Scheduling in the Dark

Jeff Edmonds York University

Non-clairvoyant Multiprocessor

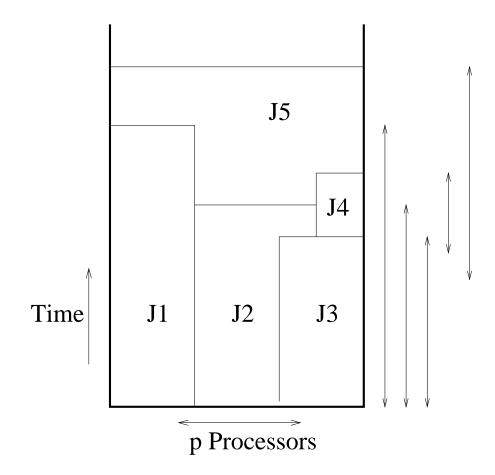
Scheduling of Jobs

with Arbitrary Arrival Times

and Changing Execution Characteristics

The Scheduling Problem

• Allocate p processors to a stream of n jobs



• Average Response Time:

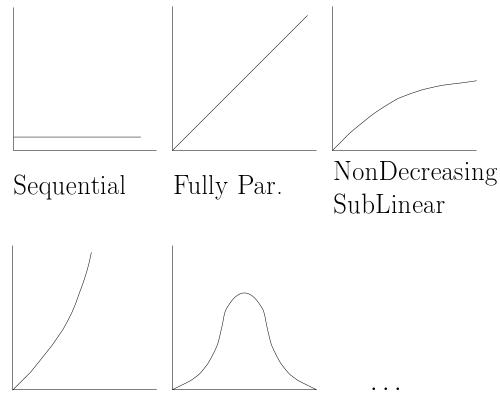
$$AvgResp(S(J)) = \frac{1}{n} \sum_{i \in [1..n]} c_i - r_i$$

• Competitive Ratio:

$$\operatorname{Min}_{S \in \mathcal{S}} \operatorname{Max}_{J \in \mathcal{J}} \frac{AvgResp(S(J))}{AvgResp(OPT(J))}$$

Different Classes \mathcal{J} of Job Sets J

- Arrival Times (Arbitrary or Batch)
- Some Class of Speedup Functions
 - $-\Gamma(\beta)$ is the rate (work/time) when allocated β processors.

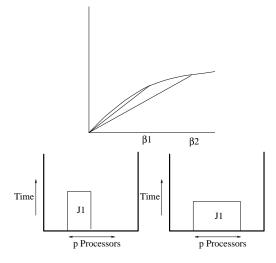


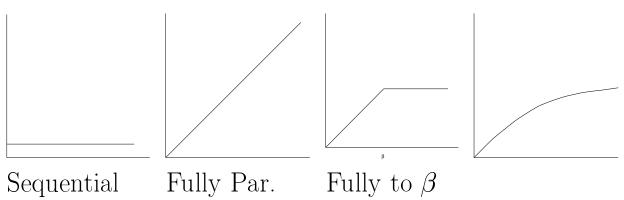
Super-Linear Gradual

• # of Phases in a Job (Single or Arbitrary)

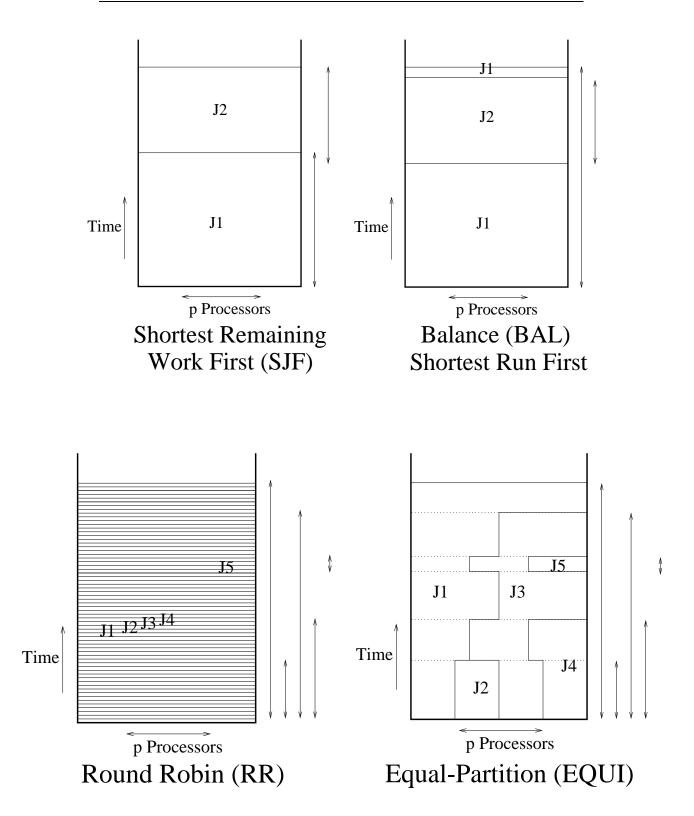
SubLinear-NonDecreasing Speedup Functions

- A set of jobs $J = \{J_1, J_2, \ldots, J_n\}$
- Each job has phases $J_i = \langle J_i^1, J_i^2, \dots, J_i^{q_i} \rangle$
- Each job phase $J_i^q = \langle W_i^q, \Gamma_i^q \rangle$ is defined by
 - $-W_i^q$ is the amount of *work*
 - $\ \Gamma^q_i(\beta)$ is the rate (work/time) with β processors
- Speedup functions must be:
 - NonDecreasing: $\beta_1 \leq \beta_2 \Rightarrow \Gamma(\beta_1) \leq \Gamma(\beta_2).$
 - SubLinear: $\beta_1 \leq \beta_2 \Rightarrow \Gamma(\beta_1)/\beta_1 \geq \Gamma(\beta_2)/\beta_2$.





Examples of Schedulers (algorithms)

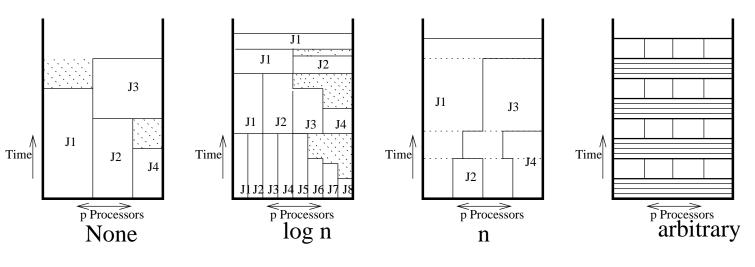


Different Classes \mathcal{S} of Schedulers S

• Clairvoyance

- No, partial, or complete knowledge

- Computation Time
 - Unbounded, Poly Time, or Reasonable
- # of Preemptions (re-allocation of processors)



The Optimal Scheduler

- Unbounded
 - Clairvoyance
 - Computation Time
 - Preemptions

Devil and one player

<u>Lower Bounds</u>

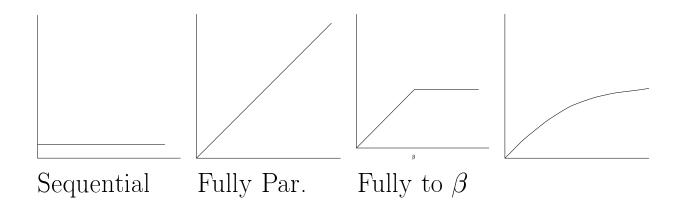
• Equal-Partition 1/ip processors p processors Jobs $AvgResp(EQUI(J)) \stackrel{\mathrm{Flow}(\mathrm{OPT}) = \mathrm{O}(\log n)}{\geq} \Omega\left(n / \log n\right) \cdot \overset{\mathrm{Flow}(\mathrm{EQUI}) = \mathrm{O}(n)}{\geq} Resp(OPT(J))$ • Balance 1+ε p processors p processors Jobs $\begin{array}{cc} & \operatorname{Flow(OPT) \,=\, O(n)} & \operatorname{Flow(BAL) \,=\, O(n^2)} \\ AvgResp(BAL(J)) \geq \Omega\left(n\right) \cdot AvgResp(OPT(J)) \end{array}$ Flow(OPT) = O(n)• General Non-Clairvoyant Schedulers S $AvgResp(S(J)) \geq \Omega\left(\sqrt{n}\right) \cdot AvgResp(OPT(J))$

<u>Devil $2 + \epsilon$.</u>

<u>Main Result</u>

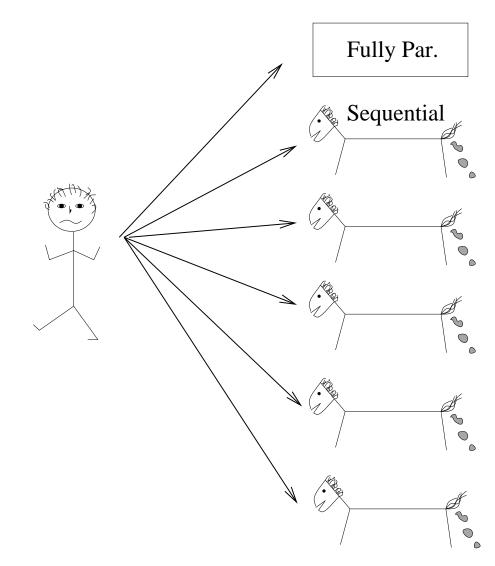
For any set of jobs J with

- arbitrary arrival times
- arbitrary number of phases
- sublinear-nondecreasing speedup functions



$$\frac{AvgResp(EQUI_{2+\epsilon}(J))}{AvgResp(OPT(J))} \le \mathcal{O}\left(1 + \frac{1}{\epsilon}\right)$$

Wasting Resources on Sequential Jobs

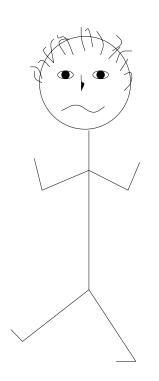


At most $\frac{1}{2+\epsilon}$ of our resources are wasted on sequential jobs.

Designing an Operating System

- Predict the future.
- How much work in job?
- Fully par. or seq.?
- Design & code better algs.
- Spend more cpu time.

- Buy $2 + \epsilon$ times as many processors.
- Run EQUI.

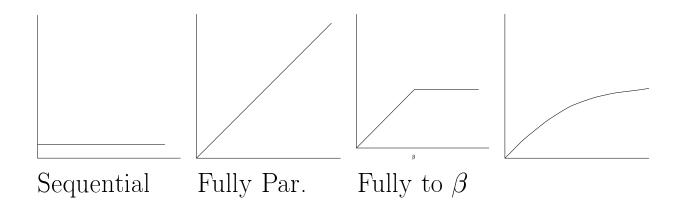


Who	Sched	Jobs	S	comp
[MPT]	EQUI	Batch	1	2
[ECBD]		, or .	1	[2.71, 3.74]
[KP]	BAL	Arb. Arr.	1	$\Omega(n)$
			$1 + \epsilon$	$1 + \frac{1}{\epsilon}$
[BC]			$s \ge 2$	$\frac{2}{s}$
new		,, or	s	$\Omega(n)$
[MPT]	EQUI		1	$\Omega(\frac{n}{\log n})$
[KP]			$1 + \epsilon$	$\Omega(n^{1-\epsilon})$
new		, or	$2 + \epsilon$	$\left[1 + \frac{1}{\epsilon}, 2 + \frac{4}{\epsilon}\right]$
			s	≥ 1
				$\Theta(\frac{1}{s})$
		or	1	$\Theta(1)$
new	EQUI'	few preempt	$4 + \epsilon$	$\Theta(1)$
	HEQUI	or	$4 + \epsilon$	$\Theta(1)$
	HEQUI'	or	$\Theta(\log p)$	$\Theta(1)$

<u>Main Result</u>

For any set of jobs J with

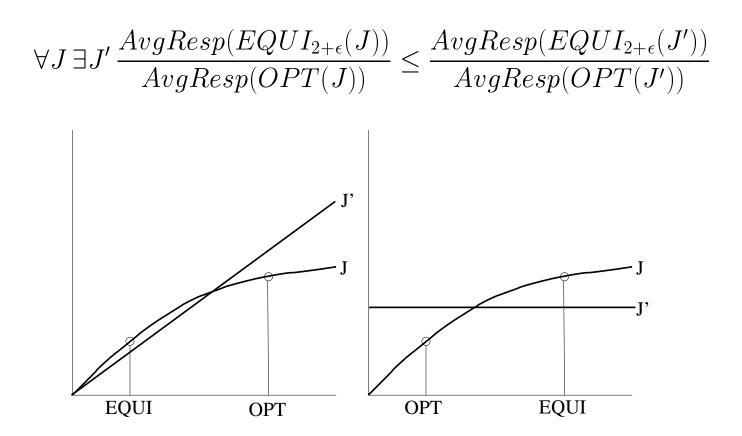
- arbitrary arrival times
- arbitrary number of phases
- sublinear-nondecreasing speedup functions



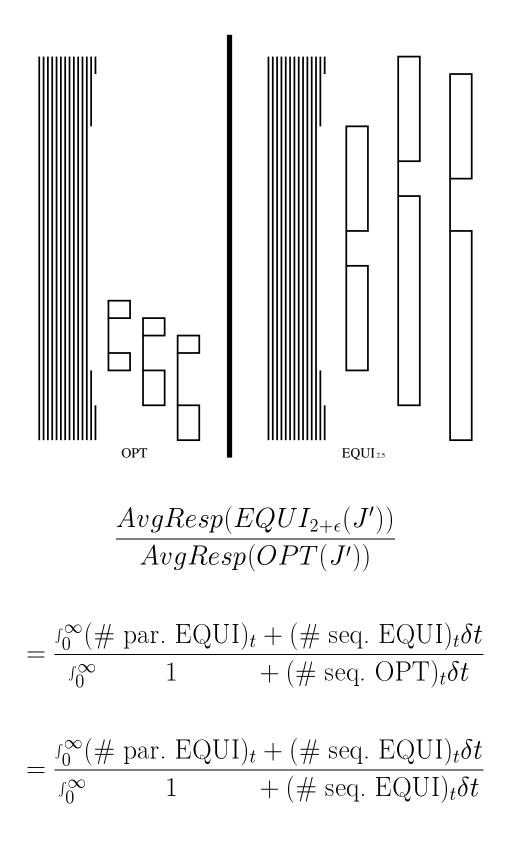
$$\frac{AvgResp(EQUI_{2+\epsilon}(J))}{AvgResp(OPT(J))} \le \mathcal{O}\left(1 + \frac{1}{\epsilon}\right)$$

Worst Case J

In the worst case set of jobs J each phase is either fully parallelizable or sequential.



Integrating Through Time



Extra Resources $s = 2 + \epsilon$ Still Number of Jobs Alive is Unbounded 11¹¹⁵ Time Time sp processors p processors Jobs Flow(OPT) = O(1)Flow(EQUI_{2+ ε}) = O(1)

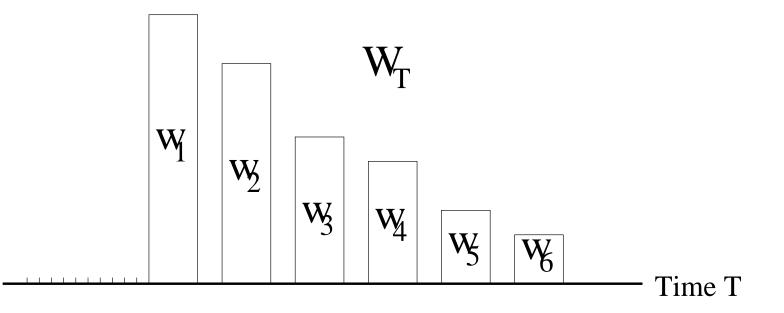
Steady State

Potential Function

- $W_t = \text{set of work completed by } OPT \text{ but not by } EQUI.$
- $F(W_t)$ = a measure of the work
- $(\# \text{ par. EQUI})_t \ge \frac{1}{\epsilon} (\# \text{ seq. EQUI})_t$ $\Rightarrow F(W_t) \text{ decreases with time}$
- $F_T = F(W_T) + \int_0^T (\# \text{ par. EQUI})_t \frac{1}{\epsilon} (\# \text{ seq. EQUI})_t \delta t$
- $F_0 = 0$
- $\frac{\delta F_T}{\delta T} \le 0$
- $F_{\infty} \leq 0$
- $\int_0^\infty (\# \text{ par. EQUI})_t \frac{1}{\epsilon} (\# \text{ seq. EQUI})_t \delta t \le 0.$

•
$$\frac{AvgResp(EQUI_{2+\epsilon}(J))}{AvgResp(OPT(J))} \leq \frac{\int_{0}^{\infty}(\# \text{ par. EQUI})_{t} + (\# \text{ seq. EQUI})_{t}\delta t}{\int_{0}^{\infty} 1 + (\# \text{ seq. EQUI})_{t}\delta t} \leq \mathcal{O}(1 + \frac{1}{\epsilon})$$

<u>All Jobs Fully Parallelizable or Sequential</u> Work Completed by *OPT* and not by *EQUI*



$$F_{T} = \int_{0}^{T} (m_{t} - \frac{\ell_{t}}{\epsilon}) \delta t + F(W_{T})$$

$$= \int_{0}^{T} (m_{t} - \frac{\ell_{t}}{\epsilon}) + \frac{2}{\epsilon} \sum_{i=1}^{m_{T}} i w_{i}$$

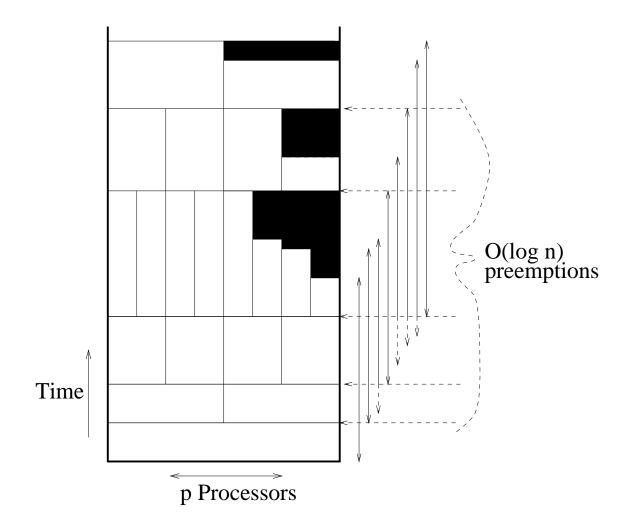
$$\frac{\delta F_{T}}{\delta T} = (m_{T} - \frac{\ell_{T}}{\epsilon}) + \frac{2}{\epsilon} \left[(m_{T} \cdot 1) - \sum_{i=1}^{m_{T}} i \cdot \left(\frac{2+\epsilon}{m_{T}+\ell_{T}}\right) \right]$$

$$\left(\frac{(m_{T})^{2}}{2}\right) \cdot \left(\frac{2+\epsilon}{m_{T}+\ell_{T}}\right)$$

$$m_{T} + \frac{\epsilon}{2} m_{T} - \mathcal{O}(\ell_{T})$$

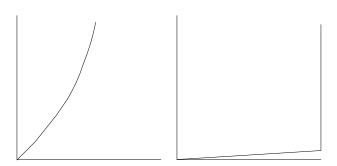
$$\leq 0$$

"logn" Preemptions

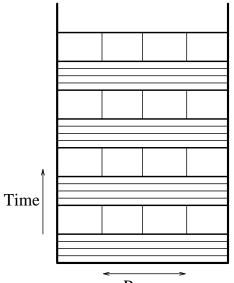


- Preempts only when # jobs increases or decreases by a factor of 2.
- Competitive with $s = 8 + \epsilon$.

Super Linear Speedup Functions



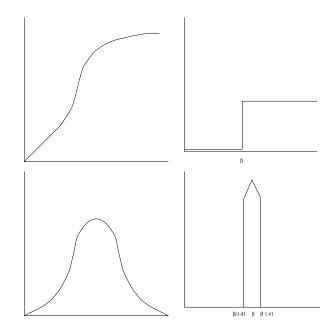
- Time-Space Tradeoff and Highly Parallelizable
- Competitive with $s = 4 + \epsilon$.
 - Round Robin (super linear phases)
 - -EQUI (sub-linear phases)



p Processors

• Bounded preemptions $\Rightarrow \Omega(n)$

NonDecreasing or "Gradual" Speedup Functions



- Competitive with $s = \mathcal{O}(\log p)$:
 - Run each job
 - \ast for a slice of time
 - * with 2^k processors $(\forall k \in [1, \log p])$
 - Guaranteed to run each job phase* with the "right" # of processors

Conjectures

• Are the $2 + \epsilon$ extra resources needed?

 $\forall \epsilon > 0, \exists$ a Non-Clairvoyant SchedulerS

$$\forall J \; \frac{AvgResp(S_{1+\epsilon}(J))}{AvgResp(OPT(J))} \leq \mathcal{O}\left(\frac{1}{\epsilon^2}\right)$$

• Jobs arrive in a Random order $\frac{AvgResp(EQUI_1(J))}{AvgResp(OPT(J))} \leq \mathcal{O}(1)$

• Lower bound for Non-clairvoyant Schedulers.