
Non-clairvoyant Multiprocessor Scheduling of Jobswith Changing Execution CharacteristicsJe� EdmondsYork University,Toronto, Canadajeff@cs.yorku.ca Donald D. ChinnUniversity of Washington,Seatle, USAdci@cs.washington.eduTim BrechtUniversity of Waterloo,Waterloo, Canadabrecht@cs.uwaterloo.ca Xiaotie Deng�City University of Hong Kong,Kowloon, Hong Kong SAR, Chinadeng@cs.cityu.edu.hkwork done while together atYork UniversityToronto, CanadaAbstractIn this work theoretically proves that Equi-partition e�ciently schedules multiprocessor batch jobswith di�erent execution characteristics. Motwani et al.show that the mean response time of jobs is withintwo of optimal for fully parallelizable jobs. We extend this result by considering jobs with multiplephases of arbitrary nondecreasing and sublinear speedup functions. Having no knowledge of the jobsbeing scheduled (non-clairvoyant) one would not expect it to perform well. However, our main resultshows that the mean response time obtained with Equi-partition is no more than 2 +p3 � 3:73 timesthe optimal. The paper also considers schedulers with di�erent numbers of preemptions and jobs withmore general classes of speedup functions. Matching lower bounds are also proved.1 IntroductionThe study of parallel and distributed computer system performance is generally more di�cult than that ofuniprocessor systems. One important property of general purpose computer systems is the unknown natureof job execution. For uniprocessor systems, preemptive scheduling strategies such as Round Robin and Equi-partition use no information about job characteristics. The cost of preemption can be amortized by givingjobs remaining in the system a quantum of processor time proportional to how long they have been in thesystem [19]. In multiprocessor systems a similar preemptive algorithm, dynamic Equi-partition (DEQ), canbe used to achieve similar performance when preemption costs are not prohibitively large [3, 4]. However,overheads incurred due to preemptive scheduling algorithms may be much larger in parallel and distributedsystems, and especially in the networks of workstations model. When the overhead is prohibitive, then resultsfrom theoretical studies on non-preemptive execution of parallel jobs may be more relevant [25, 26, 21], butthese results require complete information about jobs in the system.In this work, we consider the scheduling problem on a p processor system where n jobs all arrive at time0 and no other jobs arrive thereafter. We present a new job model that applies to a large class of parallel�All four authers were partially supported by NSERC. Deng was also funded by a grant of HKRGC (CityU 1049/98E) anda grant of City University of Hong Kong. 1

jobs, including those job models discussed in Turek et al. [25]. Our metric of performance is the meanresponse time of the jobs. To provide
exibility in modeling these costs, we classify scheduling algorithmsby the number of preemptions they are allowed, ranging from none to an in�nite number. We also explorejob classes, categorized by their execution characteristics. We examine how well a scheduler can performif it is presented with jobs from a particular class of jobs. Another way to view these job classes is thatif a system administrator knows what kind of jobs are scheduled on the system, he or she can choose anon-clairvoyant algorithm based on this information. Our goal is to �nd practical algorithms that have goodanalytic properties.We study the simple Equi-partition algorithm, for which an equal number of processors is assigned toevery job. The approach of Equi-partition was �rst introduced to parallel scheduling by Tucker and Gupta asa process control policy [24], and later modi�ed by Zahorjan and McCann [27] to dynamically adjust processorallocations as job requirements for processors change. This algorithm is known as dynamic equi-partition(DEQ).We show that the Equi-partition algorithm (which performs at most n preemptions) achieves a perfor-mance within 2+p3 times the optimum schedule (which may preempt processors any number of times andmay use knowledge of job characteristics to make its scheduling decisions) when the jobs are from a fairlylarge class. The number of preemptions in Equi-partition can be further reduced to logk n with an extraconstant multiplicative factor of k loss in performance.This result is perhaps most interesting when compared with the existing bound (4 times optimal) [4]for the dynamic Equi-partition algorithm (DEQ). Our new bound for Equi-partition is tighter than theprevious bound for DEQ, even though Equi-partition uses signi�cantly fewer preemptions and does not useany job execution characteristics, whereas DEQ does. That is, for the job class for which the result holds,there is little advantage in preempting an arbitrarily large number of times. A possible interpretation of thisresult is that it provides theoretical evidence that algorithms that do not use information about job executioncharacteristics to frequently reallocate processors may not have to pay excessively large performance penalties(in terms of mean job response times).The network of workstations model is an extreme case of parallel systems, for which frequent preemptionsof executing jobs and reassignments of processors are costly. Our results show that for a large class of paralleljobs, provably near-optimal mean response time can be achieved with few reassignments of processors. Ofcourse, much more research is required to make this theoretical understanding useful in a practical setting.In fact, performance in such systems has been already studied using simulation, experimental, and queuingtheoretical approaches [2, 13, 17, 18, 24, 27, 1]. In this perspective, our research constitutes a theoreticalcon�rmation of these e�orts.1.1 Modeling Job ExecutionIn our model, all jobs arrive at time zero. That is, we adopt a batch job processing model. It would be moregeneral to allow jobs to arrive at arbitrary times. However, this makes the scheduling problem much moredi�cult and is left as an open problem.Before a scheduler can attempt to �nd the best schedule, a measure of the success of a schedule needs tobe de�ned. The two measures used most frequently are the �nal completion time of all the jobs (makespan)and the mean response time of the jobs (average completion time). Other measures take into account thelevel of fairness given to each individual job. We use the mean response time in this paper since it is mostoften the measure of interest to users of such systems.The parallelism pro�le of a job, de�ned as the number of processors an application is capable of using atany point in time during its execution, was introduced by Kumar [11]. More generally, a speedup function,�, speci�es the rate at which work is completed as a function of the number of processors allocated to it.Since parallel programs can have a wide variety of execution characteristics in practice, we consider a numberof di�erent classi�cations of jobs according to how well they are able to utilize processors, some of whichinclude: sequential, fully parallelizable, sublinear, superlinear and nondecreasing. To be more general, we2

allow jobs to have multiple phases, each of which is de�ned by an amount of remaining work and a speedupfunction.Most scheduling results depend heavily on the scheduler knowing the characteristics of the jobs beingscheduled. Hence, to various degrees of success, compilers and run-time systems attempt to give hints tothe scheduler. We, however, consider non-clairvoyant schedulers that have no information about the jobsother than the number of un�nished jobs in the system. Our results show that even without such compileror run-time hints and without many preemptions, schedulers can perform well.The scheduling algorithms used in some previous work are computationally intensive. Depending on thescheduling problem, �nding the optimal schedule may be NP-complete. (For example, see Turek et al. [25]for a sample of such results.) Even if the algorithm is polynomial-time, it may not be practical in a real-timesituation. For example, the scheduler may need to �nd a perfect matching. With the goal of practicality inmind, we consider only computationally simple algorithms.A competitive ratio is a formal way of evaluating algorithms that are limited in some way, (e.g., limitedinformation, computational power, or number of preemptions). This measure was �rst introduced in thestudy of a system memory management problem [10, 16, 23]. In our situation, the competitive ratio considersthe best scheduling algorithm among those being considered (i.e., non-clairvoyant, reasonable computationtime, and a limited number of preemptions). Then it considers the worst case set of jobs for that schedulerbeing considered (i.e., batch, multiple phases, and some class of speedup function). How well this schedulerperforms on this set of jobs is then compared with how well the optimal scheduler performs on this sameset of jobs. Note that the optimal scheduler is fully clairvoyant, has unbounded computational power, andis allowed an unbounded number of preemptions. The ratio of these mean response times is known as thecompetitive ratio of the class of schedulers on the class of jobs.1.2 Related ResultsMotwani et al. [19] show that for any uniprocessor system, any non-clairvoyant algorithm has a competitiveratio of at least 2 � 2n+1 . This lower bound extends to multiprocessor systems where the jobs are fullyparallelizable. A job is fully parallelizable if for any p, its execution time when given p processors is 1=p timesits execution time with one processor. Motwani et al. also give some upper and lower bounds on the tradeo�between preemptions and competitive ratio. These, however, apply only to the single processor model.A worst case set of jobs for Equi-partition consists of n jobs each with work Wi = p. In Equi-partition,each job is allocated p=n processors and hence completes at time ci = n. The
ow is F (EQUI) =Pi ci = n2.The optimal schedule, on the other hand, executes the job with least work �rst. The completion time of jobJi is ci = i and the
ow is F (OPT) =Pi i = n(n+ 1)=2. Hence, the competitive ratio is at least 2� 2n+1 .Deng and Koutsoupias [5] discuss how well a job is able to utilize processors, using a DAG model torepresent the data-dependency within the job. Their lower bounds for the DAG model are not applicable tothe phase job model here.Deng et al. [4] show that DEQ, an algorithm similar to Equi-partition, achieves the same competitiveratio 2� 2n+1 for parallel jobs with a single phase, and is 4� 4n+1 -competitive in a job model that allows jobsto have multiple phases. In this job model, each phase q of job i is fully parallelizable for any allocation ofprocessors up to some number P qi , but achieves a speedup of P qi for any allocation greater than P qi . DEQuses these values P qi to make its scheduling decisions.Turek et al. [25] consider a general job model where jobs consist of a single phase and have speedupfunctions that are nondecreasing and sublinear. Without using preemptions they achieve the impressivecompetitive ratio of two. However, the algorithm requires complete knowledge of the jobs' workload andspeedup functions and a perhaps excessive computation time of O(n(n2 + p)).In contrast, we show that the simple Equi-partition algorithm achieves a competitive ratio of 2 + p3where jobs have multiple phases of di�erent nondecreasing sublinear speedup functions. This scheduler doesrequire up to n preemptions, but is non-clairvoyant and computationally simple. We also prove a lower3

bound of e � 2:71 for Equi-partition when the jobs have nondecreasing sublinear speedup functions, thusseparating this class of jobs from fully parallelizable jobs with respect to Equi-partition.Prior to our result, Kalyanasundaram and Pruhs [9] consider the model in which jobs can arrive atarbitrary times. In this model, it is more di�cult to �nd good schedulers. In fact, Motwani et al. [19] provethat no non-clairvoyant scheduler can achieve a competitive ratio better than
(n= logn) even when all thejobs are fully parallelizable. On the other hand, Kalyanasundaram and Pruhs achieve a competitive ratioof 1 + 1� by giving their BALANCE scheduler (1 + �)p processors and only giving the optimal scheduler pprocessors. After our work, Edmonds proved that EQUI with (2+�)p processors has a constant competitiveratio for jobs with arbitrary arrival times and arbitrary nondecreasing sublinear speedup functions [8].2 Jobs and SchedulersIn this section we de�ne sets of jobs, schedulers,
ow time, and competitive ratios. Finally, we summarizeour results.We consider a set of n jobs, all of which arrive at time zero, that are to be executed on p processors. Aset of jobs J is de�ned to be fJ1; : : : ; Jng where job Ji has a sequence of qi phases
J1i ; J2i ; : : : ; Jqii � and eachphase is an ordered pair hW qi ;�qi i. The quantityW qi is a nonnegative real number, called the remaining work,and �qi is a function, called the speedup function, that maps a nonnegative real number to a nonnegative realnumber. �qi (�) represents the rate at which work is executed for phase q of job i when given � processors.The most important examples are fully parallelizable (perfectly e�cient) job phases and sequential jobphases. In fully parallel work, increasing the fraction of the processing power devoted to this work by amultiplicative factor of f increases the rate at which remaining work decreases by a factor of f . It has thespeedup function �(�) = �. (See Figure 1:a.) Work is sequential if increasing the fraction of the processingpower that this work receives does not increase the rate at which the remaining work decreases. In practice,the rate decreases when allocated few than one processor. (See Figure 1:b.) Though all of our results applyto such phases, we will call a phase \sequential" if it completes work at a rate of 1 even when absolutelyno processors are allocated to it. It has the speedup function �(�) = 1 for � � 1. (See Figure 1:c.) Such ajob is worse for a non-clairvoyant scheduler and better for the optimal scheduler. Note that the purpose ofsequential jobs is to simplify algorithm analysis; there is no claim that they model actual speed-up curvesfound in any application.A speedup function � is nondecreasing if �(�1) � �(�2) whenever �1 � �2. A job phase with a nonde-creasing speedup function executes no slower if it is allocated more processors. (See Figure 1:a-i.) This is areasonable assumption if in practice a job can determine whether it can use additional processors to speedits execution and can refuse to use some of the processors allocated to it (in the case that it cannot useadditional processors). Nguyen, Vaswani, and Zahorjan [20] provide experimental evidence that this mightbe possible.The rate at which job Ji completes work, �qi (�), is a useful concept when considering the time until thatjob completes. However, when considering the completion times of all the jobs simultaneously, a more usefulconcept is �qi (�)=�, which is the work completed by the job per time unit per processor. One way of viewingthis concept is to consider the processor area consumed by a job. This is measured in processor-time units.For example, if a job is allocated � processors for t time units, then the processor area consumed is �t. If �processors are allocated for the duration of Jqi , then W qi =�qi (�) is its execution time for phase q of job i and(�=�qi (�)) �W qi is the processor area consumed.A speedup function � is sublinear if �1=�(�1) � �2=�(�2) whenever �1 � �2. A sublinear speedupfunction is one in which the processor area consumed per unit of work completed does not decrease whenmore processors are allocated to the associated job. (See Figure 1:a-e.)A schedule S allocates the p processors for each point in time to the jobs in the given job set J in away such that all the work completes. More formally, a schedule for a given job set J , SJ , with n jobs on pprocessors is a function from f1; : : : ; ng � [0;1) to [0; p] such that:4

a: Fully Paral-lelizable b: Real Sequen-tial c: \Sequential" d: TypicalNondecreasing-Sublinear βe: Worst CaseNondecreasing-Sublinear
f: TypicalSuperlinear g: Worst CaseSuperlinear h: TypicalNondecreasing βi: Worst CaseNondecreasing j: TypicalGradualFigure 1: Examples of speedup functions1. For all times t, Pni=1 SJ(i; t) � p, and2. For all i, there exist 0 = c0i < c1i < : : : < cqii such that for all 1 � q � qi, R cqicq�1i �qi (SJ (i; t)) dt = W qi .If c0i ; c1i ; : : : ; cqii are the smallest such values that satisfy this condition, then the completion time ofphase q of job i under S is cqi , for all 1 � q � qi.Condition 1 above ensures that at most p processors are allocated at any given time. Condition 2 ensuresthat before a phase of a job begins, all of the previous phases of the job must have completed. Note that weallow a job to be allocated a non-integral number of processors. The completion time of a job i, denoted ci,is the completion time of the last phase of job i (that is, phase qi of job i).Throughout this paper, we refer to an algorithm for producing schedules as a scheduler, and we identifya scheduler with the schedule it produces. The goal of the scheduler is to minimize the average completiontime, 1nPi2J ci, of all the jobs it must schedule. This goal is equivalent to minimizing the
ow time of Junder scheduler S, denoted F (SJ), which isPi2J ci. We use the competitive ratio of a scheduler to categorizeit. The competitive ratio of a schedule over a class of schedules isMinS2SMaxJ2J F (SJ)=F (OPTJ);where S is the class of schedulers being considered, J is the class of job sets being considered, and OPTJ isan optimal (unrestricted) scheduler for the job set J .All schedulers considered in this paper are computationally simple and most preempt a bounded numberof times. They are non-clairvoyant, meaning that they have no knowledge of the work W qi or the speedupfunctions �qi of the jobs in the set J . Initially, their only knowledge is the number of jobs n and the numberof processors p. They are also able to detect when a job completes. They are not able to detect when aparticular phase of a job completes.In contrast to the schedulers S 2 S, the optimal scheduler OPT has unlimited computation power, isallowed an unbounded number of preemptions, and has complete knowledge (i.e., work and speedup function)of all the phases of each job.The main result of the paper is that with nondecreasing and sublinear speedup functions,F (EQUIJ)=F (OPTJ) � 2 + p3 � 3:74 (Theorem 3.1). This is surprising for the following reason. Ifwe allow some of the job phases to be fully parallelizable (i.e., �(�) = �, for all �) and some to be sequential5

(i.e., �(�) = 1, for all � > 0), then we would expect the competitive ratio to be unbounded, because a non-clairvoyant scheduler is unable to distinguish between these two types of phases and the processors allocatedto the sequential jobs essentially are wasted. However, the optimal schedule allocates only one processor tothe sequential jobs and the rest to the fully parallelizable jobs. Since the non-clairvoyant scheduler poten-tially wastes many processors, it is reasonable to believe that its the
ow time could be unboundedly largecompared to the
ow time of OPT . However, this is not the case.The other results of the paper consider schedulers with di�erent numbers of preemptions and jobs withmore general classes of speedup functions, along with matching lower bounds. The results are summarizedin Figure 2. J n S Zero logn n ContinuousFully Parallelizable [4; 4], S4.1 [2; 2] Mot, S3.3Fully Parallelizable or Sequential �(pn), S4.2Nondecreasing Sublinear [4:69; 7:46], S4.1 [2:71; 3:73], S3 [2; 3:73]Nondec. Sublinear or Superlinear �(n), S5 [2; 7:46], S5.1Nondecreasing �(logn), S5.2Gradual 1, S5 �(log p), S5.3Arbitrary 1, S5Figure 2: The columns in the table are for the classes of schedulers S that are non-clairvoyant and allowzero, logn, n, and continuous preemptions, respectively. Each row represents a di�erent class J of job sets.For each entry, the lower and the upper bound on the competitive ratio is given, along with the section ofthe paper in which it is proved. Entries with the same bounds are grouped together. For each grouping,only one lower and one upper bound needs to be proved.3 Nondecreasing Sublinear Speedup FunctionsThis section �rst proves the main result that Equi-partition on any job set with nondecreasing and sublinearspeedup functions has competitive ratio between e � 2:71 and 2 +p3 � 3:73. The �rst step is to review ageneral lower bound on the total completion time for the optimal scheduler. Then for the class of jobs withnondecreasing sublinear speedup functions, an upper bound on its total completion time for Equi-partitionis proved. This provides the upper bound of 2 +p3 on the competitive ratio.The �nal subsection of the section proves the lower bound of e � 2:71 for the Equi-partition algorithm.This is interesting because it beats the Motwani et al. [19] competitive ratio of 2 for fully parallelizable jobs.This section proves another surprising result. One would expect that the worst case set of jobs withnondecreasing and sublinear speedup functions would be one in which all jobs are either fully parallelizableor sequential. However, it turns out that for this case the competitive ratio is 2, matching the Motwani etal.. (See Figure 1:a and c for graphs of parallelizable and sequential speedup functions.3.1 A Lower Bound for OPTWe give two lower bounds for the total completion time for OPT . These bounds are based on the amountof processor area OPT uses in completing jobs and the amount of time OPT spends in completing jobs.6

Formally, the processor area used by OPT to execute job i, denoted si, is ROPT (i;t)>0OPT (i; t) dt. The timeOPT spends to execute job i, denoted hi, is ROPT (i;t)>0 1 dt.Lemma 3.1 For any job set J , let �(i) be the permutation of jobs sorted in reverse order by si. (If job ihas the largest si, then �(i) = 1.)1. F (OPT) � 1pPni=1 �(i)si, and2. F (OPT) �Pni=1 hi.The two bounds are known in the literature (see Turek et al. [25]) as the squashed area bound and the heightbound, respectively.Proof of Lemma 3.1: For the squashed area bound, we change OPT into OPT 00 so that:1. The total processor area consumed for each job is the same. That is, si = s00i .2. If ci and c00i are the last times processors are assigned to job Ji under OPT and under OPT 00, respec-tively, then F (OPT) =Pni=1 ci �Pni=1 c00i .3. Pni=1 c00i = 1pPni=1 �(i)si.OPT 00 might not be a legal schedule for the set of jobs J . However, from this the bound F (OPT) =Pni=1 ci � 1pPni=1 �(i)si follows.The change from OPT to OPT 00 is done in two steps. We �rst change OPT to OPT 0 so that at anygiven time, the function OPT 0 allocates all p processors to exactly one job. That is, for all t, OPT 0(i; t) = pfor some i, and OPT 0(j; t) = 0 for all j 6= i. Assume without loss of generality that the jobs are sorted bycompletion time (that is, ci � ci+1 for all i). Let ai;j denote the processor area consumed by Jj during thetime interval [ci; ci+1], for each i 2 [1::n � 1] and j 2 [i + 1; n]. For each interval [ci; ci+1] we squash theprocessor area used by each job within that interval. More formally, de�ne OPT 0(i+1; t) to be p for the �rstai;i+1=p time units in the time interval [ci; ci+1], de�ne OPT 0(i+2; t) to be p for the next ai;i+2=p time units,and so on until we �nally de�ne OPT 0(n; t) to be p for the last ai;n=p time units in the interval. (These arethe last time units in the interval becausePj2[i+1;n] ai;j=p = ci+1� ci.) This new function OPT 0 might notbe a legal schedule. If the speedup function is not fully parallelizable, then the extra processors will not beutilized as e�ciently and the required work will not get completed. Let c0i be the last time processors areassigned to job Ji in OPT 0. This time still will be within the time interval [ci�1; ci]. Hence, Pi ci �Pi c0i.Also, the processor area si for each job has not changed.We now have a function OPT 0 such that at any time, exactly one job is allocated all p processors. Thissituation is analogous both to that when there is a single processor and to that where the jobs have withperfect speedup functions.It is well-known that the way to minimize the sum of the completion times in this problem is to usethe Least Work First schedule. (See Sevcik [22, page 124] for a complete proof of this.) The intuition isthat it does not decrease the total completion time (average completion time) to have more than one jobpartially completed, since all uncompleted jobs must wait while a job is being completed. Thus, it is optimalto complete the jobs one at a time and in order of shortest completion time.Let OPT 00 be the schedule where the blocks of time that each job is executing are moved into onecontinuous time interval and then the jobs are completed in this order. The intuition is that the
ow timecan only improve by this change, i.e., Pi c0i � Pi c00i . The length of time that job Ji executes in OPT 00 issi=p, because its processor area has been squashed across all p processors. Hence, �, which is the permutationof jobs sorted in reverse order by si, is the reverse order of the jobs being executed and the completion timefor job Ji is c00i = Pj:�(j)��(i) sj=p and Pi c00i = 1pPj �(j)sj . Therefore OPT 00 has the three propertiesstated and the proof for the squashed area bound is complete.7

For the second lower bound, we observe that the completion time ci of a job is at least the time hi thatOPT spends executing the job. Hence, F (OPT) =Pi ci �Pi hi.Lemma 3.1 implies that the total completion time of OPT is at least any weighted average of these twoquantities. That is,Corollary 3.2 For any 0 � b � 1, F (OPT) � b � 1pPni=1 �(i)si + (1� b) �Pni=1 hi.For our result in Theorem 3.1, we will �x b = 1p3 .3.2 Equi-partition Does WellWe now present the result that Equi-partition has a competitive ratio of at most 2+p3 � 3:73 when all jobphases have nondecreasing and sublinear speedup functions.Theorem 3.1 For any job set J with nondecreasing and sublinear speedup functions, F (EQUIJ) � (2 +p3) � F (OPTJ).Proof of Theorem 3.1: Observe that the total completion time of EQUI is simply the integral over all tof nt, the number of uncompleted jobs at time t. That is, F (EQUI) = R10 nt dt. We now compare the totalcompletion time of EQUI to OPT using the lower bound of Corollary 3.2. The �rst step is to prove a lowerbound on the total time hi and processor area si that OPT spends on a job in terms of what is happeningin EQUI . This is done separately for each job Ji.Consider a job Ji. We �rst arbitrarily partition the time EQUI spends on Ji (i.e., when EQUI(i; t) > 0)into in�nitesimal blocks [t; t+�t]. Then we partition the time OPT spends on Ji, (i.e., when OPT (i; t0) > 0)into in�nitesimal blocks [t0; t0 + �t0] in such a way that there is a bijection between the blocks [t; t + �t]under EQUI and the blocks [t0; t0 +�t0] under OPT . The correspondence is that the same block of workof the job Ji is completed during corresponding blocks in the two di�erent schedules. This correspondenceis a bijection because both schedules complete all the work for job Ji. For each block of time, we boundseparately the total time hi and processor area si that OPT spends on Ji during this time.More formally, consider one of the time blocks [t; t +�t] under EQUI . Suppose that at time t, phasesJ1i ; : : : ; Jq�1i are complete and W < W qi work is completed in Jqi under EQUI . Let t0 be the latest time inwhich the same work has been completed for Ji under OPT . Note that t0 depends on which job Ji is beingconsidered. Let �t0 be time duration that OPT spends completing the same work that EQUI completesin this block of time. Even though the same work of Ji is completed during corresponding blocks of time[t; t + �t] and [t0; t0 + �t0], the lengths of these time blocks will be di�erent because the work is beingcompleted at di�erent rates. (See Figure 3.)By de�nition, EQUI allocates p=nt processors to job Ji at time t, where nt is the number of jobsuncompleted at this time. Denote by �ti the number OPT (i; t0) of processors OPT allocates to Ji at timet0. If we allow �t and �t0 to become in�nitesimal, then we can assume without loss of generality that theseschedules assign this �xed number of processors during the duration of the respective intervals [t; t+�t] and[t0; t0 +�t0]. Hence we can conclude that during the interval [t; t +�t], the amount of work completed forJi under EQUI is �w = �qi (p=nt) ��t and the time required to complete the same amount of work underOPT is �t0 = �w�qi (�ti) = �qi (p=nt)�qi (�ti) �t.Recall that hi denotes the total time that OPT spends on job Ji. This is, of course, the sum of thedurations of the blocks [t0; t0 +�t0]. We use our correspondence between the blocks [t0; t0 +�t0] under OPTand the blocks [t; t+�t] under EQUI to express hi in terms of the schedule EQUI :hi = Zt0:OPT (i;t0)>0 1 dt0 = Zt:EQUI(i;t)>0 �qi (p=nt)�qi (�ti) dt:8

EQUI6Time
Processors (p = 20)

OPT6Time
Processors (p = 20)t t0p=nt = 5 �t1 = 4

�t2 = 3
�t3 = 7�t4 = 10

Figure 3: At time t under EQUI there are four uncompleted jobs (i.e., nt = 4), hence with p = 20 processorseach job is allocated 5 processors. The work completed in EQUI for each of these jobs is completed underOPT at di�erent times and with di�erent numbers of processors. The time t0 is indicated for job 1.The total processor area consumed by OPT on job Ji is denoted by si. This is equal to the sum of theprocessor areas consumed by OPT during each of the blocks of time [t0; t0 +�t0], which is OPT (i; t0) � dt0 =�ti � dt0. We again use our correspondence between the blocks to express si in terms of the schedule EQUI :si = Zt0:OPT (i;t0)>0OPT (i; t0) dt0 = Zt:EQUI(i;t)>0 �ti �qi (p=nt)�qi (�ti) dt:Substituting the de�nitions of si and hi into the lower bound of Corollary 3.2, we getF (OPT) � b � 1p nXi=1 �(i) Zt:EQUI(i;t)>0 �ti �qi (p=nt)�qi (�ti) dt!+ (1� b) nXi=1 Zt:EQUI(i;t)>0 �qi (p=nt)�qi (�ti) dt! :De�ne St to be the set of all uncompleted jobs in EQUI at time t such that p=nt < �ti . De�ne S0t to bethe set of all uncompleted jobs in EQUI at time t such that p=nt � �ti . Intuitively, St is the set of jobs thatreceive fewer processors under EQUI than under OPT for the work executed at time t under EQUI andso these jobs are at least as work e�cient under EQUI , since all speedup functions are sublinear, whereasS0t is the set of jobs that receive at least as many processors under EQUI than under OPT and so executeno slower under EQUI , since all speedup functions are nondecreasing. (In Figure 3, jobs 1 and 2 are in St,and jobs 3 and 4 are in S0t.) By observing that St [S0t is the set of all jobs for which EQUI(i; t) > 0, wecan interchange the summations with the integrals. Then by including only some of these jobs in each sum,we get that F (OPT) � Z 10 0@b �Xi2St �(i)�tip �qi (p=nt)�qi (�ti) + (1� b) �Xi2S0t �qi (p=nt)�qi (�ti) 1A dt:Suppose Ji 2 St. Then p=nt < �ti , and so EQUI allocates fewer processors than OPT does. Since �qi issublinear, the instantaneous rate at which processor area is consumed per unit of work for a higher allocation9

of processors is at least that of a lower allocation of processors. That is, �ti=�qi (�ti) � (p=nt)=�qi (p=nt), whereq is the phase of job i executing at time t under EQUI . Rearranging this gives �tip �qi (p=nt)�qi (�qi) � 1nt .Now suppose Ji 2 S0t. Then p=nt � �ti , and so EQUI allocates at least as many processors as OPT . Butsince �qi is nondecreasing, the rate at which work of phase q of job i is being completed is at least as greatfor EQUI than for OPT . That is, �qi (p=nt)�qi (�ti) � 1. This gives usF (OPT) � Z 10 0@b �Xi2St �(i) 1nt + (1� b) �Xi2S0t 11Adt:Let jStj = at � nt. (And so jS0tj = (1� at) � nt.) The value at is the fraction of un�nished jobs in EQUIat time t that are in St. Because � is a permutation, there is at most one i 2 St such that �(i) = 1, onei 2 St such that �(i) = 2, etc. Since there are only at � nt jobs in St, it follows that Pi2St �(i) is at leastPat�nti=1 i � (at � nt)2=2. Thus,F (OPT) � Z 10 �b (atnt)22 1nt + (1� b)(1� at)nt� dt= Z 10 nt�b a2t2 + (1� b)(1� at)� dt:We now choose b = 1p3 . Since we do not know what at is, we must consider the value of at that minimizesthe right hand side of the equation. The minimum of 1p3 (a2t =2) + (1 � 1p3)(1 � at) over all 0 � at � 1 is(2�p3), which implies that F (OPT) � Z 10 nt �2�p3� dt:But F (EQUI) = R10 nt dt, giving F (OPT) � (2�p3) �F (EQUI) = 1=(2+p3) �F (EQUI). This concludesthe proof of Theorem 3.1.3.3 A Special Case Where EQUI Does WellIt is reasonable to believe that the worst case amongst jobs with nondecreasing sublinear speedup functionsoccurs when all jobs are either fully parallelizable or sequential, since EQUI wastes processors on thesequential jobs whereas OPT does not. However, we can show that in such cases, the competitive ratio isat most 2, beating the lower bound of e for nondecreasing sublinear speedup functions.Theorem 3.2 If J is such that all jobs have one phase that is either fully parallelizable (�i(�) = �, for all�) or sequential (�i(�) = 1, for all � > 0), then F (EQUIJ)=F (OPTJ) � 2.Proof of Theorem 3.2: Let A be the set of fully parallelizable jobs, and let B be the set of sequential jobs.We can apply the squashed area lower bound to jobs in A and the height lower bound to jobs in B. The
ow time of all the jobs together is at least the sum of the
ow times of each subset of jobs when consideredseparately. This gives F (OPT) � 1pXi2A �(i)si +Xj2B hjwhere � sorts the jobs in A in decreasing order according to their processor area consumed si.10

The proof proceeds in a similar manner as in Theorem 3.1. De�ne At to be the set of jobs in A that areun�nished using EQUI at time t. De�ne Bt to be the set of jobs in B that are un�nished using EQUI attime t. For i 2 At, �tip �qi (p=nt)�qi (�ti) = 1nt because �qi (�) = �, and for j 2 Bt, �qj (p=nt)�qj (�tj) = 1 because �qj (�) = 1. LetjAtj = at � nt. (And so jBtj = (1� at) � nt.) As before, Pi2At �(i) �Pat�nti=1 i � (at � nt)2=2. Hence,F (OPT) � Z 10 0@Xi2At �(i)�tip �qi (p=nt)�qi (�ti) + Xj2Bt �qj(p=nt)�qj(�tj) 1A dt= Z 10 0@Xi2At �(i) 1nt + Xj2Bt 11A dt� Z 10 nt�a2t2 + (1� at)� dt:This quadratic equation is minimized when at = 1 (i.e., the job set consists only of fully parallelizable jobs),and so (a2t =2) + (1� at) � 1=2. As before, F (EQUI) = R10 nt dt, and so F (EQUI)=F (OPT) � 2.There is a subtle point that was glossed over in this proof. The standard de�nition of a sequential jobis one for which additional processors beyond one do not increase the rate at which work completes, i.e.the speedup function is �(�) = 1 for � � 1. On the other hand, � � 1 occurs when one processor is timesharing for � fraction of the time, giving �(�) = �. The above proof, however, assumes that �(�) = 1 forall � and for all sequential jobs. We can get around this problem as follows. Under EQUI at each point intime t all jobs are allocated the same number of processors �t. If �t � 1, then e�ectively all jobs are fullyparallelizable. In this case, the Motwani upper bound of 2 applies. If �t � 1, then for the sequential jobs�(�) = 1 as required.3.4 A Lower Bound of e for EQUIWe now present a lower bound of e (the base of the natural logarithm) on the competitive ratio of EQUI inour multi-phase job model. We do this by presenting an in�nite sequence of job sets of increasing size suchthat in the limit, the competitive ratio of EQUI is at least e.Theorem 3.3 For the set of job sets with nondecreasing and sublinear speedup functions, the competitiveratio of EQUI is at least e, when p >> n.Proof of Theorem 3.3: Consider the following job set J , consisting of n jobs. Each job in J consistsof two phases. The �rst phase of the jobs is a sequential phase. (That is, �1i (�) = 1, for all � � 1 andi 2 [1::n].) The second phase is a fully parallelizable phase. (That is, �2i (�) = �, for all � and i.)The work of these phases is de�ned by the sequences ti and si below, and is illustrated in Figure 4 forn = 8. The sequences are de�ned recursively as follows:t1 = 0 ; s1 = 1ti = ti�1 + si�1 ; si = 1� ti=n (1)The quantity ti is the time required for the �rst phase of job i when allocated any number of processors,and si is the time needed for the second phase of job i when allocated p processors. From ti and si, wede�ne the work of phases in J as follows:W 1i = ti ; for all 1 � i � nW 2i = p � si ; for all 1 � i � n11

6t p p p p p p pp p p p p pp p p p pp p p pp p pp ppt2?6t4?6 s1s2s3.
..s8

� proc. p processorsW1 = p � s1W2 = p � s2
Figure 4: Job set J under OPT , where n = 8. Each of the phases on the left side of the �gure are �rstphases of jobs and require no processors to complete. (The �rst phases of jobs 2 and 4 are indicated.) Thephases on the right side of the �gure are the second phases of jobs.t 6

p processors
n
t2?6Figure 5: Job set J under EQUI , where n = 8. Each of the �rst phases of jobs complete at the same timeas they did under OPT , but the second phases are allocated only p=n processors.In the optimal schedule, only one processor is allocated to each job whose �rst phases are uncompleted,and the remaining processors are allocated to the job whose �rst phase is complete but whose second phaseis not complete. (Because p >> n, this job is allocated at e�ectively all p processors. To simplify thecalculations, we will assume that it is actually allocated all p processors.) Now, one can easily prove byinduction that job Ji completes in time ti + si. For the basis case, the �rst phase of J1 takes t1 = 0 timeand so the second phase starts at time 0. This second phase requires s1 time when allocated p processors.For job Ji, work is completed at a rate of 1 because �1i (�) = 1. Hence, this phase requires ti time. Thework of each phase is constructed so that ti = ti�1 + si�1. Hence, the �rst phase of job i completes exactlywhen the second phase of job i�1 completes, allowing the second phase of Ji to be allocated all p processorsat that point. Thus, the total completion time of J under the optimal schedule is Pni=1(ti + si).We solve for ti by substituting the de�nition of si into the de�nition of ti (from Equation (1)). Thesolution is ti = n� n�n� 1n �i :From this we get that Pni=1 ti = n2 �1� 1n�n � n2e . Then Pni=1 si = Pni=1(1 � ti=n) = O(n). The totalcompletion time for J under the optimal schedule is Pni=1(ti + si) = n2e +O(n).12

Under the EQUI schedule, all n jobs are uncompleted until time n. To see this, suppose to the contrarythat there were some job that completed before time n. Let Ji be the �rst such job. Then it is allocatedp=n processors until it completes. Therefore it takes W 1i +W 2i =(p=n) = ti + si � n = n, contradicting ouroriginal assumption. Therefore, the total completion time for J under EQUI is n2. (See Figure 5.)Thus, as n approaches in�nity, the ratio F (EQUI)=F (OPT) approaches e.4 Reducing the Number of PreemptionsPreemption allows a scheduling algorithm to adapt to the uncertain and changing nature of jobs and work-loads and hence is an important tool to reduce the total completion time. Unfortunately, it may incurlarge overheads when applied frequently. Hence, EQUI performs at most n preemptions if presented with njobs. We present one modi�cation of the EQUI schedule that performs only log2 n preemptions and anothermodi�cation that uses no preemptions at all.In this section, we show that for any job set J , the total completion time of the log2 n preemption EQUIis within a factor of two of the total completion time of normal n preemption EQUI . This automaticallygives an upper bound on the competitive ratio of 2 �(2+p3) � 7:46 for jobs with nondecreasing and sublinearspeedup functions. We are able to prove a lower bound for this algorithm of 12�e� 12�1 = 4:69. The prooftechnique is identical to that for Theorem 3.3 (though the result is less than the 2 � e that one might expect)and hence will not be presented. See [6].EQUI 0 is de�ned to be the scheduler that is the same as EQUI except that it reallocates the processorswhen the number of uncompleted jobs nt is reduced to n=2i for all 1 � i � logn.4.1 Reducing the Number of Preemptions to log2 nWe now show how to modify the EQUI schedule to one that performs only log2 n preemptions. We callthis new schedule EQUI 0. EQUI 0 behaves in the same way that EQUI does, but instead of allocatingp=nt processors to each of the nt uncompleted jobs, EQUI 0 allocates p=n processors to each uncompletedjob until there are n=2 uncompleted jobs. At this point, EQUI 0 allocates p=(n=2) processors to each ofthe n=2 uncompleted jobs until there are n=4 uncompleted jobs, and so on. That is, when the number ofuncompleted jobs reaches n=2i for some integer i, EQUI 0 allocates p=(n=2i) processors to each of them untilthere are n=2i+1 uncompleted jobs. Clearly EQUI 0 performs at most log2 n preemptions. An importantproperty of EQUI 0 is that if there are nt uncompleted jobs, EQUI 0 allocates at least p=(2 � nt) processorsto each of those jobs. We now show that for any job set J , the total completion time of EQUI 0 is within afactor of two of the total completion time of EQUI .Lemma 4.1 For any set of jobs with sublinear speedup functions, F (EQUI 0J) � 2 � F (EQUIJ).The intuition behind the proof of the lemma is that with the same number of jobs uncompleted, EQUI 0allocates at least half as many processors to each job as EQUI . Because all speedup functions are sublinear,work completes under EQUI 0 on these jobs at a rate that is at least half of the rate under EQUI . Hence, thejobs require at most twice the time to complete. The only complication is that the number of uncompletedjobs may di�er under the two schedules. In fact, the jobs may complete in a di�erent order.Proof of Lemma 4.1: Let ci be the completion time of job Ji under EQUI , and sort the jobs by increasingci. We prove by induction on i that every job completes at least as much work after time 2ci under EQUI 0 asit does after time ci under EQUI . In particular, job Ji, which completes at time ci under EQUI , completesat time at most 2ci under EQUI 0. From this the lemma follows.For convenience, we de�ne job J0 to be a job of one phase with zero work, and so c0 = 0. Hence, the basecase (i = 0 and c0 = 0) is trivial. For the induction step, suppose that for every job, all work completed underEQUI by time ci is completed by time 2ci under EQUI 0. In order to prove that all work completed under13

EQUI by time ci+1 is completed by time 2ci+1 under EQUI 0, it is su�cient to consider an arbitrary jobJj and prove that the work it completes under EQUI during the time interval [ci; ci+1] could be completedunder EQUI 0 during the time interval [2ci; 2ci+1]. (The only reason that it would not be completed duringthis interval is that is already completed before time 2ci.)By the de�nition of ci and ci+1, there are exactly n � i uncompleted jobs running under EQUI duringthe time interval [ci; ci+1], and hence each job is allocated p=(n � i) processors under EQUI . By theinduction hypothesis, under EQUI 0 jobs J1; : : : ; Ji have completed by time 2ci. Hence, there are at mostn� i uncompleted jobs running under EQUI 0 at any point during the time interval [2ci; 2ci+1]. Recall thatif there are x uncompleted jobs, EQUI 0 allocates at least p=2x processors to each of those jobs. Thus, eachjob is allocated at least p=(2(n� i)) processors under EQUI 0 in this time interval.Consider one of the phases Jqj of job Jj that has completed at least in part under EQUI during thetime interval [ci; ci+1]. Since the speedup function �qj is sublinear, the rate work is completed with at leastp=(2(n�i)) processors is at least half the rate with p=(n�i) processors. However, the time interval [2ci; 2ci+1]is twice as long as the interval [ci; ci+1]. Hence, at least as much work on this phase can be completed underEQUI 0 in [2ci; 2ci+1] as under EQUI during [ci; ci+1]. This completes the induction step and the proof ofthe lemma.From Theorem 3.1 and Lemma 4.1, we have:Theorem 4.1 EQUI 0 performs at most log2 n preemptions. It has a competitive ratio of at most 2 �(2+p3)when the speedup functions are nondecreasing and sublinear.It is easy to see that for any k � 1 we can de�ne EQUI 0 so that it preempts at most logk n times and hasa competitive ratio of at most k � (2 +p3). As said, we are able to prove a lower bound for this algorithmof 12�e� 12�1 = 4:69. See [6].4.2 No PreemptionsThe non-preemptive scheduling algorithm for which we are able to prove that the competitive ratio is �(pn)is as follows. It partitions the processors into pn groups of p=pn processors each. Each group is allocatedto a di�erent job. When a job completes, the group is allocated to another job, until all the jobs have beencompleted. See [6].5 More General Classes of Speedup FunctionsThe main results apply only for jobs with nondecreasing sublinear speedup functions. This section provessome tight bounds for more general classes of speedup functions.Suppose that doubling the number of processors doubles not only the number of operation completedper second but also doubles the total amount of memory. In this case, the rate at which work is completedwill more than double for a job has both strong parallelizability and a strong time-space tradeo�. Suchjobs do not have a sublinear speedup function. A typical one is given in Figure 1:f and a worst case one inFigure 1:g. The �rst result de�nes an RoundRobin/EQUI like scheduler that achieves a 2 � (2 +p3) � 7:46competitive ratio when each phase of each job is either nondecreasing sublinear or superlinear.To be even more general, we should allow job phases whose speedup functions are neither strictly sublinearnor strictly superlinear, but are only restricted to being nondecreasing. A typical one given in Figure 1:hand a worst case one in Figure 1:i. We de�ne another RoundRobin/EQUI like scheduler that achieves a�(logn) competitive ratio for such jobs. The lower bound is not included in the paper, but can be found in[6]. Suppose now that the system does not know how many processors can be allocated to a phase of a jobbefore the communication costs between the additional processors actually slows down the computation. In14

such a case, the jobs do not have nondecreasing speedup functions. It is unreasonable, however, to considercompletely arbitrary speedup functions. We say a speedup function is gradual if halving or doubling thenumber of processors allocated to the phase does not change the rate of computation by more than some �xconstant factor. A typical one given in Figure 1:j. We de�ne yet another RoundRobin/EQUI like schedulerthat achieves a �(log p) competitive ratio for such jobs.Finally, if the speedup functions can change drastically (for every real number), then the scheduler hasno chance of allocating a correct number of processors. Hence, the competitive ratio is unbounded. Theseresults are not included. See [6].One problem with these three RoundRobin/EQUI like schedulers is that they preempt continuously.Again let us consider the situation in which the number of preemptions is restricted. We are able to provethat every non-clairvoyant scheduler that is not allowed to preempt continuously has a competitive ratio of�(n) as long as the jobs have nondecreasing speedup functions and an arbitrarily large competitive ratio ifthe jobs are allowed to have gradual speedup functions. See [6].5.1 Nondecreasing Sublinear or Superlinear Speedup FunctionsWhen each job phase is allowed to be either nondecreasing-sublinear or superlinear, the scheduler will wantto execute the nondecreasing-sublinear phases using an Equi-partition algorithm and will want to executethe superlinear jobs with an allocation of p processors using a Round Robin algorithm. By continuouslyswitching between the two approaches, a scheduler is able to achieve a competitive ratio that is only twicethe value 2 +p3.Theorem 5.1 There is a non-clairvoyant algorithm HEQUI such that F (HEQUIJ) � 2�(2+p3)�F (OPTJ)for every job set J in which each phase of each job is either nondecreasing sublinear or superlinear.Proof of Theorem 5.1: The scheduler HEQUI (short for \Hybrid Equi-partition") slices time into blockcontaining � time units. If there are nt uncompleted jobs, then for �=2 time units, HEQUI allocates p=ntprocessors to each job. For the remaining �=2 time units, each of the nt jobs in turn is allocated all pprocessors for �=2nt time units. Notice that as � approaches zero, the number of preemptions HEQUIapproaches in�nity.HEQUI must perform well both with nondecreasing-sublinear job phases and with superlinear oneswithout knowing which are which. It performs well with the nondecreasing-sublinear phases because halfof the time it behaves like EQUI and hence performs on these within a factor of two as well as proved inTheorem 3.1. Superlinear phases execute the most e�ciently when given all p processors. HEQUI performswell on these because half of the time it behaves like Round-Robin.The proof proceeds as in the proof of Theorem 3.1. Recall that in that proof, for each block of work ineach job, the rate �qi (�ti) at which OPT executes this work is compared to the rate �qi (p=nt) at which EQUIexecutes the same work. We now must do the same except compare the rate �qi (�ti) with the rate at whichHEQUI executes the same work. Let
qi (p=nt) be the e�ective rate of HEQUI as � approaches 0. Fromthe de�nition of HEQUI ,
qi (p=nt) = 12�qi (p=nt) + 12 �qi (p)nt .There are two places in which the proof of Theorem 3.1 compares �qi (�ti) and �qi (p=nt). The �rst placerequires that if p=nt < �ti then p=nt�qi (p=nt) � �ti�qi (�ti) . We replace this with p=nt
qi (p=nt) � 2 � �ti�qi (�ti) . Note that thestatement is a factor of two weaker, resulting in the result here being a factor of two weaker. Substitutingthe e�ective rate of HEQUI gives the required bound to bep=nt12�qi (p=nt) + 12 �qi (p)nt � 2 � �ti�qi (�ti) : (2)If �qi is sublinear, then p=nt�qi (p=nt) � �ti�qi (�ti) because p=nt < �ti . If �qi is superlinear, then p�qi (p) � �ti�qi (�ti) becausep � �ti . In either case, Equation 2 is satis�ed. 15

The second place in which the proof of Theorem 3.1 compares �qi (�ti) and �qi (p=nt) is that if �ti � p=nt,then �qi (�ti) � �qi (p=nt). The new requirement �qi (�ti) � 2 �
qi (p=nt) holds because �qi is nondecreasing,giving that �qi (�ti) � �qi (p=nt) � 2 �
qi (p=nt).The remainder of the proof follows that of Theorem 3.1, except that a factor two is introduced at eachstep.5.2 Nondecreasing Speedup FunctionsNow consider job phases whose speedup functions are neither strictly sublinear nor strictly superlinear, butare only restricted to being nondecreasing (i.e., if �1 � �2, then �(�1) � �(�2)). The worst case function (seeis constant except for a sudden increase in the computation rate of the phase at some number of processors�. This value is known to the optimal scheduler OPT , but not to the non-clairvoyant scheduler S. Insuch a case, one would expect the competitive ratio of S to be large. If the scheduler S allocates fewerthan � processors to the job, then the phase makes little progress while \wasting" the processors allocated.If it allocates many more than � processors, then those beyond � are wasted. However, we show that anon-clairvoyant scheduler can achieve a competitive ratio of �(logn). For each number of processors that isa power of two between p=n and p, the scheduler runs each of the jobs with that number of processors for asmall slice of time in a Round Robin fashion. It follows that for each phase for at least a 1= logn fractionof the time, the phase is either allocated within a factor of two of the optimal number of processors or isallocated more than enough processors while doing Equi-Partition.Theorem 5.2 There is a non-clairvoyant algorithm HEQUI 0 such that F (HEQUI 0J) � O(log n) �F (OPT)for every set of jobs J with nondecreasing speedup functions.Proof of Theorem 5.2: Suppose that at time t under HEQUI 0 there are nt jobs remaining uncompleted.For every number of processors � that is a power of two and between p=nt and p, the scheduler HEQUI 0executes each of the jobs for a slice of time while allocating it � processors. When allocating � processorsper job, the scheduler is able to execute p=� jobs in parallel and hence requires nt�=p stages to execute eachof the nt jobs for a slice of time. Therefore, HEQUI 0 executes each of the jobs with � processors for a timeslice of length �log2(nt)nt�=p .We now continue as in Theorem 3.1. Our proof here changes that of Theorem 3.1 in the same way as wasdone for Theorem 5.1. The e�ective rate of HEQUI 0 is
qi (p=nt) = P�=2k2[p=nt;p] 1log(nt) pnt��qi (�). Recallthat there are two statements that need to be proved.The �rst required statement is that if p=nt < �ti , then p=nt
qi (p=nt) � 2 logn � �ti�qi (�ti) . Note the result is a factorof 2 logn weaker because this statement is a factor of 2 logn weaker. Suppose that p=nt < �ti and let � bethe smallest power of two that is at least �ti . HEQUI 0 executes job Ji for a slice of time with � processorsbecause p=nt < �ti � �. Therefore, the e�ective rate of HEQUI 0 is
qi (p=nt) � 1log(nt) pnt��qi (�). Because thespeedup functions are nondecreasing and �ti � �, we know that �qi (�ti) � �qi (�). Also, � is within a factorof two of �ti . This gives that
qi (p=nt) � 12 logn pnt�ti �qi (�ti). Rearranging this gives the required statement.The second required statement is that if �ti � p=nt, then �qi (�ti) � 2 logn �
qi (p=nt). If �ti � p=nt,then let � be the smallest power of two that is at least p=nt. Note that when HEQUI 0 executes the jobswith � processors, it can execute all nt of the jobs in at most two stages. The e�ective rate of HEQUI 0 is
qi (p=nt) � 1log(nt) pnt��qi (�) � 12 logn�qi (�ti). The last inequality again uses the fact that the speedup functionis nondecreasing.The remainder of the proof follows that of Theorem 3.1, except that a factor of 2 logn is introduced ateach step.See [6] for a matching lower bound.
16

5.3 GradualWe might also want to include in our consideration jobs whose rate of computation both increase and decreasewith the number of processors allocated to them. It is unreasonable, however, to consider completelyarbitrary speedup functions. We say a speedup function is gradual if halving or doubling the number ofprocessors allocated to the phase does not change the rate of computation by more than some �x constantfactor. We consider an algorithm that for each j 2 [1::n] and i 2 [1:: log p] runs job Jj with 2i processorsfor a small slice of time. This ensures that each job is running 1log p fraction of the time with a number ofprocessors 2i0 that is within a factor c as fast as that assigned to the job by the adversary. We prove that thisalgorithm is �(log p) competitive. We prove a matching lower bound. The proof, however, is not included.See [6].6 Conclusions and Open ProblemsWe have provided asymptotically tight bounds on the competitive ratio of non-clairvoyant scheduling algo-rithms for a range of job classes and a range of allowable number of preemptions. Open problems include:� How much does clairvoyance help? For each entry in Figure 2, what is the competitive ratio when thescheduler is given complete knowledge, but limited in the number of preemptions?� How much does computation help? For each entry in Figure 2, what is the competitive ratio of thebest algorithm to an optimal one that is also limited in the number of preemptions?Our work applies to the case when all jobs arrive at time 0. In a practical scheduling environment, jobsarrive periodically and their arrival times are generally unpredictable. An open problem is to provide resultsin this environment. Kalyanasundaram and Pruhs [9] provide some results in this area.References[1] T. Brecht and K. Guha. Using parallel program characteristics in dynamic multiprocessor allocationpolicies. Performance Evaluation, 27 & 28:519{539, Oct. 1996.[2] S. H. Chiang, R. K. Mansharamani, and M. Vernon. Use of application characteristics and limitedpreemption for run-to-completion parallel processor scheduling policies. In Proceedings of the 1994ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 33{44,1994.[3] X. Deng and P. Dymond. On multiprocessor system scheduling. Journal of Combinatorial OptimizationVol. 1, 1998, pp. 377-392, a special issue on Scheduling on Parallel/Distributed Systems.[4] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs on multiprocessors. SIAMJ. Comput. 30(1): 145-160 (2000)[5] X. Deng and E. Koutsoupias. Competitive implementation of parallel programs. Algorithmica Vol. 23No.1, 1999, pp.14-30.[6] J. Edmonds, T. Brecht, D. Chinn, and X Deng. Non-clairvoyant Multiprocessor Scheduling of Jobs withChanging Execution Characteristics. Technical Report York, 2000.[7] J. Edmonds, \Scheduling in the dark", STOC 1999 and Blum's Special Issue of the Journal of TheoreticComputer Science, 1999, and Proc. 31st Ann. ACM Symp. on Theory of Computing.[8] J. Edmonds. Scheduling in the Dark. In Blum's Special Issue of the Journal of Theoretic ComputerScience, 1999 and in Proc. 31st Ann. ACM Symp. on Theory of Computing, pp. 179-188, 1999.17

[9] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In Proceedings of the 36thSymposium on Foundations of Computer Science, pages 214{221, October 1995 and JACM, 2000.[10] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching. Algorithmica, 3:79{119, 1988.[11] M. Kumar. Measuring parallelism in computation-intensive scienti�c/engineering applications. IEEETransactions on Computers, 37(9):1088{1098, September 1988.[12] S.T. Leutenegger, and R.D. Nelson. Analysis of Spatial and Temporal Scheduling Policies for Semi-Static and Dynamic Multiprocessor Environments. RC 17086 (75594), IBM T. J. Watson ResearchCenter, Yorktown Heights, NY, August, 1991.[13] S. Leutenegger andM. Vernon. The performance of multiprogrammedmultiprocessor scheduling policies.In Proceedings of the 1990 ACM SIGMETRICS Conference on Measurement and Modeling of ComputerSystems, pages 226{236, Boulder, Colorado, May 1990.[14] W. Ludwig, and P. Tiwari. The Power of Choice in Scheduling Parallel Tasks. TR 1190 ComputerScience Department, University of Wisconsin, Madison, November, 1993.[15] R. Mansharamani, and M.K. Vernon. Qualitative Behavior of the EQS Parallel Processor AllocationPolicy. TR 1192, Computer Sciences Department, University of Wisconsin, Madison, November, 1993.[16] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for on-line problems. In Proceedingsof the Twentieth Annual ACM Symposium on the Theory of Computing, pages 322{333, 1988.[17] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for multiprogrammed,shared memory multiprocessors. ACM Transactions on Computer Systems, 11(2):146{178, May 1993.[18] C. McCann and J. Zahorjan. Scheduling memory constrained jobs on distributed memory parallelcomputers. In Proceedings of International Joint Conference on Measurement and Modeling of ComputerSystems, ACM SIGMETRICS 95 and Performance 95, pages 208{219, 1995.[19] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proceedings of the 4th AnnualACM/SIAM Symposium on Discrete Algorithms, pages 422{431, Austin, Texas, January 1993 andTheoretical Comperter Science, Volume 130, pages 17-47, 1994.[20] T. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing speedup through self-tuning of processor alloca-tion. In Proceedings of the 10th International Parallel Processing Symposium, pages 463{468, Waikiki,HI, Apr. 1996.[21] U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek, and P. Yu. Smart SMART bounds for weightedresponse time scheduling. To appear in SIAM Journal on Computing.[22] K. Sevcik. Application scheduling and processor allocation in multiprogrammed parallel processingsystems. Performance Evaluation, 19(2-3):107{140, March 1994.[23] D. Sleator and R. Tarjan. Amortized e�ciency of list update and paging rules. Communications of theACM, 28(2):202{208, 1985.[24] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed shared-memorymultiprocessors. In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles, pages159{166, 1989.[25] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn, and P. S. Yu.Scheduling parallelizable tasks to minimize average response time. In 6th Annual ACM Symposium onParallel Algorithms and Architectures, pages 200{209, June 1994.[26] J. Turek, U. Schwiegelshohn, J. Wolf, and P. Yu. Scheduling parallel tasks to minimize average responsetime. In Proceedings of the 5th SIAM Symposium on Discrete Algorithms, pages 112{121, 1994.18

[27] J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors. In Proceedings ofthe 1990 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages214{225, Boulder, Colorado, May 1990.

19

