Non-clairvoyant Multiprocessor Scheduling of Jobs
with Changing Execution Characteristics

Jeff Edmonds Donald D. Chinn
York University, University of Washington,
Toronto, Canada Seatle, USA
jeff@cs.yorku.ca dci@cs.washington.edu
Tim Brecht Xiaotie Deng*
University of Waterloo, City University of Hong Kong,
Waterloo, Canada Kowloon, Hong Kong SAR, China
brecht@cs.uwaterloo.ca deng@cs.cityu.edu.hk

work done while together at
York University
Toronto, Canada

Abstract

In this work theoretically proves that Equi-partition efficiently schedules multiprocessor batch jobs
with different execution characteristics. Motwani et al.show that the mean response time of jobs is within
two of optimal for fully parallelizable jobs. We extend this result by considering jobs with multiple
phases of arbitrary nondecreasing and sublinear speedup functions. Having no knowledge of the jobs
being scheduled (non-clairvoyant) one would not expect it to perform well. However, our main result
shows that the mean response time obtained with Equi-partition is no more than 2 + /3 = 3.73 times
the optimal. The paper also considers schedulers with different numbers of preemptions and jobs with
more general classes of speedup functions. Matching lower bounds are also proved.

1 Introduction

The study of parallel and distributed computer system performance is generally more difficult than that of
uniprocessor systems. One important property of general purpose computer systems is the unknown nature
of job execution. For uniprocessor systems, preemptive scheduling strategies such as Round Robin and Equi-
partition use no information about job characteristics. The cost of preemption can be amortized by giving
jobs remaining in the system a quantum of processor time proportional to how long they have been in the
system [19]. In multiprocessor systems a similar preemptive algorithm, dynamic Equi-partition (DEQ), can
be used to achieve similar performance when preemption costs are not prohibitively large [3, 4]. However,
overheads incurred due to preemptive scheduling algorithms may be much larger in parallel and distributed
systems, and especially in the networks of workstations model. When the overhead is prohibitive, then results
from theoretical studies on non-preemptive execution of parallel jobs may be more relevant [25, 26, 21], but
these results require complete information about jobs in the system.

In this work, we consider the scheduling problem on a p processor system where n jobs all arrive at time
0 and no other jobs arrive thereafter. We present a new job model that applies to a large class of parallel

*All four authers were partially supported by NSERC. Deng was also funded by a grant of HKRGC (CityU 1049/98E) and
a grant of City University of Hong Kong.

jobs, including those job models discussed in Turek et al. [25]. Our metric of performance is the mean
response time of the jobs. To provide flexibility in modeling these costs, we classify scheduling algorithms
by the number of preemptions they are allowed, ranging from none to an infinite number. We also explore
job classes, categorized by their execution characteristics. We examine how well a scheduler can perform
if it is presented with jobs from a particular class of jobs. Another way to view these job classes is that
if a system administrator knows what kind of jobs are scheduled on the system, he or she can choose a
non-clairvoyant algorithm based on this information. Our goal is to find practical algorithms that have good
analytic properties.

We study the simple Equi-partition algorithm, for which an equal number of processors is assigned to
every job. The approach of Equi-partition was first introduced to parallel scheduling by Tucker and Gupta as
a process control policy [24], and later modified by Zahorjan and McCann [27] to dynamically adjust processor
allocations as job requirements for processors change. This algorithm is known as dynamic equi-partition
(DEQ).

We show that the Equi-partition algorithm (which performs at most n preemptions) achieves a perfor-
mance within 2+ /3 times the optimum schedule (which may preempt processors any number of times and
may use knowledge of job characteristics to make its scheduling decisions) when the jobs are from a fairly
large class. The number of preemptions in Equi-partition can be further reduced to log, n with an extra
constant multiplicative factor of k£ loss in performance.

This result is perhaps most interesting when compared with the existing bound (4 times optimal) [4]
for the dynamic Equi-partition algorithm (DEQ). Our new bound for Equi-partition is tighter than the
previous bound for DEQ, even though Equi-partition uses significantly fewer preemptions and does not use
any job execution characteristics, whereas DEQ does. That is, for the job class for which the result holds,
there is little advantage in preempting an arbitrarily large number of times. A possible interpretation of this
result is that it provides theoretical evidence that algorithms that do not use information about job execution
characteristics to frequently reallocate processors may not have to pay excessively large performance penalties
(in terms of mean job response times).

The network of workstations model is an extreme case of parallel systems, for which frequent preemptions
of executing jobs and reassignments of processors are costly. Our results show that for a large class of parallel
jobs, provably near-optimal mean response time can be achieved with few reassignments of processors. Of
course, much more research is required to make this theoretical understanding useful in a practical setting.
In fact, performance in such systems has been already studied using simulation, experimental, and queuing
theoretical approaches [2, 13, 17, 18, 24, 27, 1]. In this perspective, our research constitutes a theoretical
confirmation of these efforts.

1.1 Modeling Job Execution

In our model, all jobs arrive at time zero. That is, we adopt a batch job processing model. It would be more
general to allow jobs to arrive at arbitrary times. However, this makes the scheduling problem much more
difficult and is left as an open problem.

Before a scheduler can attempt to find the best schedule, a measure of the success of a schedule needs to
be defined. The two measures used most frequently are the final completion time of all the jobs (makespan)
and the mean response time of the jobs (average completion time). Other measures take into account the
level of fairness given to each individual job. We use the mean response time in this paper since it is most
often the measure of interest to users of such systems.

The parallelism profile of a job, defined as the number of processors an application is capable of using at
any point in time during its execution, was introduced by Kumar [11]. More generally, a speedup function,
I, specifies the rate at which work is completed as a function of the number of processors allocated to it.
Since parallel programs can have a wide variety of execution characteristics in practice, we consider a number
of different classifications of jobs according to how well they are able to utilize processors, some of which
include: sequential, fully parallelizable, sublinear, superlinear and nondecreasing. To be more general, we

allow jobs to have multiple phases, each of which is defined by an amount of remaining work and a speedup
function.

Most scheduling results depend heavily on the scheduler knowing the characteristics of the jobs being
scheduled. Hence, to various degrees of success, compilers and run-time systems attempt to give hints to
the scheduler. We, however, consider non-clairvoyant schedulers that have no information about the jobs
other than the number of unfinished jobs in the system. Our results show that even without such compiler
or run-time hints and without many preemptions, schedulers can perform well.

The scheduling algorithms used in some previous work are computationally intensive. Depending on the
scheduling problem, finding the optimal schedule may be NP-complete. (For example, see Turek et al. [25]
for a sample of such results.) Even if the algorithm is polynomial-time, it may not be practical in a real-time
situation. For example, the scheduler may need to find a perfect matching. With the goal of practicality in
mind, we consider only computationally simple algorithms.

A competitive ratio is a formal way of evaluating algorithms that are limited in some way, (e.g., limited
information, computational power, or number of preemptions). This measure was first introduced in the
study of a system memory management problem [10, 16, 23]. In our situation, the competitive ratio considers
the best scheduling algorithm among those being considered (i.e., non-clairvoyant, reasonable computation
time, and a limited number of preemptions). Then it considers the worst case set of jobs for that scheduler
being considered (i.e., batch, multiple phases, and some class of speedup function). How well this scheduler
performs on this set of jobs is then compared with how well the optimal scheduler performs on this same
set of jobs. Note that the optimal scheduler is fully clairvoyant, has unbounded computational power, and
is allowed an unbounded number of preemptions. The ratio of these mean response times is known as the
competitive ratio of the class of schedulers on the class of jobs.

1.2 Related Results

Motwani et al. [19] show that for any uniprocessor system, any non-clairvoyant algorithm has a competitive
ratio of at least 2 — n%_l This lower bound extends to multiprocessor systems where the jobs are fully
parallelizable. A job is fully parallelizable if for any p, its execution time when given p processors is 1/p times
its execution time with one processor. Motwani et al. also give some upper and lower bounds on the tradeoff

between preemptions and competitive ratio. These, however, apply only to the single processor model.

A worst case set of jobs for Equi-partition consists of n jobs each with work W; = p. In Equi-partition,
each job is allocated p/n processors and hence completes at time ¢; = n. The flow is F(EQUI) = Y, ¢; = n?.
The optimal schedule, on the other hand, executes the job with least work first. The completion time of job
Ji is ¢; = i and the flow is F(OPT) =),% = n(n + 1)/2. Hence, the competitive ratio is at least 2 — niﬂ

Deng and Koutsoupias [5] discuss how well a job is able to utilize processors, using a DAG model to
represent the data-dependency within the job. Their lower bounds for the DAG model are not applicable to
the phase job model here.

Deng et al. [4] show that DEQ, an algorithm similar to Equi-partition, achieves the same competitive
ratio 2 — nLJrl for parallel jobs with a single phase, and is 4 — n%rl—competitive in a job model that allows jobs
to have multiple phases. In this job model, each phase ¢ of job ¢ is fully parallelizable for any allocation of
processors up to some number P!, but achieves a speedup of P/ for any allocation greater than P;. DEQ
uses these values P! to make its scheduling decisions.

Turek et al. [25] consider a general job model where jobs consist of a single phase and have speedup
functions that are nondecreasing and sublinear. Without using preemptions they achieve the impressive
competitive ratio of two. However, the algorithm requires complete knowledge of the jobs’ workload and
speedup functions and a perhaps excessive computation time of O(n(n? + p)).

In contrast, we show that the simple Equi-partition algorithm achieves a competitive ratio of 2 + /3
where jobs have multiple phases of different nondecreasing sublinear speedup functions. This scheduler does
require up to n preemptions, but is non-clairvoyant and computationally simple. We also prove a lower

bound of e & 2.71 for Equi-partition when the jobs have nondecreasing sublinear speedup functions, thus
separating this class of jobs from fully parallelizable jobs with respect to Equi-partition.

Prior to our result, Kalyanasundaram and Pruhs [9] consider the model in which jobs can arrive at
arbitrary times. In this model, it is more difficult to find good schedulers. In fact, Motwani et al. [19] prove
that no non-clairvoyant scheduler can achieve a competitive ratio better than 2(n/logn) even when all the
jobs are fully parallelizable. On the other hand, Kalyanasundaram and Pruhs achieve a competitive ratio
of 1+ % by giving their BALANCE scheduler (1 + €)p processors and only giving the optimal scheduler p
processors. After our work, Edmonds proved that EQUI with (2 + ¢€)p processors has a constant competitive
ratio for jobs with arbitrary arrival times and arbitrary nondecreasing sublinear speedup functions [8].

2 Jobs and Schedulers

In this section we define sets of jobs, schedulers, flow time, and competitive ratios. Finally, we summarize
our results.

We consider a set of n jobs, all of which arrive at time zero, that are to be executed on p processors. A
set of jobs .J is defined to be {.Jy, ..., J,} where job .J; has a sequence of ¢; phases <Ji1, JZ, .. Jf) and each
phase is an ordered pair (W7, I'Y). The quantity W/ is a nonnegative real number, called the remaining work,
and I'! is a function, called the speedup function, that maps a nonnegative real number to a nonnegative real
number. I'}(3) represents the rate at which work is executed for phase ¢ of job i when given § processors.

The most important examples are fully parallelizable (perfectly efficient) job phases and sequential job
phases. In fully parallel work, increasing the fraction of the processing power devoted to this work by a
multiplicative factor of f increases the rate at which remaining work decreases by a factor of f. It has the
speedup function I'(8) = B. (See Figure 1:a.) Work is sequential if increasing the fraction of the processing
power that this work receives does not increase the rate at which the remaining work decreases. In practice,
the rate decreases when allocated few than one processor. (See Figure 1:b.) Though all of our results apply
to such phases, we will call a phase “sequential” if it completes work at a rate of 1 even when absolutely
no processors are allocated to it. It has the speedup function I'(8) = 1 for § > 1. (See Figure 1:c.) Such a
job is worse for a non-clairvoyant scheduler and better for the optimal scheduler. Note that the purpose of
sequential jobs is to simplify algorithm analysis; there is no claim that they model actual speed-up curves
found in any application.

A speedup function I is nondecreasing if T'(81) < I'(82) whenever 8; < 82. A job phase with a nonde-
creasing speedup function executes no slower if it is allocated more processors. (See Figure 1:a-i.) This is a
reasonable assumption if in practice a job can determine whether it can use additional processors to speed
its execution and can refuse to use some of the processors allocated to it (in the case that it cannot use
additional processors). Nguyen, Vaswani, and Zahorjan [20] provide experimental evidence that this might
be possible.

The rate at which job J; completes work, I'Y(8), is a useful concept when considering the time until that
job completes. However, when considering the completion times of all the jobs simultaneously, a more useful
concept is I'Y () /3, which is the work completed by the job per time unit per processor. One way of viewing
this concept is to consider the processor area consumed by a job. This is measured in processor-time units.
For example, if a job is allocated 8 processors for ¢ time units, then the processor area consumed is gt. If g
processors are allocated for the duration of Jf, then W/ /I'!() is its execution time for phase g of job i and
(B/T1(B)) - W is the processor area consumed.

A speedup function I is sublinear if 81 /T'(81) < B2/T(B2) whenever 51 < f(». A sublinear speedup
function is one in which the processor area consumed per unit of work completed does not decrease when
more processors are allocated to the associated job. (See Figure 1:a-e.)

A schedule S allocates the p processors for each point in time to the jobs in the given job set J in a
way such that all the work completes. More formally, a schedule for a given job set J, Sy, with n jobs on p
processors is a function from {1,...,n} x [0,00) to [0,p] such that:

[

d: Typical e: Worst Case

a: Fully Paral- b: Real Sequen-

. . c: “Sequential” Nondecreasing- Nondecreasing-
lelizable tial . .
Sublinear Sublinear
f: Typical g: Worst Case h: Typical i: Worst Case j: Typical
Superlinear Superlinear Nondecreasing Nondecreasing Gradual

Figure 1: Examples of speedup functions

1. For all times ¢, 3", Sy(i,t) < p, and

q
2. For all i, there exist 0 = ¢? < ¢} < ... < ¢! such that for all 1 < ¢ < q;, fcc;'_l (S (i,t)) dt = W
If &,ct,...,cl" are the smallest such values that satisfy this condition, then the completion time of

phase q of job i under S'is ¢, for all 1 < ¢ < ¢;.

Condition 1 above ensures that at most p processors are allocated at any given time. Condition 2 ensures
that before a phase of a job begins, all of the previous phases of the job must have completed. Note that we
allow a job to be allocated a non-integral number of processors. The completion time of a job i, denoted c¢;,
is the completion time of the last phase of job i (that is, phase ¢; of job 7).

Throughout this paper, we refer to an algorithm for producing schedules as a scheduler, and we identify
a scheduler with the schedule it produces. The goal of the scheduler is to minimize the average completion
time, %ZieJ ¢;, of all the jobs it must schedule. This goal is equivalent to minimizing the flow time of J
under scheduler S, denoted F'(Sy), whichis ;. ; c;. We use the competitive ratio of a scheduler to categorize
it. The competitive ratio of a schedule over a class of schedules is

MinsesMax e 7 F(Ss)/F(OPTy),

where S is the class of schedulers being considered, J is the class of job sets being considered, and OPT} is
an optimal (unrestricted) scheduler for the job set J.

All schedulers considered in this paper are computationally simple and most preempt a bounded number
of times. They are non-clairvoyant, meaning that they have no knowledge of the work W/ or the speedup
functions I'Y of the jobs in the set J. Initially, their only knowledge is the number of jobs n and the number
of processors p. They are also able to detect when a job completes. They are not able to detect when a
particular phase of a job completes.

In contrast to the schedulers S € S, the optimal scheduler OPT has unlimited computation power, is
allowed an unbounded number of preemptions, and has complete knowledge (i.e., work and speedup function)
of all the phases of each job.

The main result of the paper is that with nondecreasing and sublinear speedup functions,
F(EQUI;)/F(OPTy) < 2+ /3 =~ 3.74 (Theorem 3.1). This is surprising for the following reason. If
we allow some of the job phases to be fully parallelizable (i.e., ['(8) = 3, for all 3) and some to be sequential

(i.e., T'(B) =1, for all g > 0), then we would expect the competitive ratio to be unbounded, because a non-
clairvoyant scheduler is unable to distinguish between these two types of phases and the processors allocated
to the sequential jobs essentially are wasted. However, the optimal schedule allocates only one processor to
the sequential jobs and the rest to the fully parallelizable jobs. Since the non-clairvoyant scheduler poten-
tially wastes many processors, it is reasonable to believe that its the flow time could be unboundedly large
compared to the flow time of OPT. However, this is not the case.

The other results of the paper consider schedulers with different numbers of preemptions and jobs with
more general classes of speedup functions, along with matching lower bounds. The results are summarized
in Figure 2.

J\S Zero logn n Continuous
Fully Parallelizable [4,4], S4.1 [2,2] Mot, S3.3
Fully Parallelizable or Sequential || ©(y/n), S4.2
Nondecreasing Sublinear [4.69,7.46], S4.1 | [2.71,3.73], S3 [2,3.73]
Nondec. Sublinear or Superlinear ©(n), S5 [2,7.46], S5.1
Nondecreasing ©(logn), S5.2
Gradual 00, S5 ©(logp), S5.3
Arbitrary 00, S5

Figure 2: The columns in the table are for the classes of schedulers & that are non-clairvoyant and allow
zero, logn, n, and continuous preemptions, respectively. Each row represents a different class J of job sets.
For each entry, the lower and the upper bound on the competitive ratio is given, along with the section of
the paper in which it is proved. Entries with the same bounds are grouped together. For each grouping,
only one lower and one upper bound needs to be proved.

3 Nondecreasing Sublinear Speedup Functions

This section first proves the main result that Equi-partition on any job set with nondecreasing and sublinear
speedup functions has competitive ratio between e &~ 2.71 and 2 + /3 ~ 3.73. The first step is to review a
general lower bound on the total completion time for the optimal scheduler. Then for the class of jobs with
nondecreasing sublinear speedup functions, an upper bound on its total completion time for Equi-partition
is proved. This provides the upper bound of 2 + /3 on the competitive ratio.

The final subsection of the section proves the lower bound of e ~ 2.71 for the Equi-partition algorithm.
This is interesting because it beats the Motwani et al. [19] competitive ratio of 2 for fully parallelizable jobs.

This section proves another surprising result. One would expect that the worst case set of jobs with
nondecreasing and sublinear speedup functions would be one in which all jobs are either fully parallelizable
or sequential. However, it turns out that for this case the competitive ratio is 2, matching the Motwani et
al.. (See Figure 1:a and c for graphs of parallelizable and sequential speedup functions.

3.1 A Lower Bound for OPT

We give two lower bounds for the total completion time for OPT'. These bounds are based on the amount
of processor area OPT uses in completing jobs and the amount of time OPT spends in completing jobs.

Formally, the processor area used by OPT to execute job i, denoted s;, is fOPT(

OPT spends to execute job i, denoted h;, is fOPT(i £)>0 1 dt.

i6)>0 OPT(i,t) dt. The time

Lemma 3.1 For any job set J, let w(i) be the permutation of jobs sorted in reverse order by s;. (If job i
has the largest s;, then w(i) = 1.)

1. F(OPT) > 3 3, w(i)si, and

2. F(OPT) > Y™ hs.

The two bounds are known in the literature (see Turek et al. [25]) as the squashed area bound and the height
bound, respectively.

Proof of Lemma 3.1: For the squashed area bound, we change OPT into OPT" so that:

1. The total processor area consumed for each job is the same. That is, s; = /.

2. If ¢; and ¢ are the last times processors are assigned to job J; under OPT and under OPT", respec-
tively, then F(OPT) =31 ¢; > >0, cl.

3.3 = 1% > i m(0)si

OPT" might not be a legal schedule for the set of jobs J. However, from this the bound F(OPT) =
S e > A n(i)s; follows.

=P

The change from OPT to OPT" is done in two steps. We first change OPT to OPT' so that at any
given time, the function OPT" allocates all p processors to exactly one job. That is, for all ¢, OPT'(i,t) =p
for some i, and OPT'(j,t) = 0 for all j # 7. Assume without loss of generality that the jobs are sorted by
completion time (that is, ¢; < ¢;q1 for all ¢). Let a;; denote the processor area consumed by J; during the
time interval [¢;, ¢j41], for each ¢ € [1.n — 1] and j € [i + 1,n]. For each interval [¢;, ¢ci+1] we squash the
processor area used by each job within that interval. More formally, define OPT'(i+1,t) to be p for the first
a; i+1/p time units in the time interval [¢;, ¢;11], define OPT'(i+ 2, t) to be p for the next a; ;42 /p time units,
and so on until we finally define OPT"(n,t) to be p for the last a;,,/p time units in the interval. (These are
the last time units in the interval because ZjE[H-l,n] a;j/p = cit1 — ¢;.) This new function OPT" might not
be a legal schedule. If the speedup function is not fully parallelizable, then the extra processors will not be
utilized as efficiently and the required work will not get completed. Let ¢} be the last time processors are
assigned to job J; in OPT'. This time still will be within the time interval [c;—1,¢;]. Hence, . ¢; > >, ¢i.
Also, the processor area s; for each job has not changed.

We now have a function OPT' such that at any time, exactly one job is allocated all p processors. This
situation is analogous both to that when there is a single processor and to that where the jobs have with
perfect speedup functions.

It is well-known that the way to minimize the sum of the completion times in this problem is to use
the Least Work First schedule. (See Sevcik [22, page 124] for a complete proof of this.) The intuition is
that it does not decrease the total completion time (average completion time) to have more than one job
partially completed, since all uncompleted jobs must wait while a job is being completed. Thus, it is optimal
to complete the jobs one at a time and in order of shortest completion time.

Let OPT" be the schedule where the blocks of time that each job is executing are moved into one
continuous time interval and then the jobs are completed in this order. The intuition is that the flow time
can only improve by this change, i.e.,, >, ¢; > >, ¢}. The length of time that job J; executes in OPT" is
s;/p, because its processor area has been squashed across all p processors. Hence, 7, which is the permutation
of jobs sorted in reverse order by s;, is the reverse order of the jobs being executed and the completion time
for job Ji is ¢ = 3 (s Si/P and 3o ¢ = %Zj m(j)sj. Therefore OPT" has the three properties
stated and the proof for the squashed area bound is complete.

For the second lower bound, we observe that the completion time ¢; of a job is at least the time h; that
OPT spends executing the job. Hence, F(OPT) =3 ,¢; > ., h;.

Lemma 3.1 implies that the total completion time of OPT is at least any weighted average of these two
quantities. That is,

Corollary 3.2 For any 0 <b< 1, F(OPT)>"b- % S w(i)si+ (1=0)- 30" hi.

For our result in Theorem 3.1, we will fix b = %

3.2 Equi-partition Does Well

We now present the result that Equi-partition has a competitive ratio of at most 2 4+ v/3 ~ 3.73 when all job
phases have nondecreasing and sublinear speedup functions.

Theorem 3.1 For any job set J with nondecreasing and sublinear speedup functions, F(EQUI;) < (2 +
V3) - F(OPTy).

Proof of Theorem 3.1: Observe that the total completion time of EQU is simply the integral over all ¢
of ng, the number of uncompleted jobs at time ¢. That is, F(EQUI) = fooo n; dt. We now compare the total
completion time of EQU I to OPT using the lower bound of Corollary 3.2. The first step is to prove a lower
bound on the total time h; and processor area s; that OPT spends on a job in terms of what is happening
in EQUI. This is done separately for each job J;.

Consider a job J;. We first arbitrarily partition the time EQUI spends on J; (i.e., when EQUI(i,t) > 0)
into infinitesimal blocks [¢, ¢+ At]. Then we partition the time OPT spends on J;, (i.e., when OPT (i,t') > 0)
into infinitesimal blocks [t',¢" + A#'] in such a way that there is a bijection between the blocks [¢t,¢ + At]
under EQU I and the blocks [t',¢ + At'] under OPT. The correspondence is that the same block of work
of the job J; is completed during corresponding blocks in the two different schedules. This correspondence
is a bijection because both schedules complete all the work for job J;. For each block of time, we bound
separately the total time h; and processor area s; that OPT spends on J; during this time.

More formally, consider one of the time blocks [t,t + At] under EQUI. Suppose that at time ¢, phases
JL .., JE are complete and W < W work is completed in J¢ under EQUI. Let t' be the latest time in
which the same work has been completed for J; under OPT. Note that ¢’ depends on which job J; is being
considered. Let At' be time duration that OPT spends completing the same work that EQUI completes
in this block of time. Even though the same work of J; is completed during corresponding blocks of time
[t,t + At] and [t',t' + At'], the lengths of these time blocks will be different because the work is being

completed at different rates. (See Figure 3.)

By definition, EQUI allocates p/n; processors to job J; at time ¢, where n; is the number of jobs
uncompleted at this time. Denote by ¢ the number OPT (i,t") of processors OPT allocates to J; at time
t'. If we allow At and At' to become infinitesimal, then we can assume without loss of generality that these
schedules assign this fixed number of processors during the duration of the respective intervals [t, ¢ + At] and
[t',t" + At']. Hence we can conclude that during the interval [¢,¢ + At], the amount of work completed for
Ji under EQUI is Aw = T'}(p/n;) - At and the time required to complete the same amount of work under

: _ _A _ F?(p/nt)
OPT 18 At, = Fng}) = WAt

Recall that h; denotes the total time that OPT spends on job J;. This is, of course, the sum of the
durations of the blocks [t,t" + At']. We use our correspondence between the blocks [t',t' + At'] under OPT
and the blocks [¢,t + At] under EQUI to express h; in terms of the schedule EQUI:

/)

hi = / 1dt' = /
t":OPT(i,t')>0 t:EQUI(i,t)>0 qu(ﬁf)

EQUI OPT

Time Time

/=5 B =10
By =3
Processors (p = 20) Processors (p = 20)

Figure 3: At time ¢t under EQU I there are four uncompleted jobs (i.e., ny = 4), hence with p = 20 processors
each job is allocated 5 processors. The work completed in EQU I for each of these jobs is completed under
OPT at different times and with different numbers of processors. The time ¢’ is indicated for job 1.

The total processor area consumed by OPT on job J; is denoted by s;. This is equal to the sum of the
processor areas consumed by OPT during each of the blocks of time [t',t" + At'], which is OPT'(i,t") - dt' =
Bt - dt'. We again use our correspondence between the blocks to express s; in terms of the schedule EQUI:

r?
5 = / OPT(i,t") di' = / prLile/me) g,
t:OPT(i,t')>0 teQuIGH>0 L7 (B7)

Substituting the definitions of s; and h; into the lower bound of Corollary 3.2, we get

FOPT) = b : Zﬂ(i) </t:EQUI(i7t)>O b Fgl()g:)t) dt)

)y Ly (p/ne)
ta b)z </EQUI(z n>o L7087 dt)

Define S; to be the set of all uncompleted jobs in EQUI at time ¢ such that p/n; < 8¢. Define S} to be
the set of all uncompleted jobs in EQUT at time ¢ such that p/n; > B¢. Intuitively, S; is the set of jobs that
receive fewer processors under FQUI than under OPT for the work executed at time ¢ under EQUI and
so these jobs are at least as work efficient under EQU I, since all speedup functions are sublinear, whereas
S} is the set of jobs that receive at least as many processors under EQU I than under OPT and so execute
no slower under EQU 1, since all speedup functions are nondecreasing. (In Figure 3, jobs 1 and 2 are in S,
and jobs 3 and 4 are in S;.) By observing that S; U S} is the set of all jobs for which EQUI(i,t) > 0, we
can interchange the summations with the integrals. Then by including only some of these jobs in each sum,
we get that

o0 BE T (p/ne) o T (p/ne)
F(OPT) > /0 b- ; pirq(ﬁt) +(1-1b) Eséif?(ﬂf) dt.

Suppose J; € Si. Then p/n; < B¢, and so EQUI allocates fewer processors than OPT does. Since I'! is
sublinear, the instantaneous rate at which processor area is consumed per unit of work for a higher allocation

of processors is at least that of a lower allocation of processors. That is, 8¢ /T7(8¢) > (p/nt)/T?(p/nt), where
t
q is the phase of job ¢ executing at time ¢ under EQU I. Rearranging this gives o F;g%?;) > n%
Now suppose J; € S;. Then p/n; > B¢, and so EQUI allocates at least as many processors as OPT. But
since I'! is nondecreasing, the rate at which work of phase ¢ of job i is being completed is at least as great

for EQUI than for OPT. That is, Fﬁg’gg?;) > 1. This gives us

F(OPT) > /Oo b-zw(i)i+(1—b)-21 dt.
0 U

1€ St ieS]

Let |St| = a¢ - ne. (And so |S;| = (1 — at) - ng.) The value a; is the fraction of unfinished jobs in EQUT
at time t that are in S;. Because 7 is a permutation, there is at most one ¢ € Sy such that 7(i) = 1, one
i € St such that 7(i) = 2, etc. Since there are only a; - nt jobs in Sy, it follows that 3 ;¢ m(i) is at least
St i > (ap -ng)? /2. Thus,

F(OPT) > /Ooo <b %i +(1—b)(1— at)nt> dt

g

_ /Ooont (ba_j+(1_b)(1—at)> dt.

We now choose b = 7 Since we do not know what a; is, we must consider the value of a; that minimizes
the right hand side of the equation. The minimum of %(afﬂ) +(1- \/Lg)(l —a¢) over all 0 < ap < 1is
(2 — v/3), which implies that

F(OPT) > / T (2-v3) at

But F(EQUI) = ;" n dt, giving F(OPT) > (2—/3)-F(EQUI) = 1/(2+v3)- F(EQUI). This concludes
the proof of Theorem 3.1. H

3.3 A Special Case Where EQUI Does Well

It is reasonable to believe that the worst case amongst jobs with nondecreasing sublinear speedup functions
occurs when all jobs are either fully parallelizable or sequential, since EQUI wastes processors on the
sequential jobs whereas OPT does not. However, we can show that in such cases, the competitive ratio is
at most 2, beating the lower bound of e for nondecreasing sublinear speedup functions.

Theorem 3.2 If J is such that all jobs have one phase that is either fully parallelizable (I';(8) = 3, for all
B) or sequential (I';(8) =1, for all B > 0), then F(EQUI,)/F(OPTy) < 2.

Proof of Theorem 3.2: Let A be the set of fully parallelizable jobs, and let B be the set of sequential jobs.
We can apply the squashed area lower bound to jobs in A and the height lower bound to jobs in B. The
flow time of all the jobs together is at least the sum of the flow times of each subset of jobs when considered
separately. This gives

F(OPT) > ! > owi)si+ Y hy

icA jeB

where 7 sorts the jobs in A in decreasing order according to their processor area consumed s;.

10

The proof proceeds in a similar manner as in Theorem 3.1. Define A; to be the set of jobs in A that are
unfinished using EQU I at time t. Define B; to be the set of jobs in B that are unfinished using EQU I at

time t. For i € Ay, %F;:(I%?;) = n% because I'! () = 3, and for j € By, % = 1 because I'}(8) = 1. Let

|A¢| = az -ng. (And so |By| = (1 —az) - ng.) As before, 37,4 w(i) > Y521 i > (ar - ng)? /2. Hence,

= . B Ti(p/ne) L (p/ne)
F(OPT (1) — d
orn) > [PR AR i v
e 1
/0 lEZAt " jét
00 2
Z /C; T <%+(1—at)> dt

This quadratic equation is minimized when a; = 1 (i.e., the job set consists only of fully parallelizable jobs),
and so (a7 /2) + (1 — ay) > 1/2. As before, F(EQUI) = [ny dt, and so F(EQUI)/F(OPT) < 2.

There is a subtle point that was glossed over in this proof. The standard definition of a sequential job
is one for which additional processors beyond one do not increase the rate at which work completes, i.e.
the speedup function is I'(8) = 1 for 8 > 1. On the other hand, f < 1 occurs when one processor is time
sharing for § fraction of the time, giving I'(8) = 8. The above proof, however, assumes that I'(3) = 1 for
all g and for all sequential jobs. We can get around this problem as follows. Under EQU I at each point in
time t all jobs are allocated the same number of processors §;. If 5; < 1, then effectively all jobs are fully
parallelizable. In this case, the Motwani upper bound of 2 applies. If 8; > 1, then for the sequential jobs
['(B) =1 as required. H

3.4 A Lower Bound of ¢ for EQUI

We now present a lower bound of e (the base of the natural logarithm) on the competitive ratio of EQUI in
our multi-phase job model. We do this by presenting an infinite sequence of job sets of increasing size such
that in the limit, the competitive ratio of EQU is at least e.

Theorem 3.3 For the set of job sets with nondecreasing and sublinear speedup functions, the competitive
ratio of EQUI is at least e, when p >> n.

Proof of Theorem 3.3: Consider the following job set J, consisting of n jobs. Each job in J consists
of two phases. The first phase of the jobs is a sequential phase. (That is, I'}(8) = 1, for all 8 > 1 and
i € [1..n].) The second phase is a fully parallelizable phase. (That is, I'?(8) = 3, for all 8 and i.)

The work of these phases is defined by the sequences t; and s; below, and is illustrated in Figure 4 for
n = 8. The sequences are defined recursively as follows:

tl =0 , S1 = 1
ti=ti1+si1 , si=1—ti/n (1)
The quantity ¢; is the time required for the first phase of job ¢ when allocated any number of processors,

and s; is the time needed for the second phase of job 7 when allocated p processors. From t; and s;, we
define the work of phases in J as follows:
Wh=t;, , foralll1<i<n

(2

WZ=p-s; , foralll<i<n

11

|

Tl -
|

N Wa=p-sy 52
- _—
l t2 Wl = p . 51 81
Y _

‘e proc. ‘ P Processors

Figure 4: Job set J under OPT, where n = 8. Each of the phases on the left side of the figure are first
phases of jobs and require no processors to complete. (The first phases of jobs 2 and 4 are indicated.) The
phases on the right side of the figure arg the second phases of jobs.

In

P processors ‘

Figure 5: Job set J under EQUI, where n = 8. Each of the first phases of jobs complete at the same time
as they did under OPT, but the second phases are allocated only p/n processors.

In the optimal schedule, only one processor is allocated to each job whose first phases are uncompleted,
and the remaining processors are allocated to the job whose first phase is complete but whose second phase
is not complete. (Because p >> n, this job is allocated at effectively all p processors. To simplify the
calculations, we will assume that it is actually allocated all p processors.) Now, one can easily prove by
induction that job J; completes in time ¢; + s;. For the basis case, the first phase of J; takes t; = 0 time
and so the second phase starts at time 0. This second phase requires s; time when allocated p processors.

For job J;, work is completed at a rate of 1 because I'} (¢) = 1. Hence, this phase requires ¢; time. The
work of each phase is constructed so that ¢; = ¢;—1 + s;—1. Hence, the first phase of job ¢ completes exactly
when the second phase of job i — 1 completes, allowing the second phase of J; to be allocated all p processors
at that point. Thus, the total completion time of J under the optimal schedule is > | (t; + ;).

We solve for t; by substituting the definition of s; into the definition of ¢; (from Equation (1)). The

solution is .
()
ti=n—n .

n

From this we get that 3.7 ¢; = n? (1 -)" < %2 Then Y 1" s; = > (1 —t;/n) = O(n). The total

n i=1

completion time for J under the optimal schedule is > | (t; + s;) = %2 + O(n).

12

Under the EQU I schedule, all n jobs are uncompleted until time n. To see this, suppose to the contrary
that there were some job that completed before time n. Let J; be the first such job. Then it is allocated
p/n processors until it completes. Therefore it takes W} + W2/(p/n) = t; + s; - n = n, contradicting our
original assumption. Therefore, the total completion time for J under EQUT is n%. (See Figure 5.)

Thus, as n approaches infinity, the ratio F(EQUI)/F(OPT) approaches e. B

4 Reducing the Number of Preemptions

Preemption allows a scheduling algorithm to adapt to the uncertain and changing nature of jobs and work-
loads and hence is an important tool to reduce the total completion time. Unfortunately, it may incur
large overheads when applied frequently. Hence, EQU I performs at most n preemptions if presented with n
jobs. We present one modification of the EQU I schedule that performs only log, n preemptions and another
modification that uses no preemptions at all.

In this section, we show that for any job set J, the total completion time of the log, n preemption EQU I
is within a factor of two of the total completion time of normal n preemption EQUI. This automatically
gives an upper bound on the competitive ratio of 2-(2+4+/3) & 7.46 for jobs with nondecreasing and sublinear

speedup functions. We are able to prove a lower bound for this algorithm of ﬁ = 4.69. The proof
2xe 2 —

technique is identical to that for Theorem 3.3 (though the result is less than the 2 - e that one might expect)
and hence will not be presented. See [6].

EQUI' is defined to be the scheduler that is the same as EQUT except that it reallocates the processors
when the number of uncompleted jobs n; is reduced to n/2* for all 1 < i < logn.

4.1 Reducing the Number of Preemptions to log, n

We now show how to modify the EQUI schedule to one that performs only log, n preemptions. We call
this new schedule EQUI'. EQUI' behaves in the same way that EQUI does, but instead of allocating
p/n: processors to each of the n; uncompleted jobs, EQUI' allocates p/n processors to each uncompleted
job until there are n/2 uncompleted jobs. At this point, EQUI' allocates p/(n/2) processors to each of
the n/2 uncompleted jobs until there are n/4 uncompleted jobs, and so on. That is, when the number of
uncompleted jobs reaches n/2¢ for some integer i, EQUI" allocates p/(n/2%) processors to each of them until
there are n/2'T! uncompleted jobs. Clearly EQUI' performs at most log, n preemptions. An important
property of EQUI' is that if there are n; uncompleted jobs, EQUI' allocates at least p/(2 - n;) processors
to each of those jobs. We now show that for any job set .J, the total completion time of FQUI' is within a
factor of two of the total completion time of EQUI.

Lemma 4.1 For any set of jobs with sublinear speedup functions, F(EQUI}) <2 F(EQUIy).

The intuition behind the proof of the lemma is that with the same number of jobs uncompleted, EQUI’
allocates at least half as many processors to each job as EQUI. Because all speedup functions are sublinear,
work completes under EQU I’ on these jobs at a rate that is at least half of the rate under EQUI. Hence, the
jobs require at most twice the time to complete. The only complication is that the number of uncompleted
jobs may differ under the two schedules. In fact, the jobs may complete in a different order.

Proof of Lemma 4.1: Let ¢; be the completion time of job .J; under EQU I, and sort the jobs by increasing
¢;. We prove by induction on i that every job completes at least as much work after time 2¢; under EQU I’ as
it does after time ¢; under EQUI. In particular, job J;, which completes at time ¢; under EQU I, completes
at time at most 2¢; under EQUI’. From this the lemma follows.

For convenience, we define job Jy to be a job of one phase with zero work, and so ¢y = 0. Hence, the base
case (i = 0 and ¢p = 0) is trivial. For the induction step, suppose that for every job, all work completed under
EQUI by time ¢; is completed by time 2¢; under EQUI’. In order to prove that all work completed under

13

EQUI by time c;y;1 is completed by time 2¢;; under EQUI’, it is sufficient to consider an arbitrary job
J; and prove that the work it completes under EQUI during the time interval [¢;, ¢i+1] could be completed
under EQUI'" during the time interval [2¢;,2¢;+1]. (The only reason that it would not be completed during
this interval is that is already completed before time 2¢;.)

By the definition of ¢; and ¢;41, there are exactly n — i uncompleted jobs running under EQUI during
the time interval [c;,c;y1], and hence each job is allocated p/(n — i) processors under EQUI. By the
induction hypothesis, under EQUI’ jobs Ji,...,J; have completed by time 2¢;. Hence, there are at most
n — 4 uncompleted jobs running under EQUI" at any point during the time interval [2¢;, 2¢;+1]. Recall that
if there are « uncompleted jobs, EQUI' allocates at least p/2x processors to each of those jobs. Thus, each
job is allocated at least p/(2(n — 7)) processors under EQU I’ in this time interval.

Consider one of the phases JJ'-] of job J; that has completed at least in part under EQUI during the
time interval [¢;, ¢;+1]. Since the speedup function I'? is sublinear, the rate work is completed with at least
p/(2(n—1i)) processors is at least half the rate with p/(n—14) processors. However, the time interval [2¢;, 2¢;4+1]
is twice as long as the interval [¢;, ¢;+1]. Hence, at least as much work on this phase can be completed under
EQUT' in [2¢;,2c¢;41] as under EQUI during [c;, ¢;4+1]. This completes the induction step and the proof of
the lemma. Il

From Theorem 3.1 and Lemma 4.1, we have:

Theorem 4.1 EQUI' performs at most log, n preemptions. It has a competitive ratio of at most 2-(2—}—\/5)
when the speedup functions are nondecreasing and sublinear.

It is easy to see that for any & > 1 we can define EQU I’ so that it preempts at most log, n times and has
a competitive ratio of at most k - (2 + \/3) As said, we are able to prove a lower bound for this algorithm
of —1— =4.69. See [6].

2xe 2-—1

4.2 No Preemptions

The non-preemptive scheduling algorithm for which we are able to prove that the competitive ratio is ©(y/n)
is as follows. It partitions the processors into \/n groups of p/y/n processors each. Each group is allocated
to a different job. When a job completes, the group is allocated to another job, until all the jobs have been
completed. See [6].

5 More General Classes of Speedup Functions

The main results apply only for jobs with nondecreasing sublinear speedup functions. This section proves
some tight bounds for more general classes of speedup functions.

Suppose that doubling the number of processors doubles not only the number of operation completed
per second but also doubles the total amount of memory. In this case, the rate at which work is completed
will more than double for a job has both strong parallelizability and a strong time-space tradeoff. Such
jobs do not have a sublinear speedup function. A typical one is given in Figure 1:f and a worst case one in
Figure 1:g. The first result defines an RoundRobin/EQUT like scheduler that achieves a 2- (2 ++/3) ~ 7.46
competitive ratio when each phase of each job is either nondecreasing sublinear or superlinear.

To be even more general, we should allow job phases whose speedup functions are neither strictly sublinear
nor strictly superlinear, but are only restricted to being nondecreasing. A typical one given in Figure 1:h
and a worst case one in Figure 1:i. We define another RoundRobin/EQU I like scheduler that achieves a
©(logn) competitive ratio for such jobs. The lower bound is not included in the paper, but can be found in

[6].
Suppose now that the system does not know how many processors can be allocated to a phase of a job
before the communication costs between the additional processors actually slows down the computation. In

14

such a case, the jobs do not have nondecreasing speedup functions. It is unreasonable, however, to consider
completely arbitrary speedup functions. We say a speedup function is gradual if halving or doubling the
number of processors allocated to the phase does not change the rate of computation by more than some fix
constant factor. A typical one given in Figure 1:j. We define yet another RoundRobin/EQU 1 like scheduler
that achieves a ©(logp) competitive ratio for such jobs.

Finally, if the speedup functions can change drastically (for every real number), then the scheduler has
no chance of allocating a correct number of processors. Hence, the competitive ratio is unbounded. These
results are not included. See [6].

One problem with these three RoundRobin/EQUI like schedulers is that they preempt continuously.
Again let us consider the situation in which the number of preemptions is restricted. We are able to prove
that every non-clairvoyant scheduler that is not allowed to preempt continuously has a competitive ratio of
©(n) as long as the jobs have nondecreasing speedup functions and an arbitrarily large competitive ratio if
the jobs are allowed to have gradual speedup functions. See [6].

5.1 Nondecreasing Sublinear or Superlinear Speedup Functions

When each job phase is allowed to be either nondecreasing-sublinear or superlinear, the scheduler will want
to execute the nondecreasing-sublinear phases using an Equi-partition algorithm and will want to execute
the superlinear jobs with an allocation of p processors using a Round Robin algorithm. By continuously
switching between the two approaches, a scheduler is able to achieve a competitive ratio that is only twice
the value 2 + /3.

Theorem 5.1 There is a non-clairvoyant algorithm HEQUT such that F(HEQUI,) < 2-(2+v/3)-F(OPT})
for every job set J in which each phase of each job is either nondecreasing sublinear or superlinear.

Proof of Theorem 5.1: The scheduler HEQU I (short for “Hybrid Equi-partition”) slices time into block
containing A time units. If there are n; uncompleted jobs, then for A/2 time units, HEQU I allocates p/n;
processors to each job. For the remaining A/2 time units, each of the n; jobs in turn is allocated all p
processors for A/2n; time units. Notice that as A approaches zero, the number of preemptions HEQUT
approaches infinity.

HEQUI must perform well both with nondecreasing-sublinear job phases and with superlinear ones
without knowing which are which. It performs well with the nondecreasing-sublinear phases because half
of the time it behaves like EQUI and hence performs on these within a factor of two as well as proved in
Theorem 3.1. Superlinear phases execute the most efficiently when given all p processors. HEQU I performs
well on these because half of the time it behaves like Round-Robin.

The proof proceeds as in the proof of Theorem 3.1. Recall that in that proof, for each block of work in
each job, the rate I'/ (3) at which OPT executes this work is compared to the rate I'/ (p/n;) at which EQUI
executes the same work. We now must do the same except compare the rate I'} (8!) with the rate at which
HEQU T executes the same work. Let v{(p/n;) be the effective rate of HEQUI as A approaches 0. From

the definition of HEQUI, ¥ (p/ns) = 1T¢(p/n;) + 1120

2 ne
There are two places in which the proof of Theorem 3.1 compares 'Y (8!) and I'! (p/n:). The first place

/1 B : : P/ LBy
T (p/ne) < 76T We replace this with Y2/ <2 76T Note that the

statement is a factor of two weaker, resulting in the result here being a factor of two weaker. Substituting
the effective rate of HEQU I gives the required bound to be

requires that if p/n; < B¢ then

p/nt ﬂf
<2. : (2)
T (p) — 703t
ST (p/me) + $52 77 T
q: ; p/n e t q: ; p Y
If I'] is sublinear, then T (p/r7) < T9(57) because p/n; < f;. If I'] is superlinear, then () < 7057 because

p > Bt In either case, Equation 2 is satisfied.

15

The second place in which the proof of Theorem 3.1 compares I'Y (8%) and I'Y (p/n) is that if 3¢ < p/ny,
then I'Y(8!) < I'!(p/ni). The new requirement I'Y (8!) < 2-~7(p/n;) holds because I'! is nondecreasing,
giving that I'Y(8]) < T7(p/ne) < 2- 7] (p/m).

The remainder of the proof follows that of Theorem 3.1, except that a factor two is introduced at each
step. W

5.2 Nondecreasing Speedup Functions

Now consider job phases whose speedup functions are neither strictly sublinear nor strictly superlinear, but
are only restricted to being nondecreasing (i.e., if 31 < (2, then I'(81) < T'(82)). The worst case function (see
is constant except for a sudden increase in the computation rate of the phase at some number of processors
3. This value is known to the optimal scheduler OPT, but not to the non-clairvoyant scheduler S. In
such a case, one would expect the competitive ratio of S to be large. If the scheduler S allocates fewer
than 8 processors to the job, then the phase makes little progress while “wasting” the processors allocated.
If it allocates many more than 3 processors, then those beyond g are wasted. However, we show that a
non-clairvoyant scheduler can achieve a competitive ratio of ©(logn). For each number of processors that is
a power of two between p/n and p, the scheduler runs each of the jobs with that number of processors for a
small slice of time in a Round Robin fashion. It follows that for each phase for at least a 1/logn fraction
of the time, the phase is either allocated within a factor of two of the optimal number of processors or is
allocated more than enough processors while doing Equi-Partition.

Theorem 5.2 There is a non-clairvoyant algorithm HEQUI' such that F(HEQUI;) < O(logn)-F(OPT)
for every set of jobs J with nondecreasing speedup functions.

Proof of Theorem 5.2: Suppose that at time ¢t under HEQU I' there are n; jobs remaining uncompleted.
For every number of processors 3 that is a power of two and between p/n; and p, the scheduler HEQUI'
executes each of the jobs for a slice of time while allocating it 8 processors. When allocating 3 processors
per job, the scheduler is able to execute p/f jobs in parallel and hence requires n:/3/p stages to execute each
of the n; jobs for a slice of time. Therefore, HEQUI' executes each of the jobs with 3 processors for a time

slice of length m‘

We now continue as in Theorem 3.1. Our proof here changes that of Theorem 3.1 in the same way as was
done for Theorem 5.1. The effective rate of HEQUI' is v} (p/n:) = > G2 Elp/nep] m%@f‘g(ﬂ). Recall
that there are two statements that need to be proved.

t
The first required statement is that if p/n; < 8¢, then ’77121/)7;%) <2logmn- %ﬁﬁ.ﬁ) Note the result is a factor

of 2logn weaker because this statement is a factor of 2logn weaker. Suppose that p/n; < ! and let 8 be
the smallest power of two that is at least 8. HEQUI' executes job J; for a slice of time with 3 processors

because p/n; < B < (3. Therefore, the effective rate of HEQUI' is v (p/ns) > W#F?(ﬂ). Because the

speedup functions are nondecreasing and 3! < 3, we know that '} (8!) < T'7(8). Also, 3 is within a factor

of two of 3¢. This gives that v/(p/n:) > ﬁ mpﬁf I'?(B!). Rearranging this gives the required statement.

The second required statement is that if 8¢ < p/ng, then T?(8!) < 2logn - v!(p/n:). If Bt < p/ny,
then let 8 be the smallest power of two that is at least p/n;. Note that when HEQUI' executes the jobs
with 3 processors, it can execute all n; of the jobs in at most two stages. The effective rate of HEQUI' is
vi(p/ne) > m n%ﬁl“? (B) > 3 ljgnI‘? (B%). The last inequality again uses the fact that the speedup function
is nondecreasing.

The remainder of the proof follows that of Theorem 3.1, except that a factor of 2logn is introduced at
each step. Il

See [6] for a matching lower bound.

16

5.3 Gradual

We might also want to include in our consideration jobs whose rate of computation both increase and decrease
with the number of processors allocated to them. It is unreasonable, however, to consider completely
arbitrary speedup functions. We say a speedup function is gradual if halving or doubling the number of
processors allocated to the phase does not change the rate of computation by more than some fix constant
factor. We consider an algorithm that for each j € [1..n] and i € [1..logp] runs job J; with 2° processors
for a small slice of time. This ensures that each job is running @ fraction of the time with a number of

processors 2¢' that is within a factor ¢ as fast as that assigned to the job by the adversary. We prove that this
algorithm is ©(log p) competitive. We prove a matching lower bound. The proof, however, is not included.
See [6].

6 Conclusions and Open Problems

We have provided asymptotically tight bounds on the competitive ratio of non-clairvoyant scheduling algo-
rithms for a range of job classes and a range of allowable number of preemptions. Open problems include:

e How much does clairvoyance help? For each entry in Figure 2, what is the competitive ratio when the
scheduler is given complete knowledge, but limited in the number of preemptions?

e How much does computation help? For each entry in Figure 2, what is the competitive ratio of the
best algorithm to an optimal one that is also limited in the number of preemptions?

Our work applies to the case when all jobs arrive at time 0. In a practical scheduling environment, jobs
arrive periodically and their arrival times are generally unpredictable. An open problem is to provide results
in this environment. Kalyanasundaram and Pruhs [9] provide some results in this area.

References

[1] T. Brecht and K. Guha. Using parallel program characteristics in dynamic multiprocessor allocation
policies. Performance Evaluation, 27 & 28:519-539, Oct. 1996.

[2] S. H. Chiang, R. K. Mansharamani, and M. Vernon. Use of application characteristics and limited
preemption for run-to-completion parallel processor scheduling policies. In Proceedings of the 1994
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 33-44,
1994.

[3] X. Deng and P. Dymond. On multiprocessor system scheduling. Journal of Combinatorial Optimization
Vol. 1, 1998, pp. 377-392, a special issue on Scheduling on Parallel/Distributed Systems.

[4] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs on multiprocessors. SIAM
J. Comput. 30(1): 145-160 (2000)

[5] X. Deng and E. Koutsoupias. Competitive implementation of parallel programs. Algorithmica Vol. 23
No.1, 1999, pp.14-30.

[6] J. Edmonds, T. Brecht, D. Chinn, and X Deng. Non-clairvoyant Multiprocessor Scheduling of Jobs with
Changing Execution Characteristics. Technical Report York, 2000.

[7] J. Edmonds, “Scheduling in the dark”, STOC 1999 and Blum’s Special Issue of the Journal of Theoretic
Computer Science, 1999, and Proc. 315 Ann. ACM Symp. on Theory of Computing.

[8] J. Edmonds. Scheduling in the Dark. In Blum’s Special Issue of the Journal of Theoretic Computer
Science, 1999 and in Proc. 315t Ann. ACM Symp. on Theory of Computing, pp. 179-188, 1999.

17

[9] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In Proceedings of the 36th
Symposium on Foundations of Computer Science, pages 214-221, October 1995 and JACM, 2000.

[10] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching. Algorithmica, 3:79—
119, 1988.

[11] M. Kumar. Measuring parallelism in computation-intensive scientific/engineering applications. IEEE
Transactions on Computers, 37(9):1088-1098, September 1988.

[12] S.T. Leutenegger, and R.D. Nelson. Analysis of Spatial and Temporal Scheduling Policies for Semi-
Static and Dynamic Multiprocessor Environments. RC 17086 (75594), IBM T. J. Watson Research
Center, Yorktown Heights, NY, August, 1991.

[13] S. Leutenegger and M. Vernon. The performance of multiprogrammed multiprocessor scheduling policies.
In Proceedings of the 1990 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 226—236, Boulder, Colorado, May 1990.

[14] W. Ludwig, and P. Tiwari. The Power of Choice in Scheduling Parallel Tasks. TR 1190 Computer
Science Department, University of Wisconsin, Madison, November, 1993.

[15] R. Mansharamani, and M.K. Vernon. Qualitative Behavior of the EQS Parallel Processor Allocation
Policy. TR 1192, Computer Sciences Department, University of Wisconsin, Madison, November, 1993.

[16] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for on-line problems. In Proceedings
of the Twentieth Annual ACM Symposium on the Theory of Computing, pages 322-333, 1988.

[17] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for multiprogrammed,
shared memory multiprocessors. ACM Transactions on Computer Systems, 11(2):146-178, May 1993.

[18] C. McCann and J. Zahorjan. Scheduling memory constrained jobs on distributed memory parallel
computers. In Proceedings of International Joint Conference on Measurement and Modeling of Computer
Systems, ACM SIGMETRICS 95 and Performance 95, pages 208-219, 1995.

[19] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proceedings of the 4th Annual
ACM/SIAM Symposium on Discrete Algorithms, pages 422-431, Austin, Texas, January 1993 and
Theoretical Comperter Science, Volume 130, pages 17-47, 1994.

[20] T. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing speedup through self-tuning of processor alloca-
tion. In Proceedings of the 10th International Parallel Processing Symposium, pages 463—-468, Waikiki,
HI, Apr. 1996.

[21] U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek, and P. Yu. Smart SMART bounds for weighted
response time scheduling. To appear in STAM Journal on Computing.

[22] K. Sevcik. Application scheduling and processor allocation in multiprogrammed parallel processing
systems. Performance Evaluation, 19(2-3):107-140, March 1994.

[23] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules. Commaunications of the
ACM, 28(2):202-208, 1985.

[24] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed shared-memory
multiprocessors. In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles, pages
159-166, 19809.

[25] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn, and P. S. Yu.
Scheduling parallelizable tasks to minimize average response time. In 6th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 200-209, June 1994.

[26] J. Turek, U. Schwiegelshohn, J. Wolf, and P. Yu. Scheduling parallel tasks to minimize average response
time. In Proceedings of the 5th SIAM Symposium on Discrete Algorithms, pages 112-121, 1994.

18

[27] J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors. In Proceedings of
the 1990 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages
214-225, Boulder, Colorado, May 1990.

19

