ′, u 6= v (so U has length t − 1). Then
we have

dist(fW (∆B−1), fW ′(∆B−1)) ≥ contr(fU ) ·
dist(fu(fV (∆B−1)), fv(fV ′(∆B−1)))

≥ (1 − ε)t−1δαt · dist(fu(∆B−1), fv(∆
B−1))

≥ (1 − ε)mδαm · βε

= βδ

(

1 − 1

m

)m 1

m
· αm

= Ω
(

m−1αm
)

.

Lemma 5 is proved.

For our example above, it remains to verify that (g1, g2) is an asymptotically optimal tiling.
The condition that is not obvious is contr(gW ) ≥ Ω(2−m/2) for all W ∈ [2]m. It can be checked by
direct geometric arguments, but we offer a more conceptual proof that generalizes easily.

Let us consider the affine map h that maps the right isosceles triangle S to the equilateral
triangle ∆2, with h(a′j) = aj :

v′1
v′2

v′3

w′

∆′

2∆′

1

∆′
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The map r1 = h−1 ◦ g1 ◦ h:S → S maps S to its left half S1, and r2 = h−1 ◦ g2 ◦ h maps S to S2.
The important point is that both S1 and S2 are similar to S with ratio 2−1/2, and r1 and r2 are
isometries followed by scaling by the factor 2−1/2. Hence contr(rW ) = 2−m/2 for any W ∈ [2]m.
For gW we then have

gw = gw1 ◦ gw2 ◦ · · · ◦ gwn

= h ◦ rw1 ◦ h−1 ◦ h ◦ rw2 ◦ h−1 ◦ · · · ◦ h ◦ rwn ◦ h−1

= h ◦ rW ◦ h−1.

Therefore contr(gW ) ≥ contr(h) · contr(rW ) · contr(h−1) = Ω(2−n/2), and we have thus verified that
(g1, g2) is an asymptotically optimal tiling.

We conclude the discussion of our example by remarking that there are several affine maps that
map the equilateral triangle ∆2 to its left half ∆1, and not all of them can be chosen for g1 if we
want to get an asymptotically optimal tiling. For example, if we defined g1(a1) = a1, g1(a2) = ā,
and g1(a3) = a3, then the image of ∆2 under an m-fold iteration of g1 would be much too flat.

Asymptotically optimal tilings and simplex s-reptiles. The technique for showing that
our example yields an asymptotically optimal tiling can be generalized in an obvious manner and
it connects the problem to a classical area of combinatorial geometry.

The following notion has been studied in various contexts (see, e.g., [3, 18, 10, 15]): A closed
set S ⊂ Rd with nonempty interior is called an s-reptile (sometimes written “s rep tile” or “s
rep-tile”) if there are sets S1, S2, . . . , Ss with disjoint interiors and with S = S1 ∪ S2 ∪ · · · ∪ Ss that
are all congruent and similar to S. For each Su, let ru:S → Si be an affine map of S onto Su that
witnesses the similarity of Su to S; that is, it is an isometry followed by scaling by the factor s−1/d.
We call r1, r2, . . . , rs a reptiling map system of S. (If S has a symmetry, then the reptiling map
system is not unique.)

The above example was based on the fact that the right isosceles triangle S is a 2-reptile. The
following result establishes a close connection between asymptotically optimal tilings and simplex
reptiles:

Theorem 6 (i) Let S be a (B − 1)-dimensional simplex that is an s-reptile, and let h:S → ∆B−1

be an affine bijection. Let us put gu = h◦ru ◦h−1, u ∈ [s]. Then (g1, g2, . . . , gs) is an asymptotically
optimal tiling of ∆B−1.

(ii) Every asymptotically optimal tiling of ∆B−1 can be obtained from some s-reptile simplex as
in (i). Moreover, given affine maps g1, g2, . . . , gs:∆

B−1 → ∆B−1 such that the sets gu(∆B−1) have
disjoint interiors, it can be checked in polynomial time whether (g1, . . . , gs) is an asymptotically
optimal tiling.

The algorithmic claim in (ii) should be understood properly: We do not claim to be able to
check in polynomial time that the images gu(∆B−1) tile ∆B−1; we assume this as given. The
algorithm only checks the condition involving contr(gW ). We also do not consider in detail the
(nontrivial) issue of how the gu can be given; see a remark in the proof.

ADDED FI
Proof: Part (i) is proved by repeating the considerations in the above example almost verbatim.

It remains to deal with part (ii).
Let us assume that (g1, . . . , gs) is an asymptotically optimal tiling of ∆B−1. Easy volume

considerations show that the simplices gu(∆B−1) have equal volumes and tile ∆B−1 without overlap.
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Let us write d = B − 1 and let us assume that ∆d is isometrically embedded in Rd. Let
ℓu:Rd → Rd be the “linear part” of gu, given by ℓu(x) = gu(x) − gu(0). Then contr(gW ) =
contr(ℓW ) = inf{‖ℓW (x)‖ : x ∈ Rd, ‖x‖ = 1}.

Next, let Lu be ℓu scaled by s1/d, i.e., Lu(x) = s1/d · ℓu(x). Then Lu is volume-preserving.
For W ∈ [s]m we set CW = LW (Bd) = {LW (x) : x ∈ Rd, ‖x‖ ≤ 1}, and we let

C =
⋂

{CW : W ∈ [s]m,m = 1, 2, . . .}.

Each CW is convex, and thus C is convex as well. Since each Lu is a nonsingular linear map, Cu

is bounded, and hence C is bounded. Since (g1, . . . , gs) is an s−1/d-tiling, there is some δ > 0 such
that contr(LW ) ≥ δ for all W . Then C contains the ball of radius δ centered at 0.

We have Lu(CW ) = CuW , and so Lu(C) ⊆ C. Since Lu preserves volume and since the volume
of C is finite and positive, we have Lu(C) = C for all u ∈ [s].

Let E be the ellipsoid of the smallest volume containing C (the Löwner-John ellipsoid). As
is well known, the smallest-volume ellipsoid containing a given convex body is unique (see [5] for
references). Hence we have Lu(E) = E for all u ∈ [s] (for otherwise, E and Lu(E) would be two
different smallest-volume ellipsoids containing C).

Let h:Rd → Rd be a linear map that maps the unit ball Bd onto the ellipsoid E. Then each of
the linear maps Ru = h−1 ◦ Lu ◦ h maps Bd to Bd, and hence it is an isometry. Thus each of the
affine maps ru = h−1 ◦gu ◦h is an isometry followed by scaling by s−1/d. The simplex S = h−1(∆d)
is tiled by the images ru(S) without overlap, and it follows that S is an s-reptile.

Next, we consider the algorithmic question: Do given gu constitute an asymptotically optimal
tiling? By what we have already proved it is enough to check whether there exists a nonsingular
linear map h:Rd → Rd such that each ru = h−1 ◦gu ◦h is an isometry followed by scaling by s−1/d.

The affine map gu has the form gu(x) = Aux + bu, where Au is a nonsingular d×d matrix and
bu is a translation vector. In order to describe the input to the algorithm easily, we suppose that
the Au and bu are rational (using standard machinery, the algorithm can be extended to work with
algebraic numbers, say).

In the matrix language, we ask whether there is a nonsingular d× d matrix T (the matrix of h)
such that all the matrices Qu = s1/d · T−1AuT , u ∈ [s], are orthogonal, i.e. such that QT

u = Q−1
u .

This condition can be rewritten to s2/d · PAT
u = A−1

u P for all u, where P is the matrix TT T . As
is well known, a square matrix P can be written in the form TT T iff it is positive semidefinite.
So we have a semidefinite programming problem with an unknown matrix P , which is solvable in
polynomial time (see, e.g., [13]). We do not know whether there is any more direct algorithm.

We are thus led to the question, for what s and d does there exist a d-dimensional simplex
that is an s-reptile? Obviously, the answer is positive for d = 1 and all s. For d = 2, all s-reptile
triangles have been characterized [18], and in particular, they exist iff s is of the form i2, 3i2, or
i2 + j2, for integers i and j. The only known examples for d ≥ 3 seem to be the Hill simplices
(or Hadwiger-Hill simplices; see, e.g., [7]), which provide s-reptile d-simplices for all s of the form
s = id. These examples and the above discussion conclude the proof of Theorem 1.
Further research.

1. No s-reptile simplex is known for d ≥ 3 and s < 2d. Motivated by the present paper, it was
shown in [14] that no 2-reptile simplices exist for d ≥ 3. The general existence problem for
d-dimensional s-reptile simplices appears challenging.
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2. We have shown that an asymptotically optimal tiling has to come from an s-reptile sim-
plex. It would be interesting to decide whether this is also the only possible way to ob-
tain a quasioptimal tiling of ∆B−1, i.e. one with the condition on contr(gW ) weakened to
contr(gw) ≥ (1 − o(1))ms−m/(B−1).

*** Here an immediate problem comes from the matrix (Jordan cell)

(

1 1

0 1

)

, whose mth

power expands distances by the (subexponential) factor m. J.

3. How efficiently can we find (or approximate) the largest α such that given affine maps
g1, . . . , gs:∆

B−1 → ∆B−1, such that the images gu(∆B−1) have disjoint interiors, consti-
tute an α-tiling? If we rephrase this in a matrix language, we arrive at the at the following
(more general) problem, about which we haven’t found anything in the literature: Given d×d
matrices M1,M2, . . . ,Ms, can we decide (at least in some approximate sense) whether

sup
{

‖MW x‖ : x ∈ Rd, ‖x‖ ≤ 1,W ∈ [s]m,m = 1, 2, . . .
}

< ∞ ?

*** The answer is yes IFF there is a convex body C with MuC ⊆ C for all u ∈ [s]. In principle,
all possible C could be searched, up to some accuracy. How efficiently can this be done? Unlike
in the asymptotically optimal case, we no longer suffice with ellipsoids! Jirka

A powerful necessary condition for the last inequality is that all eigenvalues of every MW ,
W ∈ [s]m, have absolute value at most 1 (this is proved by fixing W and considering large
powers of MW ). We don’t know how to check this condition either, but it provides an useful
upper bound on α in the α-tiling question.

4. What is the best possible m-step resolution of a protocol, for given s and B? Our current
bounds are between O(m−1/(B−1)s−m/(B−1)) (always) and Ω(m−1s−m/(B−1)) (if an asymp-
totically optimal tiling exists). Suppose that for some B and s and for infinitely many m
there is a protocol with m-step resolution Ω(m−1s−m/(B−1)). Does this imply the existence
of an asymptotically optimal tiling?
*** Can we claim, say using Jeff’s lower bound argument, that every protocol achieving an
asymptotically optimal number of packets has an asymptotically optimal m-step resolution, or
something of that sort?? Jirka

4 Restricted Protocols for Any B and s

In the previous section we have constructed quasioptimal protocols for certain combinations of
values of B and s. For other cases, such as s = 2, B ≥ 4 we suspect that no quasioptimal protocols
exist, although we cannot prove it.

In such cases, several approaches are possible. First, we can try to construct suboptimal but still
good protocols, under the same requirements. The results of [1] yields a protocol with T ≤ s4n/B .
One can try to look for α-tilings of ∆B−1 with α as large as possible. In this context, the problems
raised at the end of the last section become even more relevant, since we would like to be able to
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estimate the best α for given candidate tilings. Another possibility is to relax the requirements on
the protocol. In the following theorem we offer two versions (attaining quasioptimality).

Theorem 7 (i) For every s and B there exist a region D ⊂ ∆B−1 (convex and with nonempty
interior) and a protocol such that such that if the distribution Xm of packets generated by the
adversary is guaranteed to lie in D, then the victim can reconstruct all m messages sent by the
nodes (with constant probability) using T ≤ O(s2B222m(log2 s)/(B−1)) packets.

(ii) For every s, B, and every function ϕ on the natural numbers with limn→∞ ϕ(n) = ∞,
there exists a (quasioptimal) protocol such that no matter what distribution Xm is generated by the
adversary, the victim can reconstruct (with high probability) the messages of the nodes Nm−ϕ(m)

through N1 using T ≤ 2(2+o(1))m(log2 s)/(B−1) packets.

*** Proofs from the old version need to be adjusted (change notation and explain the explicit
constants).

Part (i) is proved using a suitable s-reptile, in a way similar to Theorem 6(i). This time the
s-reptile is not a simplex, but rather, a suitable d-dimensional rectangular box R, where write
d = B − 1. First we define an auxiliary simplex S = {X ∈ Rd : x1, . . . , xd ≥ 0,

∑d
i=1 xi ≤ 1}.

Then we set ρ = s−1/d and λ = 1 − ρ, and we define R as the rectangular box
∏d

i=1[0, λρi−1]. The
reptiling map ru is given by ru(x1, x2, . . . , xd) = (ρxd + λ

s (u− 1), ρx1, ρx2, . . . , ρxd−1). That is, the
box is sliced into s congruent boxes by parallel slices perpendicular to the longest side. We let
h:S → ∆B−1 be an affine bijection, and we define a protocol (f1, f2, . . . , fs) by fu = h ◦ ru ◦ h−1.
It is easily checked that ru(S) ⊆ S, and hence the maps fu indeed map ∆B−1 into ∆B−1 and
constitute a protocol.

To define the region D where the initial distributions Xm are permitted to lie, we define R′ =
∏d

i=1[
λ
4ρi−1 3λ

4 ρi−1] as the 1
2 -shrinking of R from its center and we set D = h(R′). It remains to

verify that the protocol restricted to D has m-resolution Ω((sB)−1s−m/(B−1)). This is a simple
calculation which we omit.

For part (ii), we start with the protocol (f1, . . . , fs) as in (i). Then we choose a parameter
η > 0, depending on s,B and ϕ and tending to 0 as m → ∞ but very slowly, and we replace the
reptiling maps ru at the beginning of the construction by their (1 − η)-shrinking with center at
the origin (i.e. at a vertex of S; this is different from our previous shrinking operations, where
the center was always an interior point of the considered region). Let (f̃1, . . . , f̃u) be the protocol
obtained by the construction from the shrunk ru’s. The m-step resolution decreases somewhat by
the (1 − η)-shrinking of the ru but asymptotically this won’t matter. The point is that no matter
what initial distribution Xm is generated by the adversary, its images after ϕ(m) steps, i.e. f̃V (Xm)
for all V ∈ [s]ϕ(m), are guaranteed to lie in the region h(R), for which the protocol already “works.”
This is verified by a direct, although not entirely short, calculation.

This finishes a sketch of the proof of Theorem 7.
*** Rewrite!!!

Proof: We prove as follows that the first n0 = (ln(4s2/Ldε)/ ln s)d ∈ ω(1) nodes of the path are
guaranteed to shrink the full space ∆ to be contained within D, i.e., for all W ∈ [s]n0 , fW (∆) ⊆ D.
The protocol then continues our analysis as before assuming that the “Attacker” is the (n − n0)

th

node who provides a distribution Xn−n0 ∈ D.
What remains to prove is that ∆ shrinks to D. For each u ∈ [1, d], consider how the value xu

changes as it passes through d nodes. Each of the first d − u applications of fw multiplies xu by
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[(1 − ε)s−1/d] and cycles the coordinate to the right bringing it to the dth coordinate. The next
application again multiplies it by [(1− ε)s−1/d], adds w · L

s ≤ s−1
s ·L to it and rotates it to the first

coordinate. The remaining u−1 applications multiples this new amount by [(1−ε)s−1/d] and rotates
it back to the uth coordinate. The complete effect is that for W ′ ∈ [s]d and fW ′(〈x1, . . . , xd〉) =
〈x′

1, . . . , x
′
d〉, we have that x′

u ≤ [(1 − ε)s−1/d]d · xu + [(1 − ε)s−1/d]u−1 · s−1
s · L ≤ (1 − dε

2 )1
s · xu +

s−(u−1)/d · s−1
s ·L = a · xu + b for the appropriate a and b. The initial value of xu ≤ 1. Hence, after

n0 = m · d nodes, the coordinate x′′
u has become at most b + a · (b + a · (b + . . . a · (b + a · 1))) =

b(1−am)
1−a + am ≤ b/[1 − (1 − dε

2 )1
s ] + [1s ]ln(4s2/Ldε)/ ln s ≤ [s−(u−1)/d · s−1

s · L]/[s−1
s + dε

2s ] + Ldε
4s2 ≤

[s−(u−1)/d · L] · [1 − dε
4(s−1) ] + 1

sL · dε
4s ≤ s−(u−1)/d · L, which is within the required range to have

fW (X) ∈ D.

5 Lower bound for a single path of attack

Theorem 8 For any protocol P, let T be the expected number of packets received by the Victim
and w(P) be the probability that the Victim does not return the input string given to the Network
when that input is chosen uniformly at random from the set of all 2n possible n-bit strings. If

w(P) ≤ 1/2, then T ≥ Ω
(

B · 22n/(B−1)
)

.

Proof: (Sketch.) Let permutation oblivious protocols be the restricted class of protocols where
the Victim waits until it has received exactly T packets, where T depends only on n and B. It
then ignores the order that the packets arrive and considers only the receipt profile X, which is

the B-tuple from ∆〈B,T 〉 =
{

X = (x1, . . . , xB) :
∑B

u=1 xu = T
}

, where xu is the number of packets

of type u received by the Victim. In a permutation oblivious protocol, the Victim’s strategy is
specified by the function V (X,W ) which is the probability that when the Victim receives receipt
profile X, it guesses that the Network’s n-bit string is W .

Adler in [1] proves that for any general protocol P, there is a permutation oblivious protocol
P ′ for the Victim, where w(P ′) ≤ w(P) + 1/4, and P ′ uses at most 4 times as many packets as
P. Intuitively, this is because the Network has no memory and thus no sense of time, and so the
order in which the packets arrive is not useful information for the Victim. Thus, to prove the lower
bound for general protocols that make a mistake with probability at most 1/2, it suffices to prove
a lower bound on permutation oblivious protocols that make a mistake with probability at most
1/4.

The lower bound in [1] follows from the fact that if the n-bit string W is communicated by
the Network “sending” a receipt profile X, then the number of packets T must be large enough
that the number of different receipt profiles is at least the number of possible values held by the
Network. We improve on this idea via a technique to account for the fact that the Network does
not have full control over the receipt profile that it sends. In particular, all that a protocol is able
to do is specify the probability N(W,u) that the Network sends a packet of type u when its n-bit
string is W . This same probability is used independently when sending each of the T packets. This
in turn induces the probability N(W,X) that receipt profile X is “sent” by the Network when its
n-bit string is W . We demonstrate that no matter what the Network does, the probability that it
sends a particular profile X is exponentially small.

Lemma 9 Given n-bit string W and any receipt profile X = (x1, . . . , xB), the probability N(W,X)

that the Network “sends” X when having W is at most N(X) =
√

T
e

· ΠB
u=1

e√
xu

.
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Before proving this, we will consider an easier situation in which each packet is obtained by an
independent Bernoulli trial. If the Network can color each packet either red or blue independently
with any fixed probability p of its choice and it wants to color exactly x of them red, then the best
it can do is to set p = x

T . As such, the expected number of red packets is x = pd. Furthermore, with
constant probability the actual number of packets is fairly uniformly distributed within a range of√

x =
√

pT of this expected number. As a result of this, the probability of getting exactly x reds is
approximately e√

x
. Note that this probability does not depend on the number of packets T . The

reason that the probability of the Network sending exactly X is at most
√

T
e

· ΠB
u=1

e√
xu

is that it

must get the exact number xu of each type of packet.

Lemma 10 Given any number x ≤ T
2 and any single way of coloring each of T packets indepen-

dently, the probability of there being exactly x red packets is at most e√
x
.

Proof: Fix x ≤ T
2 . If the probability of a packet being red is chosen to be p, then the probability

that there are exactly x red packets is P (p) =
(T
x

)

px(1− p)T−x. To maximize this probability with

respect to p, it is equivalent to maximize ln(P (p)) = ln(
(T
x

)

)+x ln p+(T−x) ln(1−p). Differentiating
and setting to zero gives x

p = T−x
1−p and solving gives p = x

T . Fix p = x
T .

Let Px =
(T
x

) ( x
T

)x
(

T−x
T

)T−x
be the probability that there are exactly x red packets.

Let P(x+h) =
( T
x+h

) (

x
T

)x+h
(

T−x
T

)T−x−h
be the probability that there are exactly x+h red packets,

where h ≤ 1
2

√
x. We bound the ratio between these as follows.

P(x+h)

Px
=

(T − x)

(T − x)
. . .

(T − x − h + 1)

(T − x)
· x

(x + h)
. . .

x

(x + 1)

≥
(

1 − h

T − x

)h

·
(

1 − h

x

)h

≈ e
− h2

T−x · e−h2

x ≥ e−1

Similarly, we can bound
P(x−h)

Px
≥ e−1. This gives us that probability of there being x plus or minus

1
2

√
x red balls is 1 ≥∑

h=−1/2
√

x...1/2
√

x P(x+h) ≥
√

x · e−1 · Px. This gives the result that Px ≤ e√
x
.

Proof (of Lemma 10): Consider any n-bit string W and any desired receipt profile X =
(x1, . . . , xB). Assume WLOG that xB is the largest xu. Let X ′ = (x′

1, . . . , x
′
B) be the profile

that is actually produced.

N(W,X) = Pr
[

x′
1 = x1, . . . , x

′
B = xB | W

]

= ΠB−1
u=1 Pr

[

x′
u = xu | x′

1 = x1, . . . , x
′
u−1 = xu−1 & W

]

Note that we do not worry about x′
B = xB because

∑B
u=1 xu =

∑B
u=1 x′

u = T . In the experiment
Pr
[

x′
u = xu | x′

1 = x1, . . . , x
′
u−1 = xu−1 & W

]

, the contents of
∑u−1

i=1 xi of the packets have been

fixed leaving some T ′ =
∑B

i=u xi left to be determined. Note that xu ≤ T ′

2 , because xB is assumed
to be at least xu. We will say that one of these T ′ packet is colored red by the Network if it is of
type u. Lemma ?? then gives that the probability that the number of packets with contents u is
exactly xu is at most e√

xu
. This gives
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N(W,X) = ΠB−1
u=1

e√
xu

≤
√

T

e
· ΠB

u=1

e√
xu

We use this Lemma to prove Theorem 8. We consider the quantity ρ(P) = (1 − w(P)) · 2n.
Since 1 − w(P) is the probability that using P, the Victim returns the input string given to the
Network when that input is chosen uniformly at random from the set of all 2n possible n-bit strings,
we have 1

4 · 2n ≤ ρ(P). Furthermore, ρ(P) =
∑

W∈{0,1}n Pr [Victim returns W | Network has W ] =
∑

W∈{0,1}n

∑

X∈∆〈B,T〉
Pr[ Network sends profile X and

Victim returns W | Network has W ]
=
∑

W∈{0,1}n

∑

X∈∆〈B,T〉
N(W,X) · V (X,W ). Computing this sum becomes difficult because of

the interplay between what the Network and the Victim do. However, we decouple them by not
forcing the Network to run a fixed protocol when it has the message W , but instead for each dis-
tribution of packets X allow it to use the protocol that will maximize its probability of sending X.
This can increase the probability of success. However, we know from Lemma 10 that no matter
what the Network does, N(W,X) ≤ N(X). This conveniently decouples our sum, giving us that
ρ(P) ≤ ∑

X∈∆〈B,T〉
N(X) ·∑W∈{0,1}n V (X,W ) ≤ ∑

X∈∆〈B,T〉
N(X) · 1. By plugging in the value

for N(X), we get ρ(P) ≤ ∑

X∈∆〈B,T〉

√
T
e

· ΠB
u=1

e√
xu

. We then can use Lemma 11 to bound this

by
√

TeB−1 ·
[

π(3.4
√

T )B−2√
(B−1)!

]

≤
π

3.4
·(3.4e

√
T )B−1√

((B−1)/e)B−1
≤
(

3.42
e
3T

B−1

)(B−1)/2
. Solving 1

4 · 2n ≤
(

3.42
e
3T

B−1

)(B−1)/2

gives that T ≥ Ω
(

B · 22n/(B−1)
)

.

Lemma 11 If ∆〈B,T 〉 =
{

x = (x1, . . . , xB) | ∑B
u=1 xu = T

}

, then
∑

x∈∆〈B,T〉
ΠB

u=1
1√
xu

≤ π(3.4
√

T )B−2√
(B−1)!

For intuition, the requirement that
∑B

u=1 xu = T leaves B − 1 independent values of xu, each
roughly T/B. Hence, there are approximately (T/B)B−1 terms in the sum

∑

x∈∆〈B,T〉
ΠB

u=1
1√
xu

.

Each term is roughly ( 1√
T/B

)B . This gives a total of about (T/B)B−1 · ( 1√
T/B

)B =
√

T/B
B−2

.

Proof: The proof is by induction on B. For B = 2, Maple gives that the sum
∑T

x=1
1√
x
· 1√

T−x

is at most π. Assuming that the hypothesis is true for B − 1, for B we have
∑

x∈∆〈B,T〉
ΠB

u=1
1√
xu

=

∑T
x=1

1√
x
·
[

∑

x′∈∆〈B−1,T−x〉
ΠB−1

u=1
1√
xu

]

, which by induction hypotheses is at most
∑T

x=1
1√
x
·
[

π(3.4
√

T−x)B−3√
(B−2)!

]

=

π(3.4)B−3√
(B−2)!

·
[

∑T
x=1

(T−x)c
√

x

]

, where c = B−3
2 . Lemma 12 then gives that this is at most π(3.4)B−3√

(B−2)!
·

[

2.4√
c+1

· T c+1/2
]

= π(3.4)B−3√
(B−2)!

·
[

2.4·
√

2√
B−1

· T (B−2)/2
]

≤ π(3.4
√

T )B−2√
(B−1)!

.

Lemma 12
∑T

x=1
(T−x)c

√
x

≤ 2.4√
c+1

· T c+1/2.

Proof: We break the sum into two at r = 0.35T
c+1 . First,

∑r
x=1

(T−x)c
√

x
≤ T c ·∑r

x=1
1√
x
≤ T c ·2√r ≤

1.2√
c+1

·T c+1/2. Second,
∑T

x=r
(T−x)c

√
x

≤ 1√
r
·∑T

x=r(T−x)c ≤ 1√
r
· 1
c+1(T−r)c+1 = 1√

0.35T/(c+1)
· 1
c+1(T−

0.35T/(c+1))c+1 = 1√
0.35

· (1− 0.35
c+1 )c+1 · 1√

c+1
·T c+1/2 ≤ 1√

0.35
·e−0.35 · 1√

c+1
·T c+1/2 ≤ 1.2√

c+1
·T c+1/2.
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6 Protocol for Multiple Paths

In this section, we provide our new protocol for the case of multiple paths of attack. Recall that
for this case of the problem, there are up to k different paths, each of which contains a different
set of m nodes. The adversary chooses which path each packet travels on; the victim only sees the
contents of the final packet it receives - it does not know which path that packet traveled on. The
goal is to design a protocol where the victim can determine the strings that were on paths used for
a fraction of at least α

k of the packets, for a parameter α ≤ 1. We refer to the string of information
along the jth path as Wj . Also, we refer to the node at distance i from the victim on the jth path

as N j
i .

The minimum value of B required by this protocol is 2k +1, which is the same as that achieved
by a protocol provided in [1]. The main improvement of the new protocol is the assumptions made
on the underlying network. In particular, the protocol from [1] assumes that the adversary always
sets the initial bits to 0. Thus, it would be quite easy for the adversary to disable that protocol. We
here provide a protocol that works for any scheme by the adversary to set the initial bits. Instead,
we show that the combination of two other and more realistic assumptions is sufficient. We point
out that the lower bound of B ≥ 2k − 1, shown in [1], still applies with the two assumptions made
here.

First, we assume that the value to be sent by each node in the system is chosen indepen-
dently and uniformly at random. This is justified in the IP Traceback scenario, since the attacks
these techniques protect against occur from compromised nodes in the Internet. Our assumption
here corresponds to the assumption that the descriptions of the paths to compromised nodes are
distributed randomly, as opposed to being a worst case distribution.

Our second assumption is that the nodes along each path have a small amount of information
as to their location along that path. Note that this is also a reasonable assumption in the Internet,
since a node has access to the destination of a given packet, and nodes are likely to have some
knowledge of whether that destination is close by or not. In particular, we assume that each node
N j

i has a predicate C such that if N j
i has distance of at most 2 log k+1 hops from the victim of the

attack, then C(N j
i ) = TRUE, and if i is the node adjacent to the adversary, then C(N j

i ) = FALSE

(and hence m ≥ 2 log k+2). For the remainder of the nodes along the path, the value of C(N j
i ) can

be either TRUE or FALSE. For example, if 2 log k < m/2, it is sufficient for a node to know if it is in
the first or second half of the routing path. For ease of presentation, we make two assumptions that
are not difficult to remove: (1) we assume here that C(N j

i ) is constant for all j, and we assume that

all N j
i for which C(N j

i ) = TRUE are closer to the victim than any N j
i for which C(i) = FALSE.

We denote by Cmax the number of i for which C(N j
i ) = TRUE.

We also point out that the protocol we describe here is based on that introduced in [1], with a
number of changes. The real innovation of the result presented here is not as much these changes
as a greatly improved analysis technique. This new analysis technique allows us to prove these
results. It also has considerable potential to address the question of tight tradeoffs for the number
of packets required in the multiple path case, an interesting open problem.

6.1 The protocol

We here describe the protocol for the case where s = 2 (i.e., each node has a single bit), but our
technique can easily be adapted to any s that is a power of 2. We here assume that the protocol is

15



designed for a specific upper bound on k: the protocol is not required to know how many paths the
adversary is using. Instead, it works (with high probability), as long as the the adversary does not
use more than k paths. For simplicity, we also here assume that B = 2k + 1. For larger values of
B, the remaining states of the marking bits are treated as being equivalent to state 0, and thus are
not used. Let d = 2k = B − 1. We define two different mappings from a probability distribution
over packets to a probability distribution over packets. For each of these, let pu,v be the probability
that the packet u gets mapped to packet v. Consider first the mapping zero:

• For 0 < u ≤ d, pu,u = 2−u, and pu,0 = 1 − 2−u.

• For u 6= v, and v 6= 0, pu,v = 0.

• p0,0 = 1.

The second mapping is called one:

• For 1 ≤ u ≤ v ≤ d, pu,v = 22u−3v
(v
u

)

+ 2−3v.

• For 1 ≤ v < u ≤ d, or u = 0 < v ≤ d, pu,v = 2−3v.

• For v = 0 ≤ u ≤ d, pu,v = 1 −∑d
v=1 pu,v.

The protocol from [1] consists of a node with the bit 0 simply applying mapping zero, and a
node with the bit 1 applying mapping one. In the new protocol, a node N j

i with the bit 0 and

C(N j
i ) = TRUE applies the mapping zero twice, followed by the mapping one once, followed by

three more applications of the mapping zero. A node N j
i with the bit 1 and C(N j

i ) = TRUE

applies the same process, except that the last mapping zero is replaced with a one. A node N j
i

with the bit 0 and C(N j
i ) = FALSE applies the mapping zero ck + 1 times, for a suitable constant

c to be described below. A node N j
i with the bit 1 and C(N j

i ) = FALSE applies the mapping zero

ck times, followed by the mapping one. This completes the description of the encoding portion of
the protocol.

Theorem 13 For any α, and any δ > e−
2
3
k + 22 log k−Cmax, there is a value T (α, δ), such that

after the victim has received at least T (α, δ) packets, with probability at least 1 − δ, he has enough
information to determine every string that is on a path used for at least a fraction of α

k of the
packets the adversary sends.

We point out that the lower bound on δ is due to a requirement that the set of k strings “look”
random (in a manner we make formal below). For any set of strings that meet this requirement,
the probability of success can be made arbitrarily close to 1.

Proof: Assume first that the adversary sets the initial value of every packet to 0 (as was assumed
throughout in the protocol of [1]). Later, we shall see how to relax this assumption. Let pu(Wj)
be the probability that a packet, with initial value 0, sent on a path with string Wj, arrives at the

victim set to the value u. Let wj
i be the ith bit (starting from the victim) of the string Wj. Let

XWj
=

Cmax
∑

i=1

(
1

2
)6(i−1)+1(wj

i +
1

8
) +

m
∑

i=Cmax+1

(
1

2
)(ck+1)(i−Cmax−1)+6Cmax+1wj

i .
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We shall refer to XWj
as the value of the string Wj. Note that XWj

is the real number with a
binary representation where the bit representing 2−t is a 1 if and only if the tth mapping (counting
from last to first) applied to the probability distribution is the mapping one. Thus, if the victim is
informed of the value of a string or even a sufficiently good estimate of this value, then this gives it
sufficient information to determine all the bits of that string. With the assumption that the initial
bits are set to 0, Claim 9 from [1] demonstrates that for 0 < u ≤ d:

pu(Wj) =

(

XWj

4

)u

, (2)

Thus, if the victim could determine a sufficiently good estimate on pu(Wj), for any u, 0 < u ≤ d,
it would have enough information to determine the string Wj. However, the adversary is able to
“hide” the pu(Wj)s by choosing what fraction of the packets are sent on each of the different paths.
Let λj be the fraction of the received packets that are sent by the adversary with string Wj . The
probability that a randomly chosen packet from the set of packets received by the victim has its bits
set to u is qu =

∑k
j=1 λjpu(Wj). The set of received packets provides the victim with an estimate

on the values of the qu. Although the stochastic variance inherent to the communication process
means that it is unlikely for the victim to know the qus exactly, we first assume that the victim
is given the exact values of the qus, and demonstrate that this uniquely determines the entire set
of strings used by the adversary. This allows us to build some intuition for why the victim is able
to decode the set of strings in the actual scenario. We shall then remove both this assumption, as
well as the assumption that the adversary set the initial bits to 0.

We show that if we assume that the qus do not determine the strings uniquely, this leads to a
contradiction. Let V (Wj) be the 2k-dimensional vector where component u of V (Wj), for 1 ≤ u ≤
2k, is pu(Wj). We shall refer to V (Wj) as the string vector for Wj. Assume that there is some set
of strings Wk+1 . . . W2k and probabilities λk+1 . . . λ2k such that

∑k
j=1 λjV (Wj) =

∑2k
j=k+1 λjV (Wj).

For the set of strings to not be uniquely determined, it must be the case that there is some string Wj

with λj > 0 such that if j ≤ k then Wj 6∈ {Wk+1, . . . ,W2k}, and if j > k then Wj 6∈ {W1, . . . ,Wk}.
Assume here that such a string is W2k; the case where j ≤ k is similar. In this case, we see that

λ2kV (W2k) =
k
∑

j=1

λjV (Wj) −
2k−1
∑

j=k+1

λjV (Wj). (3)

There may be strings that appear in both W1, . . . ,Wk and Wk+1, . . . ,W2k. However, by replac-
ing any such string with another unused string, we see that (3) implies that there is some set of 2k
distinct strings W ′

1 . . . W ′
2k and real numbers λ′

1 . . . λ′
2k, with λ′

2k > 0, such that

λ′
2kV (W ′

2k) =
2k−1
∑

j=1

λ′
jV (W ′

j). (4)

Now, consider the 2k × 2k matrix M where entry Mu,j = pu(W ′
j). From (4), we see that M

does not have full rank. However, from (2), we see that Mu,j =

(

XW ′
j

4

)u

. The 2k × 2k matrix

M ′, where entry M ′
u,j =

(

XW ′
j

4

)u−1

, is a Vandermonde matrix. Since the strings W ′
1 . . . W ′

2k are

distinct, if j 6= j′ then XW ′
j
6= XW ′

j′
, and thus M ′ has full rank. Since, for all strings Wj, XWj

6= 0,
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the matrix M must have full rank as well, which is a contradiction. Therefore, the exact values of
the qu exactly determines all strings Wj , 1 ≤ j ≤ k, such that λj > 0.

We next examine the effect of removing our two assumptions. In particular, 1) instead of the
victim knowing the values of the qu exactly, it only has the information provided by the packets it
has received: a series of samples from the probability distribution. Also, 2) the adversary, instead
of being restricted to setting the initial bits to 0 on each packet, is allowed to employ any strategy
it wants for the initial bits.

We can think of the values qu as a point in B-dimensional space, where the coordinate for
dimension u is qu. The effect of removing both of the two assumptions above is that instead of
knowing the exact point defined by the qus, we instead know a point that we shall show is (whp)
sufficiently close to determine any string that is used to send a large enough fraction of the packets.
Let Q be the point defined by the qus. Let D0 = 6

26Cmax+(ck+1)(m−Cmax) . The estimate of the point

Q that is used is as follows: the victim collects T = 6k
D2

0
ln 2k

δ packets. For 1 ≤ u ≤ B, let Yu be the

number of times that packet u is seen in the T packets. We set q̄u = Yu/T .
The victim only returns sets of strings that are likely to lead to seeing the q̄us that it computes.

Furthermore, it restricts its attention to those sets of strings that are not too close together, since
it is unlikely that randomly chosen strings will be too close together.

Definition 14 We say that a set of k strings W1, . . . ,Wk is well dispersed if ∀j, 1 ≤ j ≤ k,Πi6=j |XWi
−

XWj
| ≥ 2−32k.

The victim returns any string Wj such that Wj is contained in a convex combination of at
most k string vectors, with the coefficient associated with Wj being at least α

k , such that (a) the
Euclidean distance of the resulting convex combination from the corresponding point defined by
the q̄us is at most D0, and (b) the set of k strings is well dispersed. We first point out that it is
likely that the adversary has a set of strings that is well dispersed.

Claim 15 Say we choose a set R of k strings independently and uniformly at random. The prob-
ability that R is not well dispersed is at most e−

2
3
k + 22 log k−Cmax.

Proof: Note that the value XWj
for a randomly chosen string Wj, when represented in binary,

has a first bit that is chosen randomly, with five subsequent bits that are fixed, and then every 6th
bit is chosen randomly with the subsequent 5 bits fixed, until Cmax bits have been chosen randomly.
After that, one in every ck + 1 bits is chosen randomly.

The probability that any randomly chosen pair of strings Wi and Wj have a value that agrees
on the first 6Cmax bits is at most 2−Cmax . Thus, by a union bound, the probability that any pair
of strings agrees on the first 6Cmax bits is at most 2−Cmax+2 log k. Thus, we henceforth assume that
any pair of string values disagrees somewhere on the first 6Cmax bits.

We next examine a single string Wj, and bound the probability that the pairwise products with
respect to this string are too small. We see that the distribution on |XWj

− XWi
| stochastically

dominates the distribution on (1
2 − 1

64)6h+1, where h is the number of heads seen before the first
tail in a sequence of flips of a fair coin. Thus, for a fixed Wj , Πi6=j |XWj

− XWi
| stochastically

dominates (31
64 )6ĥk+k, where ĥk is the number of heads seen before a total of k tails have been

seen in a sequence of flips of a fair coin. Standard Chernoff bound techniques suffice to show that
Pr[ĥk ≥ 5k] ≤ e−

4
3
k.
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Thus, by taking a union bound over all possible strings j, Pr[∃j s.t. Πi6=j|XWj
− XWi

| ≥
(31
64 )31k] ≤ e−

4
3
k+lnk ≤ e−

2
3
k. The claim now follows from the fact that (31

64 )31k ≥ (1
2)32k

We demonstrate that with probability at least 1 − δ, the victim returns every string P such
that a fraction of at least α

k of the packets travel on P , and no strings that are not used by the
adversary at all. To do so, we prove two lemmas: We first demonstrate that (whp) the point
determined by the victim is not more than D0 distance from Q. We then demonstrate that every
convex combination of string vectors that has a coefficient associated with string Wj of at least α

k ,
where Wj is not used by the adversary, has a Euclidean distance from Q of more than 2D0. Let

Dq =
√

∑2k
i=1(qu − q̄u)2.

Lemma 16 Pr[Dq > D0] ≤ δ.

Proof: Note that for each u, |q̄u−E[q̄u]| is the distance caused by stochastic variation, and
|qu−E[q̄u]| is the distance caused by the adversary not setting the initial bits to 0. Standard

Chernoff bound techniques demonstrate that with N packets, Pr[
√

∑2k
i=1(E[q̄u] − q̄u)2 ≥ D0/2] ≤ δ.

Thus, we only need to demonstrate that the effect of the adversary setting the initial bits arbitrarily
cannot cause the distance from the point Q to be more than D0/2.

To examine the effect of arbitrary settings of the initial bits, note that since the mappings
performed by the nodes are linear, it is sufficient for us to consider each of the cases where the
adversary always sets the initial bits to the same value, for all possible values, and to show that
for each of these individually, the distance from Q is at most D0/2. This is sufficient, since the
strategy used by the adversary must be some convex combination of these strategies.

Claim 17 For u a positive integer, let µ(u) = max(0, u − 2). After a packet has had ℓ ≥ 1 sets
of three mappings applied to it, where the first two mappings in each set are the mapping zero,
|qu−E[q̄u]| ≤ 1

23ℓ+µ(u) .

Proof: We prove this by induction on ℓ. For the base case, consider ℓ = 1. When the last
mapping in the set of three is zero, the claim follows simply from the definition of the mapping
zero. When the last mapping is one, the portion of the mapping from u to v (which is only relevant
when v ≥ u) is

(v
u

)2u

4v . With the combination of the 2 zero mappings that are applied before the
one, we see that the amount of u that goes to v is

(v
u

) 2u

24v . For v = 1, only u = 1 is relevant, and
thus we see that in the case that the incoming packet is a 1, after the first node has applied its
mapping, |q1−E[q1]| ≤ 1

8 , as desired. For v > 1, we see that the amount of u that goes to v is at
most 1

22v . Summing over all relevant u, we get at most v
22v , which is at most 1

2v+1 , as desired.
For the inductive step, if we assume that the inductive hypothesis holds, then the case where

the last mapping is a zero is easy. For the case where the last mapping is a one, we saw for the
base case that the total relevant probability of going from u = 1 to v = 1 is at most 1

8 , and so the
inductive step works for |q1−E[q1]|. For the case of v > 1 we also saw in the base case that the
total relevant probability of being v after this step is at most 1

2v+1 . Even if this all comes from the
largest possible value at the previous node (i.e., u = 1), this is still sufficient for the inductive step.

This implies the Lemma, since the distance from Q is at most 3
26Cmax+(ck+1)(m−Cmax) .

Note that Lemma 16 implies that with high probability, the victim returns all strings that it is
required to return. To show that with high probability the victim does not return any strings that
it should not return, we show that Dq ≤ D0 also implies that there can be no string P not used by
the adversary such that P is returned by the victim.
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Lemma 18 If the set of strings used by the adversary is well dispersed, then every convex combi-
nation of k well dispersed string vectors that contains a string Wj, not used by the adversary, with
a coefficient of more than α

k , has a Euclidean distance from Q of at least 2D0.

Proof: If a string Wj as described by the Lemma exists, then there must be some set of strings
W1 . . . W2k, where W1 . . . Wk are the well dispersed strings used by the adversary, Wk+1 . . . W2k

are the well dispersed strings contained in the incorrect convex combination, and W2k is the string
returned incorrectly. Thus, W2k 6∈ {W1, . . . ,Wk}, and there exist probabilities λ1 . . . λ2k, with
λ2k ≥ α

k , such that
√

√

√

√

√

B
∑

u=1





2k
∑

j=k+1

λjpu(Wj) −
k
∑

j=1

λjpu(Wj)





2

≤ 2D0

This implies that there are 2k distinct strings W ′
1, . . . ,W

′
2k and real numbers λ′

1 . . . λ′
2k, with

λ′
2k ≥ α

k , such that

√

√

√

√

√

B
∑

u=1



λ′
2kpu(P ′

2k) −
2k−1
∑

j=1

λ′
jpu(P ′

j)





2

≤ 2D0 (5)

Let D1 be the Euclidean distance in ℜ2k from the point λ′
2kV (W ′

2k) to the subspace spanned
by V (W ′

1), . . . V (W ′
2k−1). For (5) to be true, it must be the case that D1 ≤ 2D0. Thus, to

demonstrate that no such incorrectly returned string W2k can exist, it is sufficient to show that
D1 > 2D0. Let V2k be the 2k-dimensional volume of the parallelepiped defined by the vectors
V (W ′

1), . . . , V (W ′
2k−1), λ2kV (W ′

2k) in ℜ2k. Let V2k−1 be the (2k − 1)-dimensional volume of the

parallelepiped defined by the vectors V (W ′
1), . . . , V (W ′

2k−1) in ℜ2k. We see that D1 = V2k

V2k−1
, and

thus we consider each of V2k and V2k−1 separately. In what follows, for any string Wi, let YWi
=

XWi

4 .

Lemma 19

V2k = λ2k

∏

1≤i<j≤2k

∣

∣

∣YW ′
i
− YW ′

j

∣

∣

∣

2k
∏

i=1

YW ′
i
.

Proof: Due to the convenient form of the vectors V (W ′
1), . . . , V (W ′

2k), we can easily determine
V2k. In particular, a standard result from linear algebra is that V2k is equal to the absolute value of
the determinant of the matrix T , where column j of T , for 1 ≤ j ≤ 2k − 1, is V (W ′

j), and column
2k is the vector λ2kV (W ′

2k).

To compute |det(T )|, consider the matrix T ′, where column j of T ′, for 1 ≤ j ≤ 2k, is
Vj

YW ′
j

. By

(2), the matrix T ′ is Vandermonde, and thus

det(T ′) =
∏

1≤i<j≤2k

∣

∣

∣YW ′
i
− YW ′

j

∣

∣

∣ .

The lemma then follows from the fact that to get T from T ′, we merely multiply each column i of
T ′ by YWi

, with the exception of column 2k, which is multiplied by λ2kYWi
.
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Lemma 20

V2k−1 ≤
∏

1≤i<j≤2k−1

∣

∣

∣YW ′
i
− YW ′

j

∣

∣

∣

2k−1
∏

i=1

[YW ′
i
(1 + Y 2k−1

W ′
i

)].

Proof: Let V 2(Wj) be the vector consisting of the components 1, YWj
, Y 2

Wj
, . . . , Y 2k−1

Wj
. Let

V 3(Wj) be the vector consisting of the components 0, YWj
, Y 2

Wj
, . . . , Y 2k−1

Wj
. Let V 4(Wj) be the vec-

tor consisting of the components
0, 1, YWj

, Y 2
Wj

, . . . , Y 2k−2
Wj

.

For e ∈ {2, 3, 4}, let Ve
2k−1 be the (2k − 1)-dimensional volume of the parallelepiped defined by

the vectors V e(W ′
1), . . . , V

e(W ′
2k−1) in ℜ2k.

Since V (Wj) is simply V2(Wj) with every component multiplied by YWj
, V2k−1 = V2

2k−1 ·
∏2k−1

i=1 YW ′
i
. Similarly, V3

2k−1 = V4
2k−1 ·

∏2k−1
i=1 YW ′

i
. Since V4

2k−1 is the 2k − 1 dimensional volume

of a set of 2k − 1 vectors in 2k − 1 dimensions, V4
2k−1 is the absolute value of the determinant of

the matrix formed by the vectors V 4(W ′
1), . . . , V

4(W ′
2k−1). Since this matrix is Vandermonde, its

determinant is
∏

1≤i<j≤2k−1

∣

∣

∣YW ′
i
− YW ′

j

∣

∣

∣ .

Claim 21 V2
2k−1 ≤ V3

2k−1

∏2k−1
i=1

1+Y 2k−1

W ′
i

YW ′
i

.

Proof: Consider the process of changing from the vectors V 2(W ′
1), . . . , V

2(W ′
2k−1) to the vec-

tors V 3(W ′
1), . . . , V

3(W ′
2k−1), and consider the pairing of each vector of the type V 2 with the

corresponding vector of the type V 3. This process has two effects on the parallelepiped defined by
these vectors: it changes the length of the vectors, and it changes the angle between vectors. Note
first that for any two pairs of corresponding vectors, the angle between those two vectors for V 3 is
at least as large as the angle between those two vectors for V 2. Since all angles are between 0 and
90 degrees, the effect of the change in angles can only increase the volume of the parallelepiped.
Thus, we only need to consider the change in length for each vector.

Let L1 be the length of V 2(Wj), and L2 the length of V 3(Wj). Since L1 =
√

1 + Y 2
Wj

+ Y 4
Wj

+ . . . + Y 4k−2
Wj

and L2 =
√

Y 2
Wj

+ Y 4
Wj

+ . . . + Y 4k−2
Wj

, it is easy to see that ∀j, L1 ≤
1+Y 2k−1

Wj

YWj

L2.

The Lemma follows. .
Since D1 = V2k

V2k−1
, we see that D1 is at least

λ2kYW ′
2k

∏2k−1
i=1

(

YW ′
i
− YW ′

2k

)

∏2k−1
i=1 (1 + Y 2k−1

W ′
i

)
≥ λ2k

128

2k−1
∏

i=1

(

YW ′
i
− YW ′

2k

)

,

where the second inequality follows from the fact that for 1 ≤ i ≤ 2k, 1
64 ≤ YW ′

i
≤ 1

4 . To complete
the proof, we need to demonstrate that for any set of 2k string vectors formed from two well
dispersed sets of k string vectors, this quantity will not be too large.
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Claim 22 Let S1 = {YW1 , . . . , YWk
} and S2 ={YWk+1

, . . . , YW2k
} be two sets of well dispersed string

vectors such that YW2k
6∈ S1.

∏

YWi
∈S1∪S2−YW2k

|YWi
− YW2k

| ≥ 1

265k+6Cmax+(m−Cmax−1)(ck+1)+2
.

Proof: Let YWm be the element of S1 that minimizes |YWm −YW2k
|. Note that since the last bit

of the strings must be different, |YWm−YW2k
| ≥ 1

26Cmax+(m−Cmax−1)(ck+1)+3 . Since S2 is well dispersed,

∏

YWi
∈S2−YW2k

|YWi
− YW2k

| ≥ 1

232k
.

Since S1 is well dispersed,
∏

YWi
∈S1−YWm

|YWi
− YWm| ≥ 1

232k
.

Furthermore, since YW2k
is closer to YWm than any other element in S1, it must be the case that

∀Wi ∈ S1, |YWi
− YW2k

| ≥ |YWi
− YWm|/2. Thus,

∏

YWi
∈S1−YWm

|YWi
− YW2k

| ≥ 1

233k−1
.

The claim follows.
Lemma 18 (and hence the Theorem) now follows by observing that if we set c = 72 + log 1

α ,
then for k ≥ 2 it must be the case that D1 > 2D0.

Finally, we mention the computational efficiency of the decoding procedure. A simple solution
is to try all possible

(2m

k

)

sets of k paths, and for each set, (a) check if it is well dispersed, and (b)
check to see if the corresponding string vectors have a convex combination that is sufficiently close
to the observed sample from the received packets. Part (b) can be done via linear programming
(strictly speaking, this requires using an L1 norm, instead of the L2 norm we have used in the
proofs, but adapting our proofs to L1 is not difficult). While this procedure is not very fast, the
number of packets that are required is 2Ω(mk), and thus the decoding procedure is polynomial in the
number of packets received. Determining if there exists a faster decoding algorithm is an interesting
open problem.
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