
Erasure Codes with a Hierarchical Bundle Structure

Jeff Edmonds ∗† Michael Luby ‡

November 14, 2017

Abstract

This paper presents a proof of the existence of computationally fast probabilistic erasure
codes at distance ǫ from being MDS, namely the decoding algorithm is able with high probability
to reconstruct the n letter message from any set of (1+ǫ)n letters. It can either be fixed rate or
a rateless LT code [10] in that any number of code letters can be produced and each is produced
independently of the others. We also decrease the minimum packet size from many to one
letter. The key ingredient is a scheme Hierarchical Bundle/Bin (HB) which splits the message
into a hierarchy of disjoint bundles and produces coded packets about each bundle. We show a
correspondence of this to a particular game having to do with randomly throwing balls into a
hierarchy of bins. The “information” that does not over flow from a smaller bin, contributes to
the next larger bin that it is contained in. We prove matching upper and lower bounds on the cost
of this game and provide the implementation details. This analysis is somewhat analogous to the
evolution of the ”ripple” in the LT decoding analysis [10]. The bundle size corresponds to the
degree of the packet, therefore, smaller bundles tend to reduce encoding/decoding complexity,
but packets coming from larger bundles ensure the approximately-MDS constraint, by ensuring
more coverage. Our HB scheme with largest block size b requires encoding and decoding time
O(ǫb2) rather than the O(b2) needed for Reed-Solomon codes. This scheme HB (together with
Spielman’s expanders) gives a probabilistic code with running time O(ǫ−1 ln(ǫ−1)n). Alon and
Luby [5, 6] simultaneously developed a deterministic version but their running time is O(ǫ−4n).
Both our and Alon’s results have since been completely subsumed by the latest generation of
Shokrollahi and Luby’s Raptor codes [13, 14, 11].

1 Introduction

Most existing and proposed networks are packet based, where a packet is fixed length indivisible
unit of information that either arrives intact upon transmission or is completely lost. Erasure codes
allow decoding the message even when many of packets have been lost. Such codes are important
for applications such as multicasting real-time high-volume video information over lossy packet
based networks [2, 3, 9] and other high volume real-time applications [12].

A common scheme for encoding an n letter message is to break it into bundles of size b and
separately encoding each bundle. Reed-Solomon codes required time O(b2) per bundle for a total
of O(b2)× n

b = O(bn) time1. Suppose all of the code letters are permuted randomly before placing

∗Computer Science Department, York University, York, Canada. Email: jeff@cse.yorku.ca.
†This paper was presented at 36th FOCS, pp. 512-519, 1995.
‡Qualcomm Technologies, Inc. Email: luby@qti.qualcomm.com. Research done while both were at the Interna-

tional Computer Science Institute.
1If we encode the b letters into cb, we ignore the linear dependence on c because it tends to be small.

1

them in packets and we receive (1+ǫ)n packets2. Then the number received about a given bundle is
binomial with mean (1+ǫ)b. Being a maximal distance separable (MDS) code, a bundle is recovered
iff this number is at least b. The trade off in choosing b is between the running time and the
probability of being able to successfully decode each bundle.

Our first scheme Hierarchical Bundle/Bin (HB) decreases time for a single bundle from O(b2)
to O(ǫb2) by having a hierarchy of bundles. The bundle of size b is broken further into smaller
bundles, which are broken again and so on. The scheme will produce packets about each level of
bundle. The smaller the bundle, the less time will be used to produce a packet about it. The larger
the bundle, the smaller the probability of there not being enough packets received contributing to
this bundle. This can easily be modeled in a game having to do with randomly throwing balls into
a hierarchy of bins. We prove matching upper and lower bounds on this stated trade off.

A common way to view an encoding scheme is to consider the bipartite graph with an edge
between a packet and a letter of the message if the first depends on the second [4, 10, 11, 13, 14,
15, 16]. Often, the nodes of these graphs are of fixed degree. In contrast, in LT codes [10] and here
the degree bi of a packet is randomly chosen from a degree distribution. In both [10] and here, the
design and analysis of a good degree distribution is a primary focus of the paper. These degrees have
an exponential range in order to get as said both the time advantage of the smaller degree packets
and the coverage advantage of the larger degree ones helping to ensure the approximately-MDS
constraint. Another difference is that generally, the packet/letter bipartite graph is an expander
graph so that each new packet received gives the maximum amount of new information about the
message. In contrast, our graph is very structured (see Figure 5) so that packets about a small
bundle of the message can also contribute to a larger bundle that it is contained in. We ensure
that we do not receive more information than is useful about any particular bundle of the message.
This structure is also designed to be retained during the decoding process in order to make it more
computationally efficient.

LT codes introduced by Luby [10] are rateless, i.e., the number of encoding letters that can be
generated from the data is potentially limitless. Furthermore, encoding symbols can be generated
on the fly, as few or as many as needed. The key is that the decoder can recover the entire message
with high probability from any set of the generated encoded letters that is only slightly longer in
length than the data. Thus, no matter what the loss model is on the erasure channel, encoding
letters can be generated as needed and sent over the erasure channel until a sufficient number have
arrived at the decoder in order to recover the data. Our HB scheme can either be such a code or can
encode each b letter bundle into cb letters for a fixed rate c. In the first paradigm, independently
for each packet, the encoder randomly chooses which message bundle of which size bi it should be
about and then like in [10] randomly chooses a binary vector of length bi corresponding to the row
of the encoding matrix V × M = E. The contents of the packet will simply be the GF[2ℓ] dot
product of this vector with the message ℓ bit letters in the bundle. The disadvantage of this is that
this bi bit encoding vector must be included in the header of the packet so that the decoder knows
it. To amortize the size of this header, the letter size ℓ of the packet should be at least the same
number ℓ = b of bits. This would mean that the entire message bundle would contain b letters of b
bits each for a total of b2 bits. In contrast, if the rate is fixed to some c, then these encoding vectors
can be fixed ahead of time and known by both the encoder and the decoder, and hence not need
to be included in the header. An inadvertent disadvantage of this is that though we prove that a

2The network is assumed to drop packets independent of their contents. We also assume that each packet contains
a unique identifier.

2

random
((

wi
1+ǫcbi

)
× bi

)
binary matrix Vi for each bin/bundle size i ∈ [1..s] works for this purpose

with high probability, it is unknown how to construct such matrices. (After fixing the matrices Vi,
the scheme is deterministic except for randomly permuting the packets.)

Another advantage of a fixed rate scheme is that then it can be what is called systematic in
the literature, which means that the message itself is part of the encoding and more over the time
to decode the message from the encoding depends primarily only on the amount of the message
that is missing. This property is desirable especially in the case when only a small number of the
packets are lost.

Another reason our scheme is fast is that the basic operation is bit-wise XORs as opposed
to operations over a finite field. Throughout, our basic unit of length is a letter, which is a bit
string of length ℓ. Each packet receives the one letter which is a linear combination of the letters
in the message bundle that it is about. Encode and decode the message requires such O(ǫb2) letter
operations. For the algorithm, the letter size ℓ could be a single bit. One reason for having it larger
is to allow for header information. Another reason is to amortize the number O(ln(1/ǫ2)ǫ3b3) of
additional bit operations required to decode. If we set ℓ to be O(ln(1/ǫ)ǫ2b), then the number of
“letter” operations to decode is O(ǫb2) as required. In order to emphasize this, we expressed in
Figure 1 the total decoding time as being O(ǫb2)×

(
1+O(ǫ2 log(ǫ−1)b/ℓ)

)
.

Returning now to encoding a message consisting of n
b bundles of length b. If we do not

want the decoding of any of the bundles to fail, when the failure probability for each bundle is
e−Ω(ǫ2b), then we need to set the bundle size to b = O(ln(n)). The total time O(ǫbn) then is
super linear. If, however, we only require a 1−β fraction of the bundles to be decoded, then we
are able to decrease the bundle size to only b = ln(β−1)ǫ−2, and hence the running time to only
O(ǫbn) = O(ln(β−1)ǫ−1n), while keeping the failure probability exponentially small. This we call
scheme HB′. See Figure 1.

Finally, scheme HB′′ is able to recover all n-bits of the message because it is made up of two
encoding/decoding phases. In the first, the n-bit message M undergoes an expansion by a factor
of 1+O(ǫ) forming the intermediate message/code M ′. It is this M ′ that is broken into bundles
that are separately encoded in the second phase. Only a 1−β = 1−ǫ2 fraction of these bundles
need to be decoded in the second phase because the first phase only requires this fraction of M ′

to recover the entire message M . Plugging in β = ǫ2, gives a running time of O(ǫ−1 log(ǫ−1)n). In
contrast, Alon and Luby [5, 6] simultaneously developed a deterministic version but their running
time is O(ǫ−4n). The time needed for Luby’s LT code [10] is O(log(n)n) with ǫ = O(1√

n
) but

with polynomial instead of exponential error probability. Shokrollahi [13] improves this time with
Raptor codes which require time O(log(ǫ−1)n).

The encoding scheme for the first phase of HB′′ was developed in [5, 6] and is based on a
breakthrough result of Spielman [16] on error correcting codes. It uses expanders which are explicit
graphs with pseudo-random properties.

Section 2 defines the hierarchical bin game and proves the matching upper and lower bounds
for it. Section 3 describes how this ball game translates into scheme HB. Section 4 constructs
scheme HB′ from HB and constructs HB′′ from Expanders and HB′. The description of scheme
Expanders is not included here, but is found in [5, 6].

3

Scheme MDS HB HB′ HB′′ Raptor Expanders

Message Leng b n

Code Length cb cn (1+ǫ)n

Code Needed b (1+ǫ)b (1+ǫ)n (1−β)(1+ǫ)n

Mess. Acquired all (1−β)n all

Failure Prob zero e−Ω(ǫ2b) e−Ω(βǫ2n) e−Ω(ǫ4n) n−Ω(1) zero

Time O(b2) O(ǫb2)× O(ln(β−1)ǫ−1n)× Õ(ǫ−1n)× Õ(n) O(ǫ−1n)(
1+Õ(ǫ2b/ℓ)

) (
1+O(ln(β−1) ln(1/ǫ)/ℓ)

) (
1+O(ln2(1/ǫ)/ℓ)

)

Packet Size ℓ 1 f.e. 1 1 f.e.

Figure 1: The six encoding schemes discussed in this paper are compared in this table. The scheme
MDS is the standard quadratic time Reed-Solomon maximal distance separable (MDS) code. The
scheme HB is the our hierarchy of bundles scheme that encodes each bundle of size b. The scheme
HB′ applies HB to each bundle. The scheme HB′′ first applies Spielman’s Expanders and then
applies HB′. This result has since been completely subsumed by the latest generation of Shokrollahi
and Luby’s Raptor codes. In all six schemes, a message of the stated size is encoded into a code
of the stated size partitioned into packets of the stated size. Given any subset of the packets with
the stated total size, the message (or most of it) can be decoded. If it is probabilistic, the failure
probability is given. The encoding and decoding times are also given. All sizes are measured in
number of letters and the running time in number of letter operations. For some the packet size
is a single field element (f.e.) needing O(ln(ǫ−1)) bits. For others a packet could contain as few
as ℓ = 1 bit. However, if we set ℓ to be Õ(ǫ2b) or O(ln2(1/ǫ)), then this amortizes the number
of bit operations required to invert V̂ . Here Õ means an extra factor of ln(ǫ−1). All schemes are
systematic meaning the code contains the message.

2 A Hierarchy of Bin/Bundle Sizes

Varying the bundle size b yields a tradeoff between the computation time and the probability of
success. We can optimize both metrics by using a hierarchy of bundle sizes. This is modeled by
the following hierarchical bin game.

Given b and ǫ, the task is to set the parameters b1 < b2 < . . . < bs = b and 0 < w1, w2, . . . , ws,
where

∑
iwi = 1+ǫ in the way to minimize the cost of the game while maintaining a sufficiently

high probability of the game winning. Given all the parameters, the game is as follows. There is
one bin of size bs. Poised over this bin are bs/bs−1 bins of size bs−1. Similarly, poised over each
bin of size bi are bi/bi−1 bins of size bi−1. Let B〈i,j〉 be the jth bin of size bi. We use the notation

Figure 2: A Hierarchy of Bins

B〈i−1,j′〉 ⊆ B〈i,j〉 to indicate that bin B〈i−1,j′〉 is poised over bin B〈i,j〉.

The game throws some number of balls into each bin and independently each ball fails to

4

land with some probability so that the expected number to land in a given bin of size bi is wibi.
Note that there are b/bi bins of this size. Hence, the total number of balls expected to land is∑

i(wibi)(b/bi) = (
∑

iwi)b = (1+ ǫ)b. (Clearly a ball landing in a bin of size bi corresponds to
receiving a packet about a bundle of this size).

The game then proceeds by pouring the contents of each bin into the bin of the next largest
size below it starting with smallest. Hence, a ball that is thrown into a bin of the smallest size will
progress through the hierarchy until it reaches the single bin of the largest size. However, if a bin
ever contains more balls then its size then the excess balls overflow from the bin and are lost. More
formally, balls that land directly into a bin are said to be about the bin, balls that land or are poured
into a bin are said to contribute to the bin, and the number of these balls that do not overflow
out of the bin are said to be useful to the bin. We will denote the number of such balls by a〈i,j〉,
c〈i,j〉, and u〈i,j〉, respectively. Then Exp(a〈i,j〉) = wibi, c〈i,j〉 = a〈i,j〉 +

∑
(B〈i−1,j′〉⊆B〈i,j〉)

u〈i−1,j′〉 and

u〈i,j〉 = min(c〈i,j〉, bi). We say a bin is full if u〈i,j〉 = bi. The game wins if the single bin of the largest
size b is full. The cost of throwing a ball into a bin is the size bi of the bin. The cost of the game
is the expected sum of the costs of the balls that land3, which is

∑
i(wibi)(b/bi)bi = (

∑
iwibi)b. As

said, the task given b and ǫ is to set the parameters bi and wi in the way that minimize the cost
of the game while maintaining a sufficiently high probability of the game winning. For example,
suppose that all the balls are thrown into the bins of some fixed size bi, i.e., wi = (1+ǫ) and for
i′ 6= i, wi′ = 0. Then the single bin of the size b is full if and only if all of these bins of size bi are
full, because the sum of their sizes is b.

Lemma 1 When the total number of balls expected to land is (1+ǫ)b, the optimal setting of the
parameters bi and wi subject to maintaining a success probability of at least 1 − e−Ω(ǫ2b) yields a
cost of (

∑
iwibi)b = Θ(ǫb2).

Proof of Lemma 1 (upper bound): For s = log(1
ǫ2
) and i ∈ [1..s], set bi = b/2s−i so that

each bin has two bins of half its size poised over it. The smallest bin is of size b1 = b/2s−1 = 2ǫ2b
and the largest of size bs = b. We will set wi so that with high probability no balls overflow from
bins except possibly from the single bin of size b. If even a single ball does overflow from even
one bin, then we will assume the entire game fails. We will define qi and set w1 = 1 − q1, for
i ∈ [2..s − 1], wi = qi−1 − qi, and ws = qs−1 + ǫ. Note that

∑
iwi = 1 + ǫ as required. Later

we set qi ≈ ǫ
√
b/bi, ranging from q1 = ǫ

√
b

2ǫ2b
= 0.71 and qs = ǫ

√
b
b = ǫ. This gives w1 ≈ 0.29,

wi ≈ 0.41ǫ
√
b/bi = 0.41 · 2−i/2, and ws ≈ 2.41ǫ.

Because no bin overflows, the number of balls contributing to the bin B〈i,j〉 is the sum landing

into it or any bin above it, namely Exp(c〈i,j〉) ≤ ∑
i′∈[1..i]

bi
bi′
wi′bi′ =

(∑
i′∈[1..i]wi′

)
bi = (1 − qi)bi.

Chernoff then bounds the probability that there is overflow from this bin to be Pr
[
c〈i,j〉 > bi

]

≤ e
− 1

2

(qibi)
2

(1−qi)bi ≤ e−
q2
i
bi
2 . (Note that for larger bi, it is less likely that c〈i,j〉 will deviate far from its

expectation, causing overflow. Hence, qi can safely be smaller.) To obtain our desired probability

of failure, we set qi =
√

ǫ2b+4(s−i)
bi

(≈ ǫ
√
b/bi). This gives Pr

[
c〈i,j〉 > bi

]
≤ e−2(s−i) × e−

1
2
ǫ2b. There

are b/bi = 2s−i bins of size bi, giving that the probability of overflow in some bin excluding the

largest is at most
∑

i∈[1..s−1] 2
s−i × e−2(s−i) × e−

1
2
ǫ2b ≤ e−

1
2
ǫ2b.

3The cost of the scheme is the number thrown which is a factor of c
1+ǫ

more which because c is assumed small is
ignored.

5

If there is no overflow from bins except possibly the largest one, then every ball thrown
contributes to the largest bin. The total number of balls thrown is Binomial with mean (1+ǫ)b.
Hence, the probability that fewer than b are thrown is at most e−Ω(ǫ2b). This completes bound on
the probability of the game failing.

What remains is to bound the cost (
∑

iwibi)b of the game with these parameters. Recall

ws × bs = [qs−1 + ǫ] × b =

[√
ǫ2b+4(s−(s−1))

bs−1
+ ǫ

]
× b = O(ǫb). The term wi × bi, when calculated

similarly, decreases geometrically as i decreases. Namely, [wi+1 × bi+1]/[wi × bi] = [(qi − qi+1) ×
bi+1]/[(qi−1 − qi)× bi]. Recall that bi+1 = 2bi and factor out bi. Let a = ǫ2b+ 4(s− i). This gives

a ratio of [(
√
a−

√
a−4
2)× 2]/[(

√
a+4
1/2 −√

a)× 1] ≥ 0.9
√
2 (seen by plotting). Thus the cost of the

game is (
∑

iwibi)b = O(ǫb)b.

Proof of Lemma 1 (lower bound): Consider a setting of the parameters b1 < b2 < . . . < bs
and w1, w2, . . . , ws for which the cost of the game (

∑
i∈[1..s]wibi)b is o(ǫb2). We prove that the

probability the game fails is at least e−o(ǫ2b).

a

a

µ
m

µ

a

Figure 3: We consider the underflow µ on the first m bins of medium size and all the larger bins
they pour into.

We will carefully select one index î ∈ [1..s] and call the bin size bî medium. We will fix
m ∈ [1..bî+1/bî] and consider the first m bins B〈̂i,1〉, B〈̂i,2〉, . . . ,B〈̂i,m〉 of this size. See Figure 3.

Recall that a〈̂i,j〉 is the number of balls about bin B〈̂i,j〉 because they land directly into it, c〈i,j〉 is

the number that contribute to it because they land or are poured into it, and u〈i,j〉 is the number
that are useful because they do not over flow but are poured into the next bin size. We will assume
that no smaller bin over flows and hence the expected number of balls contributing to a medium

sized bin is Exp(c〈̂i,j〉) =
∑

i∈[1..̂i](wibi)(bî/bi) =
(∑

i∈[1..̂i]wi

)
bî = (1 + q)bî. Here q is set so that

qbî is the expected amount to over flow from such a bin. By the game
∑

i∈[1..s]wi = 1+ ǫ and hence
q ≤ ǫ. Though we expect excess balls in this bin, we may be unlucky and have underflow in it. Let
µ〈̂i,j〉 = max(bî − c〈̂i,j〉, 0) be the amount of this under flow and let µ =

∑
j∈[1..m] µ〈̂i,j〉 be the total

underflow in these bins we are considering. If we are going to succeed to get b balls in the bottom
bin, then this µ underflow will need to be made up with balls these medium bins are poised over.
Because m ≤ bî+1/bî, these m medium bins of size bî are all poised over the same first bin B〈̂i+1,1〉
of the next larger size bî+1. This in turn is poised over the sequence B〈̂i+2,1〉, B〈̂i+3,1〉, . . . , B〈s,1〉
of first bins of larger size. Let a be the random variable indicating the number of balls landing in
these larger first bins, namely a =

∑
i∈[̂i+1,s] a〈i,1〉. The proof proceeds by proving that if µ > a,

then the game will fail and proving that Pr(µ > a) ≥ e−o(ǫ2b). Thus, as needed the game fails with
at least this probability.

To help understand why the game will fail if µ > a, briefly recall the information theory,

6

message encoding interpretation of the game. The bins B〈̂i,1〉, . . . ,B〈̂i,m〉 corresponds to bundles

of the message consisting of mbî letters. About bundles of this size or smaller there are only
mbî − µ code letters giving information about these. There are only a code letters about larger
bundles also containing these same message letters. Hence if µ > a then there are fewer mbî code
letters about these mbî message letters. Hence by information theory, the message letters cannot
be reconstructed and the game fails. Let us reprove this based on the counting of balls. Suppose
that each of the not yet considered bî+1/bî −m medium sized bins B〈̂i,m+1〉, . . . , B〈̂i,bî+1/bî〉 poised

over B〈̂i+1,1〉 receive more than bî balls each. All but bî of these balls over flow and hence at most

bî are poured into B〈̂i+1,1〉. Because the first m medium bins have a total under flow of µ, the total

number of balls poured into B〈̂i+1,1〉 is bî × bî+1/bî − µ = bî+1 − µ. This bin has a〈̂i+1,1〉 balls land

directly into it giving bî+1 − µ + a〈̂i+1,1〉 useful to it. Because bî+1 is the size of this bin, it has

underflow of µ− a〈̂i+1,1〉. We carry this same idea down one bin size at a time for the first bin of

the size. In the end, b− µ+
∑

i∈[̂i+1,s] a〈i,1〉 = b− µ+ a balls contribute to the single bin of largest
size b. Hence if µ > a, this bin will still have underflow and the game will fail.

We now show that Pr(µ > a) ≥ e−o(ǫ2b). Recall that the expected number of balls contributing
to a medium sized bin is Exp(c〈̂i,j〉) = (1 + q)bî. Getting underflow in one of these bins first

requires the unlucky event that the qbî excess balls fails to arrive. Once we have paid for the
probability of this, the probability is not change much by considering the event that 2qbî fail to
arrive giving an underflow of µ〈̂i,j〉 = qbî. Using Chernoff bounds, the probability of receiving

2qbî below c〈̂i,j〉’s expected value (1 + q)bî is at least exp[− (2qbî)
2

2·(1+q)bî
] ≥ e−O(q2bî). If this happens

in each of the first m medium sized bins then the total underflow is µ = mqbî. Recall that
a =

∑
i∈[̂i+1,s] a〈i,1〉 is the number of balls about the first bin of each larger size. With probability

at least 1
e , it is at most its expected value a = Exp[a] =

∑
i∈[(̂i+1)..s]wibi. We want µ > a and

hence set m = a/(qbî) so that mqbî = a. We can then compute Pr[the game fails] ≥ Pr[µ > a]

≥ Pr[a < a and ∀j ∈ [1..m] c〈̂i,j〉 ≤ bî − qbî] ≥ Pr[a < a]× Pr[c〈̂i,j〉 ≤ bî − qbî]
m ≥ 1

e × e−O(q2bî)m

= e−O(qa). Recall q ≤ ǫ. The advantage of considering only one bin of each larger size is that
a =

∑
i∈[(̂i+1)..s]wibi is at most the cost

∑
i∈[1..s] wibi of the game, which by assumption is o(ǫb). In

conclusion, the game fails with probability e−O(qa) = e−o(ǫ2b).

What remains is to carefully select the one index î ∈ [1..s]. The only requirement used is
that m = a/(qbî) is a number of medium size bins that are all poised over the first next size

bin. This requires that 1 ≤ a/(qbî) ≤ bî+1/bî or that qbî ≤ a ≤ qbî+1. To help choose î, it

would be considerably easier if î was almost continuous in some range, namely can be increased
in infinitesimal increments, instead of being an integer. Towards this goal, we modify our bin
structure in the following way that has no effect on its cost or the success probability of its game.
Instead of having a single row of bins of size bi, each expecting to have wibi balls land in it, split
it into wi/δ separate rows of bins of this same size bi, each expecting to have δbi balls land it.
Reindex all the rows. Note that if such an intermediate bin size î is chosen, then there is only one
bin of this size poised over the next bin size and hence m ∈ [1..bî+1/bî] is restricted to being one.

However, this poses no problem. Note that as î is increased from zero almost continuously, we have:
q = (

∑
i∈[1..̂i]wi)−1 also increases almost continuously from −1 to ǫ; qbî increase piecewise linearly

from something negative to something positive; and a =
∑

i∈[(̂i+1)..s]wibi decreases from something
positive almost continuously to zero. See Figure 4. Because qbî starts below a and ends above it,

by the intermediate value theorem, they must cross at some value. Set î to be this value. If they

7

cross at a discontinuity of qbî, then bî and and bî+1 will be two different original bin sizes and we
will have as needed that qbî ≤ a ≤ qbî+1. If the functions cross at a continuous place in qbî, then
we do consider this bin size bî to be split in two at this point and we have that qbî = a = qbî+1.

value of i

Figure 4: A plot of qbî and a as a function of î. Here they cross at a discontinuity of qbî.

3 A Linear Encoding Scheme over GF[2]

Lemma 2 There exists a deterministic encoding scheme HB mapping a bundle B of b letters onto
an encoding E with cb letters with properties given in Figure 1, namely (i) If a random subset of the
letters of the encoding is received, with the number received binomial with mean (1 + ǫ)b, then the
probability of not reconstructing all b letters of the message is at most e−Ω(ǫ2b). (ii) The encoding
and the decoding times are O(ǫb2). (iii) The letter size is ℓ = O(ln(1/ǫ)ǫ2b) bits (or fewer but then
the decoding time is O(ǫb2)×

(
1+O(ln(1/ǫ)ǫ2b/ℓ)

)
). (iv) It is systematic. Alternatively, the scheme

can be a rateless LT code in that any number of code letters can be produced and each is produced
independently of the others.

This section is organized as follows. First the details of the encoding scheme are given. Then
Lemma 2 (Prob) bounds the probability of being able to reconstruct the message. The encoding
and decoding algorithms are simple matrix multiplication and Gaussian elimination with some
extra care not to do work when there is known to be zeros in the matrix. The pheudo code is given
for the decoding and its running time is bounded.

The Encoding Scheme: We now give the encoding scheme for Lemma 2. The scheme will be a
linear erasure code as are most erasure codes, e.g., Reed-Solomon codes. However, this code will be
over GF[2] instead of over some larger finite field. This, in itself, greatly speeds up the computation
time, because performing an operation over the finite field GF[2ℓ] like multiplication takes O(ℓ2)
time for the straightforward algorithm and O(ℓ log(ℓ)) with FFT while taking the bitwise XORs of
two ℓ bit letters can generally be done in 64 bits parallel in O(ℓ

64) time. The message M , consisting
of b ℓ bit letters, is viewed as a (b× ℓ) binary matrix and its encoding E as a (cb× ℓ) matrix. The
encoding algorithm is simply V ×M = E, where V is a fixed (cb× b) matrix. To decode, let V̂ and
Ê be the rows of the matrices V and E corresponding to those letters of the encoding received.
The relation V̂ ×M = Ê still holds and the message M can be reconstructed as long as the matrix

8

ibwi/c (1+ε)

bi

Bi,j

001001 111011110110 011110001101 011001 010100 001101
011010

110101

001011

000011101001

100100

110101

001110 100001

001110

101011
000110

100110 010010

111011

110101

001101

101001

110101

000011

000011101001

010011

110101

100100

100001001110

110101

110101

000011101001

111000

110101

100001

100001001110

101011
000110

100110 010010010111
001001000110 011010

011010

011010

011010

011010

011010000110 001001
010111

011010

011010

011010

011010

Figure 5: The layout of the encoding matrix V is shown. Each column corresponds to one letter of
the message and each row to one letter of the encoding. The matrix V is completely zero outside
of the indicated bundle structure. For the fix rate scheme, each rectangle of length bi is a copy of

the same fixed
((

wi
1+ǫcbi

)
× bi

)
binary matrix Vi.

V̂ has rank b. The matrix V will have a special form that allows the system V̂ × M = Ê to be
solved quickly. The algorithm is simple Gaussian elimination with some extra care not to do work
when there is known to be zeros in the matrix.

The matrix V is implicitly defined as follows. See Figure 5. Its parameters are 1 = b0 <
b1 < . . . < bs = b and 0 < w0, w1, . . . , ws ≤ 1+ǫ, where

∑
iwi = 1+ǫ. (Recall Lemma 1 sets

s = ln(1/ǫ2), has bi double from b1 = 2ǫ2b to bs = b, w1 ≈ 0.29, wi ≈ 0.41 · 2−i/2, and ws ≈ 2.41ǫ.)
The message is broken into a hierarchy of bundles. The message M itself is a single bundle of
size b = bs. This bundle is broken into smaller sub-bundles of size bs−1, which are broken further
into sub-sub-bundles of size bs−2 and so on. Let B〈i,j〉 ⊆ [1..b] denote the index set of message

letters in the jth bundle of size bi. Let M〈i,j〉 denote the portion of the message M indexed by bin
〈i, j〉. If the scheme is to be a rateless LT codes [10], then the probability of a packet being about
M〈i,j〉 is wi

1+ǫ
bi
b , while if the scheme is to have rate c, then there will be wi

1+ǫcbi such packets. Note

that the total probability is
∑

i

(
wi
1+ǫ

bi
b

) (
b
bi

)
= 1 and the total number of letters of the encoding is

∑
i

(
wi
1+ǫ × cbi

) (
b
bi

)
= cb. Either way let E〈i,j〉 denote these encoded letters. Each such letter will

simply be the GF[2ℓ] dot product of some bi bit vector with the message letters M〈i,j〉, i.e. bit-wise
XORs of the ℓ bit letters. Let V〈i,j〉 denote the matrix with rows being these vectors. Then the
letters of the encoding E〈i,j〉 “about” the bundle B〈i,j〉 is given by V〈i,j〉 ×M〈i,j〉 = E〈i,j〉. For LT
codes, independently for each packet, the encoder randomly chooses this binary vector of length bi
and includes it in the header of the packet. For a fixed rate scheme, a fixed

((
wi
1+ǫcbi

)
× bi

)
binary

matrix Vi = V〈i,j〉 is specified for each bin/bundle size i ∈ [1..s]. (It is sufficient to choose these
matrices randomly and then fix them.)

To make the scheme systematic, the b letters of the message are contained unchanged in b of
the code letters, by having the smallest bundle size be b0 = 1, where the number of them packets
about each be 1. (This change only increases the probability of success and decreases the cost.
There being only one code letter, the bundle/bin cannot overflow.)

Probability: We next bound the probability of being able to reconstruct the message.

9

Proof of Lemma 2(Prob): To simplify the analysis of the probability of success, we will initially
not use fixed matrices Vi. Instead, each letter of the encoding will be the linear combination of a
subset of the letters from the appropriate bundle where each letter of the bundle is included with
probability 1

2 independently at random.

The hierarchy bin game ensures that w.h.p. no more than bi code symbols are about a bundle
of size bi or its subbundles (except the full bundle).

4 Now, in addition to these information theoretic
requirements, we require that the equations defining these code letters are linearly independent.
To help this, tighten the requirement of the game from needing c〈i,j〉 ≤ bi to c〈i,j〉 ≤ (1 − q2i /2)bi
encoding letters to contribute to it. When randomly choosing the equation for the kth such letter it
is chosen from a space of dimension bi. The previous k−1 equations span a sub-space of dimension
at most k − 1. Hence, the probability that the kth is within this sub-space is at most 2−(bi−k+1).
The probability that the (1−q2i /2)bi equations are dependent is at most

∑
k∈[1..(1−q2i /2)bi]

2−(bi−k+1)

≤ e−
q2
i
bi
2 , which is the same as the probability we had before. Hence we can conclude that with high

probability all the letters that are about bundles of size smaller than b are linearly independent.

What remains is to consider the letters of the encoding that are about the bundle of size b.
By the statement of the lemma, the number of letters of the encoding received is binomial(cb, 1+ǫc)
with mean (1+ ǫ)b. Therefore, the probability that at least (1+2ǫ2)b letters are received is at least
1 − e−Ω(ǫ2b). With the same argument given in the second paragraph of the proof of this lemma,
the first (1 − ǫ2)b of these are linearly independent with probability at least 1 − e−Ω(ǫ2b). Now
consider one of the remaining 3ǫ2b equations. If the equations before it do not have full rank, then
the probability that it increases the rank is at least 1

2 . Hence, choosing these 3ǫ2b equations can
be thought of as 3ǫ2b Bernoulli trials. The matrix has full rank if at least ǫ2b of the trials succeed.
The expected number of successes is 1.5ǫ2b. The probability of getting fewer than ǫ2b is at most
e−Ω(ǫ2b).

The remaining step is to prove that it is sufficient to use a fixed matrix Vi for each size
of bundle. Randomly choosing the same Vi for each bundle of size bi adds dependence between
the events considered but does not change their probability. Because we always use the sum
of probabilities of bad events, the proof does not assume independence. Finally, if the overall
probability of failure is e−Ω(ǫ2b) when the Vi are chosen randomly, then there exists fixed ones that
leads to a probability that is at least as good. (On the other hand, proving that you have such a
matrix may be hard.)

Encoding and Decoding Algorithm: The encoding is done via binary matrix multiplication
V ×M = E. The obvious savings in time comes from never looking at or even storing the entries

of V̂ outside of the bundle structure. The time to produce one of the
(

wi
1+ǫcbi

)
(b/bi) = O(wib) code

letters about a bundle of size bi is bi, where XORing two ℓ bit letters is considered to be a single
operation. Hence, the total time is cost

∑
iO(wib)bi = O(ǫb2) of the hierarchical bin game from

Lemma 1. Decoding is a little harder. It requires solving the system V̂ × M = Ê, where V̂ and
Ê are the rows of the matrices V and E corresponding to those letters of the encoding that are
received. Here again, the fact that V̂ is sparse should help. The difficulty is that even with the
hierarchical bundle structure of our matrix V̂ , its inverse is not sparse. In general this means that
solving a (b× b) system with O(b) non-zero entries requires O(b3) bit operations. However, in our

4Having the subbundles not overflow was for the benefit of the proof. If (1+ 2ǫ)b were received instead of (1+ ǫ)b
then enough packets would be received to be able to decode any bundle just from the bounds about it and its
subbundles.

10

case, we are able to maintain the bundle structure of the matrix as we use Gaussian elimination
to zero the bottom triangle of V̂ . Once the matrix is upper triangular, the system can be solved
quickly.

The main sub-task during Gaussian elimination of V̂ is that of taking the rth row, which has a
one on the “diagonal”, and adding it to every row r′ below it that contains a one in the corresponding
column. In a general sparse matrix, the non-zero entries of these rows do not necessarily fall in the
same places. Hence, the r′th row will gain most of the non-zero entries of the rth row. The effect is
that the number grows exponentially with the number of row operations. This, however, does not
happen here. We will assume that the rows are sorted in what we will call the hierarchical partial
order. As each such B〈ir ,jr〉 is either disjoint from or contained in a latter B〈ir′ ,jr′ 〉. See Figure 5.

In the first case, adding the rth and the r′th row would not cancel any entries, hence these rows are
never added together. In the second case, adding the rth row to the r′th will change which entries
in the bundle B〈ir′ ,jr′ 〉 are one, but will not contribute ones outside of the bundle. Hence, as the

matrix V̂ is zeroed below the diagonal, the bundle hierarchical structure is maintained.

Once 1..r−1 columns have been zeroed below the diagonal, the next step is to do the same for
an rth column. If the 〈r, r〉 diagonal entry is zero, the standard thing to do is to swap the rth row
with a lower row that does have a non-zero in the rth column. The problem with doing this is that
it may mess up the required hierarchical partial order. Hence, we will instead imagine swapping
the rth column with a column to the right that does have a non-zero in the rth row. Instead of
actually swapping, we will say that matrix V̂ is column permuted lower triangular if for each row
r, either the row is stated to be redundant, or associated with it is a column c ≡ Diagonal(r) such
that this entry V̂〈r,c〉 is one and the column part below it, namely V̂〈r′,c〉 for r

′ > r, has been zeroed.
If the matrix has full rank b, then each column c ∈ [b] is the diagonal of some row r.

1 * * *
0 1 * *
0 0 * 1

1 * * *
0 * 1 *

0 0 1 0 0 * 0 *
0 0 0 0 0 1 0 *
0 0 0 0 0 0 0 1

Figure 6: A column permuted lower triangular matrix is shown. The ’1’ are along the “diagonal”,
the ’0’ are below the diagonal, and the ’*’ representing an arbitrary character from {0, 1} are above.
The blanks are outside the bundle structure and are zeros and hence either a ’0’ or a ’*’. Note how
there is exactly one ’1’ in each row and in each column. Note also that each column transitions
from ’*’ to ’1’ to ’0’. Diagonal(3) = 4. The third row has a pointer to the sixth.

In order to save time when zeroing column c = Diagonal(r) using the rth row, only rows r′

for which B〈ir,jr〉 ⊆ B〈ir′ ,jr′ 〉 need to be considered. This can be done by associating with each row
r, a pointer to the next row next(r) for which B〈ir ,jr〉 ⊆ B〈inext(r),jnext(r)〉. A property of the partial

order is that following this linked list of pointers starting at any row r will reach every row r′ for
which B〈ir ,jr〉 ⊆ B〈ir′ ,jr′ 〉. (The same would not be true in the reverse order.)

To save even more time, the time spent adding the rth row to any one r′th row should be the
number of ones in the rth row and not the size bir of its bundle. There are two ways of achieving
this. Either at the beginning of this sub-task a succinct list of the ones of the rth row can be made

11

or the bundle B〈ir,jr〉 in the rth row can scanned and each time a one is found the above linked list
giving all rows r′ for which B〈ir,jr〉 ⊆ B〈ir′ ,jr′ 〉 could be followed. The code below does the later.

Pseudo Code: The following is pheudo code for solving V̂ ×M = Ê for M .

algorithm Decode(V̂ , Ê)

〈pre−cond〉: Matrix V̂ and encoding Ê are the rows of V and E corresponding to those letters
of the encoding received. Matrix V̂ retains V ’s hierarchical bundle structure. See Figure 5.
Row r is specified by giving its bundle B〈ir,jr〉 ⊆ [b] outside of which the row is zero and inside

of which is given by the row ρr of matrix Vir . The corresponding code word in Êr is given by
the linear combination [Vir]ρr ×M〈ir ,jr〉.

〈post−cond〉: The message M for which V̂ ×M = Ê is returned. This is a single message iff V̂

has full rank b, otherwise all 2b−rank(V̂) such solutions M are returned.

begin
− Because the contents of the packets have been randomly permuted, we begin by sorting

the rows of V̂ according to the hierarchical partial order, so that if r < r′ then either
B〈ir ,jr〉 ⊆ B〈ir′ ,jr′ 〉 or these bundles are disjoint. Figure 5 lays out one such ordering. While

sorting, store for each row r of V̂ , the next row next(r) such that B〈ir ,jr〉 ⊆ B〈inext(r),jnext(r)〉.

% V̂ and Ê are transformed so that V̂ becomes a column permuted lower triangular matrix.

loop r = 1 . . . |Ê| (i.e. number of rows = number of packets received = (1+ǫ)b)

〈loop−invariant〉: The matrix V̂ and the vector Ê have been transformed handling
the first r−1 rows, i.e. for each row r′ < r, either the row is stated to be redundant,
or associated with it is a column c′ = Diagonal(r′) such that this entry V̂〈r′,c′〉 is

one and the column below it, namely V̂〈r′′,c′〉 for r
′′ > r′, has been zeroed. Moreover

the set of M for which V̂ ×M = Ê remains the same; V̂ retains V ’s hierarchical
bundle structure; and its rank remains same.

% Establish the LI for the rth row.

if(the rth row of V̂ is all zeros) then

if(Êr 6= ~0) then return(“System is inconsistent. No solutions M”)
else the rth row is redundant.

else

Let c = Diagonal(r) be an index of a one in the rth row of V̂ .

% Zero the column below V̂〈r,c〉 by adding the rth row of V̂ and Ê to every

r′th row for which V̂〈r′,c〉 is one.
% Start with Ê. Follow the linked list next(r′) reaching

every row r′ > r for which B〈ir ,jr〉 ⊆ B〈ir′ ,jr′ 〉.
for(r′ = r; r′ = next(r′); r′ > |Ê|)

if(V̂〈r′,c〉 = 1)

toBeSummed(r′) = yes.

Ê〈r′,c′〉 = Ê〈r′,c′〉 + Ê〈r,c′〉 over GF[2ℓ].

12

else
toBeSummed(r′) = no.

end if
end loop
% To save time, we do the adding one column at a time.
for each column c′ ∈ B〈ir,jr〉

if (V̂〈r,c′〉 = 1) then

% add this one in row r where needed in this column.

for(r′ = r; r′ = next(r′); r′ > |Ê|)
if(toBeSummed(r′) = yes)

V̂〈r′,c′〉 = V̂〈r′,c′〉 + 1 mod 2.

end if
end loop

end if
end for

end if
end loop

% We now solve the column permuted lower triangular system V̂ ×M = Ê.

− If the matrix V̂ started with full rank b, then each column c ∈ [b] is c = Diagonal(r)
for some row r. Otherwise there are b− rank(V̂) columns c with no such r. Give the

corresponding variables Mck the undefined value xk. The 2
b−rank(V̂) values of these indicate

the 2b−rank(V̂) possible solutions.
loop r = |Ê| . . . 1

〈loop−invariant〉: For every column c, the corresponding value Mc is known (possi-
bly as a function of the xk), except for those c′ for which there exists a r′ ≤ r such
that c′ = Diagonal(r′).

c = Diagonal(r)

Solve the rth equation V̂r ×M = Êr giving the value of Mc as a function of the
already known values Mc′ .

% Note that this can be done because V̂ is a column permuted lower triangular
matrix. Hence, V̂〈r,c〉 is one. Also by the loop invariant, for any other unknown
value Mc′ , there exists a r′ < r such that c′ = Diagonal(r′). Hence, the column
V̂〈r′′,c′〉 for r

′′ > r′, has been zeroed. Specifically V̂〈r,c′〉 is zero.
end loop
return(M)

end algorithm

Running Time: Now consider the computation time of the above algorithm. The number of
letter operations within the matrix Ê (i.e., XORing two ℓ bit letters together) when zeroing below
the diagonal is the number of row operations in V̂ . The rth row is added to the r′th at most once
and only if the bin for r is poised over that for r′, i.e. B〈ir,jr〉 ⊆ B〈ir′ ,jr′ 〉. Recall that we ensured
that the total number of packets that arrive about a bundle or a sub bundle is at most its size bir′ .
Hence, the total number of such operations is at most

∑
r′∈[1..(1+ǫ)b] bir′ . The number of rows r′ of

size bir′ is wibi · b
bi

= wib. This bounds number of operations by
∑

i∈[1..s]O(wib)bi. This was defined

13

to be the cost of the game which Lemma 1 proves is O(ǫb2). When finding M , the number of such
letter operations is the number of one’s that are above the diagonal of the upper triangular matrix,
but as said, the bundle structure does not change when zeroing below the diagonal. Hence, the
number is this same O(ǫb2).

Now let us bound the number of bit operations within V̂ in order to add some rth row to some
r′th row. The expected number of rows r whose bundle B〈ir ,jr〉 is of size bi is (wibi)(b/bi) = wib. For
each of these, the code loops over the number of rows r′ for which B〈ir,jr〉 ⊆ B〈ir′ ,jr′ 〉, namely the

geometric sum
∑

i′∈[i..s]wi′bi′ =
∑

i′∈[i..s−1]O((ǫ
√
b/bi′)bi′) = O(ǫb). Recall that in order to save

time, we ensure that the time spent adding the rth row to any one r′th row should be the number of
ones in the rth row and not the size bir of its bundle. The expected number of these is bi minus the
number of entries that have already been zeroed. The number zeroed is the number of rows r′ before
it for which B〈ir′ ,jr′ 〉 ⊆ B〈ir ,jr〉, namely

∑
i′∈[1..i](wi′bi′)(bi/bi′) = (1−qi)bi. Hence, the expected

number of ones remaining is qibi. We can conclude that the expected total number of bit operations
in the Gaussian elimination is

∑
i∈[1..s]wib×O(ǫb)×qibi =

∑
i∈[1..s]O(ǫ

√
b/bib)×O(ǫb)×O(ǫ

√
b/bibi)

= O(sǫ3b3) = O(ln(1/ǫ2)ǫ3b3).

The computation times stated in Lemma 2 are in terms of letter operations. This is reasonable
given the input size is stated in terms of the number of letters. However, the time O(ln(1/ǫ2)ǫ3b3)
to perform Gaussian elimination on V̂ is measured in bit operations. A letter operation requires ℓ
bit operations. Hence, it is reasonable to allow the algorithm to do ℓ bit operations within V̂ for
every letter operation. Using this measure, the number of “letter” operations required to decode
the message is O(ǫb2) + 1

ℓO(ln(1/ǫ2)ǫ3b3). For the algorithm, the letter size ℓ could be a single bit.

The reason for having it larger is to amortize the number of bit operations required to invert V̂ . If
we set ℓ to be O(ln(1/ǫ)ǫ2b), then the number of letter operations to decode is O(ǫb2). In order to

emphasize this, we expressed in Figure 1 the total decoding time as being O(ǫb2)×
(
1+Õ(ǫ2b/ℓ)

)
.

4 One Level of Bundles and Two Phases of Expansion

Review the table in Figure 1.

Scheme MDS HB HB′ HB′′ Raptor Expanders

Message Leng b n

Code Length cb cn (1+ǫ)n

Code Needed b (1+ǫ)b (1+ǫ)n (1−β)(1+ǫ)n

Mess. Acquired all (1−β)n all

Failure Prob zero e−Ω(ǫ2b) e−Ω(βǫ2n) e−Ω(ǫ4n) n−Ω(1) zero

Time O(b2) O(ǫb2)× O(ln(β−1)ǫ−1n)× Õ(ǫ−1n)× Õ(n) O(ǫ−1n)(
1+Õ(ǫ2b/ℓ)

) (
1+O(ln(β−1) ln(1/ǫ)/ℓ)

) (
1+O(ln2(1/ǫ)/ℓ)

)

Packet Size ℓ 1 f.e. 1 1 f.e.

Lemma 3 The scheme HB′ in Figure 1 is constructed by applying the scheme HB to each of the
n
b bundles of size b.

Proof of Lemma 3: The scheme HB′ with parameters 〈n, c, ǫ, β〉 breaks its n letter message
into n

b bundles of size b = ln(β−1)ǫ−2 and applies the scheme HB with parameters 〈b, c, ǫ′ = ǫ/2〉

14

to each producing n
b × cb = cn single letter packets. The number of letter operations is n

b ×
O(ǫ′b2) = ǫbn = O(ln(β−1)ǫ−1n). The number of bit operations to invert V̂ is n

b ×O(ln(1/ǫ)ǫ3b3) =
O(ln2(β−1)ǫ−1 ln(1/ǫ)n). Hence setting ℓ = O(ln(β−1) ln(1/ǫ)) amortizes this time. We then receive
a random subset of (1+ǫ)n of these code letters. A message bundle is w.h.p. recovered if (1+ǫ/2)b
of the cb letters about it are received. It is sufficient to prove that this occurs for at least a 1− β
fraction of the n

b bundles with failure probability at most e−Ω(βǫ2n).

To simplify things, first assume that each of the cn code letters is received independently
with probability (1+ǫ)

c . Standard Chernoff bounds give the probability of not receiving at least

(1+ǫ/2)b letters is at most e−Ω(ǫ2b). Denote this probability by p. We then use Chernoff bounds
a second time to bound the probability of failing to reconstruct at least a 1 − β fraction of the
n/b bundles. The Chernoff bound states that if Y is the sum of mutually independent Bernoulli
variables where Exp(Y) = µ, then Pr [Y > qµ] ≤ e−q ln(q/e)µ. Here the probability that a bundle is
lost is p = e−Ω(ǫ2b) and the expected number lost is µ = pn

b . The number of bundles that we can

afford to lose is β n
b and setting this to qµ gives q = β

p . Thus, the failure probability is at most

e−q ln(q/e)µ = e−Ω(β(n/b)[ǫ2b−ln(1/β)])) = e−Ω(βǫ2n) as desired.

We now compare the effect of having changed the distribution. The original distribution is
the same as the assumed one with the added constraint that the total number of letters received
K is (1+ ǫ)n. Decreasing K only increases the probability of failure E. Therefore, Prold[E] ≤
Prnew[E | K ≤ (1+ǫ)n] ≤ Prnew[E]/Prnew[K ≤ (1+ǫ)n] ≤ Prnew[E]× e = e−Ω(βǫ2n).

Lemma 4 The scheme HB′′ described in Figure 1 is constructed from the schemes Expanders and
HB′.

Proof of Lemma 4: Suppose we are constructing the scheme HB′′ with parameters 〈n, c, ǫ〉.
The first phase uses the scheme Expanders with parameters

〈
n, β = ǫ2, ǫ′ = ǫ/3

〉
to encode the n

letters M into (1+ ǫ/3)n letters M ′. The second phase uses the scheme HB′ with parameters〈
n′ = (1+ǫ/3)n, c′ = c/(1+ǫ/3), β = ǫ2, ǫ′′ = 2

3ǫ/(1+ǫ/3)
〉
to encode the (1+ǫ/3)n letters M ′ into

c′n′ = cn letters. These are randomly permuted before putting one into each packet. From any
(1+ǫ′′)n′ = (1+ǫ)n packets one gets a random subset of the code letters, sufficient to reconstruct with
high probability some (1−β) fraction of M ′ and from this the message M can be reconstructed.

Note that the first stage can be skipped by setting β < 1/n. But then the encoding time would be

O
(
ln(n)
ǫ n

)
.

5 Concluding remarks and open problems

The open problem is to obtain an even faster probabilistic or deterministic erasure code. An
interesting aside about the required packet size is that for any deterministic erasure code with the
parameters in Lemma 4 (without any assumption on the efficiency of its encoding and decoding
procedures), the minimum possible packet size is at least Ω(ln((c− 1)/ǫ)) for all ǫ ≥ 1/n. This can
be proved using the Plotkin bound. This scheme demonstrates that in probabilistic schemes the
packet size can be as small as one bit.

15

References

[1] M. Ajtai, J. Komlós, E. Szemerédi, “Deterministic Simulation in Logspace”, Proc. of the 19th

STOC, 1987, pp. 132-140.

[2] A. Albanese, J. Blömer, J. Edmonds, M. Luby, M. Sudan, “Priority Encoding Transmission”,
Proceedings of 35th FOCS, 1994.

[3] A. Albanese, J. Blömer, J. Edmonds, M. Luby, “Priority Encoding Transmission”, ICSI Tech-
nical Report No. TR-94-039, August 1994.

[4] N. Alon, J. Bruck, J. Naor, M. Naor, R. Roth, “Construction of asymptotically good, low-rate
error-correcting codes through pseudo-random graphs”, IEEE Transactions on Information
Theory, Vol. 38, 1992, pp. 509-516.

[5] N. Alon, J. Edmonds, M. Luby, “Linear Time Erasure Codes with Nearly Optimal Recovery,”
36th FOCS, pp. 512-519, 1995.

[6] N. Alon, M. Luby, “Linear Time Erasure Codes with Nearly Optimal Recovery,” submitted
for journal publication.

[7] N. Alon, J. H. Spencer, The Probabilistic Method, Wiley, 1991.

[8] L. A. Bassalygo, V. V. Zyablov, M. S. Pinsker, “Problems in Complexity in the Theory of
Correcting Codes”, Problems of Information Transmission, 13, Vol. 3, 1977, pp. 166-175.

[9] E. Biersack, “Performance evaluation of forward error correction in ATM networks”, Proceed-
ings of SIGCOMM ’92, Baltimore, 1992.

[10] M. Luby, “LT Codes”, Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 271. 280, November 2002.

[11] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder, “RaptorQ Forward
Error Correction Scheme for Object Delivery”. Internet Engineering Task Force (IETF), ISSN:
2070-1721, Aug 2011.

[12] M. Rabin, “Efficient Dispersal of Information for Security, Load Balancing, and Fault Toler-
ance”, J. ACM, Vol. 36, No. 2, April 1989, pp. 335-348.

[13] A. Shokrollahi, “Raptor Codes”, IEEE Transactions on Information Theory, vol. 52, no. 6,
June 2006.

[14] A. Shokrollahi and M. Luby, “Raptor Codes. Foundations and Trends in Communications and
Information Theory”, Foundations and Trends in Communications and Information Theory,
6(3-4): 213-322, 2009.

[15] M. Sipser and D. Spielman, “Expander codes”, FOCS 1994.

[16] D. Spielman, “Linear-Time Encodable and Decodable Error-Correcting Codes”, STOC 1995,
ACM Press, 388-397.

16

