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Abstract. In this paper, we consider two new online optimization prob-
lems (each with several variants), present similar online algorithms for
both, and show that one reduces to the other. Both problems involve a
control trying to minimize the number of changes that need to be made in
maintaining a state that satisfies each of many users’ requirements. Our
algorithms have the property that the control only needs to be informed
of a change in users needs when the current state no longer satisfies the
user. This is particularly important when the application is one of trying
to minimize communication between the users and the control.
The Resource Allocation Problem (RAP) is an abstraction of scheduling
malleable and evolving jobs on multiprocessor machines. A scheduler has
a fixed pool of resources of total size T . There are n users, and each user j

has a resource requirement for rj,t resources. The scheduler must allocate
resources `j,t to user j at time t such that each allocation satisfies the
requirement (rj,t ≤ `j,t) and the combined allocations do not exceed T

(
P

j
`j,t ≤ T ). The objective is to minimize the total number of changes

to allocated resources (the number of pairs j, t where `j,t 6= `j,t+1).
We consider online algorithms for RAP whose resource pool is increased
to sT and obtain an online algorithm which is O(logs n) competitive.
Further we show that the increased resource pool is crucial to the per-
formance of the algorithm by proving that there is no online algorithm
using T resources which is f(n)-competitive for any f(n). Note that our
upper bounds all have the property that the algorithms only know the
list of users whose requirements are currently unsatisfied and never learn
the precise requirements of users. We feel this is important for many
applications, since users rarely report underutilized resources as readily
as they do unmet requirements. On the other hand, our lower bounds
apply to online algorithms that have complete knowledge about past
requirements.
The Transmission-Minimizing Approximate Value problem is a general-
ization of one defined in [OLW01], in which low-power sensors monitor
real-time events in a distributed wireless network and report their results
to a centralized cache. In order to minimize network traffic, the cache
is allowed to maintain approximations to the values at the sensors, in
the form of intervals containing the values, and to vary the lengths of
intervals for the different sensors so that sensors with fluctuating values
are measured less precisely than more stable ones. A constraint for the
cache is that the sum of the lengths of the intervals must be within some
precision parameter T . Similar models are described in [CYV04,cKA02].



We adapt the online randomized algorithm for the RAP problem to solve
TMAV problem with similar competitive ratio: an algorithm can main-
tain sT precision and be O(logs n)-competitive in transmissions against
an adversary maintaining precision T .
Further we show that solving TMAV is as hard as solving RAP, by
reducing RAP to TMAV. This proves similar lower bounds for TMAV
as we had for RAP, when s is near 1.

1 Introduction

Many applications have the following form: a central control is allocating re-
sources among several users. Users have requirements and complain to the con-
trol when requirements are not met. The control may then reallocate resources
to satisfy the complaints. However, such reallocation is expensive and should be
minimized.

1.1 Resource Allocation Problems

For example, consider jobs competing for processor time on a parallel machine. In
such time-shared multiprocessor machines, jobs with rigid requirements, which
cannot run unless they obtain at least a fixed number of processors, can be a
bottleneck, reducing system throughput and processor utilization. This overhead
might be reduced by treating jobs as having malleable, evolving requirements
rather than having a hard, fixed requirement for a specific number of processors.
Malleable jobs are parallel tasks that can be performed with different numbers
of processors, depending on how many they are allotted by the control. Evolv-
ing jobs have requirements that vary over time, and can request changes in
their allotments when their needs change. Scheduling for such jobs is studied in
[KKD02,PL95,IRSD99,Edm00]. (The exact usage of these terms does not seem
to be completely fixed. [KKD02] for example, uses the term adaptive job to
denote both concepts.)

We consider the problem of scheduling evolving parallel tasks that can request
more processors from a scheduler of a multi-processor system with T identical
processors while they are running. Preemption is possible, but expensive, since
many parallel tasks have a high context switch cost (e.g. rendering applications).
The goal of the scheduler is thus to minimize preemption while satisfying the
processor requirements. We make this precise below. In the following problem,
a user will represent a task/job and resources represent processors.

Definition 1. Resource Allocation Problem (RAP) There are n users.
The input specifies the amount of resources rj,t required by user j at time t. At
each point in time, a scheduler A must allocate an amount `A

j,t to user j that is

at least this required amount (`A
j,t ≥ rj,t). The scheduler has only T resources to

allocate and hence
∑

j `A
j,t ≤ T . The objective function is to minimize the number

of times that the schedule changes the amount `A
j,t allocated to each user.



We assume that at each point in time, the total resources requested
∑

j rj,t does
not exceed the amount T available. Otherwise, all schedulers will fail. If these
amounts are equal, then the scheduler has no choice. However, if it is less, then
the scheduler must decide where to allocated the extra resources. If the scheduler
knows the future then it will give the extra resources to users that will need more
later.

An online scheduler lacks knowledge about future requirements of the users
and so it must guess where to allocate its extra resources. Making it harder, in
many situations, the online scheduler will not learn of changes to user’s require-
ments until the user complains because it does not have enough. To formalize
the above limitation on information available to a scheduler, we consider a re-
stricted class of schedulers. A restricted scheduler only has access to input in
the following way. At time t, it learns the set of currently unsatisfied users. It
then repeatedly reallocates resources, paying a cost for each change. After each
reallocation, it learns the set of unsatisfied users (some users given more might
still not have enough resources, whereas others might become unsatisfied after
part of their allocations were given to complaining users.) This repeats until all
users are satisfied. (Note that the scheduler in this model may be charged repeat-
edly for reallocations involving the same processor in the same time step.) We
denote the above Restricted-scheduler Resource Allocation Problem as
RRAP. Note that unlike RAP, in RRAP the scheduler never learns the resource
requirements exactly, only an upper bound for each.

In RAP, it is always possible to fulfill all the requirements. However, sched-
ulers often have to deny some requests in order to preserve resources for others.
Our techniques also apply to the following variant, where the scheduler can deny
requests by paying a penalty.

Definition 2. Resource Allocation Problem with Penalties (RAPP)
There are n users and a pool of T resources. At time t some user j ∈ [n] produces
a request for resource rj,t with a penalty pj,t ≥ 1. At each time, the scheduler
allocates `j,t resources to user j, where the sum of the allocations is at most
T . The scheduler’s cost is the total number of changes made to allocations, plus
the total penalties pj,t over all times when the scheduler fails to satisfy the t’th
request.

Note that, for simplicity, we define user requirements for this problem as instan-
taneous rather than continuing. However, we could model users with continuing
requirements by having users issue requests whenever their current requirements
are unmet (due to increase in their requirements or reallocation of their re-
sources).

A restricted scheduler for the RAPP problem only learns of requests that
are currently unsatisfied, but learns the required amount and penalty for such
requests.

RAPP could model resource allocation for distributed grid computing sys-
tems, where the penalty represents the priority of the job requesting the resource.
The higher the priority the higher the penalty if the algorithm chooses to not



satisfy the request. It could also model malleable jobs, which would make re-
quests for each possible number of processors from largest to smallest until a
request is satisfied, with increasing penalties.

We will show that the RAP problem reduces to RAPP, by repeating requests
until they must be satisfied. RAP could represent a situation where the jobs are
rigid but evolving and the scheduler is not allowed to starve any job.

For our algorithms, we consider memoryless online algorithms that utilize
sT resources, and compare them to all knowing all powerful adversaries with
a total budget of T . The reason is that when given no extra resources, the
online/off-line competitive ratio is infinite (See Sect. 5). Let E(As(σ)) denote
the expected cost of algorithm A with sT resource on input σ. Let OPT1(σ)
denote the minimum cost of any solution with T resources on the same sequence
σ. We call the algorithm A (s, c)-competitive if there exists a constant d, possibly
depending on n and T , such that for all inputs σ, E(As(σ)) ≤ c OPT1(σ) + d.
Our goal is to find algorithms that are (s, c)-competitive for as small values of s
and c as possible. Our results are (s, O(logs n)-competitive algorithms for RAP
and RAPP problems.

1.2 Transmission-Minimizing Approximate Value Problem

Small power wireless sensor networks are used for variety of applications from
monitoring seismological data to tracking wildlife [LSZM04]. Communication in
such networks is expensive, especially in terms of power usage. Consider such
a network in which there is a set of sensors each capable of transmitting one
value to a central cache (base station). The cache needs to know the values
read by each sensor, allowing for some imprecision. If the cache needs perfect
precision then the cache must be updated each time a sensor’s value changes. To
minimize communication, the central station might relax the precision for the
values read by the sensor. The cache would still need to be notified when the
value changed by more than the allowable precision. Thus, some sensors (with
fluctuating values) might be given a more relaxed standard of precision than
sensors with more stable values.

The problem of setting the precision of approximated cached values is defined
in [OLW01] as follows. There are data sources S1, . . . , Sn. Each data source Si

hosts a value Vi. There is a cache C, which holds an interval approximation
to the exact values V1, . . . , Vn. An interval [L, H ] is a valid approximation of a
numeric value V if V ∈ [L, H ]. If an interval becomes invalid, then the cache
must be updated. We add a hard requirement that the sum of the lengths of
intervals assigned to the data sources be at most a parameter T ; in [OLW01],
this was a soft requirement. The goal is to maintain valid intervals of total size
T in a way that minimizes the overall network traffic, assuming that each report
of an invalid interval and each reassignment of intervals takes one message. We
call our version of this problem Transmission-Minimizing Approximate
Value Problem (TMAV). [OLW01] give an optimal solution to a related
problem under the assumption that the sources’ values arise from certain types
of probability distributions. Similar problems were studied in [CYV04,cKA02],



who present heuristic approaches and experimentally evaluate their performance.
However, we give the first analysis of algorithms when we allow the values read
by the data sources to be adversarial.

Similarly to the RAP problem, we compare online algorithms whose sum of
all intervals adds up to sT to an adversary bounded by the total precision T . Our
algorithm is almost identical to that for RAP, and achieves a similar competitive
ratio of O(logs n). For scheduling, it would seem more compelling to take s as
small as possible, but for TMAV, a larger value of s might still be reasonable,
since a factor of s corresponds to a loss of only log s bits of precision. Again, our
algorithm only uses very restricted access to the input: it only sees the current
value at a sensor when it becomes invalid or when it is changes the required
precision at the sensor. This seems essential to any meaningful solution to the
problem, since we are trying to minimize communication. Nevertheless, when we
prove lower bounds, they apply to algorithms that have a complete history of
all values up to the current time.

Our results and outline of paper:
1. In Sect. 2 we present a randomized, memoryless, online algorithm for

RRAP problem that is (s, O(logs n)-competitive for s > 3 and show how this
algorithm can be used to solve RAP and RAPP.

2. In Sect. 3 we show how the algorithm above is modified to give a similar
result for the TMAV problem, for s > 6.

3. In Sect. 4 we also show how to reduce RAP to TMAV and formally define
reduction between online problems with respect to adaptive online adversary.

4. In Sect. 5 we prove lower bounds on the competitive ratio achieved by any
online algorithm.

2 The Steal from the Rich Algorithm

Our algorithm, Steal-From-the-Rich (SFR) for the RRAP problem, is more or less
as follows. When a user j requests more resources (but does not specify how much
he needs), the scheduler chooses a random user k with probability proportional
to the amount `A

k,t currently allocated to it. Then he moves resources from j to

k so that neither changes by more than a factor of r = Θ(
√

s).
The Steal-From-the-Rich (SFR) algorithm is defined more precisely as follows.
Initially, the resources are partitioned evenly, i.e. `SFR

j,0 = sT
n . Let r = Θ(

√
s) and

µ > 0 be parameters defined more precisely later. If at time t user j requests more
resources, the algorithm repeats the following until all demands are satisfied;
setting j to be the user whose demands are not satisfied:

– It selects another user k at random with probability proportional to its

resource allocation, i.e. Pr[ k is selected ] =
`SFR

k,t−1

sT−`SFR

j,t−1

.

– δ ← min
{

`SFR
k,t−1−µT

n , r−1
r `SFR

k,t−1, (r − 1)`SFR
j,t−1

}

, `SFR
k,t ← `SFR

k,t−1 − δ,

`SFR
j,t ← `SFR

j,t−1 + δ.
The other allocations are left unchanged.



Note that the choice of δ is the maximum so that `SFR
k does not decrease below

µT
n nor by more than a factor of r and that `SFR

j does not increase by more than

a factor of r. In addition SFR maintains that
∑

j `SFR
j,t = sT and `SFR

j,t ≥ µT
n for

all intervals, hence it is a valid schedule using sT resources.

Theorem 1. For s > 3, the algorithm SFR for the Resource Allocation Problem
is (s, O(logs n))-competitive against an adaptive online adversary.

Proof. Let OPT be any adaptive online adversary strategy with a total of T
resources. We prove the O(logs n) competitive ratio using the potential function
Φ : Rn ×Rn → R+, where the first input describes the algorithm’s configuration
and the second the adversary’s. More precisely,

Φj,t =
14

log r

∣

∣

∣

∣

∣

log

(

`SFR
j,t

r`OPT
j,t + µT/n

)∣

∣

∣

∣

∣

and Φt =

j=n
∑

j=1

Φj,t.

The intuition is that this potential function is small when all allocations assigned
by the SFR are proportional to those assigned by the adversary. In this case,
SFR allocates more to each user and hence any cost incurred by the algorithm
will also be incurred by the adversary. At any point when SFR has a cost and
the adversary does not, SFR will grow an allocation that is short relative to the
adversary’s and will probably shrink an allocation that is long relative to the
adversary’s, thus reducing the potential.

Observe that Φj,t ≤ O(logs n). There are two cases in bounding Φj,t.

1. If `SFR
j,t >> `OPT

j,t then

Φj,t = 14
log r log

(

`SFR

j,t

r`OPT

j,t +µT/n

)

≤ 14
log r log

(

sT
µT/n

)

≤ O( log n
log s ) = O(logs n).

2. If `SFR
j,t << `OPT

j,t , then

Φj,t = 14
log r log

(

r`OPT

j,t +µT/n

`SFR

j,t

)

≤ 14
log r log

(

rT+µT/n
µT/n

)

≤ O( log n
log s ) = O(logs n).

This implies that Φt ≤ O(n log n), for all t.

Let SFRt and OPTt be the costs incurred by the algorithm and the adversary
during the tth change in allocations and define at = SFRt + (Φt − Φt−1) to
be the amortized update cost to the algorithm. We will show that for every t,
E(at) ≤ O(logs n)OPTt, where the expectation is over the SFR’s random choice
for k conditioned on the configurations at time t−1. This establishes the claimed
competitive ratio because:

E(SFRs(σ)) = E
(

∑

t

SFRt

)

= E
(

∑

t

(at − Φt + Φt−1)
)

=
∑

t

E(at)− Φend + Φ0 ≤
∑

t

E(at) + Φ0

≤
∑

t

O(logs n)OPTt + O(n log n) = O(logs n)OPT (σ) + d,



for some d ∈ O(n log n) (Recall that for all j, t we bounded Φj,t ≤ O(logs n) and
s is a constant, hence Φ0 ≤ O(n log n).

Our goal is to establish E(at) ≤ O(logs n)OPTt. We assume without loss of
generality that the adversary reallocates resources before issuing an increased
request for resources, since moving such a reallocation to before the request
changes neither the adversary’s nor the algorithm’s cost. Thus, we can break the
analysis into two cases where one type of two events described below happen.

– Case 1: The adversary reallocates resources to users, and the algorithms
does nothing (since no user’s demands have changed).

– Case 2: One iteration of SFR’s main loop occurs. The algorithm moves
resources from one user to another, the adversary does nothing.

Note that if SFRt =OPTt =0, then at = 0 and the claim, E(at) ≤ O(logs n)OPTt,
holds trivially.

– Analysis Case 1: The adversary, anticipating that the user’s needs will
change, adjusts the allocations of some of the users, while the the algorithm
not aware of them makes no changes to its configuration: SFRt = 0 and
OPTt > 0. For each such user j, Φj increases by at most its maximum
value, which we saw is O(logs n). Hence, at ≤ 0+O(logs n)OPTt, giving the
competitive ratio as stated.

– Analysis Case 2: One iteration of SFR has occurred. SFRt = 2, because
SFR has changed the allocations of two users j and k, and OPT does nothing,
hence OPTt = 0. Because user j is requesting more from SFR and not from
OPT, we have that `SFR

j,t−1 ≤ `OPT
j,t−1. Having changed only the allocations of

user j and the randomly chosen user k, ∆Φ = Φt − Φt−1 = ∆Φj + ∆Φk .
We bound the expectation of this change to be at most −2. This gives the
required bound as E(at) = 2 + E(Φt − Φt−1) ≤ 0.
We consider two cases.

Event B: Let B be the unlikely and unfortunate event that user k which is
randomly selected by SFR has a relatively small allocation, namely `SFR

k,t−1 <

r2`OPT
k,t−1 + µr T

n . This event is unlikely because on average the users are al-

located s = Θ(r2) times more under SFR and because the probability k is
selected is proportionally to its allocation. More formally, let K denote the
set of users k for which if selected event B occurs. We choose each such k

with probability
`SFR

k,t−1

sT−`SFR

j,t−1

. Because j is requesting, we have that `SFR
j,t−1 ≤

`OPT
j,t−1 ≤ T . Because k causes event B, we have that `SFR

k,t−1 < r2`OPT
k,t−1 +µr T

n .
This gives

Pr[B] =
∑

k∈K

Pr[SFR chooses k ] =
∑

k∈K

`SFR
k,t−1

sT − `SFR
j,t−1

<

∑

k∈K(r2`OPT
k,t−1 + µr T

n )

sT − T
≤ r2 · T + µr · T

(s− 1)T
=

r2 + µr

s− 1
≤ 3

7
.

We set r = Θ(
√

s) so that this is true. Note that for r > 1 and µ > 0, we need
s > 3.34 for this to be true. (We could decrease s to 3+ε by setting r = 1+ ε

11 ,



µ = ε
11 , Pr[B] = 1

2 − ε
11 , the multiplicative constant 14 in the formula for

Φt,j to 11
ε , and the competitive ratio3 to O( 11

ε log r log( rn
µ )) = O( log n

ε2 ).)

Event B: Suppose that the unlikely and unfortunate event B does not occur
and the user selected has relatively big allocation, namely k has `SFR

k,t−1 ≥
r2`OPT

k,t−1 + µr T
n . Recall that `SFR

j,t−1 is increased and `SFR
k,t−1 is decreased by

δ = min{`SFR
k,t−1 − µT

n , r−1
r `SFR

k,t−1, (r − 1)`SFR
j,t−1}. The first of these possible

values for δ does not occur when B happens, because `SFR
k,t−1 ≥ µr T

n and

hence `SFR
k,t−1 − µT

n ≥ r−1
r `SFR

k,t−1.
Now lets look at the change of the potential function for user j when we
are in case 2. Here we have `SFR

j,t−1 < `OPT
j,t−1, then `SFR

j,t ≤ r`SFR
j,t−1 ≤ r`OPT

j,t−1 =

r`OPT
j,t < r`OPT

j,t +µT
n . Recall that Φj = 14

log r

∣

∣

∣
log
(

`SFR

j

r`OPT

j +µT/n

)∣

∣

∣
and because

of the absolute value operator, this function decreases as `SFR
j increases when

`SFR
j is small and increases with it when it is large.

We now consider the effect of these changes on Φj and Φk in the two remain-
ing cases: when j increases by a factor of r (event C) or when k decreases
by a factor of r (event D).
• Let C∩B be the event that δ = (r−1)`SFR

j,t−1, and hence `SFR
j,t−1 increases by

a factor of r. Then E(∆ΦSFR
j |C ∩B) = 14

log r log
(

`SFR

j,t−1

`SFR

j,t

)

= −14. Further

because `SFR decreases then E(∆ΦSFR
k |C ∩ B) = 14

log r log
(

`SFR

k,t

`SFR

k,t−1

)

< 0.

Combined we have that

E(∆ΦSFR|C ∩B) = E(∆ΦSFR
k |C ∩ B) + E(∆ΦSFR

j |C ∩ B) < −14.

• Let D ∩ B be the event that δ = r−1
r `SFR

k,t−1, and hence `SFR
k,t−1 decreases

by a factor of r. Given event B happens, we have `SFR
k,t ≥ 1

r `SFR
k,t−1 ≥

1
r

(

r2`OPT
k,t−1 + µr T

n

)

= r`OPT
k,t + µT

n , then E(∆ΦSFR
k |D ∩ B)

= 14
log r log

(

`SFR

k,t

`SFR

j,t−1

)

= −14. As in the previous case since `SFR
j,t−1 increases

we have E(∆ΦSFR
j |D ∩B) = 14

log r log
(

`SFR

j,t−1

`SFR

j,t

)

< 0. Combined we have

E(∆ΦSFR|D ∩B) = E(∆ΦSFR
k |D ∩ B) + E(∆ΦSFR

j |D ∩ B) = −14.

Now we bound the expectation of the change of the potential function when
we are in Case 2, and event B has not occurred:

E(∆ΦSFR|B) = Pr[C ∩ B] · E(∆ΦSFR|C ∩ B) + Pr[D ∩B] · E(∆ΦSFR|D ∩ B)

≤ −14(Pr[C ∩B] + Pr[D ∩B]) ≤ −14 Pr[B].

Event B: We now bound ∆Φ when the unlikely and unfortunate event B
does occur. Because we are in Case 2, the above argument that E(∆ΦSFR

j |B) ≤
3 If OPT was restricted so that it could never give more than αT to a single user, then

we could decrease s to 2+α+ε, because `SFR
j,t−1 ≤ `OPT

j,t−1 ≤ αT allows us to change the
s − 1 to s − α.



0 does not change. Since SFR does not change k by more than a fac-
tor of r and because OPT does not change the allocations at all, then

E(∆ΦSFR
k |B) = 14

log r log(
`SFR

k,t−1

`SFR

k,t

) ≤ 14
log r log r.

E(∆Φ|B) ≤ E(∆Φj |B) + E(∆Φk|B) ≤ 14.

Conclude Case 2: We bound the change of the potential function as:

E(∆Φ) = Pr[B]·E(∆Φ | B)+(1−Pr[B])·E(∆Φ | B) ≤ 3

7
·(14)+

4

7
·(−14) = −2.

We have established that E(at) = SFRt + E(∆Φ) ≤ 0 = O(logs n)OPTt.

Hence E(at) ≤ O(logs n)OPTt, thus concluding the proof. ut

2.1 Using SFR to Solve RAPP

We can also use a variant of SFR to solve RAPP as follows. When at time t user
j requests rj,t resources with penalty pj,t then we call the main loop for SFR(j)
dpj,te times or until lj,t ≥ rj,t.

We argue that this is O(logs n) competitive. First, note that the total penalty
costs for SFR are at most half that of its communication costs, since we only
suffer a penalty pj,t after calling the main loop SFR(j) at least pj,t times, and
each time has communication cost 2. Thus, if we can bound the communication
costs of SFR in terms of the total costs of OPT, the same bound, times 1.5,
holds for the total costs for SFR.

We use the same potential function as for the analysis of SFR for RAPP. Note
that the same bounds in the proof hold for changes in the adversary’s allotments.
Moreover, the same bound on the expected amortized cost of a loop of SFR holds
when `SFR

j,t−1 ≤ `OPT
j,t−1. If `SFR

j,t−1 ≥ rj,t, there is no complaint and the algorithm has

no costs. In the final case, rj,t ≥ `SFR
j,t−1 ≥ `OPT

j,t−1, so the adversary fails to satisfy
the request and pays penalty pj,t. Since SFR performs at most 2pj,t iterations
of its main loop, and each iteration has communication cost 2, and changes the
potential function by at most 28, the total amortized communication costs are
at most 60 times the costs for OPT.

3 The Transmission Minimizing Approximate Value

Problem

Recall that TMAV problem has n sensors reading values and a central cache
must maintain an estimate of each value by knowing an interval Ij,t = [aj,t, bj,t]
containing this value. The constraint is that the sum of the intervals (or allowable
errors) always be bounded by T , namely

∑

j(bj,t−aj,t) ≤ T . Among other things,

this assures that the cache knows the sum
∑

j vj,t ∈
[

∑

j aj,t,
∑

j bj,t

]

within an



accuracy of T . In an online algorithm, the cache only learns the new value vj,t if it
moves outside of its current interval. At such times, the cache sends a message to
the node telling it its new interval. The objective is to minimize the the number
of messages sent between the cache and the nodes.

To solve the TMAV problem we will modify our algorithm for the RAP. The
input to the TMAV problem specifies the value vj,t of node j ∈ [n] at time
t ≥ 0. The algorithm for RAP on the other side computes allocations, based on
resource requests, so we need to map 1) the allocations computed to intervals
and 2) resource pool sT to appropriate precision parameter.

The Steal-From-the-Rich algorithm for this problem mimics that for RAP
but with a total precision of sT/2. The algorithm partitions the precision sT/2
amongst the n nodes. When the cache learns a new value vj,t, it sets Ij,t =
[vi,t− `SFR

j,t , vj,t + `SFR
j,t ] to have width 2`SFR

j,t centered around this new value. We
assume the algorithms learns a new value vj,t, when the value moves out of the
current interval or when the interval is changed.

When a node reports that its value is outside its current interval, then we
mimic one iteration of SFR to increase its allocation `SFR

j,t , decrease one other
nodes interval. We assign both nodes intervals of width their new allocations,
centered around their current values. Note that since

∑

i `SFR
j,t = sT

2 then the
total length of intervals is sT .

Theorem 2. For s>6, the algorithm SFR for TMAV Problem is (s, O(logs n))-
competitive against an adaptive online adversary.

Proof. (sketch) Let IOPT
j,t and ISFR

j,t be the current intervals assigned by OPT

and SFR to node j. We’ll say that node j is separated if the center cj,t of ISFR
j,t is

not contained in IOPT
j,t . This can occur when OPT incurs a cost in order to move

its interval. But as soon as SFR incurs its next cost for this node, this node is no
longer separated because SFR moves the center of its interval to the new value,
which is contained in OPT’s interval. Then no matter how the value changes,
this node remains unseparated until OPT is required to move its interval again.

We use the same potential function as in Sect. 2, setting `OPT
j,t = |IOPT

j,t |, but

with one additional item. We add to the potential O( log n
log s ) times the number of

separated intervals at time t, Ns(t).

Φj,t =
14

log r

∣

∣

∣

∣

∣

log

(

|ISFR
j,t |

r|IOPT
j,t |+ µT/n

)∣

∣

∣

∣

∣

and Φt =

j=n
∑

j=1

Φj,t + O(logs n) ·Ns(t).

A key observation is that if an update to an unseparated sensor incurs a
cost for SFR but not for OPT, then vj,t, cj,t ∈ IOPT

j,t−1 and vj,t /∈ ISFR
j,t−1, hence

1
2`SFR

j,t−1 = 1
2 |ISFR

j,t−1| ≤ |vj,t − cj,t| ≤ |IOPT
j,t−1| = `OPT

j,t−1. Except for an extra factor of
two, which we compensate for by having SFR for this problem have an s that
is twice as big, this conclusion `SFR

j,t−1 ≤ `OPT
j,t−1 is the same as it had been in case

2 for the RAP. On the other hand, an update to a separated interval reduces
Ns(t) by 1, and hence has negative amortized cost. Thus, the amortized costs
for SFR for each operation are at most O(logs n) times the costs of OPT. ut



4 Reductions Between Online Problems

In general reductions between problems are used in at least two different ways.
The first usage is: given an algorithm for problem A we can obtain an algorithm
for problem B by combining an appropriate reduction function which maps in-
stances of B to instances of A, then use a good algorithm for A. On the other
hand, if we have a lower bound for problem B, we inherit the same lower bound
for problem A from a reduction from B to A. Online reductions have been used
to design algorithms in, for example, [AL04], which solves a fractional version
of a Maximizing Switch Throughput problem and then reduces the more in-
teresting discrete version to the fractional version. Unlike in complexity, online
reductions have rarely been used to compare the likely hardness of online al-
gorithms, probably because researchers have been successful at proving lower
bounds directly. Since there is a large gap between our lower and upper bounds
for these problems, however, we are interested in the relationship between them.

In this section, we show that the RAP problem is at least as hard as the
TMAV problem by reducing RAP to TMAV, in a way that preserves the com-
petitive ratio. (Although intuitively, our algorithm for TMAV is based on one for
RAP, we do not know of any general reduction in this direction.) We later give
a general discussion of what constitutes an online reduction, especially against
adaptive online adversaries. We also give a number of other reductions, from
RAP to RAPP, and from paging to RAP.

Theorem 3. [RAP ≤AD ON TMAV ] Let A be any (s, k)-competitive algorithm
against adaptive online adversaries for the TMAV problem. Then there exists
an (s, k)-competitive algorithm against adaptive online adversaries for the RAP
problem.

Proof. Given an algorithm A for TMAV we construct an algorithm B for RAP,
which has the same competitive ratio as A. B uses A as a subroutine to compute
the allocations of resources to the users. Let `j,t (length) be the high end point
of the interval assigned to sensor j at time t by A. The input to B is a request
rj,t from user j for more resources. B maintains the following set of invariants:

1. The current interval A has assigned sensor j contains 0 and has high endpoint
`j,t, the amount of resources B has assigned to user j.

2. The resource allocated `i,t−1 to each user prior to serving the t-th request
is at least as big as the last requested resource by the user, i.e, ri,t−1 ∈
[0, `i,t−1], for all i ∈ [n].

Suppose the set of invariants holds after (t−1)-st request. And suppose B
receives a request rj,t for more resource from user j. Then B makes a call to
A, specifying that sensor j, has changed its value to v = rj,t, A(j, v). Then B
makes n calls to A, changing all sensors current values to 0 (in any order.) At
this point, A must have assigned each sensor an interval containing 0. B gives
each user an allocation equal to the high endpoint of the corresponding interval
assigned by A. Note that only intervals changed by A need a reallocation, so B’s



costs are at most those of A. If all users demands are satisfied by this allocation,
the algorithm halts. Otherwise, it sets j to be some complaining user, and v to
be the users demand, and repeats the above process. The above process repeats
until all users are satisfied. (This must happen eventually, since in each iteration
A has cost at least 1, whereas an adversary that assigns each sensor i the interval
[0, ri,t] will have cost at most n no matter how many iterations occur. If A’s costs
tends towards infinity, it would contradict the assumption that A is competitive.)
By the invariant, B’s total allocation is bounded above by the total length of
intervals that A uses, and so B also stays within budget.

Let OPTB be an adaptive online adversary for B. Let OPTA be the following
online adversary for A, maintaining the invariant that the interval assigned by
OPTA to sensor i is [0, lOPTB

i,t ] at all times. If OPTB changes an allocation to
a user, OPTA changes the high endpoint of that sensor’s interval. If OPTB

generates a request for r from user j, OPTA generates the series of requests that
B would to A. (Note that this requires OPTA to be adaptive, since it must know
A’s state in order to generate these requests.) Note that OPTA has no costs for
this series of requests, since its intervals contain [0, pi,t] as sub-intervals during
this time period. Thus, the total costs for OPTA are at most those for OPTB .

We then have: Cost(B) ≤ Cost(A) ≤ k ·Cost(OPTA)+c ≤ k ·Cost(OPTB)+
c. Thus, B is also k-competitive against any adaptive online adversary. ut

Next we formalize the notion of competitive ratio preserving online reduction
with respect to adaptive online adversary, denoted as ≤AD ON.

Let Π1, Π2 be two online problems whose hardness we want to relate. Let
the quality of any solution σi for Πi be measured by Costi(σi) functions, for
i = 1, 2. We want to show that Π1 reduces to Π2 via competitive ratio preserving
reduction, Π1 ≤AD ON Π2, such that, if there exist a c-competitive algorithm
for Π2 then there exists F (c)-competitive algorithm for Π1.

S′
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. . .
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S′

1,i1
S′

1,1

ALG2

ADV1

r1

ADV2

ALG
ALG2
1

S1,i1

R1,1

S1,1
...

R1,i1

Fig. 1. One round of interaction between online algorithms for Π1, Π2 ALG1, ALG2

and the respective adversaries ADV1, ADV2.

Let ALG2 be a c-competitive algorithm for Π2 and ADV1, ADV2 be adaptive
online adversaries for Π1, Π2, respectively. We use the following notation. We
let ADV1 generate the sequence r1, r2, . . . , rt. When the algorithm for Π1 ALG1



receives a request rm ∈ r1, . . . , rt it starts a loop for say im iterations and
calls the algorithm for Π2 ALG2. In each iteration ALG1 sends a request Rm,j

to ALG2 and gets back a response Sm,j for j = 1, . . . , im. Then ALG1 makes a
decision Sm. ADV1 observes Sm and commits to decision S ′

m. Then the adversary
for Π2 observes everything ALG1 has observed and in addition the response of
ADV1, namely S′

m and has to commit itself to decisions S ′

m,1, . . . , S
′

m,im
. Let

H
(t)
ADV1

be the history known to ADV1 until time t. ADV1 does not need to
remember r1, . . . , rt since it has generated the sequence, but it does remember the

responses of ALG1 to the sequence r1, . . . , rt, hence H
(t)
ADV1

= (S1, S2, . . . , St).

Let H
(t,j)
ALG1

= (r1, S1,1, . . . , S1,i1 , . . . , rt, St,1, . . . , St,j) be the history known to
ALG1, namely the requests given to it by ADV1 and the responses from ALG2

up until the j-th response for the t-th request. The history for ALG2 be H
(t,j)
ALG2

=
(R1,1, . . . , R1,i1 , . . . , Rt,1, . . . , Rt,j) and the history for the adversary ADV2 be
the history observed by ALG1 along with the responses of ADV1 to the requests

up until time t, namely H
(t)
ADV2

= (H
(t)
ALG1

◦{S′

1, S
′

2, . . . , S
′

t}). An online reduction
will have to specify the following online computable functions:

1. A request mapping function g, which ALG1 uses to generates the next re-

quest for ALG2 based on its current history, namely g(H
(t,j)
ALG1

) = Rt,j+1 or ∅
if the sequence of requests needed to be generated to satisfy the t-th request
rt is complete. Let St,j+1 = ALG2(Rt,j+1). Then the two histories are up-

dated accordingly H
(t,j+1)
ALG2

= (H
(t,j)
ALG2

◦Rt,j+1), H
(t,j+1)
ALG1

= (H
(t,j)
ALG1

◦St,j+1).
2. Once ALG1 has generated all requests Rt,1, . . . , Rt,it

and has received the
corresponding responses from ALG2 we need a response mapping function

h to generate the respond ALG1 to request rt: h(H
(t,it)
ALG1

) = St. Once ALG1

has computed St, then the adversary ADV1 updates its history: H
(t)
ADV1

=

(HADV1
◦ St) and generates S′

t = ρ1(H
(t)
ADV1

) in response.
3. We also need to specify the actions of the adversary ADV2. Given a history

H
(t,j)
ADV2

, ADV2 generates a response ρ2(H
(t,j)
ADV2

) = S′

t,j , for j = 1, . . . , it.

Suppose that the following holds:

1. Cost1(S1 . . . , St) ≤ α · Cost2(S1,1, . . . , S1,i1 , . . . , St,1, . . . , St,it
).

2. Cost2(S
′

1,1, . . . , S
′

1,i1 , . . . , S
′

t,1, . . . , S
′

t,it
) ≤ β · Cost1(S

′

1 . . . , S′

t).
3. ALG2 is c-competitive, hence Cost2(S1,1, . . . , St,it

) ≤ c·Cost2(S
′

1,1, . . . , S
′

t,it
).

then ALG1 is F (c) = (α · c · β)-competitive against an adaptive online ad-
versary.

The proof of Theorem 3 is an example of an (α, β) online reduction with α =
β = 1. We can also reduce RAP to RAPP.

Theorem 4. (RAP ≤AD ON RAPP ) There is an online adaptive reduction
from RAP with resource factor s to RAPP with resource factor s, with α = β =
1.

Proof. Let A be an algorithm for RAPP. We define an algorithm B for RAP as
follows. At any time B will have the same allocation as A does. If at any time t,



a user j becomes unsatisfied, B simulates a request for rj,t resources from user
j to A, assigning it penalty 1, and changes allocations as A does. This continues
while there is an unsatisfied user. B maintains the same budget as A, and has
at most the costs of A.

Let OptB be an online adaptive adversary for RAP. When OptB reallocates
resources, OptA reallocates resources accordingly. When OptB generates a re-
quest rj,t for resources, let OptA simulate B, generating the same sequence of
requests to A. Note that, since OptB ’s allocation must satisfy all users’ require-
ments, there is no penalty cost for OptA for this sequence of requests. Thus,
OptA’s total costs are the same as its reallocation costs, which are the same as
OptB ’s. OptA maintains the same budget as OptB . ut

5 Lower Bounds

Next we show that the factor of s extra resources is crucial to algorithm’s per-
formance. We consider the case when both the algorithm and the adversary have
the same resources.

Theorem 5. There is no online algorithm that is (1, O(f(n))) competitive for
the RAP problem or the TMAV, for any function f .

Proof. We give a strategy for the adversary. We consider RAP with n = 2 and
T = 1. The adversary picks a random r ∈ [0, 1] and places r resources with user
1 and 1 − r resources with user 2. The request sequence is then generated as
follows: To generate the t-th request, st ∈ [0, 1] is chosen uniformly at random.
If st ≤ r, a request for st resources is made by user 1. If st > r, a request
for 1 − st resources is made by user 2. The adversary can always meet these
requests without transferring resources, so the adversaries costs are constant for
the entire sequence. We show that, for any online algorithm, the expected costs
diverge as t goes to infinity.

Let Lt be the largest si ≤ r with i ≤ t (defining Lt = 0 if no such si exists),
and let Rt be the smallest si > r with i ≤ t (defining Rt to be 1 if no such i
exists). For a fixed sequence s1, . . . , st, any value of r with Lt ≤ r ≤ Rt will
generate the same request sequence. Thus, given the request sequence, the value
of r is uniformly distributed in the interval [Lt, Rt]. Let `t be the amount of
resources assigned to user 1 by the algorithm after the first t requests. Note that
`t is determined by the request sequence s1, . . . , st, so conditioning on `t does
not change the conditional distribution on r. User 2 is then assigned at most
1− `t resources by the algorithm.

If `t < r, then any st+1 ∈ (`t, r) will force the algorithm to reallocate re-
sources, and if `t > r, then any st+1 ∈ (r, `t) will similarly force a reallocation.
Thus, the probability that the algorithm has a cost of at least 1 for request
t+1 is at least |r− `t|. Let Cost(Alg(st+1)) denote the cost of the algorithm for
servicing the t + 1-st request.

Pr [Cost(Alg(st+1)) = 1 | s1, . . . , st] ≥ |r − `t|.



Since r ∈U [Lt, Rt], the expected value of this quantity (given the request se-
quence so far) is at least (`t − Lt)/2 + (Rt − `t)/2 = 1/2(Rt − Lt).

E [Cost(Alg(st+1)) | s1, . . . , st] ≥
Rt − Lt

2
.

Fix r. Then the probability that Rt ≥ Lt + 1/(2t) is at least the probability
that no si ∈ (r − 1/(4t), r + 1/(4t).

Pr

[

Rt ≥ Lt+
1

2t

]

≥ Pr

[

@ si ∈ (r− 1

4t
, r+

1

4t
)

]

= 1− Pr

[

∃si ∈ (r− 1

4t
, r+

1

4t
)

]

≥ 1−
t
∑

i=1

Pr

[

si ∈ (r − 1

4t
, r +

1

4t
)

]

≥ 1− t

2t
≥ 1

2
.

Thus, the probability that Rt = Lt ≥ 1/(2t) is at least 1/2, and conditioned
on this, the probability that the algorithm has a cost of 1 is at least 1/(4t),
Pr
[

Cost(Alg(st+1)) = 1 | Rt ≥ Lt + 1
2t

]

≥ Rt−Lt

2 ≥ 1
4t .

Pr [Cost(Alg(st+1)) = 1] ≥ Pr

[

(Cost(Alg(st+1)) = 1) ∩ (Rt ≥ Lt +
1

2t
)

]

≥ Pr

[

Cost(Alg(st+1)) = 1 | Rt ≥ Lt +
1

2t

]

· Pr

[

Rt ≥ Lt +
1

2t

]

≥ 1

8t
.

Thus, the expected cost of the algorithm for the t+1’st request is at least 1/(8t).
Since the sum of the expected costs diverges as t goes to infinity, the expected
cost of the algorithm is unbounded, compared to a fixed cost for the adversary.

Similarly, for the TMAV, the adversary assigns node one an interval (0, r) and
node 2 an interval (r, 1) for a random r ∈ [0, 1]. Then the adversary generates
values for the nodes by picking random si in [0, 1]. If st ≤ r, node one’s new
value is st, otherwise node two’s new value is st. The analysis is identical to the
proof for RAP. ut

In our upper bounds we compared the performance of an online algorithms
using sT resources against adversary using T resources. We want to obtain lower
bounds on the competitive ratio achievable by online algorithms for RAP using
(1 + ε) resources against adversary using 1 resource. We use the following lower
bound for Paging.

Theorem 6 ([You91,You94]). Any randomized online algorithm for (h, k)-
paging problem has a competitive ratio of at least ln k

k−h − ln ln k
k−h + 1

2 against
oblivious adversary.

Lemma 1 ((h,k)-Paging ≤AD ON RAP ). There is (α, β) reduction with α=
β = 1 from the (h,k)-Paging problem with algorithm using cache of size k = 1

ε ,
adversary using cache of size h = k − 1, and total number of pages needed to be
served k + 1 to RAP .



The reduction is trivial. The k + 1 pages are mapped each to one user of RAP
instance. The RAP algorithm is given k resources while the RAP adversary
will use h resources. Each request generated for page i at time t is mapped to
ri,t = 1 request to the RAP algorithm. If the interval assigned to user j by the
RAP algorithm is at least 1 then the j-th page will be in the cache, else it will
be left out.

Lemma 1, Theorem 6, and the the standard paging lower bound imply the
following results.

Theorem 7. Any online algorithm using (1+ ε) resources for the RAP problem
has competitive ratio Ω(log( 1

ε )) against an oblivious adversary using resource
pool of size 1.

Theorem 8. Any online algorithm for the RAP problem using (1+ ε) resources
has competitive ratio Ω( 1

ε ) against an adaptive online adversary using resource
pool of size 1.

6 Future work

We obtained (s, O(logs n))-competitive algorithms for the RAP, RRAP, and
TMAV problems and proved that the extra resource sT granted to the algo-
rithm is vital. Our intuition is that the upper bound proved in Sect. 2 is tight,
however we have not been able to prove a matching lower bound.

There are two new issues that we have raised. Although online reductions
were used before our work (See [AL04]) as a general technique for obtaining new
online algorithms from algorithms for other problems and we used it in similar
fashion in Sect. 3, to our knowledge our work is the first that uses the notion
of reduction between online algorithms to prove lower bounds on competitive
ratio and relate hardness of one problem to that of another (Sect. 4, 5). Hence
we believe it will be interesting to further study the relations among other on-
line problems and potentially derive new algorithms and lower bounds using
reductionist approach.

The second issue is that traditionally online algorithms have known the past
history and were oblivious to the future. In this paper we study memoryless
algorithms that not only were unaware of the past when making current decision,
but also did not know the current demands exactly. Their knowledge of the
current request is limited and in the process they only learn an upper bound
approximation of the request. It will be interesting to know whether other online
problems can have similar online solutions.
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