
Scheduling in the Dark (Improved Result)

Jeff Edmonds∗

York University, Canada, jeff@cs.yorku.ca

June 5, 2007

Abstract

We considered non-clairvoyant multiprocessor scheduling of jobs with arbi-
trary arrival times and changing execution characteristics. The problem has
been studied extensively when either the jobs all arrive at time zero, or when
all the jobs are fully parallelizable, or when the scheduler has considerable
knowledge about the jobs. This paper considers for the first time this prob-
lem without any of these three restrictions yet when our algorithm is given
more resources than the adversary. We provide new upper and lower bound
techniques applicable in this more difficult scenario. The results are of both
theoretical and practical interest.

In our model, a job can arrive at any arbitrary time and its execution
characteristics can change through the life of the job from being anywhere
from fully parallelizable to completely sequential. We assume that the sched-
uler has no knowledge about the jobs except for knowing when a job arrives
and knowing when it completes. (This is why we say that the scheduler is
completely in the dark.) Given all this, we prove that the scheduler algorithm
Equi-partition, though simple, performs within a constant factor as well as
the optimal scheduler as long as it is given at least twice as many processors.
More over, we prove that if none of the jobs are ”strictly” fully paralleliz-
able, then Equi-partition performs competitively with no extra processors.

∗Author is supported by NSERC Canada.

1

We also consider other variations: faster processors; fewer preemptions; and
a wider range of execution characteristics.

This improved version improves the journal version [7] in two ways. The
first way allows the optimal scheduler to complete the fully parallelizable
work independently from the sequential work. This extra freedom is needed
in [9, 11,?]. The second improvement is a tightening of the competitive ratio

from 2s
(s−2)

to 1 + O(
√

s
s−2

).

Key Words: scheduling, competitive ratio, equal-partition, response

1 Introduction

Suppose you are setting up a multi-processor system. One issue is how to
schedule the incoming jobs. This paper compares the following two strategies.
The first strategy uses lots of time of mathematicians, programmers, and cpu
to guesstimate the types of jobs that are currently in your system and that
are likely to arrive in the future and then attempts to approximate this NP-
complete scheduling problem. The second strategy buys 2+ ǫ times as many
processors and then schedules using the simple Equi-partition algorithm.
Given the inexpensive price of processors, the second strategy may well be
cheaper. This paper proves that mean response times of the jobs under the
second strategy is at most a constant factor times that of the second.

Given a fixed number of processors, the scheduling task is to continually
allocate and reallocate processors to jobs as they arrive and complete. For
example, Equi-partition always partitions the processors evenly among all
jobs that are still alive and Balance gives all the processors to the most
newly arrived job.

The goal is to minimize the average response time, i.e., the time during
which a job has arrived but has not yet completed. Such a scheduling al-
gorithm is said to be on-line if it lacks knowledge of which jobs will arrive
in the future. It is said to be non-clairvoyant if it also lacks all knowledge
about the jobs that are currently in the system, except for knowing when
a job arrives and knowing when it completes. It is said to be competitive
if, despite this lack of knowledge, it always performs only a constant times
worse than the optimal all knowing scheduler.

2

The problem has been studied extensively but always within a model that
is restricted in at least one of the following three ways: either the jobs all
arrive at time zero, or all the jobs are fully parallelizable, or the scheduler
has considerable knowledge about the jobs. This paper considers for the first
time this problem without any of these three restrictions. Without these
restrictions, few of the previous proof techniques are relevant. New upper
and lower bound techniques are described here.

In our model, a job can arrive at any arbitrary time. A job can have an
arbitrary number of phases. The execution characteristics of each phase of
each job can be anywhere from being fully parallelizable to being completely
sequential. A speedup function for each phase of each job defines the rate
Γ (β) at which work is completed in the phase as a function of the number
of processors β allocated to it. For example, a fully parallelizable phase
has Γ (β) = β and a sequential phase has Γ (β) = 1. For the main result,
we require only that each speedup function is sublinear and nondecreasing.
Finally, we assume that the scheduler has no knowledge about the jobs except
for knowing when a job arrives and knowing when it completes. This is why
we say that the scheduler is completely in the dark.

It would seem that not knowing which jobs are fully parallelizable and
which are sequential would make competitive scheduling impossible. The
worst case set of jobs for a given non-clairvoyant scheduler will be such that
any job allocated many processors will happen to be sequential. These pro-
cessors are effectively wasted. The optimal schedule, knowing which jobs are
sequential, allocates only the required number of processors to these jobs. In
addition to these sequential jobs, a stream of fully parallelizable jobs arrive.
The optimal schedule is able to complete each such job before the next ar-
rives. Because the non-clairvoyant scheduler continues to wasted resources
on the sequential jobs, it is unable to complete this stream of work and falls
further and further behind.

We prove improved lower bounds showing that being competitive in this
situation is impossible. However, an old Chinese saying says that two (blind)
shoe makers are better then one politician. Analogously, we prove that the
scheduler Equi-partition, though simple, performs within a constant factor
as well as the optimal scheduler as long as it is given at least twice as many
processors. The extra processors are enough to compensate for the lack of
knowledge.

3

Classically, when one says that an algorithm is within a constant factor
“as good as” the optimal algorithm, they assume that both algorithms are
given the same resources. We feel that it is also valid to say this even when the
algorithm is give a constant factor more resources than the optimal adversary.
This idea was first introduced by [13].

A result that is perhaps even more surprising is that if none of the jobs
are ”strictly” fully parallelizable, then Equi-partition performs competitively
with no extra processors. We also consider schedules that reallocate proces-
sors (preempt) only when the number of jobs in the system goes up or down
by a factor of two (in some sense log n times). We conclude by giving com-
petitive scheduling algorithms when the jobs have superlinear speedup or
even more general speedup functions.

As noted, our results require techniques that are completely new. For
example, the previous results prove that their algorithm is competitive by
proving that at every point in time, the number of jobs alive under their
algorithm is within a constant fraction of that under the optimal schedule.
This, however, is simply not true with our less restricted model. There are
job sets such that for a period of time the ratio between the numbers of alive
jobs under the two schedules is unbounded. We use a potential function to
prove that this can only happen for a relatively short period of time.

1.1 Competitive Ratio

In non-clairvoyant scheduling some relevant information, e.g. when jobs will
arrive in the future, is not available to the scheduling algorithm S. The
standard way to measure the adverse effect of this lack of knowledge is the
competitive ratio MinS∈SMaxJ∈JF (S(J)) /F (OPT (J)) , where S denotes
the class of non-clairvoyant schedulers being considered, J denotes the class
of job sets to be scheduled, F (S(J)) denotes the cost of the schedule S(J)
produced by the online algorithm S on job set J and OPT (J) denotes an
optimal (unrestricted) schedule for the job set. The standard way to interpret
the competitive ratio is as the payoff to a game played between an online
algorithm and an all powerful malevolent adversary that selects the job set J
to be scheduled. At times this is similar to playing poker with someone who
besides being the best player can also select all the cards, while you cannot
even look at your own hand.

4

Competitive analysis has been criticized because it often yields ratios that
are unrealistically high and thus fails to identify the class of online algorithms
that work well. The scheduling problems that we consider are good examples
of this phenomenon in that their competitive ratios are unbounded while
there are simple non-clairvoyant schedulers that perform reasonably well in
practice. Research in this area generally tries to give an advantage back to
the non-clairvoyant scheduler in order to achieve a more realistic ratio. This
advantage either restricts the class J of job sets from which the adversary can
choose, increases the knowledge of the non-clairvoyant scheduler, or increases
the power of the scheduler in some way. By covering many of these issues,
we bring many of these paths of research together.

1.2 Previous Results

The problem has been studied extensively when either the jobs all arrive at
time zero, or when all the jobs are fully parallelizable, or when the scheduler
has considerable knowledge about the jobs.

Most scheduling results depend heavily on the scheduler having complete
knowledge of the amount of work and the execution characteristics of the
jobs as they arrive [25, 29, 30]. Hence, to various degrees of success, compil-
ers and run-time systems attempt to give hints to the scheduler about this
information. To avoid this we consider only non-clairvoyant schedulers.

Consider now the results on batch jobs, i.e., all jobs arrive at time zero.
Motwani et al. [22] prove that on fully parallelizable jobs, the scheduler Equi-
partition algorithm [28], which partitions the processors evenly between the
unfinished jobs and preempts only when jobs complete, has mean response
time within two of optimal. They also prove that no non-clairvoyant sched-
uler has a better competitive ratio.

Turek et al. [29] consider jobs with a single phase of an arbitrary nonde-
creasing and sublinear speedup function. Without using preemptions, they
achieve a competitive ratio of two. However, the algorithm requires com-
plete knowledge of the jobs’ workload and speedup functions and a perhaps
excessive computation time of O(n(n2 + p)).

In contrast, Deng, Gu, Brecht, and Lu [5] do not let the scheduler know
the amount of work per job, but still assume that it knows the speedup func-

5

tion. They consider jobs that are fully parallelizable up to some number of
processors, β . They show that DEQ, an algorithm similar to Equi-partition,
achieves the same competitive ratio of two when the jobs have a single phase,
and of four when they are allowed to have multiple phases.

Finally, Edmonds, Chinn, Brecht, and Deng [10] considers many classes
of speedup functions and assumes that the scheduler has no knowledge of
the jobs. For example, they show that the simple Equi-partition algorithm
achieves a competitive ratio of 2 +

√
3 where jobs have multiple phases of

different nondecreasing sublinear speedup functions. Within the same model,
they also prove a lower bound of e ≈ 2.71 for any non-clairvoyant scheduler.

We now consider the results about scheduling jobs that are fully paral-
lelizable and have arbitrary arrival times. The optimal schedule is easy to
compute. Simply allocate all the processors to the jobs with least remaining
work. This, however, requires the scheduler to know the amount of work
per job. Kalyanasundaram and Pruhs [12] give a non-clairvoyant random-

ized scheduling algorithm with competitive ratio of Θ̃(log n log log n). The
best deterministic and non-clairvoyant schedulers seem to be Equi-partition
and Balance. Equi-partition, or EQUI for short, partitions its processors
evenly among the jobs that are still alive. Balance, BAL, allocates all of
its processors to the job that has been allocated processors for the shortest
length of time. Lacking knowledge about the jobs being scheduled, these
schedulers do not perform well. They have competitive ratios of Ω(n/ log n)
and of Ω(n) respectively [19, 22]. Lower bounds for general non-clairvoyant
schedulers have been more difficult to obtain, but Motwani et al. [22] have a
very simple proof that no deterministic non-clairvoyant scheduler can achieve
a competitive ratio better than Ω(n1/3) and randomized Ω (log n). One way
of avoiding this bound is by requiring that the work of the largest and the
smallest of the fully parallelizable jobs have a ratio of at most k. Then the
competitive ratio is Θ(k) [22]. Even if this ratio is unbounded, Kalyanasun-
daram and Pruhs [13] achieve a competitive ratio of s

s−1
= 1 + 1

ǫ
by giving

their Balance scheduler processors of speed s = 1 + ǫ. Recently, [1], achieve
a competitive ratio of 2

s
for s ≥ 2, proving that the scheduler with lots of

resources is competitive. (We have a simple proof achieving 4
s
.)

6

1.3 Summary of the Results

Like Edmonds et al.[10], we consider jobs that have an arbitrary number
of phases, each with an arbitrary sublinear-nondecreasing speedup function.
Like Kalyanasundaram and Pruhs, we consider arbitrary arrival times and
give the non-clairvoyant scheduler s times as many resources.

With the help of both sequential and fully parallelizable jobs, we achieve a
Ω(

√
n) lower bound on the competitive ratio for randomized non-clairvoyant

schedulers. This is in marked contrast to the deterministic Ω(n1/3) and ran-

domized Θ̃(log n) bounds [12, 22] which only use fully parallelizable jobs.
With speed s = 1+ ǫ processors, our randomized lower bound is Ω(1

ǫ
), where

no previous bound was known.

The scheduler Balance, when only given fully parallelizable jobs, has a de-
terministic ratio of s

s−1
= 1+ 1

ǫ
with speed s = 1+ǫ and a randomized ratio of

O(log n log log n) [12, 13]. However, we show that if the jobs are even slightly
not fully parallelizable, eg., Γ (β) = β1−α, then both their deterministic and
their randomized versions of Balance can have an arbitrarily bad competitive
ratio, Ω

(
s−1/αn

)
, even when given arbitrarily fast processors. The reason is

that Balance allocates all of its processors to the newly released job. This
job, however, may not be able to efficiently utilize this many processors. It
seems then that the only non-clairvoyant scheduler that will perform well
without knowing the speedup functions of the jobs is Equi-partition.

Yet on the other hand, Kalyanasundaram and Pruhs [13] modify the set
of jobs constructed by Motwani et al. so that Equi-partition with s = 1 + ǫ
times as many resources has a competitive ratio of Ω (n1−ǫ). We prove that if
you increase the resources by a factor of s > 2, then Equi-partition becomes
competitive. More specifically, when the scheduler is given p processors of
speed s = 2+ǫ, the competitive ratio is between 2

3
(1+ 1

ǫ
) and 2+ 4

ǫ
. With lots

of extra speed, s ≥ 4, the schedule is still competitive with a ratio between
2
s

and 16
s
. Alternatively, when the scheduler is given sp processors of speed

1, the competitive ratio is between 1 + 1
ǫ

and 2 + 4
ǫ

for s = 2 + ǫ. However,
with lots of extra processors s >> 1, a lower bound of 1 + 1

s
proves that

the scheduler is no longer competitive. (Note having more instead of faster
processors is a weaker model. More processors help when the jobs are fully
parallelizable but not when they are sequential.) Though the upper and
lower bounds do not match perfectly as to the constant, they are tight with

7

respect to the fact that Equi-partition requires more than twice the resources
to achieve a constant competitive ratio.

We go on to prove the surprising result that if all the jobs are strictly sub-
linear, i.e., are not fully parallel, then Equi-partition performs competitively
with no extra processors. The intuition is that if Equi-partition falls behind,
then it has more uncompleted jobs in the system and hence allocates fewer
processors to each job and hence each job utilizes the processors that it is
given more efficiently. We refer to this as Equi-partition automatically self
adjust the number of processors wasted on jobs that cannot fully utilize them.
More specifically, we show that if all the speedup functions are no more fully
parallelizable than Γ(β) = β1−α than the competitive ratio is at most 2

1

α .
For intuition, suppose the adversary allocates p

n
processors to each of n jobs

and Equi-partition falls behind enough so that it has 2
1

α n uncompleted jobs.
Then it allocates p/(2

1

α n) processors to each completing work at an overall

rate of (2
1

α n)Γ(p/(2
1

α n)) = 2 · nΓ(p/n). This is a factor of 2 more than that
by the adversary. Hence, as in the previous result, Equi-partition has twice
the speed and so performs competitively. In this situation, the Motwani like
lower bound for Equi-partition seems to have a competitive ratio of 1.48

1

α .

There are other classes of speedup functions that are definitely not fully
parallelizable, because Γ(p) << p yet that do not fit our definition of
”strictly” sublinear. Such jobs seem to occur in practice and are used in
many simulations [2]. It is interesting, that the Motwani like lower bound
for these is the same as that for fully parallelizable jobs. The key property is
that these speedup functions are fully parallelizable when the job is allocated
a small number of processors, eg. β or Γ(β) = (β̂β + 1)/(β̂ + β).

Edmonds et al.[10] go on to prove a large table of results. We prove anal-
ogous results, except with arbitrary job arrival times. There is a competitive
non-clairvoyant scheduler with (8 + ǫ)p processors that only preempts when
the number of jobs in the system goes up or down by a factor of two (in
some sense log n times). There is one with (4 + ǫ)p processors that includes

both sublinear and superlinear jobs. There is also one with O(p log p)

processors that includes both nondecreasing β and gradual jobs.

Figure 1 summarizes the above mentioned results.

The paper is laid out as follows. Section 2 formally defines the model.
Section 3 provides some intuition. Section 4 provides an upper bound for

8

EQUIs and Section 5 for EQUIs. Section 6 considers strictly sublinear jobs.
Section 7 proves lower bounds. Section 8 reduces the number of preemptions.
Section 9 considers sublinear and superlinear jobs and Section 10 considers
jobs that are only restricted to being nondecreasing or gradual. The paper
ends with some open problems.

2 The Model: Schedulers and Speedup Func-

tions

We consider a set of n jobs that are to be executed on p processors, (n can
tend to infinity). A set of jobs J is defined to be {J1, . . . , Jn} where job Ji

has a release/arrival time ri and a sequence of phases 〈J1
i , J2

i , . . . , Jqi

i 〉. Each
phase is an ordered pair 〈wq

i , Γ
q
i 〉, where wq

i is a nonnegative real number that
denotes the amount of work and Γq

i is a function, called the speedup function,
that maps a nonnegative real number to a nonnegative real number. Γq

i (β)
represents the rate at which work is executed for phase q of job i when given
β processors.

A scheduler S allocates the p processors for each point in time to the
jobs in the given jobs set J in a way such that all the work completes. More
formally, a schedule S for a given job set J with n jobs on p processors is
a function from {1, . . . , n} × [0,∞) to [0, p], where S(i, t) is the number of
processors allocated to job Ji at time t. (We allow a job to be allocated a
non-integral number of processors.) Requiring that for all t,

∑n
i=1 S(i, t) ≤ p

ensures that at most p processors are allocated at any given time. Requiring
that for all i, there exist ri = c0

i < c1
i < . . . < cqi

i such that for all 1 ≤ q ≤ qi,∫ cq
i

cq−1

i

Γq
i (S(i, t)) dt = wq

i ensures that before a phase of a job begins, the

job must have been released and all of the previous phases of the job must
have completed. If c0

i , c
1
i , . . . , c

qi

i are the smallest such values that satisfy
this condition, then the completion time of phase q of job Ji under S is cq

i .
The completion time of a job Ji, denoted ci, is the completion time of the
last phase of the job. A job is said to be alive at time t, if it has been
released, but has not completed, i.e., ri ≤ t ≤ ci. The response time of job
Ji, ci − ri, is the length of the time interval during which the job is alive.
We refer to an algorithm S (J) for producing schedules as a scheduler. The
goal of the scheduler is to minimize the average response time, 1

n

∑
i∈J(ci −

9

ri), of the jobs it must schedule. This goal is equivalent to minimizing the
flow time of J under scheduler S, denoted F (S(J)), which is

∑
i∈J(ci − ri).

An alternative formalization is to integrate over time the number of jobs
nt alive at time t, F (S(J)) =

∑
i∈J

∫∞
0

(Ji is alive a time t)δt =
∫∞
0

ntδt.
Recall, the competitive ratio of a scheduler S on a class of job sets J is
MaxJ∈J F (S(J))/F (OPT (J)).

2.1 Non-Clairvoyant Schedulers, EQUI and BAL

The class of schedulers, J , considered in this paper are the non-clairvoyant
schedulers, meaning that they have no knowledge of the jobs. They do not
know if or when jobs will be released in the future. They do not know the
work wq

i or the speedup functions Γq
i of the jobs currently alive. They are not

able to detect when a particular phase of a job completes. At time t, they
only know the release ri times of the jobs that have already been released,
the completion times ci of the jobs that have already completed, and the
number of jobs ni currently alive in the system.

The two examples of non-clairvoyant schedulers that are often used in
practice are Equi-partition and Balance. (Though no one implements Balance
directly, Unix uses a multi-level feedback (MLF) queue algorithm which in
a way approximates Balance). We define EQUI to be the scheduler that
allocates an equal number of processors to each job that is currently alive.
That is, for all i and t, if job Ji is alive at time t, then EQUI(i, t) = p/nt,
where nt is the number of jobs that are alive at time t. The schedule BAL
is defined in [13] to be the schedule that allocates all of its processors to the
job that has been allocated processors for the shortest length of time.

For these schedulers to be competitive it is necessary to give them more
power. Define EQUIs to be the same as EQUI except that each of its
p processors execute work s times faster than a normal processor, i.e., if
a job phase has speedup function Γ then its work is completed at a rate
of s × Γ (β) when allocated β processors. This is equivalent to giving jobs
with work wi/s instead of wi. Giving jobs arriving at time sri instead of at
time ri is also the same, except that that flow time is a factor of s larger.
Define EQUIs to be the same as EQUI except that it has sp processors,
i.e., EQUIs(i, t) = sp/nt. Note that for sublinear speedup curves, EQUIs

is at least as powerful EQUIs, because EQUIs works s times faster on fully

10

parallelizable jobs and no faster on sequential jobs, while EQUIs work s times
faster on sequential jobs as well. BALs and BALs are defined similarly.

2.2 Classes of Speedup Functions

We now describe some specific speedup functions and some classes of speedup
functions.

A phase of a job is said to be fully parallelizable if its speedup function
is Γ(β) = β. (See Fig 2:a.) A phase of a job is said to be sequential if its
speedup function is Γ(β) = 1, for all β ≥ 0. (See Fig 2:b). Note that such
phases are good for OPT because it can achieve a work rate of one while
allocating zero processors to it. If a non-clairvoyant scheduler, not knowing
that the phase is sequential, allocates more processors to it, the rate of work is
not any better. It would be more reasonable to require at least one processor
to be allocated to the job to achieve a rate of one, but this definition both
simplifies the proof and makes the result stronger.

A speedup function Γ is nondecreasing iff Γ(β1) ≤ Γ(β2) whenever β1 ≤
β2. A job phase with a nondecreasing speedup function executes no slower
if it is allocated more processors. (See Fig 2:a-e.) This is a reasonable
assumption if in practice a job can determine whether additional processors
will speed up its execution and if not can refuse to use some of those allocated
to it.

A speedup function Γ is sublinear iff Γ(β1)/β1 ≥ Γ(β2)/β2 whenever β1 ≤
β2. (See Fig 2:a-c.) A measure of how efficient a job utilizes its processors is
Γ(β)/β, which is the work completed by the job per time unit per processor.
A sublinear speedup function is one whose efficiency does not increase with
more processors. This is a reasonable assumption if in practice β1 processors
can simulate the execution of β2 processors in a factor of at most β2/β1 more
time.

A speedup function Γ is strictly-sublinear by α iff ∀β1 ≤
β2, Γ(β2)/Γ(β1) ≤ (β2/β1)

1−α . (See Fig 2:b-c.) An example of such a
speedup function is Γ (β) = β1−α. We refer to this as the almost fully par-
allelizable speedup function. The class also includes everything in between
this and the sequential speedup function.

In contrast, a speedup function Γ is superlinear iff Γ(β1)/β1 ≤ Γ(β2)/β2

11

whenever β1 ≤ β2. Such speedup functions occur in programs that are highly
parallelizable and have a strong time-space trade off. (See Fig 2:d.) Fig 2:e
is an example of a speedup function that is neither sublinear nor superlinear,
but is non-decreasing. A speedup function is said to be gradual [10] iff for
every number of processors β1 and there is a value a ∈ [1..2] such that for
all β2 ∈ [aβ1/2, aβ1], Γ(β2) ≥ 1

2
Γ(β1). A small point is that we also required

Γ(β) to be nondecreasing for β ≤. (See Fig 2:a-f and specifically f.)

3 Intuition: EQUI Self Adjusts

Before giving the formal proofs, we first provide some intuition into the
powers and limitations of non-clairvoyant schedulers. The intuition behind
Equi-Partition is that because the jobs cannot be distinguished wrt work
or speedup functions, allocate the processors evenly between them. The
intuition behind Balance is as follows. With only fully parallelizable jobs,
the optimal schedule is to allocate all the processors to the job with the least
remaining work. Balance tries to mimic this by allocating all the processors
to the job that has completed the least amount of work. Note if every job was
half done, then this would be the correct measure. BAL also has the feature
that if two fully parallelizable jobs are ever in the system at the same, then
independent of their arrival times, the one with the least amount of work
completes first.

As said, Balance performs very poorly when the jobs are not fully paral-
lelizable because it allocates all of its processors to a single job that may not
be able to efficiently utilize this many processors. Then, given the volume of
work that arrives, it is unable to complete any of the jobs, even when it has
processors of arbitrarily large speed s. OPT , on the other hand, knowing
both the speedup function of the jobs and the rate at which work arrives,
knows just the right number of processors to allocate to each job in order to
achieve just the right level of efficiency to complete all the work at the rate it
arrives. EQUI, without knowing any of this information, does a surprisingly
good job at automatically self adjusting to this optimal number of proces-
sors. Initially, EQUI, like Balance, may allocate more processors to some
jobs then the jobs can utilize and hence the schedule falls behind OPT . As
the number of alive jobs increases, EQUI allocates few processors to each
job and hence computes each more efficiently. If EQUI has more resources

12

than OPT and it is sufficiently utilizing these resources, then EQUI will
then catch up with OPT .

The job sets that are the most difficult for EQUI seem to be modifications
of that given by Motwani [13, 22]. Each job set consists of a stream of n fully
parallelizable jobs and a few extra jobs. The stream is defined by partitioning
time into intervals (ri, ri+1) of length ti = ri+1−ri. The ith stream job Ji has
release time ri and work wi = tip. For now, the extra jobs are sequential.
The number that are alive at time t is ℓt. Think of ℓt as being some constant
bigger than s.

The schedule OPT ignores the extra jobs and completes the stream job
Ji during the time interval (ri, ri+1) by allocating all p processors to it. The
extra sequential jobs complete with zero processors. Hence, at time t, there
are only ℓt + 1 jobs alive.

It is hard to believe that any non-clairvoyant scheduler, even with sp
processors, can perform well here. It does not know which of the jobs is fully
parallelizable. Hence it wastes most of the processors on sequential jobs,
allocating only sp/(ℓt+1) < p processors to the fully parallelizable job. With
only this many processors, this job falls further and further behind and then
other fully parallelizable jobs arrive. These too fall behind. EQUIs, however,
is able to automatically “self adjust” the number of processors wasted on the
sequential jobs so that it performs competitively. It may take a while for the
system under EQUIs to reach a “steady state”, but when it does, mt, which
denotes the number of fully parallelizable jobs alive at time t, converges to
m̃t = ℓt/(s − 1). At this time, EQUIs has ℓt + m̃t jobs alive and OPT
has ℓt + 1. Hence, the competitive ratio is F (EQUIs(J)/F (OPT (J)) =
(ℓt + ℓt/(s − 1))/(ℓt + 1) ≤ s

s−1
, which is 1 + 1

ǫ
for s = 1 + ǫ.

We will show that a key resource for getting and keeping mt high is
the work, Wt, completed by OPT but not by EQUIs by time t. The fully
parallelizable work is released and completed by OPT at a rate of p. EQUIs

allocates sp
ℓt+mt

of its sp processors to each of the ℓt +mt jobs alive and hence
it completes fully parallelizable work at a rate of spmt

ℓt+mt
. The sequential work

is released and completed at the same rate by each scheduler. Hence, overall,
Wt changes at a rate of p − spmt

ℓt+mt
. We say that the system reaches a steady

state when amount of work in Wt remains constant, giving m̃t = ℓt/(s − 1).

If mt < m̃t than fully parallelizable work is being released faster then it is
being completed. Hence, EQUIs falls further behind and mt increases. On

13

the other hand, if mt > m̃t than fully parallelizable work is being completed
faster then it is being released. Hence, EQUIs catches up. Eventually mt

must decrease. Otherwise, Wt will decrease to zero, at which time mt is zero.
The conclusion is that EQUIs tends towards a steady state with mt = m̃t =
ℓt/(s − 1).

A second key factor for getting and keeping mt large is the amount of
work remaining per job. We have seen that the total work Wt completed by
OPT and not by EQUIs is limited and is getting smaller. Hence, to have the
number of jobs mt get larger, the work per job must get much much smaller.
This is what happens in the lower bound Theorem 7. In contrast, suppose
that all the fully parallelizable jobs are the same size, i.e., ti = 1. In this
case, Wt is linearly proportional to mt. Both experimental and theoretical
analysis show that mt quickly converges to ℓ/(s−1) without exceeding it. We
conjecture that if the ti were chosen randomly or chosen in a worst case way
and then randomly ordered, then the expected competitive ratio would be

s
s−1

= 1 + 1
ǫ

for s = 1 + ǫ. This would match the lower bound in Theorem 5.

4 Upper Bound for EQUIs

This section proves the upper bound for EQUIs.

Theorem 1. Consider any set of jobs J with arbitrary arrival times,
each job has an arbitrary number of phases, each phase has an arbitrary
sublinear-nondecreasing speedup function. Suppose OPT has p processors
and EQUIs has s ∗ p processors. Then F (EQUIs(J))/F (OPT1(J)) ≤
F (EQUIs(J))/F (ÔPT 1(J)) ≤ 1 + O(

√
s

s−2
).

This theorem improves the journal version [7] of the corresponding theo-
rem in two ways. The first way allows the optimal scheduler to complete the
fully parallelizable work independently from the sequential work. This extra
freedom is needed in [9, 11,?].

More formally, ÔPT 1(J) is defined as follows. It is the optimal schedul-
ing algorithm for the jobs J where the scheduler is allowed some additional

scheduling options. (It follows that ÔPT 1(J) ≤ OPT1(J).) Every time this
more powerful scheduler executes a job, it is allowed to skip any amount of

14

any sequential phase that it likes. However, the measure of how well it does

is ÔPT 1(J) = ÔPT
par

1 (J) + ÔPT
seq

1 (J), where ÔPT
par

1 (J) is the average
flow time Avgi,j[c

O
i,j −ai,j] of the jobs after these sequential phases have been

cut out and ÔPT
seq

1 (J) is the average over all jobs of the total amount of
sequential work cut out during the execution of the job that services the
request.

The second improvement is a tightening of the competitive ratio from
2s

(s−2)
to 1 + O(

√
s

s−2
). When speed s = 2 + ǫ for small ǫ, both results give

O(1
ǫ
). On the other hand, if speed s is large, then the improvement is from

2 + O(1
s
) to 1 + O(1√

s
). This new result is needed in [9, 11]. It is likely that

the competitive ratio should be 1 +O(1
s
), but as of yet that is unattainable.

Proof Sketch: The proof follows the intuition given in Section 3. In the
first step, Lemma 1 proves that the worst case job sets are those that are
stream lined with respect to OPT . As in Section 3, these job sets consists of a
stream of fully parallelizable jobs and ℓt extra sequential jobs. However, this
stream is a little more general in that a job may have both sequential and
fully parallelizable phases. The key property is that OPT never has more
than one fully parallelizable phase to execute. (See Fig:3.)

In the second step, Lemma 2 proves that the competitive ratio when
considering only such job sets is at least 2s/(s − 2). As in Section 3, it
is sufficient to bound the average value of mt as a function of ℓt, where
mt is the number of fully parallelizable stream jobs that are alive within
EQUIs at time t and ℓt is the number of sequential jobs. A steady state
value was argued to be m̃t = ℓt/(s − 1). Lemmas 3 and 4 together prove

that
∫∞
0

(mt − O(
√

s
s−2

)ℓt)δt ≤ 0. This is proven by again considering the
work Wt that has been completed under OPT , but not under EQUIs by
time t. We define F̂t to be a carefully designed function of this work and
prove that the potential function

∫ t

0
(mt′ − m̂t′)δt

′ + F̂t is non-increasing with
t. To do this, we note that Wt+δt − Wt consists of the work completed by
OPT during the time interval [t, t+δt] minus the work completed by EQUIs

during this same interval. During this time, OPT completes lots of work on
one fully parallelizable job and EQUIs completes a little work on all mt fully
parallelizable jobs. Even though the sequential phases may get executed at
different time under the two schedules, accounting for them is not difficult,
because independent of when they are executed, their execution rate is fixed.

15

We now give the more formal proof.

Proof of Theorem 1: Consider a job set J as described in the Theorem.
Lemma 1 converts this into job set J ′ that is stream lined with respect to OPT
such that F (EQUIs(J

′)) ≥ F (EQUIs(J)) and F (OPT (J ′)) ≤ F (OPT (J)).
Lemma 2 then proves that the competitive ratio when considering only such
job sets is at least 2s/(s − 2). From these two facts the result follows.
F (EQUIs(J))/F (OPT (J)) ≤ F (EQUIs(J

′))/F (OPT (J ′)) ≤ 2s/(s − 2).

The literature [10, 29] presents two bounds on the flow time under OPT .
These are known as the squashed area bound and the height bound, respec-
tively. This paper uses these bounds implicitly. However, in order to simplify
the proof of the main lemma, the ways in which these bounds are used are
separated out and combined with the proof of these bounds. The result is
the following lemma.

We will say that a job set J is stream lined with respect to OPT iff 1) every
phase of every job is either sequential or fully parallelizable and 2) OPT is
able to execute every job at its maximum possible speed, i.e., allocate zero
processors to every sequential and p processors to every fully parallelizable
phase, without any job ever waiting for processors. The reason is that the
fully parallelizable phases of the jobs fit together so that at most one at a
time is alive. (See Fig 3.)

Lemma 1. Consider any non-clairvoyant scheduler Ss with sp processors.
For every job set J with sublinear-nondecreasing speedup functions, there is
a job set J ′ that is stream lined with respect to OPT , such that F (Ss(J

′)) ≥
F (Ss(J)) and F (OPT (J ′)) ≤ F (OPT (J)). Moreover, when executing J ′, Ss

is never ahead of OPT on any job.

Proof of Lemma 1: Let Ss and J be as stated. We change the job set
J into a job set J ′ a little bit at a time, in the order that OPT completes
the work. For each point in time T , we define a job set JT , where the work
completed before time T under OPT has been changed to that in J ′ and the
work completed after T is still that in J .

The inductive step is to construct job set JT+δT from JT , where δT is
an infinitesimally short interval of time. Consider in turn each job Ji that
is alive under OPT during the interval (T, T + δT) and the interval of work
completed under OPT on it during this time. Let (τi, τi +δτi) be the interval

16

during which Ss completes this same work. Because these intervals of time
and work are infinitesimally short we can assume WLOG that neither phase
changes nor processor reallocations occur under OPT or S while completing
this work. Let Γi denote the speedup function of this interval of work. Let
βOPT

i denote the number of processors allocated under OPT to it and βSs

i

the number under Ss.

There are two cases. First suppose βOPT
i ≤ βSs

i . Because the speedup
function Γi is non-decreasing, we know Ss is completing this work at least as
quickly as OPT , i.e., Γi(β

OPT
i) ≤ Γi(β

Ss

i), and hence requires no more time,
i.e., δτi ≤ δT .

We modify JT to JT+δT in this case by replacing this interval of work in
job Ji with a sequential phase with work δT . This change will not increase
the flow time under OPT , because OPT can complete the same interval
of work during the same interval of time, while allocating the phase zero
processors. The βOPT

i processors it had used for this work can instead be
used on another job.

In contrast, this change cannot decrease the flow time under Ss. First
note that because Ss is non-clairvoyant, it cannot differentiate between the
job sets JT and JT+δT . Hence, it still allocates βSs

i processors to complete
this work, even though they are effectively wasted. Now note that Ss had
completed the original work in time δτi but now it requires time δT . As
seen, δτi ≤ δT . Finally, note that with this change scheduler Ss does not get
ahead of OPT on this interval of work.

In the second case, suppose βOPT
i ≥ βSs

i . Because the same work is
completed in time δT at a rate of Γi(β

OPT
i) and in time δτi at a rate of Γi(β

Ss

i),
it follows that δτi/δT = Γi(β

OPT
i)/Γi(β

Ss

i). Because the speedup function is
sublinear, Γi(β

OPT
i)/Γi(β

Ss

i) ≤ βOPT
i /βSs

i . Hence, δτi ≤ (βOPT
i /βSs

i)δT .

WLOG, assume that the jobs alive under OPT during the interval (T, T +
δT) are J1, . . . , JNT

. We modify JT to JT+δT in this case by replacing this
interval of work in job Ji with a sequential phase with work

∑
i′<i(β

OPT
i′ /p)δT ,

followed by a fully parallelizable phase with work βOPT
i′ δT , followed by a

sequential phase with work
∑

i′>i(β
OPT
i′ /p)δT . First we need to check that

this change does not increase the flow time under OPT . If OPT allocates
all p processors to the fully parallelizable phase, then it will complete this
phase in time (βOPT

i /p)δT . Hence, OPT completes the three phases in time∑
i′(β

OPT
i′ /p)δT = δT . Also note that these fully parallelizable phases fit

17

together so that at most one at a time is requiring processors.

Now we need to check that this change does not decrease the flow time
under Ss. As before, because Ss is non-clairvoyant, it still allocates βSs

i

processors to complete this work on job Ji. Hence, it completes the fully
parallelizable phase with work βOPT

i′ δT in time (βOPT
i /βSs

i)δT ≥ δτi. In
addition, the scheduler Ss must complete the sequential phases. Finally,
note that scheduler Ss does not get ahead of OPT on this interval of work.

Lemma 2. For any job set J that has only fully parallelizable or sequential
phases and that is stream lined with respect to OPT , F (EQUIs(J)) ≤ 2s/(s−
2) · F (OPT (J)).

Proof of Lemma 2: Let J be the worst case set of stream lined jobs. Let
nt denote number of jobs alive under EQUIs at time t. Let mt denote the
number of these that are within a fully parallelizable phase at this time and
let ℓt denote the same except for sequential phases. Let Nt, Mt, Lt denote
the same numbers except under OPT . Using these, the competitive ratio
can be expressed as

F (EQUIs(J))

F (OPT (J))
=

∫∞
0

ntδt∫∞
0

Ntδt
=

∫∞
0

(ℓt + mt) δt∫∞
0

(Lt + Mt) δt

The schedules EQUIs and OPT execute the sequential phases of jobs
at the same rate because these phases (as defined for this paper) complete
at a rate of one even if no processors are allocated to them. From this we
know that both

∫∞
0

ℓtδt and
∫∞
0

Ltδt are simply the sum of the work of all
sequential phases of all jobs. Because these integrals are the same, Lt can be
replaced with ℓt in the above bound for the competitive ratio. One should
note, however, that it is possible that the number of sequential phases being
executed at a given time under the two schedules might be very different, i.e.,
ℓt 6= Lt. This occurs if a sequential phase is delayed under EQUIs because
the same job has a fully parallelizable phase preceding the sequential phase.

The intuition in Section 3 indicated that the steady state the number of
fully parallelizable under EQUI is ℓt/(s− 1). Below Lemmas 3 and 3 proves

18

that on average mt is not more than this. More formally, Lemma 3 proves
that

∫∞
0

(mt − m̂t)δt ≤ 0, where m̂t = 2ℓt+1
s−2

+ s
s−2

ℓt

1+
ℓt
mt

. Lemma 4 proves that

from this it follows that
∫∞
0

(mt − ̂̂mt)δt ≤ 0, where ̂̂mt = O(
√

s
s−2

)ℓt). Finally,
from this the result follows easily.

F (EQUIs(J))

F (OPT (J))
=

∫∞
0

(ℓt + m̂t) δt∫∞
0

(Lt + Mt) δt
+

∫∞
0

(mt − m̂t) δt∫∞
0

(Lt + Mt) δt

≤
∫∞
0

(
ℓt + O(

√
s

s−2
)ℓt

)
δt

∫∞
0

(ℓt + Mt) δt
+ 0 ≤ max

t

O(1 +
√

s
s−2

)ℓt

(ℓt + mmt)
≤ O(1 +

√
s

s − 2
)

Recall that Mt is either zero or one and one maximizes the above expression,
giving maxt

2sℓt+1
(s−2)(ℓt+1)

≤ 2s
(s−2)

.

The remaining step is to prove that on average mt is O(ℓt).

Lemma 3.
∫∞
0

(mt − m̂t)δt ≤ 0, where m̂t = 2ℓt+1
s−2

+ s
s−2

ℓt

1+
ℓt
mt

.

Proof of Lemma 3: The proof defines a potential function FT + F̂T . The
first part FT is defined to be

∫ T

0
(mt−m̂t)δt. The second part F̂T is a function

of the amount of work that has not been completed by EQUIs by time T ,
but that has been competed by OPT . (Recall, that by Lemma 1, there is
no work that has been completed by EQUIs and not by OPT .) If there is

lots of such work than
∫∞

T
(mt − m̂t)δt can be large. Intuitively F̂T acts as

an upper bound for how large
∫∞

T
(mt − m̂t)δt can be, given the fact that

there is all this work that has not been completed by EQUIs, but that has
been competed by OPT . It would follow that FT + F̂T is an upper bound
on
∫ T

0
(mt − m̂t)δt +

∫∞
T

(mt − m̂t)δt =
∫∞
0

(mt − m̂t)δt. Our goal is to prove
that this is at most zero.

The formal steps are different. The main step is to prove that the function
FT + F̂T is non-increasing with time T . Because it is not differentiable at
the points in time T where a job phase begins or completes under EQUIs,
at these points we prove that the function is continuous. For other points in
time, we prove that its derivative is at most zero. Next, we note that F0 + F̂0

is zero, F0 zero by definition and F̂0 because initially EQUIs does not have
any uncompleted work. Because FT + F̂T is non-increasing F∞ + F̂∞ is at

19

most zero. Again F̂∞ is zero because in the end EQUIs does not have any
uncompleted work. We can conclude that F∞ =

∫∞
0

(mt − m̂t)δt ≤ 0.

The work completed by OPT by time T and not by EQUIs will be
characterized by the following definitions. (See Figure 3.) For t ≥ T , define
mT

t to be number of fully parallelizable phases executing under EQUIs at
the time instance t for which OPT has completed this same instance of work
by time T . (Note OPT does not need to have completed the entire phase.)
Similarly, define ℓT

t to be the number of sequential phases and nT
t = ℓT

t +mT
t

to be the number of jobs with this property. The potential function on this

work is defined to be F̂T =
∫∞

T
s

s−2

(mT
t)2

nt
δt. Recall, FT =

∫ T

0
(mt − m̂t)δt.

Claim 1. The potential function FT + F̂T is continuous even at the points
in time T where a job phase begins or terminates.

Proof of Claim 1: The influences on FT and F̂T caused by moving the
boundary of the integrations

∫ T

0

∫∞
T

are continuous because the integrands
are finite. For a fixed value of t, the numbers of jobs mT

t and ℓT
t may change

by an integer amount when changing T by an infinitesimal amount δT . How-
ever, within the time interval [T, T + δT], OPT is able only to complete an
infinitesimal amount of work. This same work gets completed under EQUIs

during an infinitesimal interval of time [τ, τ + δτ]. Hence for fixed values of
t, mT

t and ℓT
t change in this way only for values of t within such infinitesi-

mally small intervals of time. Hence, the integration over t only changes an
infinitesimal amount.

Consider some fixed point in time T at which no job phase begins or
completes under EQUIs. What remains to be done is to prove that [(FT+δT +

F̂T+δT) − (FT + F̂T)]/δT ≤ 0. Let δT be small enough so that under both
schedules no job phase begins or completes within either the interval (T, T +
δT) or the interval (τ, τ + δτ). Here (τ, τ + δτ) is a time interval during
which EQUIs completes the same interval of fully parallelizable work that
OPT completes during the interval (T, T + δT). The next step is to prove
the following relations between the defined counts.

Claim 2.

1. ℓT
T = ℓT , mT

T = mT , and nT
T = nT .

2. For t ≥ T, nT
t ≤ nT .

20

3. ℓT+δT
t ≥ ℓT

t .

4. If MT = 0, then for all t ≥ T, mT+δT
t = mT

t . If MT = 1, then there
is some interval of time (τ, τ + δτ) of length δτ = nτ

s
δT such that for

t 6∈ (τ, τ + δτ), mT+δT
t = mT

t and for t ∈ (τ, τ + δτ), mT+δT
t = mT

t + 1.

Proof of Claim 2: By Lemma 1, EQUIs is never ahead of OPT on any
job. Hence if EQUIs is executing a job at time T , then OPT has completed
it at time T or earlier. It follows that ℓT = ℓT , mT

T = mT , and nT
T = nT .

For the second point, consider some time t ≥ T and some job Ji included
in the count nT

t . By definition, Ji had a bit of its work completed under OPT
before or at time T . Hence, Ji must have arrived at time T or earlier. By
the definition of EQUIs, we know that this schedule executes Ji continuously
from its arrival time ≤ T until it completes the job. By the definition of nT

t ,
EQUIs has not completed Ji by time t ≥ T . It follows that EQUIs works on
Ji at time T . In conclusion, Ji is included in the count nT and hence nT

t ≤ nT .
(Note, however, because job Ji may switch between fully parallelizable and
sequential phases, mT

t ≤ mT and ℓT
t ≤ ℓT are not necessarily true.)

The third point, ℓT+δT
t ≥ ℓT

t , is true simply because the condition to be
included in the first count has been relaxed from that of the second.

In order to prove the final point, recall that by the definition of the set of
jobs being stream lined with respect to OPT , OPT works on either MT = 0
or MT = 1 fully parallelizable phase at time T . If MT = 0, then the fully
parallelizable work completed by OPT before time T + δT is the same as
that before time T . Hence, the requirements for a job to be included in the
counts mT+δT

t and mT
t are the same and so mT+δT

t = mT
t .

If MT = 1, let Ji be the job whose fully parallelizable phase is worked on
by OPT during the interval (T, T + δT). Let (τ, τ + δτ) be the time interval
during which EQUIs completes the same interval of work. Because δT is
sufficiently small, no phase of any job begins or terminates under EQUIs

during the interval (τ, τ + δτ). Hence, the number of jobs executing under
EQUIs is the fixed number nτ and the interval of fully parallelizable work
is completed under EQUIs at a rate of Γ(sp

nτ
) = s

nτ
p. OPT completes this

work with all p processors at a rate of Γ(p) = p. It follows that δτ = nτ

s
δT .

For t 6∈ (τ, τ + δτ), the fully parallelizable work completed under EQUIs

at time t and by OPT before time T +δT is the same as that by OPT before

21

time T . Hence, as before, mT+δT
t = mT

t . For t ∈ (τ, τ + δτ), there is one
extra job that was completed by OPT before time T + δT then that before
time T . Therefore, mT+δT

t = mT
t + 1.

We are now ready to take the derivative of FT + F̂T .

FT =

∫ T

0

(mt − m̂t)δt

[FT+δT − FT] /δT = mT − m̂T (1)

and

F̂T =

∫ ∞

T

s

s − 2

(mT
t)2

nt

δt

[
F̂T+δT − F̂T

]
/δT

=

[∫ ∞

T+δT

s

s − 2

(mT+δT
t)2

nt

δt −
∫ ∞

T

s

s − 2

(mT
t)2

nt

δt

]
/δT

=

[∫ ∞

T+δT

s

s − 2

(mT+δT
t)2

nt
− s

s − 2

(mT
t)2

nt
δt

]
/δT (2)

−
[∫ T+δT

T

s

s − 2

(mT
t)2

nt
δt

]
/δT (3)

We separately bound these lines, L2 and L3.

If MT = 0, then L2 is zero because for all t ≥ T, mT+δT
t = mT

t by
Claim 2.4. If MT = 1, then the integrand in L2 is zero for the same reason
except for t ∈ (τ, τ + δτ). For t within this range of length δτ = nτ

s
δT , we

have mT+δT
t = mT

t + 1. This gives

L2 =

[
s

s − 2

(mT
t + 1)2

nt

− s

s − 2

(mT
t)2

nt

]
×
[nτ

s

]

=
2mT

τ + 1

s − 2
≤ 2nT + 1

s − 2
=

2mT + 2ℓT + 1

s − 2

22

The last inequality is because mT
τ ≤ nT

τ ≤ nT by Claim 2.2.1

L3 is s
s−2

(mT
T

)2

nT
. By Claim 2.1, ℓT

T = ℓT and mT
T = mT . By definition,

mT + ℓT = nT . Therefore,

L3 =
s

s − 2

(mT
T)2

nT
=

s

s − 2

(mT)2

mT + ℓT
=

s

s − 2

mT

1 + ℓT

mT

=
s

s − 2

mT (1 + ℓT

mT
) − ℓT

1 + ℓT

mT

=
s

s − 2

(
mT −

1

Combining these three bounds gives

[(
FT+δT + F̂T+δT

)
−
(
FT + F̂T

)]
/δT

= L1 + L2 − L3

≤ [mT − m̂T] +

[
2mT + 2ℓT + 1

s − 2

]
− s

s − 2

[
mT − ℓT

1 + ℓT

mT

]

=
2ℓT + 1

s − 2
+

s

s − 2

ℓT

1 + ℓT

mT

− m̂T

Which, by the definition of m̂T , is at most zero.

Lemma 4. If
∫∞
0

(mt−m̂t)δt ≤ 0, where m̂t = 2ℓt+1
s−2

+ s
s−2

ℓt

1+
ℓt
mt

, then
∫∞
0

(mt−
̂̂mt)δt ≤ 0, where ̂̂mt = O(

√
s

s−2
)ℓt).

Proof of Lemma 4: Write the conclusions of the lemma as
R
∞

0
mtδtR

∞

0
ℓtδt

=

O(
√

s
s−2

).

Setting bt = mt

ℓt
transforms the lemma as follows. If

∫∞
0

(bt −
2+ 1

ℓt

s−2
+

s
s−2

1
1+

bt

)ℓtδt ≤ 0, then
R
∞

0
btℓtδtR

∞

0
ℓtδt

= O(
√

s
s−2

).

1This ℓT is introduced because jobs that are currently sequential may have later fully
parallel phases. Unfortunately this term increases the competitive ratio from 1 + O(1

s−2
)

to 1 + O(
√

s

s−2
). I have not decided whether or not I think it is necessary.

23

Setting δq = ℓtδt and q =
∫ t

0
ℓt′δt

′ transforms the lemma as follows. If
∫ 1

0
(bq −

2+ 1

ℓq

s−2
+ s

s−2
1

1+
bq

)δq ≤ 0, then
R

1

0
bqδqR 1

0
1δ1

=
∫ 1

0
bqδq = O(

√
s

s−2
).

Suppose that bq was a constant b. Solving this equation as required gives

that b = O(
√

s
s−2

). What remains is to prove that the worst case is when bq is
a constant. We prove that using the contra positive. Under the restriction

that
∫ 1

0
bqδq = b, the amount

∫ 1

0
(bq −

2+ 1

ℓq

s−2
+ s

s−2
1

1+
bq

)δq is minimized when

bq is a constant.

A standard trick to use here is as follows. If F is a function with positive
second derivative, then

∑
q F (bq) is minimized subject to

∑
q bq = b all the

bq have the same value. Help from maple will tell us that indeed, the second
derivative of the required F is positive.

5 Upper Bound for EQUIs

Consider now the scheduler EQUIs which has p processors of speed s, in
contrast to EQUIs which has sp processors of speed 1. Given jobs with sub-
linear speedup curves, EQUIs is at least as powerful as EQUIs. Restricted
to fully parallelizable jobs, the models are equivalent. This is not the case
with strictly sublinear jobs. For example, sequential jobs execute s times
faster under EQUIs than under EQUIs.

On the other hand, the following example demonstrates that having the
sequential jobs execute faster does not necessarily help. Suppose job Ji is re-
leased at time zero, has a sequential phase of work i and a fully parallelizable
phase of work p. Under OPT , the flow time is

∑
i+1. Note

∑
i of this flow

is sequential work. However, if OPT was able to complete the sequential
work in zero time, then the flow time would still be

∑
i + 1. Now, however,∑

i of this flow is idle time.

When s = 2 + ǫ < 4, our upper bound for EQUIs and EQUIs are the
same, 2 + 4

ǫ
. However, for large s, EQUIs is competitive with a ratio of at

most 16
s
, while EQUIs is not, having a ratio of at least 1 + 1

s
.

Theorem 2. Consider any set of jobs J with arbitrary arrival times,
each job has an arbitrary number of phases, each phase has an arbi-
trary sublinear-nondecreasing speedup function. Suppose the processors un-

24

der EQUIs execute s times faster than under OPT . Then for s ≥ 4,
F (EQUIs(J))/F (OPT (J)) ≤ 16

s
.

Proof of Theorem 2: The first step is to prove that with s speed, the flow
time decreases by at least a factor of s or more generally, F (EQUIab(J)) ≤
1
a
F (EQUIb(J)). Let Jr/a be the same set of jobs except job Ji is re-

leased at time ri/a instead of at time ri. Clearly, F (EQUIab(Jr/a)) =
1
a
F (EQUIb(J)), because the entire schedule is simply scaled. Then note that

F (EQUIs(J)) ≤ F (EQUIs(Jr/a)), because the jobs are completing less for
resources. Letting a = s/4 and b = 4, the theorem follows. F (EQUIs(J)) ≤
F (EQUIs(J4r/s)) = 4

s
F (EQUI4(J)) ≤ 4

s
F (EQUI4(J)) ≤ 4

s
2×4
4−2

F (OPT (J)).

The same technique is able to prove that BALs is 4
s

competitive for large
values of s. A tighter bound of 2

s
has recently been proven [1].

Theorem 3. With only fully parallelizable jobs, for s ≥ 2,
F (BALs(J))/F (OPT (J)) ≤ 4

s
.

Proof of Theorem 3: F (BALs(J)) ≤ 2
s
F (BAL1+1(J)) ≤ 2

s
(1 +

1
1
)F (OPT (J)).

6 Strictly Sub-Linear Speedup Functions

Recall a speedup function Γ is strictly-sublinear by α iff ∀β1 ≤
β2, Γ(β2)/Γ(β1) ≤ (β2/β1)

1−α. This includes the almost fully paralleliz-

able speedup function Γ(β) = β1−α, , the sequential speedup function ,
and everything in between. It is quite surprising that EQUI with no extra
resources is competitive for such jobs.

Theorem 4. Consider any set of jobs J with arbitrary arrival times,
each job has an arbitrary number of phases, and each phase has an ar-
bitrary strictly-sublinear by α, nondecreasing speedup function. Suppose
OPT and EQUI have the same number of processors, i.e., s = 1. Then
F (EQUI(J))/F (OPT (J)) ≤ 21/α.

25

The proof is similar to that for Theorem 1. First Lemma 5 proves that the
worst case job sets are those with only sequential and almost fully paralleliz-
able phases. Then Lemma 6 bounds the competitive ratio for such job sets.
The main difference is that here we do not require the job set to be stream
lined wrt OPT . OPT may decide to work on many almost fully paralleliz-
able phases simultaneously. In fact, as seen in the example in Theorem 6, it
can be necessary for OPT to do this.

Lemma 5. Consider any non-clairvoyant scheduler Ss with sp processors.
For every job set J as stated, there is a job set J ′ with only sequential
and almost fully parallelizable phases such that F (Ss(J

′)) ≥ F (Ss(J)) and
F (OPT (J ′)) ≤ F (OPT (J)). Moreover, Ss is never ahead on any job.

Proof of Lemma 5: The proof is similar to that in Lemma 1. Let Γi

denote the speedup function of the interval of work completed under OPT
in Ji during the time interval (T, T + δT). Let (τi, τi + δτi) be the interval
during which Ss completes the same work. Let βOPT

i denote the number of
processors allocated under OPT to it and βSs

i the number under Ss.

The case that changes is when βOPT
i ≥ βSs

i . As before, δτi/δT =
Γi(β

OPT
i)/Γi(β

Ss

i). Now, however, because the speedup function is sublin-
ear, Γi(β

OPT
i)/Γi(β

Ss

i) ≤ (βOPT
i /βSs

i)1−α. Hence, δτi ≤ (βOPT
i /βSs

i)1−αδT .

We modify JT to JT+δT in this case by replacing this interval of work
in job Ji with an almost fully parallelizable phase with work (βOPT

i)1−αδT .
First we need to check that this change does not increase the flow time under
OPT . OPT can still allocate βOPT

i processors to the phase. Because it is
almost fully parallelizable it completes at a rate of Γ(βOPT

i) = (βOPT
i)1−α

completing in time δT as before.

Now we need to check that this change does not decrease the flow time
under Ss. As before, because Ss is non-clairvoyant, it still allocates βSs

i

processors to complete this work on job Ji. Hence, it completes the almost
fully parallelizable work at a rate of Γ(βSs

i) = (βSs

i)1−α completing in time
(βOPT

i /βSs

i)1−αδT ≥ δτi. Therefore, Ss requires at least as much time to
complete this interval as it did with the original work. Finally, note that as
before scheduler Ss does not get ahead of OPT on this interval of work.

Lemma 6. For any job set J that has almost fully parallelizable or sequential
phases, F (EQUI(J)) ≤ 21/α · F (OPT (J)).

26

Proof of Lemma 6: The proof is very similar to that for Lemma 2. The
result follows quickly after proving that

∫∞
0

(mt − m̂t)δt ≤ 0 for some m̂t.
As in Lemma 3, this is proved by proving that a certain potential function
FT + F̂T is non-increasing. We start by defining FT + F̂T and taking its
derivative.

FT + F̂T =

∫ T

0

(mt − m̂t)δt +

∫ ∞

T

ft

(
mT

t , ℓT
t

)
δt,

where ft(m, ℓ) =
(m − ℓ)(m + ℓ)1−α

α (nt)
1−α .

(
FT+δT + F̂T+δT

)
−
(
FT + F̂T

)

δT

= mT − m̂T (4)

+

[∫ ∞

T+δT

ft

(
mT+δT

t , ℓT+δT
t

)
− ft

(
mT+δT

t , ℓT
t

)
δt

]
/δT (5)

+

[∫ ∞

T+δT

ft

(
mT+δT

t , ℓT
t

)
− ft

(
mT

t , ℓT
t

)
δt

]
/δT (6)

− fT

(
mT

T , ℓT
T

)
(7)

We separately bound each of these three lines and then set m̂T to be mT +
L5 + L6 − L7 to make this derivative zero. As before, the line L5 is at most
zero, because δft(m,ℓ)

δℓ
≤ 0 and because ℓT

t ≤ ℓT+δT
τ . The line L7 is also similar

to that before

fT

(
mT

T , ℓT
T

)
=

(mT
T − ℓT

T)(mT
T + ℓT

T)1−α

α (nT)1−α =
mT − ℓT

α

because by Claim 2.1, lTT = ℓT , mT
T = mT , and mT + ℓT = nT .

Bounding L6 will harder than it was in the proof of Lemma 3 because
is MT no longer restricted to zero or one. Suppose wlog that J1, . . . , JMT

are the jobs with active Γ(β) = β(1−α) phases under OPT during the time
interval (T, T + δT) and that during this time OPT allocates aip processors
to Ji, where

∑
i∈[1..MT] ai = 1.

27

Recall that mT
t is defined to be number of fully parallelizable phases

executing under EQUIs at the time instance t for which OPT has completed
this same instance of work by time T . Define mT,i

t in the same way, but
include as well in the count jobs Ji′ if i′ < i and this same instance of work
is completed during the interval (T, T + δT). We will need the following
properties of mT,i

t .

Claim 3.

1. mT,1
t = mT

t and mT,MT +1
t = mT+δT

t .

2. For each i ∈ [1..MT], there is some interval of time (τi, τi + δτi) of
length δτi = (ainτi

)1−αδT such that for t 6∈ (τi, τi + δτi), mT,i+1
t = mT,i

t

and for t ∈ (τi, τi + δτi), mT,i+1
t = mT,i

t + 1.

3. mT,i+1
t ≤ mT

t + MT .

Proof of Claim 3: The first point follows directly from the definitions.

The proof of the second point is similar to that for Claim 2.4. The only
difference between mT,i+1

t and mT,i
t is whether it includes job Ji because of

work OPT completes during the interval (T, T + δT). Let (τi, τi + δτi) be
the time interval during which EQUIs completes the same interval of work
on Ji. Then in a way similar to that in Claim 2.4, we can prove that for
t 6∈ (τi, τi + δτi), mT,i+1

t = mT,i
t and for t ∈ (τi, τi + δτi), mT,i+1

t = mT,i
t + 1.

OPT completes this work at a rate of Γ(aip) = (aip)1−α and EQUI completes
it at a rate of Γ(p

nτi

) = (p
nτi

)1−α. It follows that the length of the interval is

δτi = (ainτi
)1−αδT .

The final point follows from the second and from the fact that OPT is
working on only MT almost fully parallelizable jobs during the time interval
(T, T + δT).

Claim 3.1 allows us to telescope line L6. Then Claim 3.2 allows us to remove
the integrations.

L6 =



∑

i∈[1..MT]

∫ ∞

T+δT

ft

(
mT,i+1

t , ℓT
t

)
− ft

(
mT,i

t , ℓT
t

)
δt


 /δT

=
∑

i∈[1..MT]

[
fτi

(
mT,i+1

τi
, ℓT

τi

)
− fτi

(
mT,i+1

τi
− 1, ℓT

τi

)]
× (ainτi

)1−α

28

By convexity, fτi
(m, ℓ)−fτi

(m−1, ℓ) ≤ δfτi

δm
(m, ℓ). Differentiating fτi

(m, ℓ) =
(m−ℓ)(m+ℓ)1−α

α(nτi)
1−α gives

L6 ≤
∑

i∈[1..MT]

(2 − α)mT,i+1
τi

+ αℓT
τi

α
(
mT,i+1

τi + ℓT
τi

)α × (ai)
1−α

≤
∑

i∈[1..MT]

(2 − α)

α

(
mT,i+1

τi
+ ℓT

τi

)1−α × (ai)
1−α

≤ (2 − α)

α
(nT + MT)1−α ×

∑

i∈[1..MT]

(ai)
1−α

The last inequality uses Claim 3.2 that mT,i+1
τi

≤ mT
τi

+MT and Claim 2.2 that
mT

τi
+ℓT

τi
= nT

τi
≤ nT . Finally, note that by convexity arguments it is clear that∑

i∈[1..MT] (ai)
1−α under the restriction that

∑
i∈[1..MT] ai = 1 is maximized by

having all the ai = 1/MT . This gives MT × (1/MT)1−α = (MT)α and

L6 ≤ (2 − α)

α
(nT + MT)1−α (MT)α

A bound on each of the three lines, L??, L2, and L3 has been found. As
said, we set m̂T to be mT + L5 + L6 − L7 to make the derivative of FT + F̂T

zero. From this we get that
∫∞
0

(mt − m̂t)δt ≤ 0. From here, we proceed as
done in the proof of Lemma 2.

F (EQUIs(J))

F (OPT (J))
≤
∫∞
0

(ℓt + m̂t) δt∫∞
0

(Lt + Mt) δt
+ 0 ≤ max

T

ℓT + m̂T

ℓT + MT

≤ max
T

ℓT + [mT] + [0] +
[

(2−α)
α

(nT + MT)1−α (MT)α
]
−
[

mT −ℓT

α

]

ℓT + MT

= max
T

(2 − α) (nT + MT)1−α (MT)α − (1 − α)nT + 2ℓT

α (ℓT + MT)

The last equality collected terms using ℓT + mT = nT . Differentiating wrt
nT gives that this is maximized with nT = (2 − α)1/α MT − MT . Plugging

29

this in and simplifying gives

= max
T

2
α
ℓT +

(
(2 − α)1/α + 1−α

α

)
MT

ℓT + MT

This is maximized either when ℓT goes to infinity and MT = 0 or when ℓT = 0
and MT goes to infinity. Hence, the competitive ratio is at most

= max

(
2

α
, (2 − α)1/α +

1 − α

α

)

For α ∈ (0..1], this is at most 21/α.

7 Lower Bounds

Here, we present lower bounds both for non-clairvoyant schedulers in general
and also for the specific schedulers BALs EQUIs.

With the help of both sequential and fully parallelizable jobs, we achieve a
Ω(

√
n) lower bound on the competitive ratio for randomized non-clairvoyant

schedulers. This is in marked contrast to the deterministic Ω(n1/3) and ran-

domized Θ̃(log n) bounds [12, 22] which only use fully parallelizable jobs.
With speed s = 1+ ǫ processors, our randomized lower bound is Ω(1

ǫ
), where

no previous bound was known.

Theorem 5. The competitive ratio of any randomized non-clairvoyant sched-
uler is Ω(

√
n) if the jobs are allowed to be either fully parallelizable or se-

quential. If the scheduler is given speed 1 + ǫ processors then the ratio is at
least Ω(min(1

ǫ
,
√

n)).

As a warm up, try to find the flaw in the following proof that, as conjec-
tured, the completive ratio is Ω(n).

Flawed Ω(n) Proof: Consider a stream of jobs where every time unit, one
fully parallelizable job arrives with work p and one sequential job with work
1. OPT allocates all p processors to the fully parallelizable job, completing
it in the alloted 1 time unit. The sequential job, requiring no processors,

30

completes in the alloted 1 time unit as well. The flow time is then n. A
non-clairvoyant scheduler, not knowing which job is which will waste half
the resources on the sequential job. Hence, it completes only half of the fully
parallelizable work that has arrived. In the best case, this means that it has
completed at most half of these jobs. This gives a flow time of Ω(n2) for a
competitive ratio of Ω(n).

There are two scheduling strategies that beat this bound. In the first, the
scheduler simply sits idle for the first time unit. Then at time i, the i − 1st

sequential job would have completed on its own, so the scheduler will know
which job is the i − 1st fully parallelizable job and complete it. This gives
a ratio of 1.5. EQUI, by automatically self adjusting as described in the
intuition section, also does surprisingly well. We will leave it as an exercise
that its ratio is O(

√
n). (We find it interesting that this matches our lower

bound.) Both BAL and its randomized version given in [12] have ratio Ω(n)
for this job set.

The proof of our lower bound is much the same as that in Motwani et al.
[22].

Proof of Theorem 5: Let ǫ ≥ 0. We use Yao’s technique [31] and prove a
lower bound on the competitive ratio of a deterministic algorithm on a job
set chosen randomly from the following probability distribution.

The jobs are released in two phases. In the first phase, at time zero,
k = Ω(

√
n) jobs are released. Each such job is independently with probability

ρ = 1
8(1+ǫ)

chosen to be a fully parallel job with 2p work. Otherwise, it is a

sequential job with work k
2
. Let F be the set of fully parallelizable jobs.

OPT completes the fully parallelizable jobs one at a time, each with
all p processors. The expected number is k

8(1+ǫ)
and Chernoff bounds give

that with extremely high probability no more than k
4(1+ǫ)

arrive. OPT can

complete each in 2 time units, so can complete them all by time t1 = k
2(1+ǫ)

.
The sequential jobs complete on their own without any processors.

Fix some non-clairvoyant scheduler S1+ǫ with speed 1 + ǫ and allow it to
run for the same t1 time units. Let xi be the amount of processor time that
it allocates to job Ji during this time. In general, the scheduler S1+ǫ may be
such that these amounts depend on the which jobs arrive or complete during
this time. However, in this case, we claim that the values xi are well defined
and independent of the job set randomly chosen. Being non-clairvoyant, the

31

scheduler does not know which jobs are fully parallelizable and which are
sequential until the time at which the job completes. If the job happens
to be fully parallelizable, then it completes with resources xi = 2p

1+ǫ
. The

sequential jobs do not require any processors, hence there is no point in ever
allocating more resource than this to a job, i.e., xi ≤ 2p

1+ǫ
. Because of this,

no processor time needs to be reallocated to other jobs because some fully
parallelizable job completes. The sequential jobs, even with speed 1 + ǫ, do
not complete during the t1 time. Hence, resources are not reallocated when
they complete either.

The total processor time during this time is
∑

i∈[1..k] xi = pt1 = pk
2(1+ǫ)

and

the average per job is Avgi∈[1..k]xi = p
2(1+ǫ)

. Let X = {Ji | xi ≤ p
(1+ǫ)

} be
those jobs who do not receive enough processor time to complete half their
work if they happened to be fully parallelizable. Note that |X| ≥ k

2
. We

assume that the jobs not in X and the sequential jobs complete by time t1.
However, the jobs in F ∩X have p units of work remaining at this time. The
expected number of such jobs is ρ|X| ≥ 1

8(1+ǫ)
k
2
. Chernoff bounds give that

with extremely high probability |F ∩ X| ≥ k
32(1+ǫ)

.

This completes the first phase. The flow time for the phase is Θ(k2) under
both schedulers. Under OPT , all the first round work has been completed
and under S1+ǫ, Ω(k) jobs have at least p work remaining.

The second phase consist of a stream of ℓ fully parallelizable jobs each
with work p. They arrive every time unit starting at time t1 and ending at
time t2 = t1 + ℓ, where ℓ = min(k

32(1+ǫ)ǫ
, k2). OPT is able to complete each

as it arrives for a flow time of ℓ.

Suppose ǫ ≥ Ω(1
k
), so that ℓ = k

32(1+ǫ)ǫ
. In time ℓ, S1+ǫ with speed 1 + ǫ

is able to complete the k
32(1+ǫ)

+ k
32(1+ǫ)ǫ

= k
32ǫ

jobs, i.e. those remaining from

the first phase and the new ℓ jobs. The number alive is Ω(k) at time t1 and
decreases linearly to zero at time t1 + ℓ. Therefore, the flow time for this
phase is Ω(kℓ). On the other hand, if ǫ ≤ O(1

k
), so that ℓ < k

32(1+ǫ)ǫ
, then

S1+ǫ will still have uncompleted jobs at time t1 + ℓ. Hence, the flow time is
still Ω(kℓ).

The total number of jobs is n = k + ℓ = O(k2). To conclude the

competitive ratio is F low(S1+ǫ(J))/F low(OPT (J)) = Ω(k2)+Ω(kℓ)
O(k2)+O(ℓ)

≥ Ω(ℓ
k
) =

Ω(min(1
ǫ
,
√

n)).

32

Now we present a number of examples of jobs sets that act as lower bounds
on the competitive ratio under the specific scheduler, BALs or EQUIs. It
is interesting, that on the job sets on which BALs performs poorly, EQUIs

behaves like OPT and similarly, on the job sets on which EQUIs performs
poorly, BALs behaves like OPT . This is one of reasons that it is a difficult
and open problem whether the same lower bounds apply generally to non-
clairvoyant schedulers.

Though BAL1+ǫ performs competitively on fully parallelizable jobs, it
performs very poorly when given sublinear jobs. For example, when a se-
quential job arrives, it allocates all the processors to it and all are wasted.

Theorem 6. There is a job set that contains only jobs that are almost fully
parallelizable, i.e., Γ(β) = β1−α for which BALs has a competitive ratio of
Ω(s−1/αn).

Proof of Theorem 6: Job Ji, in the job set, is released at time i, has
speedup function Γ(β) = β1−α, and work (1 + ǫ)sp1−α for some small ǫ > 0.
During the time interval [i, i + 1], BALs completes work on job Ji at a rate
of s × Γ(p) = sp1−α, not quite completing the job. When the job Ji+1 is
released, all the processors are reallocated to it, hence Ji is never completed.
It follows that the response time of job Ji is at least n − i for a flow time
of n2/2. In contrast, OPT allocates p/M processors to each job, where
M = [(1 + ǫ)s]1/α. Each job, completing at a rate of Γ(p/M) = (p/M)1−α

= (p/[(1+ǫ)s]1/α)1−α = [(1+ǫ)sp1−α]/[(1+ǫ)s]1/α, requires M = [(1+ǫ)s]1/α

time units to complete. Hence, at any point in time, there are at most M
jobs alive and so OPT is able to allocate p/M processors to each. The flow
time under OPT is Mn giving a competitive ratio of n/(2[(1 + ǫ)s]1/α).

It is interesting to note that EQUI with no additional resources, i.e., s = 1,
is able to achieve a competitive ratio of 1 for this job set. Without knowing
either the speedup function of the jobs or the rate at which work arrives,
is able to automatically discover this optimal number of processors by self
adjusting.

Motwani [13, 22] give a jobs set that is difficult for EQUI. We modify
these to job sets that are difficult for EQUIs and for EQUIs.

Theorem 7. Even if restricted to fully parallelizable jobs, there is a job set
for which EQUIs and EQUIs have competitive ratios of Ω (n/ log n) with

33

s = 1, Ω (n1−ǫ) with s = 1 + ǫ, 2
3
(1 + 1

ǫ
) with s = 2 + ǫ, and s

s
with s > 2.

Considering sequential and fully parallelizable jobs, there is a jobs set for
which EQUIs has a competitive ratio of (s−1)

(s−2)
= 1 + 1

ǫ
, where s = 2 + ǫ.

Considering only jobs that are strictly sublinear by α and non-decreasing, eg.
Γ (β) = β1−α, there is a jobs set for which EQUI with no extra resources

seems to have a competitive ratio of 1.48
1

α . This last result does not apply
to speedup curves that are strictly sublinear in the sense that Γ(p) << p, but

are linear when the jobs are allocated small numbers of processors, eg. β or
Γ(β) = (β̂β + 1)/(β̂ + β).

Proof of Theorem 7: For the first results, the job set consists of a stream
of n fully parallelizable jobs and ℓ = ℓt extra fully parallelizable. The ith

stream job Ji has release time ri =
∑i−1

i′=0 ti and work wi = tip, where t0 = 1
and ti = ti−1 − s

ℓ+i
ti−1. The ℓ extra jobs are the same as the first stream job

J0, having released at time r0 and work w0 = 1 × p. OPT ignores the extra
jobs and uses all p processors to complete the stream in place, with a flow
time of

∑n−1
i=0 (ℓ + 1)ti. After time tn, OPT must complete the ℓ extra jobs

with an additional flow time of ℓ2

2
. See Figure 4.

In contrast EQUIs executes all the jobs, completing none. By induction,
we can see that at time ri there are ℓ + i + 1 jobs alive, each with wi work
remaining. It is true for i = 0, so assume that at time ri−1 there are ℓ + i
jobs alive with wi−1 work remaining. For the next ti−1 time steps, EQUIs

allocates p/(ℓ + i) speed s processors to each job, leaving each with ti−1p −
sp
ℓ+i

ti−1 = wi work remaining. At time ri, job Ji is released, giving ℓ + i +
1 jobs alive each with wi work remaining. The flow time for this part is∑n−1

i=0 (ℓ+ i+1)ti. After time rn, EQUIs must complete the remaining work.
This requires an additional flow time of tn(ℓ + n)2/s.

For sufficiently large ℓ >> s, we can solve ti =
∏i

i′=1

(
1 − s

ℓ+i′

)
≈

e
Pi

i′=1
− s

ℓ+i′ ≈ (ℓ
ℓ+i

)s. (This is also obtained by telescoping ℓ+i−s
ℓ+i

ℓ+i−1−s
ℓ+i−1

. . .).
This gives

F (EQUIs(J))

F (OPT (J))
=

(∑n−1
i=0 (ℓ + i + 1)

(
ℓ

ℓ+i

)s)
+ Θ (n2−s)

(∑n−1
i=0 (ℓ + 1)

(
ℓ

ℓ+i

)s)
+ ℓ2

2

≥
ℓs
[
(ℓ + i)−s+2 /(−s + 2)

]n
0

+ Θ (n2−s)

(ℓ + 1)ℓs
[
(ℓ + i)−s+1 /(−s + 1)

]n
0

+ ℓ2

2

.

For s = 1, we get Θ(n)
Θ(log n)

. For s = 1 + ǫ, we get
Θ(n−s+2)

Θ(1)
= Θ (n1−ǫ). For

s = 2 + ǫ and n tending to infinity, we get ℓ2/(s−2)
ℓ2/(s−1)+ℓ2/2

= 2(s−1)
(s−2)(s+1)

> 2
s
.

34

Now consider the scheduler EQUIs, when sequential jobs are allowed.
Recall, that extra processors do not speed up sequential jobs. The job set
is the same except that the ℓ extra job are sequential. They are released
at time 0 and have work

∑n−1
i′=0 ti so that, as before, they are alive during

the entire interval [r0, rn]. The only change to the schedules is that under
OPT these extra jobs complete on their own and hence do not need to be
completed at in the end at a cost of ℓ2

2
. This changes the competitive ratio

to ℓ2/(s−2)
ℓ2/(s−1)

= s−1
s−2

= 1 + 1
ǫ
.

When considering EQUIs and sequential jobs, the job set is the same as
above except that the extra sequential jobs have s times as much work. The
schedule under EQUIs will be the same as that before, because now it can
complete the sequential work s times faster. The flow time of OPT changes
from

(∑n−1
i=0 (ℓ + 1)ti

)
to
(∑n−1

i=0 (sℓ + 1)ti
)
, which for large ℓ is different by a

factor of s. Hence, the competitive ratio is s−1
s(s−2)

. It is interesting that this
lower bound is lower than that with only fully parallelizable jobs.

Now consider only jobs that are strictly sublinear by α and non-
decreasing, eg. Γ(β) = β1−α. The job set is the same as that initially, except
ℓ = 1, t0 = 1, and ti = ti−1 − 1

(ℓ+i)1−α ti−1. We were only able to integrate the

resulting functions using Maple (and complaints from the tech staff about
space usage) when considering specific values of α. Therefore, we computed
the competitive ratio for α = 1

k
for k = 2, 3, . . . , 64. Half of these Maple

failed to integrate. The other half gave a competitive ratio tending quickly
to 1.48

1

α .

Finally consider only the speedup function Γ(β) = β for β ≤ β̂ and

Γ(β) = β̂ for β ≥ β̂, β . The jobs set consists of p
bβ identical copies of that

for full parallelizable jobs, except each job has wi = tiβ̂ instead of wi = tip
work. The schedules under OPT and under EQUIs are the same as that

before, except the number of processors allocated is the fraction
bβ
p

of what
it was before. Both flow times increase by the fraction p

bβ so the competitive

ratio remains the same. The same trick works for Γ(β) = (β̂β + 1)/(β̂ + β),
except some additional large constant times as many copies are needed.

35

8 Restricting the Number of Preemptions

Preemptive scheduling allows the number of processors allocated to a job to
be changed after the job starts its execution. This helps adapt to the uncer-
tain and changing nature of jobs and workloads. Unfortunately, preemption
may incur large overheads if it is applied frequently. To account for the cost
preemptions, Edmonds et al.[10] prove that when the jobs all arrive at time
zero, the number of preemptions can be decreased from n to log n with only
a factor two increase in the competitive ratio. We prove a similar statement
for jobs with arbitrary arrivals. If we double the resources to Equi-partition
again, then we can modify the scheduler so that it preempts infrequently (in
some since a logarithmic number of times) while staying competitive.

Theorem 8. Let c > 1 be some constant (eg c =
√

2). There is a non-
clairvoyant scheduler EQUI ′

c2s that has c2sp processors and a competitive
ratio of 2s

s−2
and only preempts when the number of jobs in the system goes

up or down by a factor of c.

Proof of Theorem 8: Suppose that the last time a preemption occurred,
there were nt = ck jobs alive. Jobs can arrive and can complete. However,
the scheduler does not preempt again until the number of alive jobs drops
under nt/c = ck−1 or increases above cnt = ck+1. See Figure 5:A. During this
time, each job is allocated sp

ck−1 processors. Note no more than c2sp processors
are needed and each job always has as many processors as it would under
EQUIs. Hence, the competitive ratio is at least as good.

9 Nondecreasing Sublinear or Superlinear

Speedup Functions

The previous assumption that all speedup functions are sublinear is not true
when the jobs are both highly parallel and have a strong time-space trade off.
In such a situation, the speedup function may be superlinear, . Edmonds
et al.[10] prove that, when the jobs all arrive at time zero, allowing each
phases of each jobs to be either sublinear or superlinear only increases the
competitive ratio by a factor of two, even though the non-clairvoyant sched-

36

uler does not know which phases are which. The number of preemptions
does, however, become infinite. We prove an analogous result.

Theorem 9. There is a non-clairvoyant algorithm HEQUI2s that has 2sp
processors and a competitive ratio of 2s

s−2
for every job set J in which each

phase of each job is either nondecreasing sublinear or superlinear.

Proof of Theorem 9: The scheduler HEQUI2s (short for “Hybrid Equi-
partition”) performs EQUIs with sp of the processor, allocating sp

nt
processor

to each of the nt alive jobs and performs Round-Robin with the other sp
processors allocating p processors to each job for s

nt
fraction of the time. See

Figure 5:B. The proof follows easily from Theorem 1 by converting each job
set J in which each phase of each job is either nondecreasing sublinear or
superlinear into a job set J ′ with only nondecreasing sublinear phases where
F (EQUIs(J

′)) ≥ F (HEQUI2s(J)) and F (OPT (J ′)) ≤ F (OPT (J)).

The nondecreasing sublinear phases of J are not changed. Because
HEQUI2s has sp processors executing EQUIs, it completes the jobs at least
as well as EQUIs. Consider a slice of superlinear work completed under
OPT during the time interval [T, T + δT] with βOPT processors and under
HEQUI2s during [τ, τ + δτ] when there are nτ jobs alive. Change this to a
fully parallelizable phase with work βOPTδT . Note OPT still completes this
work with no change in the schedule.

Because OPT completes the original work, the amount of this work must
be w = δTΓ(βOPT). Because HEQUI2s allocates p processors to the phase
for s

nτ
δτ time, we know that w ≥ s

nτ
δτΓ(p). Because the phase is superlinear,

Γ(βOPT)/βOPT ≤ Γ(p)/p. This gives δτ ≤ nτ

sp
βOPTδT , which is the length

of time for EQUIs to complete the new fully parallelizable phase with work
βOPTδT .

10 Nondecreasing Speedup Functions and

Gradual Speedup Functions

Edmonds et al.[10] also considers the class of speedup functions whose only
restriction is that they are nondecreasing. Such a function might be sublinear
for some of its range and superlinear for other parts of its range, β . They also

37

consider the very general class of gradual speedup functions, . For both of
these classes, they give a scheduler under which batch jobs have competitive
ratio of Θ(log p). 2 We prove an analogous result.

Theorem 10. There is a non-clairvoyant algorithm HEQUI ′
4s log p that has

4sp log p processors and a competitive ratio of 2s
s−2

for every set of gradual
(or nondecreasing) jobs.

Proof of Theorem 10: We now consider jobs that are only restricted to
being nondecreasing or gradual. Such jobs may execute efficiently only when
allocated a specific number of processors. A non-clairvoyant scheduler, not
knowing this number, must executes each job with a large range of processor
allocations. Separately for each k ∈ [0.. log p], the scheduler HEQUI ′

4s log p

allocates 2k processors to each of the nt alive jobs for 4
2k

sp
nt

fraction of the time.
The proof follows easily from Theorem 1 by converting each gradual job set
J into a job set J ′ with only fully parallelizable jobs, where F (EQUIs(J

′)) ≥
F (HEQUI ′

4s log p(J)) and F (OPT (J ′)) ≤ F (OPT (J)).

Consider a slice of gradual work completed under OPT during the time
interval [T, T + δT] with βOPT processors and under HEQUI ′

4s log p during
[τ, τ + δτ] when there are nτ jobs alive. Change this to a fully parallelizable
phase with work βOPTδT . Note OPT still completes this work with no change
in the schedule.

Because OPT completes the original work, the amount of this work must
be w = δTΓ(βOPT). Because the phase is gradual, there is a k ∈ [0.. log p]
such that 2k ≤ 2βOPT and Γ(2k) ≥ 1

2
Γ(βOPT). Because HEQUI ′

4s log p al-

locates 2k processors to the phase for 4
2k

sp
nt

δτ time, we know that w ≥
4
2k

sp
nt

δτΓ(2k). This gives δτ ≤ nτ

sp
βOPTδT , which is the length of time for

EQUIs to complete the new fully parallelizable phase with work βOPTδT .

2Their nondecreasing result is stated as O(log n). However, the batch model assumes
that the number of jobs n is at most the number of processors p because all these jobs
arrive and are executed at once. Because our jobs arrive at arbitrary times, n is assumed
to be much bigger then p.

38

11 Open Problems

The performance of Equi-partition has been studied extensively using sim-
ulation, experimental, and queuing theoretical approaches. Our research
constitutes a theoretical confirmation of these efforts.

The main open problem is to close the gaps between the lower bounds
on the competitive ratio known for general non-clairvoyant schedulers and
those known for the specific schedulers Equi-partition and Balance. This gap
is given under various models in the following table.

s = 1 s = 1 + ǫ

Ω(n1/3) vs Ω(n
log n

) Ω(1) vs Ω(1
ǫ
)

, , or Ω(n1/2) vs Ω(n
log n

) Ω(1
ǫ
) vs Ω(n1−ǫ)

Giving the scheduler randomness helps the fully parallelizable case a great
deal, lowering the completive ratio down to Θ̃(log n log log n). However, it
is unknown whether randomness helps in the case where there may also be
sequential jobs. A separate question is whether having the jobs be chosen
randomly helps. A stronger adversarial model would allow the adversary to
choose the jobs and then choose the arrival times subject to them arriving
in a randomly chosen order.

Finally, some of the constants in this paper could be improved.

Thanks: I would like to thank Patrick Dymond, Faith Fich, Xiaotie Deng,
and Toni Pitassi for their continued support with scheduling.

References

[1] P. Berman and C. Coulston. Speed is more powerful than clairvoyance SWAT
98.

[2] T. Brecht and K. Guha. Using parallel program characteristics in dynamic
multiprocessor allocation policies. Performance Evaluation, 27 & 28:519–539,
Oct. 1996.

[3] S. H. Chiang, R. K. Mansharamani, and M. Vernon. Use of application char-
acteristics and limited preemption for run-to-completion parallel processor

39

scheduling policies. In Proceedings of the 1994 ACM SIGMETRICS Con-

ference on Measurement and Modeling of Computer Systems, pages 33–44,
1994.

[4] X. Deng and P. Dymond. On multiprocessor system scheduling. In Seventh

ACM Symposium on Parallel Architectures and Algorithms, June 1996.

[5] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs
on multiprocessors. In Seventh Annual ACM–SIAM Symposium on Discrete

Algorithms, pages 159–167, Atlanta, Georgia, January 1996.

[6] X. Deng and E. Koutsoupias. Competitive implementation of parallel pro-
grams. In Fourth Annual ACM–SIAM Symposium on Discrete Algorithms,,
pages 455–461, 1993.

[7] J. Edmonds. Scheduling in the Dark Improved results: manuscript 2001.
Blum’s Special Issue of the Journal of Theoretic Computer Science, 1999.

[8] Proc. 31st Ann. ACM Symp. on Theory of Computing, pp. 179-188, 1999.

[9] J. Edmonds, On the Competitiveness of AIMD-TCP within a General Net-
work Submitted to Journal Theoretical Computer Science Lecture Notes in

Computer Science, Volume 2976/2004. LATIN, Latin American Theoretical

Informatics, pp. 577-588, 2004.

[10] J. Edmonds, D. Chinn, T. Brecht, X. Deng. Non-clairvoyant Multiprocessor
Scheduling of Jobs with Changing Execution Characteristics. In 29th Ann.

ACM Symp. on Theory of Computing, pp. 120-129, 1997 and submitted to
the SIAM Journal on Computing.

[11] J. Edmonds, S. Datta, and P. Dymond, TCP is Competitive Against a Limited
Adversary SPAA, ACM Symp. of Parallelism in Algorithms and Achitectures,
pp. 174-183, 2003.

[12] B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly
In Proceedings of the 38th Symposium on Foundations of Computer Science,
October 1997.

[13] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
In Proceedings of the 36th Symposium on Foundations of Computer Science,
pages 214–221, October 1995.

[14] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy
caching. Algorithmica, 3:79–119, 1988.

40

[15] M. Kumar. Measuring parallelism in computation-intensive scien-
tific/engineering applications. IEEE Transactions on Computers, 37(9):1088–
1098, September 1988.

[16] S. Leonardi and D. Raz, Approximating total flow time on parallel machines,
In ACM Symposium on Theory of Computing, 1997.

[17] S. Leutenegger and M. Vernon. The performance of multiprogrammed multi-
processor scheduling policies. In Proceedings of the 1990 ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, pages 226–
236, Boulder, Colorado, May 1990.

[18] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for on-line
problems. In Proceedings of the Twentieth Annual ACM Symposium on the

Theory of Computing, pages 322–333, 1988.

[19] Matsumoto. Competitive Analysis of the Round Robin Algorithm 3rd Inter-
national Symposium on Algorithms and Computation, 71-77, 1992.

[20] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation
policy for multiprogrammed, shared memory multiprocessors. ACM Trans-

actions on Computer Systems, 11(2):146–178, May 1993.

[21] C. McCann and J. Zahorjan. Scheduling memory constrained jobs on dis-
tributed memory parallel computers. In Proceedings of International Joint

Conference on Measurement and Modeling of Computer Systems, ACM SIG-

METRICS 95 and Performance 95, pages 208–219, 1995.

[22] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoret-

ical Computer Science (Special Issue on Dynamic and On-Line Algorithms),
130 (1994), pp. 17–47. Preliminary Version: Proceedings of the 4th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1993, pp. 422–431.

[23] T. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing speedup through self-
tuning of processor allocation. In Proceedings of the 10th International Par-

allel Processing Symposium, pages 463–468, Waikiki, HI, Apr. 1996.

[24] C. Phillips, C. Stein, E. Torng, J. Wein. Optimal Time-Critical Scheduling Via
Resource Augmentation In 29th Ann. ACM Symp. on Theory of Computing,
pp. 140-149, 1997 and submitted to the SIAM Journal on Computing.

[25] U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek, and P. Yu. Smart SMART
bounds for weighted response time scheduling. To appear in SIAM Journal

on Computing.

41

[26] K. Sevcik. Application scheduling and processor allocation in multipro-
grammed parallel processing systems. Performance Evaluation, 19(2-3):107–
140, March 1994.

[27] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[28] A. Tucker and A. Gupta. Process control and scheduling issues for multi-
programmed shared-memory multiprocessors. In Proceedings of the Twelfth

ACM Symposium on Operating Systems Principles, pages 159–166, 1989.

[29] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow,
U. Schwiegelshohn, and P. S. Yu. Scheduling parallelizable tasks to min-
imize average response time. In 6th Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 200–209, June 1994.

[30] J. Turek, U. Schwiegelshohn, J. Wolf, and P. Yu. Scheduling parallel tasks to
minimize average response time. In Proceedings of the 5th SIAM Symposium

on Discrete Algorithms, pages 112–121, 1994.

[31] A. Yao, Probablistic Computations: Towards a Unified Measure of Com-
plexity. In Proc. of 18th IEEE Symp. on Foundations of Computer Schience

(1977) 222-227.

[32] J. Zahorjan and C. McCann. Processor scheduling in shared memory mul-
tiprocessors. In Proceedings of the 1990 ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, pages 214–225, Boulder,
Colorado, May 1990.

42

s = 1 s = 1 + ǫ s = 2 + ǫ s = 4 + 2ǫ s = O(log p)

Batch , , or [2.71, 3.74]

Det. Non-clair Ω(n
1

3) −

Rand. Non-clair Θ̃(log n) −

Rand. Non-clair or Ω(n
1

2) Ω(1
ǫ)

BALs Ω(n) 1 + 1
ǫ

2
s

BALs Ω(s−1/αn)

EQUIs , , or Ω(n
log n) Ω(n1−ǫ) [1 + 1

ǫ , 2 + 4
ǫ] ≥ 1

EQUIs , , or Ω(n
log n) Ω(n1−ǫ) [23(1 + 1

ǫ), 2 + 4
ǫ] [2s , 16

s]

EQUI or [1.481/α, 21/α]

EQUI ′s Few Preempts Ω(n1−ǫ) Θ(1)

HEQUIs or Ω(n1−ǫ) Θ(1)

HEQUI ′s β or Ω(n) Θ(1)

Figure 1: Each row represents a specific scheduler and a class J of job
sets. Here EQUIs denotes the Equi-partition scheduler with s times as many
processors and EQUIs the one with processors that are s times as fast. The
graphs give examples of speedup functions from the class of those considered.
The columns are for different extra resources ratios s. Each entry gives the
corresponding ratio between the given scheduler and the optimal.

β

a: Fully Par b: Sequential
c: Typical
NonDec Sub-
Lin

d: Worst Case
SupLin

e: Worst Case
NonDec

f: Typical
Gradual

Figure 2: Examples of speedup functions.

43

τ+δτ

τ

EQUI 2.5

T T

OPT

Figure 3: On the left is the OPT schedule and on the right the EQUI2.5

schedule for some job set J . Each sequential phase is indicated with a line
(closely spaced). Each fully parallelizable phase is indicated by a box. To ease
calculations, J is rigged so that the number of jobs alive under EQUI2.5 is
always nt = 15. Hence, EQUI2.5 allocates 2.5p

15
processors to each job. Given

this, the fully parallelizable phases require six times as long to complete as
under OPT . The sequential phases, which dominate the flow, require the
same time under the two schedulers. The solid horizontal lines on both the
left and on the right indicate how much work has been completed under OPT
by time T and by time T + δT . The dotted lines on the right indicate the
same for EQUI2.5. The work WT not completed by EQUI2.5, but completed
by OPT by time T is indicated by a light shaded bar. The dark shaded bar
indicates the same for time T + δT . The bottom difference between these
indicate the interval of work completed under EQUI2.5 during the interval
[T, T + δT]. The top difference indicates that completed under OPT during
the interval [T, T + δT] and under EQUI2.5 during the interval [τ, τ + δτ].

44

Jobs p processors p processors

Flow(EQUI) = O(n)Flow(OPT) = O(log n)

1/i

TimeTime

2+ε

p processors sp processors

Flow(OPT) = O(1)
Jobs

Flow(EQUI) = O(1)

Figure 4: The left most figure represents the Motwani job set with s = 1 and
fully parallelizable jobs. The beginning of each line gives the arrival time of
the job and the end give the completion time when the job is allocated all
p processors. The second and third figures represent the schedule of these
jobs under OPT and under EQUI. The area of each region represents the
processor-time block allocated to each job. Each arrow indicates when a job
arrives and completes. The remaining figures are the same except s = 2 + ǫ
and two of the jobs are sequential. These Motwani examples are designed
so that as long as jobs are being release, none of the fully parallelizable jobs
complete. The larger the number of fully parallelizable alive jobs mt gets,
the smaller the number of processors each job is allocated, the longer each
job requires to complete, the larger mt gets. This feed back continues. More
specifically, the work of the arriving job is set to be the same as the work
remaining in each of the other jobs under EQUI. Hence, all the jobs always
have the same remaining work.

Time

O(log n)

p Processors

preemptions

p Processors

Time

Figure 5: A: EQUI with “log n” preemptions. B: HEQUI2s simultaneously
running EQUIs and Round − Robins.

45

