
Bounding Variance and Expectation of Longest Path Lengths in DAGs

Jeff Edmonds∗ Supratik Chakraborty†

Abstract

We consider the problem of computing bounds on the

variance and expectation of the longest path length in a

DAG from knowledge of variance and expectation of edge

lengths. We focus primarily on the case where all edge

lengths are non-negative and the DAG has a single source

and sink node. We present analytic bounds for various

simple DAG structures, and present a new algorithm to

compute bounds for more general DAG structures. Our

algorithm is motivated by an analogy with balance of forces

in a network of ”strange” springs.

1 Introduction

Consider a directed acyclic graph (DAG) G with a sin-
gle source node s and a single sink node t, in which
each edge i = 〈a, b〉 has a non-negative weight xi. Such
DAGs are commonly used to represent timed precedence
constraints between jobs or events (e.g. timed marked
graphs [10, 1], PERT charts [5], task graphs [7] and
precedence constraint diagrams [8]). The edge weights
in such a DAG correspond to delays between jobs or
events. Hence, we will refer to edge weights and edge
delays interchangeably. The starting time of the job
associated with the source node s is assumed to be 0.
The starting time of every other job b (6= s) is defined
to be maxa∈Parent(b)(starting time of a+ x〈a,b〉). If all
edge delays are constant, the starting time of the job
associated with b can be determined by computing the
longest path length from s to b in G [3, 9]. If, however,
the edge delays are random, the starting time of a job
is determined by a random variable. Let XG be the
random variable denoting the starting time of the job
associated with the sink node t of DAG G. If the joint
probability distribution of the xi’s is known, techniques
for computing the distribution of the sum and maximum
of random variables [6, 4] can be used to obtain the dis-
tribution of XG. Monte Carlo simulations [11] can also
be used to study the distribution of XG in such cases.
However, specifying the joint probability distribution
of all xi’s amounts to specifying all joint moments of
xi’s. In a practical setting, this often involves making

∗York University, Canada. jeff@cs.yorku.ca. Supported in part
by NSERC Canada.
†IIT Bombay, India. supratik@cse.iitb.ac.in

idealized assumptions. An interesting question to ask,
therefore, is how well can we characterize XG given only
the first few moments of each xi. Such a characteriza-
tion must hold across all joint distributions of xi’s that
preserve the first few moments of every xi. This has
potential applications in statistical timing analysis and
performance analysis, and motivates our current work.

We are interested in studying bounds on the mo-
ments of XG as a function of G and moments of each
individual xi. Specifically, suppose we know the mean
mi and variance vi, but not the complete distribution,
of the delay xi of each edge i = 〈a, b〉 in G. We wish to
establish bounds on the mean, mG, and variance, vG, of
XG, where the random variables xi can be dependent
in arbitrary ways (including being independent). This
problem was studied earlier in [2], where a dynamic pro-
gramming algorithm for computing conservative bounds
on mG and vG was proposed, and experimentally val-
idated against a few distributions. Unfortunately, the
approach in [2] neither computes tight bounds of mG or
vG, nor helps in identifying probability distributions of
xi’s that lead to maximum or minimum values of mG

and vG. In this paper, we try to address these deficien-
cies partly. Specifically, we identify tight upper bounds
of mG and vG and also probability distributions that
achieve these bounds. The corresponding problems for
lower bounds still remain open.

Let P be the set of paths from s to t in G. Each
path p ∈ P can be thought of as the set of edges
i = 〈a, b〉 along the path. The starting time XG of
the job associated with the single sink node t is delayed
by the fact that jobs along every st path must complete
sequentially. In other words, XG = Maxp∈P

[∑
i∈p xi

]
.

Two extreme examples of DAGs are series and parallel
graphs. A DAG G is a series graph if it consists of
only one st path. In this case, XG =

∑
i xi. A DAG

G is a parallel graph if it consists only of multiple st-
edges. In this case, XG = Maxixi. These extreme cases
have been studied earlier in different contexts, e.g. in
the study of linear combinations of random variables,
and in the study of order statistics [4]. The situation
for series-parallel graphs is, however, more complicated
than one would expect. The problem for a general DAG
with a single source and single sink node is even more
complicated, and is the primary focus of this paper.

766 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Our contributions can be summarized as follows:

1. We introduce a special kind of probability distribu-
tion called cake distribution for edge delays. This
allows us to independently control the mean and
variance of path delays while ensuring that the
mean and variance of edge delays stay unchanged.

2. We present tight upper bounds of the mean and
variance of XG when edge delays are dependent in
arbitrary ways, and present techniques for comput-
ing these bounds. We also identify cake distribu-
tions of edge delays that cause these bounds to be
achieved.

3. We present lower bounds of the mean and variance
of XG that are not always achievable, but can be
achieved under certain conditions.

4. We show a continuum of values for the mean and
variance of XG. We also show that extreme values
in this continuum can be achieved simultaneously,
within small factors.

5. We show that the the maximum variance of XG in a
series-parallel graph can be obtained by recursively
applying the expressions for maximum variance
in series and parallel graphs. However, a similar
recursive application does not give tight bounds
for the maximum mean of XG in a series-parallel
graph.

The remainder of this paper is organized as follows.
Section 2 introduces cake distributions and discusses
some properties of these distributions. In Section 3,
we present a technique for computing a tight upper
bound of the variance of XG. We also identify edge
delay distributions that cause this bound to be achieved.
Section 4 presents tight upper bounds of the mean ofXG

and identifies corresponding edge delay distributions. In
Section 5, we present lower bound results, which are,
however, not necessarily tight. Section 6 discusses the
above problems for the important special case of series-
parallel graphs. Finally, we conclude in Section 7.

2 Random variables and cake distributions

A convenient way to represent a random variable xi is as
a function fi : [0, 1] → <≥0. For clarity of exposition,
we will abuse notation and use xi to denote both the
random variable and the corresponding function. In
order to choose a value for xi, we choose r uniformly
at random from [0, 1], and then the value of the random
variable xi is given by the function xi(r). By choosing
different functions [0, 1] → <≥0, random variables with
different probability distributions can be specified.

Consider a set of random variables {x1, x2, . . . xn}.
In general, there may be k groups in the set such that
variables within the same group are dependent, while
all variables in one group are independent of those in
another group. In order to choose values for all the vari-
ables, we choose a real value r uniformly randomly in
[0, 1], and then derive k uniformly randomly distributed
real values r1, r2, . . . rk from r, such that each rj ∈ [0, 1].
One way of doing this is to obtain the decimal represen-
tation of rj by choosing the (w.j)th digit in the decimal
representation of r for all w ∈ ℵ. Since r is chosen
uniformly randomly in [0, 1], the variables r1, r2, . . . rk
are independent and uniformly random in [0, 1] as well.
The values of all variables in the jth group of the set
{x1, x2, . . . xn} can now be obtained by evaluating the
corresponding functions with rj as the argument. Al-
ternatively, the functions can be specified to take r as
an argument, derive rj from it and then give the values
of the corresponding random variables. Thus, arbitrary
dependencies (including independence) of a set of ran-
dom variables can be represented by choosing the func-
tions [0, 1] → <≥0 appropriately. We will assume all
random variables are represented as functions in this
way. Choosing values for a set of random variables
therefore amounts to choosing a single real value r uni-
formly randomly in [0, 1] and evaluating the correspond-
ing functions.

For a random variable xi represented in this way,
the expected value of xi is the area under the curve
xi(r) between r = 0 and r = 1. Thus, mi = Exp[xi] =∫
r∈[0,1]

xi(r) δr. Similarly, the second moment is given
by ui = U[xi] = Exp[x2

i] =
∫
r∈[0,1]

xi(r)2 δr. Finally,
the variance is given by vi = Var[xi] = ui −m2

i .
Suppose we wish to know how Exp[xi] and Var[xi]

change when the function xi : [0, 1] → <≥0 is changed
infinitesimally. In order to produce such an infinitesi-
mal change, we must change xi(r) by an infinitesimal
amount in an infinitesimally small interval in [0, 1]. In
view of this, we choose two infinitesimals, δr and δx.
To make things less confusing, we will assume that the
domain [0, 1] of xi is divided into slices of width δr such
that the function xi(r) has a constant value within each
slice. In the following, when we say that xi(r̂) is in-
creased by δx, we mean that the value of xi(r) is in-
creased by δx for all r in the slice [r̂, r̂ + δr]. We will
now consider what effect such a change has on Exp[xi],
Exp[xi]2, U[xi], and Var[xi].

Lemma 2.1. Increasing xi(r̂) by δx increases Exp[xi]
by δrδx, and increases Var[xi] by 2∆i(r̂)δrδx, where
∆i(r̂) = xi(r̂)− Exp[xi].

Proof. Exp[xi]: As given above, the expected value
of xi is

∫
r∈[0,1]

xi(r) δr. Increasing xi(r̂) by δx

767 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

increases this area by a small rectangle of area δrδx.
Hence, Exp[xi] increases by δrδx.

Exp[xi]2: The chain rule gives that δm2

δx = 2m · δmδx .
Hence, the square of the expectation Exp[xi]2

increases by 2.Exp[xi].δrδx.

U[xi]: The value xi(r̂) increases by δx. Hence,
by the chain rule the value xi(r̂)2 increases by
2.xi(r̂).δx. The area under the curve xi(r)2, i.e.,∫
r∈[0,1]

xi(r)2 δr, has this change occur in a block
of width δr. Hence, the second moment U[xi] =
Exp[xi2] increases by 2.xi(r̂).δrδx.

Var[xi]: We know Var[xi] = U[xi] − Exp[xi]2. Hence,
the variance Var[xi] increases by [2.xi(r̂).δrδx] −
[2.Exp[xi].δrδx] = 2.∆i(r̂).δrδx.

We will have occasion to use Lemma 2.1 later in
Section 3.

One of the challenges in choosing distributions for
edge delays xi such that the mean or variance of XG

is maximised (or minimised), is the interplay between
its expected value and its variance. Cake distributions,
as defined below, attain “independence” between these
two measures. These distributions are called cakes
because the function xi : [0, 1] → <≥0 defining the
distribution looks like a cake with infinitesimally thin
candles on it. The cake itself is flat and accounts for the
expectation of the distribution, but does not contribute
to its variance. In contrast, each candle is infinitesimally
thin and either has zero height or is infinitely high.
Each infinitely high candle, being infinitesimally thin,
contributes only to the variance of the distribution, but
not to its expectation. As we will see, cake distributions
are particularly useful for proving several bounds we are
interested in.

For purposes of our discussion, all cake distributions
are assumed to have candles in the same predefined
locations {rq | q ∈ Q} where Q is a finite index set.
Furthermore, all candles have the same fixed width ε2,
where ε is an infinitesimal (approaching zero). What
changes from one cake distribution to the next is the
heightm of the cake and the height of each of its candles.

Suppose the random edge delay xi has a cake
distribution, where the height of the cake is mi. Let the
height of the candle at location rq for edge delay xi be
h〈i,q〉. To help us better make the connection between
candle heights and variance, we will associate with each
candle the parameter v〈i,q〉, where h〈i,q〉 =

√
v〈i,q〉
ε . More

formally, the distribution of xi is specified by the tuple
(mi, {v〈i,q〉 | q ∈ Q}), and is defined as follows.

xi(r) =
{
h〈i,q〉 if r ∈ [rq, rq + ε2], q ∈ Q, h〈i,q〉 > 0
mi otherwise

Lemma 2.2. Let xi have a cake distribution with pa-
rameters (mi, {v〈i,q〉 | q ∈ Q}). Then Exp[xi] = mi and
Var[xi] =

∑
q∈Q v〈i,q〉.

Proof. Exp[xi] =
∫
r∈[0,1]

xi(r) δr = (1 − ε2.|Q|).mi +∑
q∈Q ε

2.h〈i,q〉. Since ε is an infinitesimal, |Q| is finite

and h〈i,q〉 =
√
v〈i,q〉
ε , it follows that Exp[xi] = mi. Sim-

ilarly, Exp[x2] =
∫
r∈[0,1]

(xi(r))2 δr = (1− ε2.|Q|).m2 +∑
q∈Q ε

2.h〈i,q〉
2. For the same reasons as above, it now

follows that Exp[x2] = m2 +
∑
q∈Q v〈i,q〉. Therefore,

Var[xi] = Exp[(xi)2]−m2 =
∑
q∈Q v〈i,q〉.

Suppose our goal is to distribute the variance vi of
each edge delay xi among the different candle locations
in a way that maximizes Var[XG]. If G is a series graph,
i.e. XG =

∑
i xi, then the desire is for each xi to

put its entire candle height in the same location. On
the other hand, if G is a parallel graph, i.e., XG =
Maxixi, then the desire is for the xi’s to put their
candle heights in different locations, so that none of
the non-zero candle heights are subsumed by others.
If G is an arbitrary graph, there is a complex balance
between these two desires in order to maximize XG.
What is clear, however, is that a number of different
candle locations may be needed. In the extreme, the
number of non-zero candle locations will be at most the
number of edges in the DAG G. For now, however,
we will have one candle location rp for each st-path
p ∈ P . In other words, the index set Q referred to
above is identified with the set P of st-paths in G.
The height h〈i,p〉 of the candle at location rp for edge
delay xi will be non-zero only if edge i is in the path
p (henceforth denoted i ∈ p). This ensures that each
path p dominates XG(r) = Maxp∈P

[∑
i∈p xi(r)

]
when

r is within its own candle, i.e. between rp and rp + ε.
It also ensures that Var[xi] =

∑
p3i v〈i,p〉, where p 3 i

denotes p ∈ {π | π ∈ P ∧i ∈ π}.

Lemma 2.3. Suppose each edge i in DAG G has a cake
distribution with parameters (mi, {v〈i,p〉 | p ∈ P}). It
follows that the resulting distribution of XG is also a
cake distribution with parameters (mG, {v〈G,p | p ∈
P}), where mG = Maxp∈P

[∑
i∈pmi

]
and v〈G,p〉 =[∑

i∈p
√
v〈i,p〉

]2
for each p ∈ P .

Proof. By definition, XG = Maxp∈P
∑
i∈p xi. Tracing

out XG(r) for each r ∈ [0, 1], we see that XG itself
has a cake distribution. Specifically, when r is not in
a candle, i.e. r 6∈ [rp, rp + ε] for p ∈ P , we have
xi(r) = mi for all edges i, by definition of a cake
distribution. Therefore, XG(r) = Maxp∈P

[∑
i∈pmi

]

768 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

for r 6∈ [rp, rp + ε] and p ∈ P . Hence the height of the
overall cake is mG = Maxp∈P

[∑
i∈pmi

]
.

For r ∈ [rp, rp + ε], we have xi(r) = h〈i,p〉 =
√
v〈i,p〉
ε

for every edge i in p, and xi(r) = 0 for every edge
i 6∈ p. This gives the height of the candle at rp for XG

as h〈G,p〉 = XG(rp) = Maxq∈P
[∑

i∈q h〈i,p〉

]
. By our

construction, the cake distribution for xi (corresponding
to edge i) has a candle of zero height at location rq if
edge i is not in the path q. Also, all h〈i,p〉’s are non-
negative for i ∈ p. It follows that h〈G,p〉 =

∑
i∈p) h〈i,p〉.

Translating between heights h〈G,p〉 and parameters

v〈G,p〉 gives
√
v〈G,p〉
ε =

[∑
i∈p

√
v〈i,p〉
ε

]
or equivalently,

v〈G,p〉 =
[∑

i∈p
√
v〈i,p〉

]2
.

It follows from Lemma 2.2 and Lemma 2.3 that
Exp[XG] = mG = Maxp∈P

[∑
i∈pmi

]
and Var[XG] =∑

p∈P v〈G,p〉 =
∑
p∈P

[∑
i∈p
√
v〈i,p〉

]2
.

3 A tight upper bound of Var[XG]
We now consider an arbitrary DAG G with a single
source and single sink node, and present an algorithm,
motivated by balance of forces in a system of strange
“springs”, to compute a tight upper bound of Var[XG].
We also show that cake distributions of edge delays
allow us to achieve this bound in an arbitrary DAG.

Let µi be a real number in (0, 1] associated with
edge i in G such that for every st-path p ∈ P ,

∑
i∈p µi =

1. That such an assignment of µi’s exists can be shown
by arranging the nodes in G along a straight line of
length 1. Let λa denote the location of node a along
this line. We fix the source node s at location λs = 0
and the sink node t at location λt = 1. All other
nodes are placed between these two end points in a
linear/topological ordering of the DAG. In other words,
for every edge i = 〈a, b〉, we ensure that 0 ≤ λa <
λb ≤ 1. If we now choose µi = λb − λa for every edge
i = 〈a, b〉, we obtain the desired assignment of µi’s. The
above argument also shows that there are multiple (in
fact, infinite) ways of assigning µi’s such that 0 < µi ≤ 1
and

∑
i∈p µi = 1 for every st-path p ∈ P .

In the following, we will use ~µi to denote a vector
of assignments of µi to edges i in G such that the above
constraints are satisfied. Similarly, we will use ~xi to
denote a vector of probability distributions of random
variables xi corresponding to edges i in G, such that
Var[xi] = vi and Exp[xi] = mi.

The following result, though simple, will prove
particularly useful in several subsequent proofs. Let ~yi
and ~zi be vectors of non-negative real values such that
0 ≤ zi ≤ 1 and

∑
i zi = 1. Let S =

∑
i
yi
zi

.

Lemma 3.1. Min~ziS =
[∑

i

√
yi
]2.

Proof. Let ~z?i be a vector of assignments that minimizes
S subject to the constraints 0 ≤ zi ≤ 1 and

∑
i zi = 1.

Then, the derivative δS
δzi

must be zero at zi = z?i , where
δzi is a change that respects the constraints on zi’s.
Since

∑
i z
?
i = 1, there must be at least one i such that

z?i > 0. Let ε? = Min [{z?i | z?i > 0}], and let j be such
that z?j = ε?. We now choose ε such that 0 < ε < ε? and
a k distinct from j, and increase z?k by ε and decrease
z?j by ε. This ensures that

∑
i zi = 1 and 0 ≤ zi ≤ 1

for all i. We can now compute δS
δzi

as − yk
(z?
k
)2 + yj

(z?
j
)2 .

Setting this to zero gives yk
(z?
k
)2 = yj

(z?
j
)2 . In other words,

z?k =
√
yk ·

z?j√
yj

. Since 1 =
∑
k z

?
k =

∑
k

√
yk ·

z?j√
yj

,

we get z?j =
√
yj

[
∑

k

√
yk] . Hence z?i =

√
yi

[
∑

k

√
yk] , for all i.

Plugging this in gives S =
∑
i
yi
z?
i

=
∑
i yi ·

[
∑

k

√
yk]

√
yi

=[∑
i

√
yi
]
·
[∑

k

√
yk
]
, as required.

The primary result of this section can now be stated as
follows.

Theorem 3.1. Max ~xiVar[XG] = Min ~µi
∑
i
vi
µi

, where
the values ~µi are constrained so that every µi lies in
(0, 1] and for every st-path p ∈ P ,

∑
i∈p µi = 1.

Furthermore, there is an algorithm that computes ~µ∗i
such that

∑
i
vi
µ∗
i

= Min ~µi
∑
i
vi
µi

.

To prove Theorem 3.1, we will first present an algorithm
based on balance of forces in a system of “strange”
springs that allows us to compute ~µ∗i . We will then
show that Max ~xiVar[XG] is bounded above and below
by
∑
i
vi
µ∗
i
.

Computing ~µ∗i by a spring algorithm: For purposes
of this discussion, we view nodes in the DAG as balls of
unit mass, and edges in the DAG as “strange” springs
connecting the balls. The balls corresponding to the
source node s and sink node t are fixed at a distance 1
apart, and are not allowed to move. Balls corresponding
to all other nodes are free to move. These are initially
arranged in a straight line between s and t in a linear
ordering of the DAG, as discussed above. Using the
notation introduced earlier, let λa be the location of the
ball corresponding to node a, where λs = 0 and λt = 1.
The spring corresponding to edge i = 〈a, b〉 exerts an
outward repelling force on the balls corresponding to
nodes a and b. The “strange” part about these springs
is that the force Fi pushing a and b apart is given
by Fi = vi

(µi)2
, where vi, the variance of xi, is the

analogue of the spring constant, and µi = λb − λa is
the separation between the two ends of the spring. The
inverse square law dependence of forces on separation

769 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

is reminiscent of electrical force laws between charged
particles or gravitational force laws between bodies with
gravitational mass. However, we choose to use the
analogy with springs since not every ball directly exerts
force on every other ball in our setting, unlike charged
particles or bodies with gravitational mass. Once we
let go of all the balls except those corresponding to
s and t in our setting, the spring forces set the balls
in motion along the straight line joining s and t. If
we dampen the movements, the potential plus kinetic
energy of the system must decay until all balls come
to rest in a state in which the potential energy of the
system is minimized. The force on every ball, except
those corresponding to s and t, must be balanced in
this state. For each edge i = 〈a, b〉, the value of µ∗i
can then be read off as the distance λ∗b − λ∗a when the
system comes to rest. We will call the above technique
for obtaining ~µ∗i the spring “algorithm”. In practice,
non-linear constraint solving techniques must be used
to solve the set of constraints corresponding to zero net
force on each ball other than s and t, while ensuring
λa < λb for each edge 〈a, b〉 in G.

Lemma 3.2. Let ~µ∗i be the values obtained from the
spring algorithm when the spring system comes to rest.
Then

∑
i
vi
µ∗
i

= Min ~µi
∑
i
vi
µi

.

Proof. The first step is to prove that there is a one-to-
one mapping between the domain of values ~µi allowed by
Theorem 3.1 and those allowed by the spring algorithm.
In one direction, note that the values ~µi produced by
the algorithm have the property that for every st-path
p ∈ P ,

∑
i∈p µi = 1. This is because the µi’s are

lengths of edges along a path spanning from λs = 0
to λt = 1. Also no µi produced by the algorithm can
be negative. This is because initially λb > λa for every
edge i = 〈a, b〉. For λb to subsequently become less than
λa, the spring system must go through a state where λa
is arbitrarily close to λb, and hence µi is arbitrarily close
to 0. However, given the force laws of our springs, the
force of the spring corresponding to edge 〈a, b〉 must
then increase without bounds, pushing a and b apart.
Conversely, if the values ~µi have the property that for
every p ∈ P ,

∑
i∈p µi = 1, then the “positions” λa of

nodes defined by λa =
∑
i∈ any path from s to a µi is

well-defined. To see this, consider any two paths p and
p′ from s to a. We claim that

∑
i∈p µi =

∑
i∈p′ µi.

To see why this is so, let p′′ be some path from a to
t. Note that both 〈p, p′′〉 and 〈p′, p′′〉 are paths from
s to t and hence are in the set of paths P . Hence,[∑

i∈p µi

]
+
[∑

i∈p′′ µi

]
= 1 =

[∑
i∈p′ µi

]
+
[∑

i∈p′′ µi

]
.

This implies
∑
i∈p µi =

∑
i∈p′ µi.

The remaining step is to prove that the ~µ∗i returned

by the spring algorithm ensures that the value V =∑
i
vi
µi

is minimized. The derivative of V at ~µ∗i is
obtained by considering an infinitesimal legal change in
~µ∗i . A legal change in ~µ∗i is achieved by moving the ball
corresponding to some node a from its current position
λa to λa + ε in the direction of the ball corresponding
to the sink node t. This increases µ∗i for each edge
i ∈ In(a), where In(a) denotes the set of edges 〈b, a〉
entering a. Similarly, the legal change decreases µ∗i′
for each edge i′ ∈ Out(a), where Out(a) is the set
of edges 〈a, b′〉 leaving a. From the force equation
for our springs, increasing µ∗i by ε decreases vi

µ∗
i

by
vi

(µ∗
i
)2 .ε. Note that vi

(µ∗
i
)2 is also equal to the force Fi

exerted by the spring corresponding to edge i when
the separation is µ∗i . Hence, the overall derivative is
δV
ε = −

∑
i∈In(a) Fi+

∑
i′∈Out(a) Fi′ . Since the net force

on every ball other than those corresponding to nodes s
and t is 0 when the system of springs comes to rest, we
must have

∑
i∈In(a) Fi (total force pushing a towards

t) =
∑
i′∈Out(a) Fi′ (total force pushing a towards s).

Therefore, δV
ε = 0 at ~µ∗i . Since the legal change in

~µ∗i moves the ball corresponding to a towards the ball
corresponding to t, by the inverse square law of forces
for our springs,

∑
i′∈Out(a) Fi′ increases and

∑
i∈In(a) Fi

reduces due to the legal change in ~µ∗i . Therefore,
δV
ε = −

∑
i∈In(a) Fi +

∑
i′∈Out(a) Fi′ increases with ε,

giving rise to a positive second derivative of V at ~µ∗i .
Since we have already shown above that δV

ε = 0 at ~µ∗i ,
it follows that V =

∑
i
vi
µi

is minimized at ~µ∗i .

For a more physical interpretation of the same
proof, notice that

∑
i
vi
µi

is the potential energy of
the system. Since energy is force times distance, the
potential energy of a spring is obtained by integrating
the force Fi needed to push one end of the spring from
infinity to its current location, namely

∫ µi
µi=∞ Fiδµi =∫ µi

µi=∞
vi

(µi)2
δµi = vi

µi
. Therefore, the total potential

energy of the system is
∑
i
vi
µi

. As stated, the algorithm
finds a state of minimum potential energy.

Lemma 3.3. There exists an algorithm whose input is
a DAG G, and variance vi and mean mi of each
edge i in G, and whose output is a cake distribution
(mi, {v〈i,p〉 | p ∈ P}) for each xi such that Var[XG] =∑
q∈P v〈G,q〉 =

∑
i
vi
µ∗
i

, and for every edge i in G,
Var[xi] =

∑
p∈P v〈i,p〉 = vi and Exp[Xi] = mi.

Proof. Recall the spring algorithm and consider the
spring system in its final state of rest. Let µ∗i = λ∗b −λ∗a
be the length of the spring for edge i = 〈a, b〉 and
Fi = vi

(µ∗
i
)2 be the force in this spring. Note that

∀p ∈ P,
∑
i∈p µ

∗
i = 1 and that for each node a ∈

770 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

G \ {s, t},
∑
i∈In(a) Fi =

∑
i′∈Out(a) Fi′ . Lemma 3.4

then produces the contribution v〈G,p〉 of each path p ∈ P
to the variance of XG such that Fi =

∑
p3i v〈G,p〉.

Finally, the contribution v〈i,p〉 of each candle to the
variance of xi is given by v〈i,p〉 = v〈G,p〉·vi

Fi
if i ∈ p, and

0 otherwise.
Lemma 2.2 gives Exp[xi] = mi, and Var[xi] =∑

p∈P v〈i,p〉 =
∑
p3i v〈i,p〉. This translation from paths

p ∈ P to paths p 3 i going through edge i is possible
because v〈i,q〉 is zero unless the path p includes edge
i. Plugging in the value for v〈i,p〉 gives Var[xi] =∑
p3i

v〈G,p〉·vi
Fi

= vi
Fi
·
∑
p3i v〈G,p〉. The requirement given

by Lemma 3.4 simplifies this to Var[xi] = vi
Fi
· Fi = vi,

as required.
Lemma 2.2 also gives the variance of XG to

be Var[XG] =
∑
p∈P v〈G,p〉. For each path p,

we have that
∑
i∈p µ

∗
i = 1. Hence, Var[XG] =∑

p∈P

[∑
i∈p µ

∗
i

]
v〈G,p〉 =

∑
i µ
∗
i

[∑
p3i v〈G,p〉

]
. The

requirement given by Lemma 3.4 simplifies this to
Var[XG] =

∑
i µ
∗
i [Fi] =

∑
i µ
∗
i

[
vi

(µ∗
i
)2

]
=
∑
i
vi
µ∗
i
, as re-

quired.

Lemma 3.4. There exists an algorithm whose input is
Fi such that for each node a ∈ G \ {s, t},

∑
i∈In(a) Fi =∑

i′∈Out(a) Fi′ , and whose output is the contribution
v〈G,p〉 of each path p ∈ P to the variance of XG such
that Fi =

∑
p3i v〈G,p〉.

Proof. For each node a ∈ G \ {s, t}, let ha = 〈a, b〉 be
the “first” edge out of a in some ordering of its edges.
Let H = {ha | a ∈ G \ {s, t}} be the set of these first
edges and let H = G \H be all the remaining edges in
G. We now do a depth (or breadth) first search of the
DAG from the source s, building the search tree. The
only requirement we impose during this search is that
the first edge traversed from every node a must be ha.

For each edge i = 〈a, b〉 ∈ H, let pi ∈ P be the
path that follows the search tree edges from the source
s to node a, then follows the edge i = 〈a, b〉, and keeps
following the first edges ha′ from node b onward until
the sink t is reached. Note this path must eventually
find t because G is a DAG with t being the only sink.

Define M to be the |H| × |H| matrix such that for
all i, j ∈ H, M〈i,j〉 = 1 iff edge i is in path pj . We claim
that M is invertible. This is because if we assume that
the rows and columns are sorted based on the order in
which the search finds the edges in H, then the diagonal
is all ones (edge i is in path pi) and the lower triangle is
all zeros. To see why the lower triangle is all zeros, note
that path pj has the property that it does not contain
those edges from H that were found in the search later
than j, i.e. for which i > j

For each i, j ∈ H, we compute the required
value v〈G,pj〉 from the known values Fi using the
matrix operation 〈v〈G,p1〉, v〈G,p2〉, . . . , v<G,p|H|>〉

T =
M−1〈F1, F2, . . . , F|H|〉

T . For all the remaining paths,
we set v〈G,p〉 = 0. Note that this algorithm is
polynomial-time because the number of paths/candles
that have non-zero height is |Edges(G)−Nodes(G)+2|.

What remains is to prove that for every edge i, the
required statement Fi =

∑
p3i v〈G,p〉 is true. Let us

start with edges i ∈ H. The matrix operation 〈Fi〉T =
M〈v〈G,pj〉〉T ensured that Fi =

∑
〈p3i, p∈p

H
〉 v〈G,p〉,

where we only consider paths p ∈ pH that are associated
with an edge j ∈ H. However,

∑
〈p3i p6∈p

H
〉 v〈G,p〉 = 0,

because v〈G,p〉 = 0 for all the other paths. Hence, the
desired result follows.

This leaves proving that for every edge i ∈ H, the
required statement Fi =

∑
p3i v〈G,p〉 is true. We prove

this by induction on the distance of the edge from the
source s. Recall H = {ha | a ∈ G \ {s, t}} is the set of
“first” edges ha out of node a. As a base case of our
induction, all edges out of s are in H, and therefore
Fi =

∑
p3i v〈G,p〉 for all such edges i. Now, consider

edge ha ∈ H for some node a ∈ G\{s, t}. By way of the
inductive hypothesis, the statement has been proved for
all edges coming into node a. All edges leaving a, except
for the edge ha, are in H and hence the statement is true
for them as well. We will now prove Fha =

∑
p3ha v〈G,p〉.

To do this, we use the fact that the spring system settled
into a state of rest. Hence for each node a ∈ G \ {s, t},∑
i∈In(a) Fi =

∑
i′∈Out(a) Fi′ . This gives

Fha =

 ∑
i∈In(a)

Fi

−
 ∑
i′∈Out(a)−ha

Fi′

=

 ∑
i∈In(a)

∑
p3i

v〈G,p〉

−
 ∑
i′∈Out(a)−ha

∑
p3i′

v〈G,p〉

=

[∑
p3a

v〈G,p〉

]
−

 ∑
〈p3a, p63ha〉

v〈G,p〉

=

∑
p3hi

v〈G,p〉

This completes the proof.

Lemma 3.5. Max ~xiVar[XG] ≥ Min ~µi
∑
i
vi
µi

=
∑
i
vi
µ∗
i

The proof of Lemma 3.5 follows from Lemma 3.3. To
complete the proof of Theorem 3.1, we need to show the
following.

Lemma 3.6. Max ~xiVar[XG] ≤ Min ~µi
∑
i
vi
µi

=
∑
i
vi
µ∗
i

.

771 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Proof. Let ~µi be an arbitrary real-valued vector such
that for every edge i in G, 0 < µi ≤ 1 and

∑
i∈p µi = 1

for all st-paths p ∈ P . Our proof proceeds by showing
that Var[XG] ≤

∑
i
vi
µi

for every ~xi such that Var[xi] =
vi. This is obtained as a special case of a more general
result which states that if Z[~xi] = Var[XG]−

∑
i

Var[xi]
µi

,
then Z[~xi] ≤ 0 for all ~xi.

Towards this goal, let ~x•i be a vector of edge
delay distributions that maximizes Z[~xi], and gives the
smallest Var[XG] among all vectors ~xi that maximize
Z[~xi]. We consider two cases below.

• Suppose Var[XG] = 0 for ~x•i . Since Var[x•i] is the
expectation of a square,

∑
i

Var[x•i]
µi

≥ 0. Hence,

Z[~x•i] = Var[XG] −
∑
i

Var[x•i]
µi

≤ 0. Since ~x•i
maximizes Z[~xi], it follows that Z[~xi] ≤ 0 for all
~xi.

• Suppose Var[XG] > 0 for ~x•i . In this case,
Lemma 3.7 tells us that there exists a way of chang-
ing ~x•i such that either Var[XG] decreases or Z[~xi]
increases (or both). In case Z[~xi] increases, we
end up contradicting the fact that ~x•i maximizes
Z[~xi]. In case Z[~xi] stays the same and Var[XG]
decreases, we get more than one vector ~xi that
maximize Z[~xi]. However, since Var[XG] decreases,
this contradicts the fact that ~x•i gives the smallest
Var[XG] among all vectors ~xi that maximize Z[~xi].
Therefore, Var[XG] cannot be strictly positive for
~x•i .

It follows that Var[XG] = 0 for ~x•i , and hence Z[~xi] ≤
Z[~x•i] ≤ 0. The theorem follows from this result.

Lemma 3.7. If Var[XG] > 0 for a given ~xi, there is a
way of changing ~xi so that either Var[XG] decreases or
Z[~xi] increases or both.

In order to prove Lemma 3.7, we will first prove
Lemma 3.8, which is almost the reverse of what we want.
Nevertheless, it turns out that Lemma 3.8 is easier to
prove since it has fewer negatives in it, and helps in
proving Lemma 3.7.

Lemma 3.8. If Var[XG] > 0 for a given ~xi, there is a
way of changing ~xi so that Var[XG] increases and Z[~xi]
either stays the same or decreases.

Proof. Our goal is to increase Var[XG]. There are two
ways of increasing the variance of the random variable
XG. We could either increase XG(r) at those points
r ∈ [0, 1] where XG(r) > Exp[XG], or we could decrease
XG(r) at points r ∈ [0, 1] where XG(r) < Exp[XG].
We will do the former. For this purpose, let DG(r) =

XG(r)− Exp[XG] and let r̂ ∈ [0, 1] be a point at which
∆G(r̂) > 0. Since Var[XG] > 0, such a point must exist.

Lemma 2.1 considered the effect of increasing the
edge delay xi for one edge. We will now consider the
effect of changing a whole path of edge delays. Let p̂
be a winning path in XG(r̂) = Maxp∈P

[∑
i∈p xi(r̂)

]
.

For each edge i ∈ p̂, we increase xi(r̂) by µiδx, where
~µi is the fixed vector of values chosen in the proof of
Lemma 3.6. We will now consider what effect this has
on
∑
i

Var[xi]
µi

, Var[XG], and Z[~xi].∑
i

Var[xi]
µi

: By Lemma 2.1, increasing xi(r̂) by µi.δx

increases the variance Var[xi] by 2.µi.∆i(r̂).δrδx.
Hence, doing this for each edge in the path p̂ in-
creases the sum

∑
i

Var[xi]
µi

by
∑
i∈p̂

2.µi.∆i(r̂).δrδx
µi

=∑
i∈p̂ 2.∆i(r̂).δrδx.

Var[XG]: By definition, p̂ is a winning path in XG(r̂) =
Maxp∈P

[∑
i∈p xi(r̂)

]
. Increasing xi(r̂) by µi.δx

for every i ∈ p̂ increases
∑
i∈p̂ xi(r̂), and hence

XG(r̂), by
∑
i∈p̂ µi.δx = δx. The reason for the

last simplification is that ~µi was chosen such that
∀p ∈ P ,

∑
i∈p µi = 1. By Lemma 2.1, increasing

XG(r̂) by δx increases the variance Var[XG] by
2.∆G(r̂).δrδx. By our choice of r̂, we have ∆G(r̂) >
0. Hence, Var[XG] increases, as required.

Z[~xi]: By definition, Z[~xi] = Var[XG] −
∑
i

Var[xi]
µi

.
Hence, Z[~xi] changes by [2.∆G(r̂).δrδx] −[∑

i∈p̂ 2.∆i(r̂).δrδx
]

= 2.(M − N).δrδx,
where M = XG(r̂) −

∑
i∈p̂ xi(r̂), and

N = Exp[XG]−
∑
i∈p̂ Exp[xi].

We now examine the two sub-expressions M and
N obtained above.

M = XG(r̂)−
∑

i∈p̂ xi(r̂): Because p̂ is a winning

path in XG(r̂) = Maxp∈P
[∑

i∈p xi(r̂)
]
, there-

fore XG(r̂) =
∑
i∈p̂ xi(r̂). Hence, M =

XG(r̂)−
∑
i∈p̂ xi(r̂) = 0.

N = Exp[XG]−
∑

i∈p̂ Exp[xi]: As we will see in
Lemma 5.1, Exp[XG] ≥

∑
i∈p Exp[xi] for

all st-paths p in P . It follows that N =
Exp[XG]−

∑
i∈p̂ Exp[xi] ≥ 0.

Therefore, the change in Z[~xi], i.e., 2.(M − N), is
non-positive. Hence, Z[~xi] either stays the same or
decreases, as required.

We can now turn Lemma 3.8 around to get the result
we really want, i.e. Lemma 3.7.

772 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Proof of Lemma 3.7: Similar to the proof of Lemma 3.8,
we choose a point r̂ ∈ [0, 1] such that ∆G(r̂) =
XG(r̂) − Exp[XG] > 0. Let p̂ be a winning path in
XG(r̂) = Maxp∈P

[∑
i∈p xi(r̂)

]
. Instead of increasing

xi(r̂) by µiδx for each edge i ∈ p̂ (as in the proof
of Lemma 3.8), we now decrease each xi(r̂) by these
amounts. There are two cases to consider.

In the first case, suppose XG(r̂) does in fact de-
crease. Since XG(r̂) was greater than Exp[XG] (since
∆G(r̂) > 0), this decreases Var[XG], and we are done.

In the second case, supposeXG(r̂) does not decrease
even though we decreased xi(r̂) by µiδx for each edge
i ∈ p̂. The proof of Lemma 3.8 then tells us that Z[~xi]
increases by

∑
i∈p̂ 2.∆i(r̂).δrδx. If we can now show

that
∑
i∈p̂ ∆i(r̂) > 0, we will be done. We show this

by proving below that there exists a point r̂ ∈ [0, 1] for
which ∆G(r̂) > 0 and

∑
i∈p̂ ∆i(r̂) > 0.

Let R = {r ∈ [0, 1] | XG(r) > Exp[XG]}. Since
Var[XG] > 0 by assumption, R must be non-empty.
Hence the cumulative width of all r’s in R, i.e. |R|, must
be> 0. Let A = 1

|R| ·
∫
r∈RXG(r)δr denote the average of

XG(r) within R. Clearly by the definition of R, we have
A > Exp[XG]. With abuse of notation, let p̂(r) denote
a winning path in XG(r) = Maxp∈P

[∑
i∈p xi(r)

]
, for

every r ∈ [0, 1]. If there is some r ∈ R for which∑
i∈p̂(r) ∆i(r) > 0, then we can simply choose r̂ to

be this r, and we are done. Otherwise, we must have
∀r ∈ R,

∑
i∈p̂(r) xi(r) ≤

∑
i∈p̂(r) Exp[xi]. However, we

show below that this leads to a contradiction.
Assume that ∀r ∈ R,

∑
i∈p̂(r) xi(r) ≤∑

i∈p̂(r) Exp[xi], if possible. Let us reconsider
the average A = 1

|R| ·
∫
r∈RXG(r)δr. By the

definition of XG and p̂(r), this is equal to
1
|R| ·

∫
r∈R

[∑
i∈p̂(r) xi(r)

]
δr. By our assumption,

this is at most 1
|R| ·

∫
r∈R

[∑
i∈p̂(r) Exp[xi]

]
δr.

The last expression, in turn, is at most
1
|R| ·

∫
r∈R Maxp∈P

[∑
i∈p Exp[xi]

]
δr. Since the in-

tegrand no longer depends on r, it can be factored
out to give 1

|R| · Maxp∈P
[∑

i∈p Exp[xi]
]
·
∫
r∈R 1.δr.

This simplifies to Maxp∈P
[∑

i∈p Exp[xi]
]
. Finally,

Lemma 5.1 gives that this is at most Exp[XG].
Putting all the parts together, we find that
A = 1

|R| ·
∫
r∈RXG(r).δr ≤ Exp[XG]. However,

we have already shown that A > Exp[XG]. Hence we
have a contradiction!

Well known measures of a DAG G are its height
h and width w. The height h of G is defined to be the
number of edges in the longest path from the source s to

the sink t. The width w of G is the minimum number of
st-paths needed to cover each edge of the graph at least
once. The following lemma uses the height and width
of a DAG to bound the maximum variance of XG.

Lemma 3.9. If G has height h and width w, then
1
w

[∑
i

√
vi
]2 ≤ Max ~xiVar[XG] ≤ h

∑
i vi.

Proof. By Theorem 3.1, Max ~xiVar[XG] = Min ~µi
∑
i
vi
µi

=
∑
i
vi
µ∗
i
. Recall from the spring algorithm that for

every edge i = 〈a, b〉 in G, µ∗i = λ∗b − λ∗a, where λ∗a and
λ∗b are the locations of the balls corresponding to nodes
a and b respectively, when the system of springs is at
rest. If, instead, we put the balls at other locations and
use the corresponding µi’s, then the sum

∑
i
vi
µi

can only
increase.

Let us now define the location λ′a of node a to be
the maximum number of edges in a path from s to a
divided by h. The number of edges in a path from s to
s is clearly zero giving λ′s = 0, as required. By definition
of the height h of G, the maximum number of edges in
a path from s to t is h. Hence, λ′t = 1, as required.
For each edge i = 〈a, b〉 in G, the maximum number of
edges in a path from s to b is at least one more than
that in a path from s to a. Hence, µ′i = λ′b−λ′a ≥ 1

h . It
follows that Max ~xiVar[XG] = Min ~µi

∑
i
vi
µi
≤
∑
i
vi
µ′
i
≤

h.
∑
i vi. This proves one part of the lemma.
For the other part, let P̂ be a set of st-paths that

cover each edge of G at least once, and let |P̂ | = w.
Because each edge is covered at least once, we have∑
i µi ≤

∑
p∈P̂

∑
i∈p µi. By definition, for every path,∑

i∈p µi = 1. Hence,
∑
i µi ≤ w.

By Lemma 3.1, we know that subject to the con-
straint

∑
i µi = 1, Min ~µi

∑
i
vi
µi

=
[∑

i

√
vi
]2. Scaling

all µi’s by a factor of w gives that subject to
∑
i µi = w,

Min ~µi
∑
i
vi
µi

= 1
w

[∑
i

√
vi
]2. Reducing the µi’s can

only increase vi
µi

. Hence, subject to
∑
i µi ≤ w, we

must have Min ~µi
∑
i
vi
µi
≥ 1

w

[∑
i

√
vi
]2.

4 A tight upper bound of Exp[XG]
We now consider the problem of obtaining a tight upper
bound of Exp[XG] for an arbitrary DAG G with a single
source node s and an single sink node t. For every st-
path p ∈ P , let τp be a positive real number in [0, 1]
such that

∑
p∈P τp = 1. For each edge i in G, we define

τi =
∑
p3i τp. Clearly, 0 ≤ τi ≤ 1 for all edges i. Similar

to notation used earlier, we will use ~τp and ~τi to denote a
vector of assignments of τp to paths p ∈ P and a vector
of assignments of τi to edges i in G, respectively, such
that the above constraints are satisfied.

773 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Theorem 4.1. For every DAG G, Max ~xiExp[XG] =
Max~τi

∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
, where the

values ~τi are constrained so that there exists a value
τp for each path p ∈ P such that ∀i,

∑
p3i τp = τi,

0 ≤ τp ≤ 1, and
∑
p∈P τp = 1.

Proof. Our proof has two parts. In the first part, given
an expectation mi and a variance vi for each edge
i ∈ G, we construct a vector of distributions ~xi such that
Exp[XG] ≥ Max~τi

∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
.

In the second part, we show that Max ~xiExp[XG] ≤
Max~τi

∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
.

By definition, XG(r) = Maxp∈P
[∑

i∈p xi(r)
]
. For

each path p ∈ P , let Rp be the set of r values for which p
is the longest path defining XG, and let τp = |Rp| be the
width of this set. For each edge i ∈ G, let Ri = ∪p3iRp
be the set of r’s for which xi contributes to the longest
path, and let τi = |Ri| =

∑
p3i τp be the width of this

set. Clearly τi is the probability that xi is in the winning
path and is able to contribute to Exp[XG]. We will
use Mi =

∫
r∈Ri xi(r) δr to denote the amount that xi

contributes to Exp[XG].
Part I: Given an mi and vi for each edge i ∈
G, let ~τ∗i be the values that realize the maximum

Max~τi
∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
. Let ~τ∗p be

the corresponding values for all st-paths in P , such that
∀i, τ∗i =

∑
p3i τ

∗
p and

∑
p τ
∗
p = 1. We partition the

probability space r ∈ [0, 1] into |P | disjoint regions Rp
such that for each path p ∈ P , |Rp| = τ∗p . This partition
is possible because

∑
p τ
∗
p = 1. For each edge i, we also

define Ri = ∪p3iRp, such that |Ri| =
∑
p3i τ

∗
p = τ∗i .

For every distribution ~xi, we then have:

Exp[XG] =
∫
r∈[0,1]

XG(r) δr

=
∫
r∈[0,1]

Maxp′∈P

∑
i∈p′

xi(r)

 δr

=
∑
p∈P

∫
r∈Rp

Maxp′∈P

∑
i∈p′

xi(r)

 δr

≥
∑
p∈P

∫
r∈Rp

∑
i∈p

xi(r)

 δr

=
∑
i

∑
p3i

∫
r∈Rp

xi(r) δr

=
∑
i

∫
r∈Ri

xi(r) δr =
∑
i

Mi

Note that the inequality arises because the path p′ that

wins when r ∈ Rp may be different from p in general.
We now construct a distribution ~x∗i

such that
∑
iMi for this distribution

equals
∑
i Min

[
τ∗i mi +

√
τ∗i (1− τ∗i)vi, mi

]
= Max~τi

∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
We consider two constructions. In the first

construction, let Mi = τ∗i mi +
√
τ∗i (1− τ∗i)vi. The

distribution of xi is then given by xi(r) = Mi

|Ri| if
r ∈ Ri, and mi−Mi

|Ri|
otherwise. It can be verified that

Exp[xi] = mi and Var[xi] = mi. In the second construc-
tion, we define Mi = mi, ui = vi + m2

i , and τ ′i = m2
i

ui
.

The key requirement for using the second construction
is that τ∗i ≥ τ ′i . If this requirement is satisfied, we
define R′i to be some subset of Ri of size |R′i| = τ ′i .
The distribution of xi is then given by xi(r) = Mi

|R′
i
| if

r ∈ R′i, and zero otherwise. Again, it can be checked
that Exp[xi] = mi and Var[xi] = mi. Thus, if τ∗i < τ ′i ,
we use the first construction, and use the second con-
struction otherwise. Furthermore, it can be shown that
if 0 ≤ τi < τ ′i , then 0 ≤ τimi +

√
τi(1− τi)vi < mi. For

τ ′i ≤ τi ≤ 1, we have τimi +
√
τi(1− τi)vi ≥ mi.

Therefore, the above distribution ensures
that Mi = Min

[
τ∗i mi +

√
τ∗i (1− τ∗i)vi, mi

]
.

Hence, Max ~xiExp[XG] ≥
Max~τi

∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
.

Part II: Let ~
x#
i be the vector of distributions that

maximizes Exp[XG]. Let τ#
p , τ#

i and M#
i be the

τp, τi and Mi that arise from ~
x#
i . Using the same

computation of Exp[XG] as done in part I above, we
find that Exp[XG]# = Max ~xiExp[XG] =

∑
iM

#
i . Note

that we have an equality instead of the inequality in
part I because the path winning path p′ is the same as
p by definition of Rp.

We will now show that for every distribution xi,
if Exp[xi] = mi and Var[xi] = vi, then Mi =∫
r∈Ri xi(r) δr ≤ Min

[
τimi +

√
τi(1− τi)vi, mi

]
. Since

xi(r) ≥ 0, Mi is clearly at most Exp[xi] = mi =∫
r
xi(r) δr. Similarly,

U[xi] =
∫
r∈[0,1]

xi(r)2 δr

=
[∫

r∈Ri
xi(r)2 δr

]
+
[∫

r 6∈Ri
xi(r)2 δr

]
≥ |Ri| ·

[
Mi

|Ri|

]2

+ |Ri| ·
[
mi −Mi

|Ri|

]2

=
[
M2
i

τi

]
+
[

(mi −Mi)2

1− τi

]

774 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

The inequality above comes from the fact that if we
know that Mi of xi’s mass lies within Ri and the
remaining mi − Mi lies outside of this region, then
the second moment of xi is minimized by having xi(r)
constant within each of these two regions. From this,
we get that

Var[xi] = U[xi]−m2
i

≥
[
M2
i

τi

]
+
[

(mi −Mi)2

1− τi

]
−m2

i

Since we must have Var[xi] = vi, it can be shown
that Mi ≤ τimi +

√
τi(1− τi)vi. Specifically, M#

i ≤

Min
[
τ#
i mi +

√
τ#
i (1− τ#

i)vi,mi

]
.

It follows that Max ~xiExp[XG] = Exp[XG]#

=
∑
iM

#
i ≤ Min

[
τ#
i mi +

√
τ#
i (1− τ#

i)vi, mi

]
.

Therefore, Max ~xiExp[XG] ≤
Max~τi

∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
. Parts I

and II together prove Theorem 4.1.

We now wish to obtain simpler bounds of
Max ~xiExp[XG], and also provide an algorithm to ap-
proximate the expression for Max ~xiExp[XG] given by
Theorem 4.1.

Theorem 4.2. For every DAG G,
Max ~xiExp[XG] ≤ Max~τi

[∑
i τimi +

√
τi(1− τi)vi

]
≤ Maxp∈P

[∑
i∈pmi

]
+
√

Min ~µi
∑
i
vi
µi

.
Furthermore, the optimal τi’s can be derived from the
above formulation.

We will first prove a few simple results that will even-
tually lead to a proof of Theorem 4.2. We begin with
the following observation.

Lemma 4.1. Let U(τi) = Min
[
τimi +

√
τivi, mi

]
and V (τi) = Min

[
τimi +

√
τi(1− τi)vi, mi

]
. Then

1
2U(τi) ≤ V (τi) ≤ U(τi).

Proof. The second inequality is obvious because (1 −
τi) ≤ 1. The first inequality follows from the fact that
τi.(1− τi) ≥ 1

4 ≥
1
4 .τi.

The next natural step would be to understand which
of τimi +

√
τivi and mi is lesser for each τi. How-

ever, we will leave this until later, and presently focus
on bounding Max~τi

∑
i

[
τimi +

√
τivi

]
. Let A(~τi) =∑

i τimi and B(~τi) =
∑
i

√
τivi. Instead of obtaining

Max~τi [A(~τi) +B(~τi)] directly, we will maximize A and
B independently.

Lemma 4.2. 1
2 [Max~τiA(~τi)] + [Max~τiB(~τi)] ≤

Max~τi [A(~τi) +B(~τi)] ≤ [Max~τiA(~τi)] + [Max~τiB(~τi)].

Proof. It is clear that Max~τi [A(~τi) +B(~τi)] ≤
[Max~τiA(~τi)] + [Max~τiB(~τi)]. Let ~τi

′ be the val-
ues that optimize A(~τi

′) and ~τi
′′ be those that optimize

B(~τi
′′). Let ~τi be such that τi = 1

2 [τ ′i + τ ′′i]. Note that
all requirements on ~τi are met because it is a linear
combination of ~τi

′ and ~τi
′′.

1
2
A(~τi

′) +
1
2
B(~τi

′′) =
1
2

[∑
i

τ ′imi

]
+

1
2

[∑
i

√
τ ′′i vi

]

≤

[∑
i

τimi

]
+

[∑
i

√
τivi

]
for every τi

= [A(~τi) +B(~τi)]
≤ Max~τi [A(~τi) +B(~τi)]

This completes the proof.

Lemma 4.3. Max~τ [
∑
i τimi] = Maxp

∑
i∈pmi.

Proof.

Max~τi

[∑
i

τimi

]
= Max~τi

∑
i

∑
p3i

τp

mi

= Max〈
∑

p
τp=1〉

∑
p

τp
∑
i∈p

mi

Since 0 ≤ τp ≤ 1 for all p ∈ P and
∑
p∈P τp =

1, the maximum value of
∑
p τp

∑
i∈pmi occurs when

τp = 1 for the path p with the maximum value of∑
i∈pmi and τp′ = 0 for all other paths p′. Therefore,

Max~τ [
∑
i τimi] = Maxp

∑
i∈pmi.

Lemma 4.4. Max~τ
[∑

i

√
τivi

]
≤
√

Min ~µi
∑
i
vi
µi

.

Proof. In a “primal-dual” sort of way, it is sufficient to
consider any fixed setting for ~τ and any fixed setting for
~µi, and prove that∑

i

√
τivi ≤

√∑
i

vi
µi

Given these fixed ~τ and ~µi, let us define ai = τi ·µi. The
following is a useful property of the ai’s.

∑
i

ai =
∑
i

τi · µi =
∑
i

∑
p3i

τp

 · µi
=

∑
p

τp

∑
i∈p

µi

 =
∑
p

τp · 1 = 1

775 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

The second last equality is because of the restriction on
~µi that

∑
i∈p µi = 1 and the last equality is because

of the restriction on ~τ that
∑
p τi = 1. We can now

get the bound we want. Specifically,
∑
i
vi
µi

=
∑
i
τivi
ai

.

However, by Lemma 3.1,
∑
i
τivi
ai
≥
[∑

i

√
τivi

]2 since
τivi > 0 and

∑
i ai = 1.

We are now ready to complete the proof of Theorem 4.2.
Proof of Theorem 4.2: Theorem 4.1 and Lem-
mas 4.1, 4.2, 4.3, and 4.4 give Max ~xiExp[XG] ≤
Max~τi

[∑
i τimi +

√
τi(1− τi)vi

]
≤Maxp∈P

[∑
i∈pmi

]
+
√

Min ~µi
∑
i
vi
µi

. It is interesting that the second term

in the above upper bound is
√
Max ~xiVar[XG].

Furthermore, Theorem 3.1 gives a spring algorithm
to determine the optimal ~µ∗i in the proof of Lemma 4.4.
We will now use these to find the optimal ~τ∗i in
Lemma 4.4, and hence in Theorem 4.2. Recall we used
Lemma 3.1 in the proof of Lemma 4.4 to show that the
maximum value of sumi

τivi
ai

is
[∑

i

√
τivi

]2. In fact, the
proof of Lemma 3.1 also gives the optimal values of ai
as
√
τivi√
V

, where
√
V =

∑
i

√
τivi. However, as shown in

the proof of Lemma 4.4, the optimal value of
∑
i

√
τivi

=
√∑

i
vi
µi

. Recalling that we defined ai = τi · µi, we

get τ∗i = vi
(µ∗
i
)2.V = vi

(µ∗
i
)2.

(∑
j

vj
µ∗
j

) .

Thus, the same spring algorithm described in Sec-
tion 3 gives us the optimal ~µi and also the optimal
~τ . Hence the same algorithm can be used to com-
pute Max ~xiVar[XG] exactly and also an upper bound
of Max ~xiExp[XG].

The values ~τi are constrained so that there exists a
value τp for each path p ∈ P such that ∀i,

∑
p3i τp = τi

and
∑
p∈P τp = 1.

Theorem 4.3. Given ~τi (computed from Theorem 4.2),
there is a linear program to find the corresponding ~τp.
The dual of this linear program involves finding the
optimal ~µi such that

∑
i∈p µi = 1 for all p ∈ P .

Proof. Let ~τi be the vector of τi values given to us. Let
~τp be the vector of τp values that we are looking for.
Let M be a matrix such that for each path p and edge
i, we M [i, p] = 1 if and only if i ∈ p. Finally let ~1 be
the vector of consisting of |P | ones. The required linear
program is as follows.

Min ~τp ·~1T

Subject to M · ~τp = ~τi

Note that the objective function is
∑
p τp, which we

hope to be at most one. The constraints effectively

encode that for each variable edge i,
∑
p3i τp = τi. The

primal-dual theorem states that the optimal value for
this primal is the same as the optimal value for the dual
problem. Hence, it is sufficient to prove that the optimal
value of the dual is at most one. The dual is stated as
follows.

Max ~µi · ~τiT

Subject to MT · ~µi = ~1

Note that the requirements on the unknown variables
µi are that for each path p ∈ P ,

∑
i∈p µi = 1. Indeed,

these are the same requirements on µi that we have used
throughout the paper.

Theorem 4.4. There exists a greedy algorithm to
determine for each variable i, whether Mi =
Min

[
τimi +

√
τi(1− τi)vi, mi

]
is equal to τimi +√

τi(1− τi)vi or mi. This, in turn, gives a
quick algorithm to approximate Max ~xiExp[XG] =
Max~τi

∑
i Min

[
τimi +

√
τi(1− τi)vi, mi

]
within a fac-

tor of four.

Proof. To convey the intuition, a reasonable start-
ing point would be to find ~~τi that maximizes
Max~τi

∑
i

[
τimi +

√
τi(1− τi)vi

]
. However, the prob-

lem with this solution is that for some edges i,
we will have

[
τimi +

√
τi(1− τi)vi

]
≥ mi, and

hence Min
[
τimi +

√
τi(1− τi)vi,mi

]
will decrease

these terms. Recalling the proof of Theorem 4.1, this oc-
curs when the corresponding edge delay variables xi are
allocated too much of the limited resource τi: specif-
ically, τi ≥ m2

i

ui
. Decreasing these τi’s to m2

i

ui
may al-

low other edge delay variables xj to have their τj ’s
increased. This in turn may allow the overall expres-
sion expression sumiMin

[
τimi +

√
τi(1− τi)vi,mi

]
to

increase once again.
Before discussing the final algorithm, we present

an idealized version of it. The intuition behind the
working of this idealized algorithm is that we start
by computing an optimal distribution of τi’s where∑
p∈P τp is bounded not by 1, but by some infinitesimal

ε. This forces all τi’s to be infinitesimal as well, and
thereby ensures that each τi is less than the threshold
of m

2
i

ui
. Next, we slowly increase the bound on

∑
p∈P τp.

Each variable’s allocation τi therefore increases in turn.
Each time τi (corresponding to edge delay variable
xi) reaches the limit m2

i

ui
that it is allowed use, this

variable is set aside in a set S and the corresponding
τi is fixed to its maximum value of m2

i

ui
. The bound

776 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

on
∑
p∈P τp continues to increase in this fashion until

it reaches the overall limit, i.e.,
∑
p τp = 1. More

formally, given values ~τi for every edge i, let ~τp be
the values for which

∑
p τp is minimized subject to

the constraint ∀i,
∑
p3i τp = τi. This can easily be

found by a linear program. Let Q(~τi) =
∑
pinP τp, and

U(~τi) =
∑
i

[
τimi +

√
τi(1− τi)vi

]
. The code for the

idealized algorithm can then be presented as follows.

algorithm FindExp(G, 〈mi, vi〉, i ∈ {1 . . . n})
Inputs: DAG G, (mi, vi) for every edge i
Returns: ~~τi that maximizes Exp[XG]

• Let q = ε

• Let ~τi maximize U(~τi) subject to Q(~τi) = q.
• Let S = ∅
• loop

– loop increasing q continuously

Loop Invariants:
(i) ~τi maximizes U(~τi) subject to Q(~τi) =
q.
(ii) τi’s for all xi’s in S are fixed.
∗ As q increases, adjust ~τi to maintain loop

invariant.
/* ∀i 6∈ S, τi increases continually */

∗ if (∃i 6∈ S s.t. τi = m2
i

ui
) exit loop

∗ if (q = 1) return(~τi)

end loop

– Add i to S

end loop
end algorithm

The correctness of the idealized algorithm is clear. Un-
fortunately, it is not implementable as is. The first
change needed to make it more implementable is to
remove the (1 − τi) in the square root. Lemma 4.1
proves that this changes the result by at most a fac-
tor of two. The next change is to instead compute
Max~τ ′

i

[
∑
i τimi] + Max ~τ ′′

i

[∑
i

√
τ ′′i vi

]
and then to let

τi = 1
2 [τ ′i +τ ′′i]. Lemma 4.2 proves that this changes the

result by at most another factor of two and Lemmas 4.3
and 4.4 describe how to compute these values. A useful
thing to know is that if each τ ′i is changed by a multi-
plicative factor of c then both A = Max~τ ′

i

[
∑
i τimi] and

Q(~τi
′) change by the same multiplicative factor c. On

the other hand, changing each τ ′′i in this way changes
B = Max ~τ ′′

i

[∑
i

√
τ ′′i vi

]
by a multiplicative factor of

√
c. In both cases, this proves that if Q(~τi) = q changes

by the same multiplicative factor c, then the ~τi
′ and

the ~τi
′′ that optimize A and B remain the same ex-

cept that each τi changes by this multiplicative factor
of c. The first advantage of this fact is that the ef-
fect of the step in the idealized code that finds the ~τi
subject to Q(~τi) = q can just as well be achieved by
finding the ~τi subject to Q(~τi) = 1, and then multi-
plying the resulting ~τi by q. The second, even more
significant, advantage is that the inner loop that con-
tinually increases q can be changed in a way that makes
the recalculation of the ~τi much easier. Let ~τi

old be
the current values when the inner loop starts in a given
iteration of the outer loop. Note that by the loop invari-
ant, ~τi

old maximizes
∑
i

[
τimi +

√
τi(1− τi)vi

]
subject

to two conditions: (i) Q(~τi) = qold, and (ii) ∀i ∈ S,
τi ≥ m2

i

ui
. Instead of the inner loop increasing q from

qold, it can increase the multiplicative factor c contin-
uously from 1. The new values, ~τi

new are obtained as
Mult(c, ~τi

old), which is defined as ~τi
old except that for

each i 6∈ S, τi is increased by a factor of c. Note that
qnew = Q(~τi

new) =
∑
p∈P τp is not simply c · ~τiold in

general, since the τi’s do not change for i ∈ S. The
optimal τp’s therefore need to be recomputed. The key,
however, is that the loop invariant will still be main-
tained because the resulting ~τi

new will give the opti-
mal values for maximizing

∑
i

[
τimi +

√
τi(1− τi)vi

]
subject to Q(~τi) = qnew. The final change needed
to make the algorithm implementable is that the in-
ner loop cannot increase c continuously, but must com-
pute a value c ≥ 1 that either makes τi = m2

i

ui
for some

i 6∈ S, or makes q = 1. The former is easy because if
τnewi = c · τoldi = m2

i

ui
, then c = m2

i

τold
i
·ui

. Hence, all that

is required is to let c = Mini6∈S
m2
i

τold
i
·ui

.
It is interesting that the spring algorithm for finding

the optimal ~τi actually needs to be run only once at the
beginning.

5 Lower bounds and continuum results

In this section, we present lower bounds and continuum
results for the mean and variance of XG for an arbitrary
DAG G with a single source node s and a single
sink node t. Unlike the upper bounds presented in
the previous two sections, our lower bounds are not
necessarily tight.

Lemma 5.1. For every DAG G and for every vector of
distributions ~xi for the underlying edge delay variables,
Exp[XG] ≥ Maxp∈P

∑
i∈pmi.

Proof. Let p̂ be the path that maximizes
∑
i∈pmi.

777 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Then

Exp[XG] =
∫
r∈[0,1]

XG(r) δr

=
∫
r∈[0,1]

Maxp∈P

∑
i∈p

xi(r)

 δr

≥
∫
r∈[0,1]

∑
i∈p̂

xi(r)

 δr
=

∑
i∈p̂

[∫
r∈[0,1]

xi(r) δr

]

=
∑
i∈p̂

Exp[xi]

Therefore, Exp[XG] ≥ Maxp∈P
∑
i∈pmi.

Recall the construction of cake distributions in
Lemma 3.3 for maximizing Var[XG]. That construction
ensures that Exp[XG] = Maxp∈P

∑
i∈pmi. Hence,

the maximum variance and minimum expectation can
be simultaneously achieved for DAGs with arbitrary
dependence of the distributions of xi’s.

There exist several cases where Min ~xiVar[XG] = 0,
although each of the xi’s has non-zero variance. Note
that 0 is the minimum possible value of Var[XG] since
it is the expectation of a square. For example, consider
a series graph with two edges. Suppose x1(r) = K if
r ∈ [0, 0.5) and 0, elsewhere. Suppose further that
x2(r) = K if r ∈ [0.5, 1] and 0, elsewhere. Clearly,
x1 + x2 = K for all r ∈ [0, 1]. Hence Var[XG] = 0,
although the xi’s themselves have non-zero variance.

Lemma 5.2. Given two random variables x and y, sup-
pose we form a third random variable z by flipping a
coin with probability c ∈ [0, 1]. If the coin flip comes
up as heads, we let z take the value of x, otherwise we
let z take the value of y. Then Exp[z] = c.Exp[x] +
(1 − c).Exp[y], Var[z] ≥ c.Var[x] + (1 − c).Var[y], and
U[z] = c.U[x] + (1− c).U[y].

Proof. Follows from simple algebra and probability.

Theorem 5.1. For every DAG G, for all V ∈
[Min ~xiVar[XG],Max ~xiVar[XG]], there exists ~xi such
that Var[XG] = V . The same continuum result holds
for Exp[XG] and U [XG] (second moment) as well.

Proof. Let ~xi be the distribution of variables that min-
imizes Var[XG] to Vmin, and let ~yi be the distribution
that maximizes Var[YG] to Vmax. By extending our ear-
lier notation, we will use YG to denote the random vari-
able representing the longest path length from s to t in

DAG G when each edge i has the distribution yi. For
each edge i, we now form a third random variable zi
by flipping a coin with probability c ∈ [0, 1]. If the flip
gives heads, then the zi’s take the values of xi’s; oth-
erwise the zi’s take the values of yi’s. Therefore, the
random variable ZG behaves like XG with probability
c and behaves like YG with probability 1 − c. Hence,
by Lemma 5.2, Exp[ZG] = c.Exp[XG] + (1− c).Exp[YG]
and U[ZG] = c.U[XG] + (1− c).U[YG]. It follows that

Var[ZG] = U[ZG]− (Exp[ZG])2

= c.U[XG] + (1− c).U[YG]

− (c.Exp[XG] + (1− c).Exp[YG])2

Note that if c = 0 then Var[ZG] = Var[XG] = Vmin, and
if c = 1 then Var[ZG] = Var[YG] = Vmax. Hence by the
mean value theorem, for every V ∈ [Vmin, Vmax], there
exists a c ∈ [0, 1] such that Var[ZG] = V .

Lemma 5.3. There exists a vector of distributions
~xi such that within a factor of three, Var[XG] =
Max ~xiVar[XG], Exp[XG] = Max ~xiExp[XG] and
U[XG] = Max ~xiU[XG].

Proof. Let ~wi be the distribution that maximizes the
variance to Vmax = Max ~wiVar[WG]. Similarly, let
~xi be the distribution that maximizes the expectation
to Mmax = Max ~xiExp[XG], and let ~yi be the vari-
ables that maximizes the second moment to Umax =
Max~yiU[YG]. As in the proof of Theorem 5.1, let us
define a random variable zi for each edge i such that
zi is equal to one of wi, xi or yi based on a flip of a
fair three-way coin. Hence, by Lemma 5.2, Var[ZG]
≥ 1

3 [Var[WG] + Var[XG] + Var[YG]] ≥ 1
3Var[WG] =

1
3Vmax. Thus, 1

3Vmax ≤ Var[ZG] ≤ Vmax. By a sim-
ilar argument, the result for the expectation and second
moment of ZG can also be obtained.

Lemma 5.4. Within a factor of three, Max ~xiU[XG] =
Max ~xiVar[XG] + (Max ~xiExp[XG])2.

Proof. A standard equation for variance is Var[XG] =
U[XG] − Exp[XG]2. Hence, U[XG] = Var[XG] +
Exp[XG]2. Clearly, this is at most Max ~xiVar[XG] +
[Max ~xiExp[XG]]2. By using a version of Lemma 5.3,
one can simultaneously obtain Vmax within a factor of
a and Emax with a factor of 1 − a. This gives Emax2

within a factor of (1 − a)2. Solving a = (1 − a)2 gives
1
a = 2.62. The result follows by choosing a to be this
value (1

2.62).

6 Series-parallel graphs

In the previous few sections, we looked at arbitrary
DAGs with a single source node and a single sink

778 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

node. In this section, we consider an special class of
DAGs called series-parallel graphs. We show that the
bounds and algorithms presented in earlier sections can
be simplified for this class of DAGs.

A DAG G is said to be a series graph if it consists
of a single path of edges from the source s to the sink
t. Therefore, XG = Maxp∈P

∑
i∈p xi =

∑
i xi.

A DAG G is said to be a parallel graph if it
consists only of multiple st-edges. Thus, XG =
Maxp∈P

∑
i∈p xi = Maxixi.

The class of series-parallel graphs is defined induc-
tively as follows. As a base case, the graph consisting
of a single st-edge is a series-parallel graph. Given a
set of series-parallel graphs G1, G2, . . . , Gq, a graph G
obtained by linking G1, G2, . . . , Gq sequentially, so that
the sink tj of one is the source sj+1 of the next, is a
series-parallel graph. Similarly, the graph obtained by
placing G1, G2, . . . , Gq in parallel, so that all of them
have a common source node s and a common sink node
t, is a series-parallel graph.

Theorem 6.1. If G is a series graph, then XG =∑
i xi. For such a graph, Max ~xiExp[XG] =

Min ~xiExp[XG] =
∑
imi. In addition, Max ~xiVar[XG] =(∑

i

√
vi
)2.

Proof. The result about the mean follows from the
linearity of expectation. By Theorem 3.1 Max ~xiVar[XG]
= Min ~µi

vi
µi

. However, since
∑
i µi = 1 in a series graph,

we know from Lemma 3.1 that Min ~µi
vi
µi

=
(∑

i

√
vi
)2.

To understand
[∑

i

√
vi
]2 better, let all the vi be equal.

Then
[∑

i

√
vi
]2 = [n.

√
v]2 = n2.v = n.

∑
i vi.

Theorem 6.2. If G is a parallel graph, then XG =
Maxixi. For such a graph, Max ~xiVar[XG] =

∑
i vi.

In addition, Min
[∑

imi, Maximi +
√∑

i vi
]

approxi-
mates Max ~xiExp[XG] within a factor of four.

Proof. G consists of only the source s, the sink t,
and many parallel edges from s to t. The constraints
on ~µi give that µi = 1 and hence Max ~xiV ar[XG] =
Min ~µi

∑
i
vi
µi

=
∑
i vi.

To reason about Max ~xiExp[XG], note that G con-
sists of only the source s, the sink t, and many parallel
edges from s to t. Thus each edge is contained in its own
path, giving τi =

∑
p3i τp = τp. Hence, the requirement

that
∑
p τp = 1 simplifies to

∑
i τi = 1. This makes it

even more clear how τi is a scarce resource that must
be partitioned between the variables.

Given the expectation mi, variance vi, and second
moment ui = vi + mi for each variable xi, let us set

the availability of resource (τi) such that each variable
is exactly at the balancing point between the two pos-
sible outcomes of Min

[
τimi +

√
τi(1− τi)vi, mi

]
. Re-

call from the proof of Theorem 4.1 that this balanc-
ing point occurs when the variable is allocated τ ′i =
m2
i

ui
. Hence, let q =

∑
i τ
′
i =

∑
i
m2
i

ui
. As in the

proof of Theorem 4.4, let ~τi be the assignment of τi’s
that maximizes

∑
i

[
τimi +

√
τi(1− τi)vi

]
subject to

Q(~τi) = q. We claim that this maximization hap-
pens at τi = τ ′i . This is because with τi = τ ′i , each
variable achieves the balance between the two possible
outcomes of Min

[
τimi +

√
τi(1− τi)vi, mi

]
, namely

Mi = τimi +
√
τi(1− τi)vi and mi. If we allocate a

greater value of τi to some variable xi, it would not in-
crease Mi; however if we allocate a lesser value of τi,
it would decrease Mi. Hence, this allocation maximizes∑
i

[
τimi +

√
τi(1− τi)vi

]
.

Now that we understand this balancing point q, let
us try either side of it. If q < 1, then in reality, more
resource is available. This will increase each τi, which
in turn will increase the value of τimi +

√
τi(1− τi)vi.

This means that Min
[
τimi +

√
τi(1− τi)vi,mi

]
will

evaluate to mi. Thus, we will have Exp[XG] =
∑
imi.

On the other hand, if q > 1, then in reality,
less resource is available. This will require us to
decrease each τi, which in turn will decrease the value
of τimi +

√
τi(1− τi)vi. However, this will will make

τimi +
√
τi(1− τi)vi smaller than mi. This gives that

Exp[XG] =
∑
i

[
τimi +

√
τi(1− τi)vi

]
.

From Theorem 4.1, Lemmas 4.1, 4.2, 4.3, and
4.4 and the above analysis for parallel graphs, it
follows that Min

[∑
imi, Maximi +

√∑
i vi
]

approxi-
mates Max ~xiExp[XG] within a factor of four.

Theorem 6.3. If G is a series-parallel graph, then one
can apply the rules for maximum variance in Theo-
rems 6.1 and 6.2 to recursively to obtain Max ~xiVar[XG].

Proof. We will prove this by induction on the depth of
recursion of the series-parallel graph G. The sequential
and parallel bounds,

[∑
i

√
vi
]2 and

∑
i vi respectively,

clearly equal vi for a single edge. Now let us assume that
the theorem holds for d− 1 levels of recursion, and con-
sider a graph G with d levels of recursion. Suppose that
G consists of a number of sub-DAGs G1, G2, . . . , Gq.
For each sub-DAG Gj , let vj = Max ~xiVar[XGj]. By
the induction hypothesis, these are equal to the values
obtained by applying the sequential and parallel rules
recursively. We now consider two cases depending on
whether G is formed by combining these sub-DAGs se-
quentially or in parallel.

779 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Sequential: Suppose G is formed by linking the sub-
DAGs G1, G2, . . . , Gq together sequentially so that the
sink tj of one is the source sj+1 of the next.

By Theorem 3.1, Max ~xiVar[XG] = Min ~µi
∑
i∈G

vi
µi

,
where µi = λb−λa is the length of the spring for edge i
in the steady state of the spring system. For each sub-
DAG Gj , all its nodes must lie between its source node
sj and its sink node tj . Let µj = λtj−λsj be the lengths
that Gj takes up in the spring system. Because the Gi’s
are linked sequentially between λs = 0 and λt = 1, we
have that

∑
j µj = 1.

Theorem 3.1 also gives us that for each sub-DAG
Gj , vj = Max ~xiVar[XGj] = Min ~

µ̂i

∑
i∈Gj

vi
µ̂i

where

µ̂i = λ̂b − λ̂a are the lengths of the springs for edge i in
the steady state of the spring system. These nodes are
spread between λ̂sj = 0 and λ̂tj = 1. If, however, this
system was compressed so that λ̂tj − λ̂sj was no longer
1 but equal to the µj defined for the whole graph G,
then the length of each edge of Gj would be compressed
from µ̂i to µj · µ̂i = µi. Hence,

∑
i∈Gj

vi
µ̂i

changes from

vj =
∑
i∈Gj

vi
µ̂i

to vj
µj

=
∑
i∈Gj

vi
µj ·µ̂i

=
∑
i∈Gj

vi
µi

. We

can conclude that Max ~xiVar[XG] = Min ~µi
∑
i∈G

vi
µi

=
Min ~µi

∑
j

∑
i∈Gj

vi
µi

= Min ~µj
∑
j
vj
µj

. As we have seen,
we have the single constraint on ~µj that

∑
j µj = 1.

The proof that Min ~µj
∑
j
vj
µj

=
(∑

j

√
vj

)2

is identical
to that in Theorem 6.1.

Parallel: For the second case, suppose that G
is formed by putting the sub-DAGs in parallel with
a common source node s and a common sink node
t. Because each sub-DAG Gj has λsj = 0 and
λtj = 1 in the spring system, it follows that
µj = 1 and does not need to be compressed.
It follows that Max ~xiVar[XG] = Min ~µi

∑
i∈G

vi
µi

=
Min ~µi

∑
j

∑
i∈Gj

vi
µi

= Min ~µj
∑
j vj =

∑
j vj .

Theorem 6.4. There is a series-parallel graph G and
values mi and vi of expectations and variances of the un-
derlying edge delay variables, such that Max ~xiExp[XG]
is much less than that obtained by applying the series
and parallel rules in Theorems 6.1 and 6.2 recursively.

Proof. Consider the following counter example. Let G
have two disjoint and similar st paths, each containing
n+ 1 edges. For i ∈ [0, 1], the delay variable of the first
edge in the ith path will be denoted x〈i,0〉. We let its
mean be m〈i,0〉 = m and its variance be v〈i,0〉 = 0. For
j ∈ [1..n], the jth edge in the ith path will be denoted
x〈i,j〉. We let its mean be m〈i,j〉 = ε and its variance be
v〈i,0〉 = v.

Note that when computing
Min

[
τ〈i,j〉m〈i,j〉 +

√
τ〈i,j〉(1− τ〈i,j〉)v〈i,j〉, m〈i,j〉

]
,

τ〈i,j〉m〈i,j〉 will be the minimum for the two first edges
because v〈i,0〉 = 0, and m〈i,j〉 will be the minimum
for the rest of the edges because m〈i,j〉 = ε. Hence
we can easily use Theorems 3.1 and 4.1 to bound the
expectation and variance of XG.

Max ~x〈i,j〉Exp[XG]
= Max ~τ〈i,j〉

∑
i∈[0,1]

∑
j∈[0,n] Min

[
H〈i,j〉, m〈i,j〉

]
,

where H〈i,j〉 = τ〈i,j〉m〈i,j〉 +√
τ〈i,j〉(1− τ〈i,j〉)v〈i,j〉

= τ〈0,0〉m〈0,0〉 + (1− τ〈0,0〉)m〈1,0〉
+
∑
i∈[0,1]

∑
j∈[1,n]m〈i,j〉

= m+ 2nε

Max ~xiVar[XG] = Min ~µi
∑
i∈[0,1]

∑
j∈[0,n]

v〈i,j〉

µ〈i,j〉

=
∑
i∈[0,1]

∑
j∈[1,n]

v

1/n

= 2n · nv = 2n2v

Note that µ〈i,0〉 might as well be (almost) zero because
v〈i,0〉 = 0. Since for each path i ∈ [0, 1] we need∑
j∈[0,n] µ〈i,j〉 = 1, by symmetry the other edges have

µ〈i,j〉 = 1
n .

Now let us bound Exp[XG] by recursively applying
the bounds within the series-parallel structure of G.
For i ∈ [0, 1], let Gi be the ith path of G and let
Xi =

∑
j∈[0,n] x〈i,j〉 be the variable associated with this

path. We can easily use Theorem 6.1 to bound the
expectation and variance of Xi.

Max ~x〈i,j〉Exp[Xi] =
∑
j∈[0,n]

m〈i,j〉 = m+ nε

Max ~x〈i,j〉Var[Xi] =

 ∑
j∈[0,n]

√
v〈i,j〉

2

=
[
0 + n

√
v
]2

= n2v

Having the variance and expectation of each Xi, we
can now use these within Theorem 6.2 to compute the
expectation and variance of G = Maxi∈[0,1]Xi.

Max ~x〈i,j〉Exp[XG]

= Min
[∑

i∈[0,1] Exp[Xi], J
]
, where

J = Maxi∈[0,1]Exp[Xi] +
√∑

i∈[0,1] Var[Xi]

= Min
[
2 · (m+ nε), (m+ nε) +

√
2 · (n2v)

]
= m+ nε+ n.

√
2v or 2 · (m+ nε)

>> m+ 2nε in general.

Max ~xiVar[XG] =
∑
i∈[0,1]

Var[Xi] = 2n2v

Note that if v and m are sufficiently large, the
maximum expectation m+ 2nε of XG is much less than

780 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

bothm+nε+n
√

2v and 2·(m+nε) computed recursively.
This proves that the recursive bound, though sound,
may be very conservative.

In contrast, the maximum variance 2n2v of XG is
exactly equal to the amount computed recursively.

7 Conclusion

In this paper, we presented tight upper bounds of the
mean and variance of the longest path length in a single
source, single sink DAG with non-negative edge weights.
We discussed a new algorithm inspired by balance of
forces in a system of strange springs to compute the
maximum variance and the maximum mean of the
longest path. We also presented cake distributions,
and showed their importance in achieving these upper
bounds. We also presented closed-form bounds for an
important class of graphs called series-parallel graphs.
Unfortunately, our lower bound analysis is conservative,
and does not provide much insight into the nature
of distributions that can achieve such lower bounds.
As part of future work, we intend to work on these
lower bounds, and also on the more general problem of
bounding the mean and variance of the time separation
of two arbitrary events (not necessarily source and sink)
in a precedence constraint graph.

References

[1] P. Buchholz and P. Kemper. Numerical analysis of
stochastic marked graph nets. In PNPM ’95: Pro-
ceedings of the Sixth International Workshop on Petri
Nets and Performance Models, page 32, Washington,
DC, USA, 1995. IEEE Computer Society.

[2] S. Chakraborty and R. Angrish. Probabilistic timing
analysis of asynchronous systems with moments of de-
lays. In International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages
99–108. IEEE Computer Society, 2002.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (2nd edition).
The MIT Press, 2001.

[4] H. A. David and H. N. Nagaraja. Order Statistics (3rd
edition). Wiley, New Jersey, 2003.

[5] A. Dennis, B. H. Wixom, and M. Roth. System
Analysis and Design (3rd edition). Wiley-India, 2006.

[6] W. Feller. An Introduction to Probability: Theory and
Its Applications, Vol. 1 (3rd edition). Wiley India,
2008.

[7] Y.-K. Kwok and I. Ahmad. Dynamic critical-path
scheduling: An effective technique for allocating task
graphs to multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 7(5):506–521, 1996.

[8] P.I. Richards. Precedence constraints and arrow dia-
grams. SIAM Review, 9(3):548–553, 1967.

[9] R. Sedgewick. Algorithms in C (3rd edition). Dorling
Kindersley, 2008.

[10] M. Sereno. Approximate mean value analysis for
stochastic marked graphs. IEEE Trans. Softw. Eng.,
22(9):654–664, 1996.

[11] A. Xie and P. A. Beerel. Performance analysis of
asynchronous circuits and systems using stochastic
timed Petri nets. In A. Yakovlev, L. Gomes, and
L. Lavagno, editors, Hardware Design and Petri Nets,
pages 239–268. Kluwer Academic Pub., March 2000.

781 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

