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Abstract

We consider the problem of computing a minimum-

distortion bijection between two point-sets in R
2. We prove

the first non-trivial inapproximability result for this prob-

lem, for the case when the distortion is constant. More

precisely, we show that there exist constants 0 < α < β,

such that it is NP-hard to distinguish between spaces for

which the distortion is either at most α, or at least β, under

the Euclidean norm. This addresses a question of Kenyon,

Rabani and Sinclair [KRS04], and extends a result due to

Papadimitriou and Safra [PS05], who gave inapproximabil-

ity for point-sets in R
3.

We also apply similar ideas to the problem of computing

a minimum-distortion embedding of a finite metric space into

R
2. We obtain an analogous inapproximability result under

the �∞ norm for this problem. Inapproximability for the

case of constant distortion was previously known only for

dimension at least 3 [MS08].

1 Introduction

Over the recent years, metric embeddings have resulted
in some of the most beautiful and powerful algorithmic
techniques, with applications in many areas of computer
science [LLR95, Ind01]. For two metric spaces (X, d),
(Y, ρ), the key parameter that quantifies the usefulness
of an embedding f : X → Y is the distortion which is
defined to be

dist(f) = max
x,y∈X

ρ(f(x), f(y))
d(x, y)

· max
x′,y′∈X

d(x′, y′)
ρ(f(x′), f(y′))

.

For many interesting classes of spaces the worst-case
distortion of such a mapping can be very large. A way of
bypassing this obstacle is the design of algorithms that
approximate the minimum distortion. Several results of
this kind have been recently obtained [KRS04, PS05,
HP05, KS07, CMO+08, BDG+05, BCIS05, BCIS06,
Edm07, BIS07, MS08]. They all fall in one of the
following two categories:
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• Given as an input two metric spaces of the same
size, we are asked to approximate the minimum
distortion bijection between them.

• Given one metric space, we are asked to approxi-
mate the minimum distortion injection into a fixed
infinite metric space.

In almost all cases, either the ambient space of the point
sets for the bijection problem, or the host space for the
injection problem is R

d for a fixed d, equipped with
some �p norm.

Although the bijection and injection problems have
inherent differences, there are some striking similarities
between the current approximability status of both. For
the case d = 1 (i.e. the real line), both problems are
known to be hard to approximate within polynomial
factors [HP05, BCIS05], and there are exact algorithms
when the distortion is sufficiently small [KRS04, BIR].
For d ≥ 3 it is known that both problems are hard
to approximate, even when the optimum distortion is
constant [PS05, MS08].

The above discussion naturally leads to the follow-
ing question:

For d = 2, what is the approximability of
the bijection and injection problems when the
optimum distortion is constant?

We remark that for the case of bijections this ques-
tion has been posed by Kenyon, Rabani and Sinclair
[KRS04], and has also been emphasized by Papadim-
itriou and Safra [PS05], and by Khot and Saket [KS07].
We give the first non-trivial inapproximability bounds
for this problem. More specifically, we prove the follow-
ing two results.

Theorem 1.1. (Inapproximability for bijections)

It is NP-hard to decide whether the minimum distortion
of a bijection between two finite point sets in R

2 under
the Euclidean norm is either at most 3.61 + ε, or at
least 4 − ε, for any ε > 0.

Theorem 1.2. (Inapproximability for injections)

It is NP-hard to decide whether the minimum distortion
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of an injection of a finite metric space into R
2 under

the �∞ norm is either at most 3, or at least 3.5− ε, for
any ε > 0.

The approximability of both problems when the
optimal distortion is arbitrarily close to 1 remains an
important open problem.

1.1 Our techniques The common theme used in the
proofs of both theorem 1.1 and 1.2 is as follows. We
reduce from a Satisfiability problem. The main idea
is to construct spaces for which there are essentially
two possible low-distortion embeddings, locally. As is
typical, this basic binary gadget is then used to encode
necessary boolean constrains. We now elaborate on each
particular reduction.

Bijections We build a binary gadget by construct-
ing a pair of point sets such that locally there are (es-
sentially) only two possible low-distortion bijections be-
tween them. This is very similar to the ideas used by
Papadimitriou and Safra [PS05] to locally encode 3-
Coloring. The extra difficulty in our case however is that
we cannot avoid “crossings” between different gadgets.
This problem does not appear in R

3 since by appropri-
ately “bending” the point sets one can easily avoid all
such crossings. We bypass this obstacle by considering
gadgets that have distances in two different scales. At
places where two gadgets cross, one of them has dis-
tances in a small scale, while the other in a large scale.
This allows us to show that the two crossing gadgets are
sufficiently independent.

Injections Previous constructions of binary gad-
gets for the injection problem fall in one of two cat-
egories: In the first category, the lower bound on
the distortion is obtained via a volume argument (e.g.
[BDG+05, BCIS06, BCIS05]). This means that the lo-
cal volume growth of the input space is higher than
growth of the host space, and therefore some distances
have to expand. This technique however works only for
super-constant distortion.

In the second category, the distortion bound is ob-
tained by a topological argument (e.g. [Mat90, MS08]).
The idea here is to obtain a metric space by dis-
cretizing a topological space. Then, topological non-
embeddability can be used to prove that a pair of points
has to contract, and therefore the distortion must be
high. This method works even for constant distortion
when d ≥ 3, but due to the topological restrictions of
the plane, it does not appear to be sufficient for our
setting.

We overcome the limitations of the above techniques
by designing gadgets that utilize both the volume and
the topological argument. To the best of our knowledge,
this is the first non-embeddability proof of this kind. In

the heart of our analysis is a characterization of low-
distortion embeddings of d-grids into R

d, what could be
of independent interest.

1.2 Related work
Bijections The minimum-distortion bijection

problem was introduced by Kenyon, Rabani and
Sinclair [KRS04]. Among other results, they gave an
exact polynomial-time algorithm for d = 1, provided
that the distortion is less than 3 + 2

√
2. This result

was improved by Chandran et al. [CMO+08] who
gave an algorithm that works for distortion less than
5 + 2

√
6. For d = 3, Papadimitriou and Safra [PS05]

proved that the distortion is hard to approximate
within a factor better than 3, even when the optimum
is arbitrarily close to 1. Subsequently, it was shown by
Hall and Papadimitriou [HP05] that even for d = 1,
the problem is hard to approximate within polynomial
factors, provided that the distortion is polynomially
large. For bijections between general metric spaces, an
Ω(log1/4−ε n)-approximability result was obtained by
Khot and Saket [KS07].

Injections For d = 1, Bădoiu et al. [BCIS05]
showed that the problem is hard to approximate within
polynomial factors, when the distortion is polynomial.
They also gave an approximation algorithm when the
input is a tree metric. A similar approximation result
has also been obtained for unweighted graphs by Bădoiu
et al. [BDG+05].

For d = 2, it has been shown by Bădoiu et
al. [BCIS06] that the problem is NP-hard. They also
gave an approximation algorithm for ultrametrics.

For d ≥ 3, Matoušek and Sidiropoulos [MS08] have
shown that the problem is hard to approximate within
polynomial factors, even when the distortion is con-
stant. For d = 2 they obtained approximability within
polynomial factors, when the distortion is polynomially
large.

Edmonds [Edm07] proved that the problem under
the �∞ norm is NP-hard for d = 3, and also gave a
polynomial-time algorithm for d = 2.

For unbounded-dimensional spaces, it has been
shown by Linial, London and Rabinovich [LLR95]
that an optimal embedding into �2 can be computed
via semidefinite programming. In contrast, deciding
whether a metric can be isometrically embedded into
�1, is NP-hard [DL97]. Lee, Naor and Peres [LNP06]
have obtained a O(1)-approximation algorithm for em-
bedding tree metrics into �p.

2 Inapproximability for bijections
In this section, we give the proof of theorem 1.1.
We will reduce the problem one-in-three 3SAT to our
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problem. One-in-three 3SAT is a variant of the 3-
satisfiability problem. Like 3SAT, the input instance
ϕ = C1 ∧ . . . ∧Cm is a collection of clauses, where each
clause Cj is a collection of three literals, where each
literals i either a variable χi or its negation. The one-
in-three 3SAT problem is to determine whether there
exists a truth assignment to the variables so that each
clause has exactly one true literal. This problem is well
known to be NP-complete [Sch78]. Given an instance
ϕ = C1 ∧ . . . ∧ Cm of one-in-three 3SAT, we construct
an instance 〈S, T 〉 of the bijection problem such that
if ϕ is satisfiable, then there is a bijection between S
and T with distortion at most α (Lemma 2.5) and if
ϕ is not satisfiable (Lemma 2.4), then every bijection
has distortion at least β, where β > α. The constants
α, β > 1 will be specified later. Given an instance ϕ, we
construct 〈S, T 〉 as follows. As is typical, the instance
〈S, T 〉 has a variable gadget for each variable χi in ϕ, a
clause gadget for each clause Cj , and a literal gadget for
each literal 〈χi, Cj〉.

We begin with an informal description.

Variable Gadgets: The gadget for the variable χi

consists of two touching gears, one corresponding to
χi and the other to χ̄i. A gear spinning clockwise
corresponds to χi (respectively χ̄i) being set to true,
while spinning counter clockwise corresponds to it being
set to false. As is the case with two touching gears,
they are designed so that they must spin in opposite
directions. This ensures that χi and χ̄i have opposite
values.

Gears: A gear consists of a circle of points alternating
one from S and next from T (and a few extra anchoring
points). Lemma 2.2 proves that any low distortion
bijection needs to either map each point in S to the
next clockwise point in T or map each to the next
counter clockwise point. This can be visualized as
the gear spinning either clockwise or counter clockwise.
Lemma 2.3 proves that where the gears meet the points
in S must be mapped in the same direction. This can be
visualized as the teeth of the two touching gears moving
in the same direction, causing the gears themselves to
move in opposite directions.

Chains: A chain consists of a line of points alternating
one from S and the next from T . It both begins and
ends with a point from T . One is referred to as the front
end and the other as the back end. If each point in S is
mapped to the next point in T towards the front end,
then we say that the front end is pushing, otherwise it is
pulling. Similar, with the back end. Note that one end
is pushing iff the other end is pulling. As with a gear,
Lemma 2.2 proves that for any low distortion bijection,
one of these is the case.

Literal gadgets: For each appearance of a variable
χi in some clause Cj , the gadget for the literal 〈χi, Cj〉
consist of a single chain. If χ appears positively in Cj ,
then the middle of this chain connects with the gear
corresponding to χi otherwise it connects to that for
χ̄i. The chain is oriented on the gear so that the front
end is pushing iff the corresponding literal χi or χ̄i is
true, which is also iff the back end is pulling.

Clause gadgets: The gadget for the clause Cj =
χ〈j,1〉∧χ〈j,2〉∧χ〈j,3〉 has a spot where the front ends of its
three literal gadgets meet and a spot where their three
back ends meet. Their front ends meet by having their
front end point, which is from T , be in fact the same
point and having the three chains pointing towards it
each separated by an angle of 120 degrees. We refer
to this common T point as the front end of the clause
gadget. Note that exactly one of the three chains has its
front-most S point be mapped (pushed) to this middle
T point. Hence, exactly one of the literals in the clause
is true. In a complementary way, the three back ends
of the chains also meet at 120 degrees. However, in
this case, there is one extra point from S in the middle,
which we refer to as the back end of the clause gadget.
This center point can be mapped (pulled out) to the T
point ending of exactly one of the three chains. Again,
this corresponds to there being exactly one of the literals
being true. Since the chain for each literal pushes at one
of its ends iff it is pulling at the other, which of the three
literals is true is consistent at the two ends of the clause
gadget.

Crossings: The chains must lie in the plane and must
travel from a variable gadget to the two spots for each
clause gadget. If one did not want these chains to cross
each other, one could imagine doing the reduction to
planar one-in-three 3SAT, which is in fact NP-complete
[MR06]. However, by looking at Figure 5, one can see
that simply for one clause, there needs to be a crossing of
the chains to get the three front ends and the three back
ends to the correct spots in the clause gadget. Luckily,
chains can cross without effecting each other. The one
slowly has its points further and further apart and the
other has its points closer and closer together until they
can cross without conflict.

2.1 Gears Let k = Ω(1/ε5) be an integer. A gear
gadget of size k is a gadget g with points {p0, . . . , p2k−1}
arranged in a circle so that consecutive points are
distance one apart. The even indexed points are in S
and the odd indexed points are in T . See figure 1. The
gadget also has ten extra points xi, yi, zi, vi, and wi as
depicted in the figure. We denote by S(g) and T (g) the
points of g in S and T , respectively.
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Figure 1: The gear gadget. Black dots denote points in
S and white dots denote points in T .

Lemma 2.1. Let g be a gear gadget. Let f : S(g) →
T (g) be a bijection with distortion less than 4 − o(1).
Then, there exists a spin s ∈ {−1, 1}, such that for any
pi ∈ S, we have f(pi) = pi+s mod 2k. We denote this s
by spinf (g).

Proof. Initially ignoring the extra x, y, and z points,
the circle of points from S could rotate any amount and
flipped in order to be mapped to those in T . This would
result to an isometry because the distance between any
points pi and pj in S would be the same as the distance
between the corresponding points f(pi) and f(pj) in
T . We will argue now that this is the only way to
map the points without creating 4 − o(1) distortion.
By way of contradiction, consider a different mapping.
Such a mapping would require two consecutive points
pl and pl+2 in S that are mapped to points f(pl)
and f(pl+1) in T that are distance more than two
apart. In fact, the next option is that they are distance
4 − o(1). The o(1) arises from the curvature of the
circle, which is made small by making k large. This
gives that exp(f) ≥ ‖f(pl+1) − f(pl) |2/‖pl+1 − pl‖2 ≥
4−o(1)
2−o(1) = 2 − o(1). Similarly, exp(f−1) ≥ 2 − o(1) and
dist(f) = exp(f)×exp(f−1) ≥ 4−o(1). This contradicts
the distortion being only 4 minus a smaller amount.
Hence, the S circle can only be rotated by some amount
and possibly flipped.

To ensure that it does not rotate by more than 1
or −1, we add the z, v and w points. To ensure that it
does not flip, we add the x, and y points. Because z1, v1
and w1 are so close together, they must be mapped close
together or else the distortion would be way too big, i.e.
f({z1, v1, w1}) = {z2, v2, w2}. Similarly, f({x1, y1}) =
{x2, y2}.

We now argue that f(p0) is either p1 or p2k−1.
This determines the spin s ∈ {1,−1}. Assume for the

sake of contradiction that f(p0) = pt, where |t| > 1.
Then, exp(f) ≥ ‖f(p0)−f(x1)‖2

‖p0−x1‖2
>

√
32+12

1 =
√

10. Also,
f−1(p1) 
= p0 means that f−1(p1) at best is p2. This
gives that exp(f−1) ≥ ‖f−1(p1)−f−1(x2)‖2

‖p1−x2‖2
≥

√
22+12√
12+12 =√

5/2. Therefore the distortion of f is at least 5, a
contradiction. By similar considerations we conclude
that f(p3k/2) is either p3k/2+1 or p3k/2−1. This ensures
that the S circle does not flip before mapping to the T
circle.

2.2 Chains A chain is similar to a gear except open.
It is a path of points 〈p0, p1, p2, . . . , p2k〉 with the odd
indexed points in S and the even indexed points in T ,
beginning and ending with a point in T . We call the
set of these points the body of the chain. Also there are
anchor points x1, x2, y1, y2 placed nearest to the point
pk/3. We assume w.l.o.g. that pk/3 ∈ S. As with gears,
for a chain g we denote by S(g) and T (g) the points of
g in S and T , respectively. See figure 2.

Figure 2: A chain.

An additional complication is that in order to allow
different chains to cross each other, the points in a
chain starting at distance 1 apart, need to be able to
get further and further apart exponentially until there
is a gap between them of some large size M and then
get closer and closer together again until they are again
distance 1 apart. More formally, we require that for
some fixed and sufficiently large parameters N �M >
0, we have for any i, j ∈ {0, . . . , 2k}:
• ‖pi − pi+1‖2 ∈ [1,M ], ensuring that the distances

are within a reasonable range,

• With |i − j| ≤ N , ‖pi − pj‖2 ≥ 1
1+ε

∑j−1
t=1 ‖pt −

pt+1‖2, ensuring that the chain does not curve too
quickly so that locally it looks like a straight path,

• With |i− j| > N , ‖pi − pj‖2 > N , ensuring that it
does not circle back too close to itself (or to another
gadget except where specified).

Finally, we say that some odd index γ ∈ {N, . . . , 2k−N}
is a gap if ‖pγ − pγ+1‖2 = M .

• If γ1 
= γ2 are gaps, then |γ2 − γ1| > 2N , ensuring
that gaps are sufficiently far apart.
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• For each t ∈ {1, . . . , N}, we have

‖pγ+t − pγ+t+1‖2 = ‖pγ−t − pγ−t+1‖2

= max
{

1,
M

2.2(1 + ε)t−1

}
,

ensuring exponential decay on either side of the
gap. The factor of 2.2 will become clear later in
the analysis.

• For i such that |γ − i| > N for all gaps γ, we have
‖pi − pi+1‖2 = 1, ensuring that distances return to
one between gaps.

• Finally, for any gap γ we have |γ − k/3| > N ,
ensuring that all gaps are far enough from the
anchor point.

The proof of the following lemma is very similar
to the one for lemma 2.1, so we only sketch its proof.
An additional complication is that we can only enforce
a consistent motion on the chain for points that are
sufficiently far apart from the gaps.

Lemma 2.2. Let g be a chain gadget, and let f : S(g) →
T (g) be a mapping with distortion less than 4 − o(1).
Then, there exists a spin s ∈ {−1, 1} satisfying the
following property. For any pi ∈ S such that γ − 10 ≤
i < γ + 10 for all gaps γ, we have f(pi) = pi+s. We
denote this s by spinf (g). (Chains actually push or pull,
but we keep the notation of spin to be consistent with
gears.)

Proof. [Proof sketch] Let γ1, . . . , γt be the gaps of the
chain. Let c0, c1, . . . , ct be the sequences of points
obtained after removing points pj with γl − 10 ≤ j <
γl + 10 for some gap γl.

Since f has distortion less than 4 − o(1), we can
argue as in the case for gears (lemma 2.1) that for
every ci, consecutive points in S should be mapped to
consecutive points in T . Also observe that since each
ci is sufficiently long, the mapping f cannot flip ci.
Therefore, for every ci there exists si ∈ Z such that
for every pj ∈ ci we have f(pj) = pj+s.

We next argue that all the si must be equal. For
each i ∈ {0, . . . , t−1} let c′i be the set of points between
ci and ci+1. These are exactly the points that are
near the gap γi. Since the distortion is small, the only
points that can be mapped in T (c′i) are those from
S(ci) ∪ S(c′i) ∪ S(ci+1). By counting we therefore have
that the number of points from S(ci) that are mapped
to T (c′i) must be equal to the number of points from
S(c′i) that are mapped to T (ci+1). Thus, si = si+1 for
any i, implying that all si are equal.

Since the anchor point is close to some ci∗ , we
deduce that si∗ ∈ {−1, 1}, finishing the proof.

2.3 Crossing chains We will now describe how two
chains c1 and c2 can cross while keeping their spins s ∈
{−1, 1} independent. Let p0, . . . , p2k and p′0, . . . , p′2k′ be
the points in the body of c1 and c2, respectively. Let
Γ1, Γ2 be the polygonal curves obtained by connecting
consecutive points in the body of each one of c1 and c2.
Then, we say that the chains c1 and c2 cross if Γ1 and
Γ2 intersect at a point p∗ such that (figure 3)

• p∗ lies at the middle of a gap segment 〈pi, pi+1〉,
with ‖pi − pi+1‖2 = M ,

• p∗ lies at the middle of a non-gap segment〈
p′j , p

′
j+1

〉
, with ‖p′j − p′j+1‖2 = 1, and

• the segments 〈pi, pi+1〉 and
〈
p′j, p

′
j+1

〉
are orthogo-

nal.

Figure 3: Crossing chains.

2.4 Connecting gears and chains In our construc-
tion, a variable gadget consists of two gear gadgets that
are connected so that they have opposite spins. Also
the literal gadget for 〈χi, Cj〉 consists of a chain which
must connect to the gear gadget for the literal χi or χ̄i

so that it pushes or pulls depending on the spin of the
gear.

We now describe a way to arrange a gear gadget g1
and either a chain or a gear gadget g2 so that in any
embedding f with distortion less than 4 − o(1), they
must have opposite spins spinf (g1) = −spinf (g2). For
the case of two gears we simply place the centers of g1
and g2 at distance r1 + r2 + ε, where r1, r2 = Ω(1/ε5)
are their respective radii. We also rotate them so that
they meet at a point from S. See figure 4. For the case
of a gear and a chain we apply the same construction by
bending the chain so that locally it looks like a circular
arc of appropriate radius. We also make sure that all
pairs of consecutive points of the chain on this circular
arc are at distance 1. In both cases we say that g1 and
g2 are connected.

Lemma 2.3. Let g1, g2 be two gear/chain gadgets that
are connected as above and let f : S(g1) ∪ S(g2) →
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Figure 4: A connection.

T (g1) ∪ T (g2) be a mapping with distortion at most
4 − o(1). Then, spinf (g1) = −spinf (g2).

Proof. Suppose spinf (g1) 
= −spinf (g2). Let p ∈ S(g1),
p′ ∈ S(g2) be the closest pair of points between g1 and
g2. We have exp(f) ≥ ‖f(p) − f(p′)‖2/‖p − p′‖2 =
Ω(1/ε). It is also clear that exp(f−1) = Ω(1), a
contradiction.

2.5 Putting everything together We are now
ready to describe how all the different pieces of the re-
duction can be combined to construct the instance to
the embedding problem. For every variable we intro-
duce a copy of the variable gadget. Similarly, for every
clause we introduce its front end in T and its back end in
S. We make sure that all these gadgets are sufficiently
far from each other.

Finally, for every literal 〈χi, Cj〉 we have a chain
c〈i,j〉 that starts from the front end of Cj and ends
at the back end of Cj . More precisely, the front end
of the chain is the same as the one of Cj , and its
back end points towards the back end of Cj (figure
5). The three front ends of the chains of a clause meet
at 120 degree angles, and similarly for the back ends.
The exact configuration is given in figures ?? and ??.
The chain also bends appropriately so that it connects
to the appropriate gear of the variable gadget for χi.
Whenever two chains need to cross, we simply introduce
a crossing as explained in section 2.3.

Figure 5 gives a complete example for the clause
(χ1 ∨ χ̄2 ∨ χ3). Note that in the figure, the chain
corresponding to the literal χ3 is actually connected
to the gear gadget for the literal χ̄3. This is done
only to reduce the number of crossings, and make the
figure easier to read. The resulting construction is still
correct because the chain is connected to the gear with
an opposite (i.e. clockwise instead of anti-clockwise)
orientation.

2.6 Sufficiently gadget-respecting maps The
previous lemmas all assume that the maps f : S → T

are gadget-respecting, i.e. the points in S from one gad-
get are only mapped to points in T from the same gad-
get. We will not be able to prove that this is completely
true. However, we will prove that low distortion bijec-
tions are sufficiently gadget-respecting for these previ-
ous lemmas to still hold.

We don’t have a problem for pairs of gadgets that
are sufficiently far apart, because we cannot have the S
points of one gadget mapped to the T points of more
than one far apart gadgets. Also the gadgets will be of
different sizes k and hence the S points of one must be
mapped to the correct one in T .

The difficulty arises when two gadgets g1 and g2
connect. To ensure that our bijections are gadget-
respecting with respect to such pairs, we will use the
same trick as we did with the anchors x1 and x2. We
assign these gadgets two different duplication integers
d(g1) and d(g2). Then each point in the gadget gi is
replaced by a cloud of d(gi) points that have ε2 distance
between them. Any low distortion bijection cannot map
two S points in the same cloud to T points in different
clouds or to points in a cloud with a different duplication
number d(gi).

To ensure that all low distortion bijections are
(sufficiently) gadget-respecting, it is sufficient to set
the duplication numbers as follows. For each variable
χ, its gadget consists of two connecting gears. Give
one d(gi) = 1 and the other d(gi) = 2. These same
duplication numbers can be used for every variable
because the variable gadgets are far apart. For all
chain gadgets set d(gi) = 3. This ensures gadget
respectiveness between the gears and the chains. Chains
for literal gadgets from different clauses are far enough
apart so that they do not interact with each other.

The only places remaining where gadgets with the
same duplication number are close enough to be non-
gadget-respecting is at chain crossings and at the ends
of the three chains for literals within the same clause.
Observe that near the point where two chains cross,
consecutive points are within distance 1 in one of the
chains, and within distance M � 1 in the other.
Similarly with the case of anchors, this ensures that
the map is sufficiently gadget-respecting around the
crossing point.

It remains to deal with the front and back ends
of the three chains for literals within the same clause
that meet at two spots in the clause gadget. These
three chains cannot have different duplication numbers
because the middle point where the three meet does
in fact need to be able to map to any of the three
chains. We argue that any non-gadget-respectiveness
at the ends of the chains is sufficiently localized not to
effect the proof of Lemma 2.2 stating that the spin of
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Figure 5: A clause gadget connected to the variable gadgets. The anchor points are omitted.

the chain (at least in the middle of the chain away from
these connecting spots) is either 1 or −1.

2.7 No instances

Lemma 2.4. Let 〈S, T 〉 be as described for the instance
ϕ. Let f : S → T be a bijection with distortion less than
4 − o(1). Then from f , we can construct a satisfying
assignment for ϕ.

Proof. Given such a bijection f , Lemma 2.1 proves that
each gear has a spin in {−1, 1}. Hence, it is well defined
to construct an assignment by setting χi to be true iff
the first gear in the corresponding variable gadget has
clockwise spin 1. Lemma 2.2 proves each chain has
a spin in {−1, 1} and Lemmas 2.3 proves connecting
gears/chains have opposite spins. The discussion during
the first part of the reduction in Section 2 then argues
that the front ends of literal gadgets push iff the
corresponding literals are satisfied. It goes on to argue
that for each clause, at exactly one of its three literal
gadgets pushes. This would complete the proof that the
constructed assignment satisfies ϕ.

The only difficulty is that as the three literal
gadgets converge at this spot in the clause gadget, the
bijection may cease to be gadget-respecting. We solve
this problem by drawing a circle around each of the
meeting spots sufficiently big that the literal gadgets
have become far enough apart by the time they leave
the circle that we can be assured that the bijection
is gadget-respecting outside these circles and from one
circle to the next. We do not need to worry at all about

how S points in one circle get mapped to T points in
the same circle. Recall that the front ends of the literal
gadgets for the three literals in a clause meet by having
their front most point, which is from T , be in fact the
same point. We can also set the circle to intersect each
literal gadget at a segment 〈pi, pi+1〉 with pi ∈ T and
pi+1 ∈ S. Together these mean that the number of
T points in the circle is two fewer than the number of
S points. A simple counting argument then gives that
two of the three literal gadgets must have a point from
S mapped from inside the circle to a point outside the
circle. This must be a mapping from pi+1 ∈ S to pi ∈ T .
By definition, this is pulling, not pushing. This proves
that exactly one of the three literal gadgets is pushing.
Hence, exactly one of the literals in the clause is true.

2.8 Yes instances

Lemma 2.5. Let 〈S, T 〉 be as described for the instance
ϕ. Given a satisfying assignment for ϕ, we can con-
struct a bijection f : S → T with distortion at most
3.61 + o(1).

The proof is deferred to the full version of this
paper.
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A Inapproximability for injections
In this section we give the proof of theorem 1.2. We will
reduce the problem Planar-3SAT to our problem. Recall
that an instance of Planar-3SAT is a CNF formula
ϕ = C1 ∧ . . . ∧ Cm, on n variables χ1, . . . , χn, such
that the incidence bipartite graph for ϕ is planar.
Let Gϕ be the incidence graph of ϕ, with V (Gϕ) =
{χ1, . . . , χn, C1, . . . , Cm}, and such that {χi, Cj} ∈
E(Gϕ) iff the variable χi appears in the clause Cj .
Given such a formula ϕ, we will construct a finite
metric space Mϕ. If ϕ is satisfiable, we will produce
an embedding of Mϕ into �2∞ with distortion 3. If ϕ is
not satisfiable, we show that every such embedding has
distortion of at least 7/2−ε, for ε > 0 that can be made
arbitrarily small.

The metric space Mϕ will be produced in stages
by switching between an embedding representation, a
graph representation, and the standard set of distances
representation. We start by defining within R

2 an L×L
checker board, where each 〈u, v〉 ∈ [L]2 indexes a radius
one (i.e. 2 × 2) square of the board. (It is the domino
pieces not the board that is coloured black and white).
Over this board, a fine grid of points X ⊆ R

2 is laid.
Note that X is an embedding of these points in that it
specifies a location for each of them. Next we define
a matrix Hϕ ∈ {0, 1}L×L. When Hϕ[u, v] = 1, then
the 1×1 square of grid is cut out of the center of the
2×2 square indexed by 〈u, v〉. Denote the new set of
embedded points by X−Hϕ. From this embedding, we
can define the complete graph G(X−Hϕ) which has a
vertex for each point in X−Hϕ such that the length of
each edge is given by the �2∞ distance between them in
this embedding. Then we will change this graph into
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G(X−Hϕ)+Vϕ +Eϕ by adding some new vertices Vϕ

and some new edges Eϕ. Some of these new edges will
be between already existing vertices from X−Hϕ. In
this case, the new edges are shorter than the original
ones. Finally, Mϕ = M(G(X−Hϕ)+Vϕ +Eϕ) will be
the metric space whose points consist of the vertices of
the graph G(X−Hϕ)+Vϕ+Eϕ and whose distances are
given by the length of the shortest-path between these
vertices in this graph. We now repeat these steps a little
more formally.

A.1 The grid The initial fine grid is

X = {0, ε, 2ε, ..., 2L− ε, 2L}2.

where ε is the distance between each point and its four
nearest neighbors. For pair of points p, q ∈ R

2, we
denote by X [p, q] the rectangular part of X between
p and q, by X◦[p, q] its interior, and by X ′[p, q] its
boundary, namely

X [p, q] = {x ∈ X : p1 ≤ x1 ≤ q1 and p2 ≤ x2 ≤ q2}
X◦[p, q] = X [〈p1 + ε, p2 + ε〉 , 〈q1 − ε, q2 − ε〉]

X ′[p, q] = X [p, q] \X◦[p, q]

For example, for each 〈u, v〉 ∈ [L]2, the checker board
with center 〈u, v〉 is covered by the grid X [〈u − 1, v −
1〉, 〈u + 1, v + 1〉]. When Hϕ[u, v] = 1, the interior
X◦[〈u − 1

2 , v − 1
2 〉, 〈u + 1

2 , v + 1
2 〉] of the 1×1 square

of grid in its center is cut out. Cutting out all of these
center square gives

X−Hϕ = X−
⋃

〈u,v〉∈Hϕ
−1(1)

X◦[〈u− 1
2 , v− 1

2 〉, 〈u+ 1
2 , v+

1
2 〉]

Let

X ′(u, v) = X ′[〈u− 1
2 , v − 1

2 〉, 〈u+ 1
2 , v + 1

2 〉]
denote the rim of the hole within the 〈u, v〉th square of
the checker board.

A.2 The domino gadget A domino gadget K〈u,v〉
is defined to consist of an adjacent pair of squares 〈u, v〉
and 〈u+2, v〉 of the checker board, both of whose center
square has been cut out. See Figure 6(a). To this, we
add a new vertex x〈u,v〉 ∈ Vϕ and an edge in Eϕ of
length 1 1

2 between this node and every point in the two
hole rims X ′(u, v) ∪ X ′(u + 2, v). A useful image is
that embedding the metric space Mϕ requires placing a
domino piece on top of this domino gadget. A domino
piece consists of one black square and one white square.
Placing it with the black square on the left corresponds

to embedding the extra vertex x〈u,v〉 in the center of the
left hole, while placing it with the black square on the
right corresponds to embedding x〈u,v〉 in the right hole.
We will prove that every lower distortion embedding
does one of these two acts. Being forced to choose
between these binary options will correspond to setting
the variable xi to zero or one.

A.3 The clause gadget For every clause Cj , we
define a clause gadget Cj which is similar to the domino
gadget, except that it uses three squares of the checker
board arranged like an ’L’ as in figure 6(b). Let
C1

j , C2
j , C3

j denote its three hole rims and denote the
single additional vertex by yj.

A.4 The variable gadget For every variable χi in
ϕ, we will have a variable gadget Vi. Assume that χi

appears (either as a positive or a negative literal) in ni

clauses in ϕ. The gadget Vi consists of 2ni copies of the
domino gadget arranged in a rectangular line. Corners
are turned by having the adjacent pair of consecutive
domino gadgets share a vertex. See Figure 6(d).

We connect every pair of consecutive domino gad-
gets, for example K〈u,v〉 and K〈u+4,v〉, by adding an
edge in Eϕ of length 2 between every vertex in the right
hole rim X ′(u + 2, v) of the left K〈u,v〉 domino gadget
and every vertex in the left hole rim X ′(u+ 4, v) of the
right K〈u+4,v〉 domino gadget. The effect of these edges
is to force that the dominoes placed on these two adja-
cent gadgets cannot have their black squares touching,
i.e. both black on the left, both on the right, or pointing
outward.

A.5 The literal gadget Recall that Gϕ is the in-
cidence graph of ϕ. Fix a planar drawing of Gϕ into
R

2. Consider a variable χi. We order the clauses in
which χi appears by C〈i,0〉, . . . , C〈i,ni−1〉, so that for ev-
ery j : 0 ≤ j < ni, the edge {χi, C〈i,j〉} appears immedi-
ately before {χi, C〈i,j+1 mod ni〉} in a clockwise ordering
of the edges incident to χi in the drawing of Gϕ.

For every variable-clause 〈χi, Cj〉 appearing to-
gether in ϕ, we introduce a literal gadget L〈i,j〉 con-
sisting of a path of dominoes gadgets from the variable
gadget Vi to the clause gadget Cj. See Figure 6(c). This
path L〈i,j〉 connects perpendicularly to the variable gad-
get Vi at its 2j−1st domino gadget. If χi appears in
Cj as a positive literal, then it is connected to clock-
wise most square in this domino gadget otherwise the
counter clockwise most one. Figure 6(d) depicts an ex-
ample of such a construction. The three path L〈i,j〉 from
the three literals in a clause Cj connect with the clause
gadgets Cj as depicted in Figure 6(e). Just as done in
the variable gadgets, we add an edge in Eϕ of length 2
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(a) The domino gadget.
The shaded area corre-
sponds to points from X −
Hϕ.

(b) The clause gadget.

(c) Segment of a literal gadget. For clarity, only a few of the
edges between different domino gadgets are depicted.

(d) Connecting literal gadgets to a variable gadget. (e) Connecting literal gadgets
to a clause gadget.

Figure 6: The gadgets.
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between every vertex in one hole rim and every vertex in
the adjacent hole rim of every pair of touching domino
gadgets.

A.6 Satisfiable instances We now show that if the
formula ϕ is satisfiable, then M embeds into �2∞ with
small distortion.

Lemma A.1. If ϕ is satisfiable, then M embeds into �2∞
with distortion at most 3.

Proof. Let χ be a satisfying assignment. We start
forming the embedding of the metric space by placing
domino pieces on each domino gadget so that no black
squares are adjacent. To begin, if χi = 1, then each
domino gadget in the variable gadget Vi is covered with
a domino piece with the black square of the piece is
pointing counter clockwise, otherwise clockwise. This
means that if χi satisfies the clause Cj , then the literal
gadget L〈i,j〉 feeds into the variable gadget at a square
that has been coloured white. Hence, the domino
pieces covering the literal gadget can all have their black
squares pointing towards the variable gadget and away
from the clause gadget. In contrast, if χi does not satisfy
the clause Cj , then the literal gadget L〈i,j〉 feeds into
the variable gadget at a square that has been coloured
black. Hence, the domino pieces covering the literal
gadget must have their black squares pointing towards
the clause gadget. Finally, the clause gadget Cj, having
only one extra vertex yj , need only have one of its
three squares coloured black. We have already seen that
the literal gadget corresponding to its satisfying literal
has a white end point adjacent to the clause gadget.
Hence, the clause square it is adjacent to can be the
one coloured black.

Having covered each domino gadget K〈u,v〉 with a
domino piece so that no black squares are touching, we
independently embed the points for each square of the
checker board into its own square. Instead of giving
an embedding that never shrinks the required distances
and expands them by at most a factor of 3, we will
give one that never shrinks them by more than a factor
of 2 and never expands them by more than a factor of
1 1

2 . To begin, each square that does not have a hole is
embedded unchanged as described in X ⊆ R

2.
If the square is coloured black, we begin by embed-

ding the extra vertex x〈u,v〉 ∈ Vϕ at the center 〈u, v〉
of its square. The hole rim X ′(u, v) for this square is
expanded from being of radius 1

2 to being of radius 3
4

located in R
2 at X ′[〈u− 3

4 , v− 3
4 〉, 〈u+ 3

4 , v+
3
4 〉]. This ex-

pand distances across the hole by a factor of 3
4/

1
2 = 1 1

2 .
It also squishes the grid points towards the outside of
its square in the natural way. This space between the
outside of the square and the hole rim of hole had been

of width 1
2 but now it has narrowed to 1

4 . This involves
shrinking the distances between grid points by a factor
of 2.

On the other hand, if the squares coloured white,
the hole rim X ′(u, v+ 2) is shrunk from being of radius
1
2 to being of radius 1

4 . This shrinks distances across the
hole by a factor of 1

2/
1
4 = 2. It also expands the grid

points away from the outside of its square in the natural
way. This space between the outside of the square and
the hole rim of hole had been of width 1

2 but now it has
expanded to 3

4 . This involves stretching the distances
between grid points by a factor of 3

4/
1
2 = 1 1

2 .
The extra edge in Eϕ between the vertex x〈u,v〉 and

this expanded hole rim has �2∞ distance 3
4 , but it is

supposed to have length 1 1
2 . This gives a shrinking

distortion by a factor of (1 1
2 )/(3

4 ) = 2. The extra edge
between this same vertex x〈u,v〉 and the opposite side
of the shrunken hole rim of the adjacent square has
�2∞ distance 2 + 1

4 , but it is supposed to have length
1 1

2 . This gives a stretching distortion by a factor of
(2 1

4 )/(1 1
2 ) = 1 1

2 .
The extra edge in Eϕ between the shortest distance

between points in the stretched hole rim of one square
and a point in the shrunken hole rim of the adjacent
square is �2∞ distance (1 − 3

4 ) + (1 − 1
2 ) = 1, but it

is supposed to have length 2. This gives a shrinking
distortion by a factor of 2. The largest such distance is
(1 + 3

4 ) + (1 + 1
2 ) = 3, but it is also supposed to have

length 2. This gives a stretching distortion by a factor
of 3/2 = 1 1

2 . If two white squares are adjacent then
these distances are between two shrunken hole rims and
the distortions are better.

A.7 Embeddings of d-grids into R
d without big

holes In order to analyze the reduction for the case
of unsatisfiable instances, we need to gain some under-
standing of the structure of low-distortion embeddings
of d-grids into R

d. To that extend, we show that in
any embedding of sufficiently small distortion of a d-
grid into R

d, the image of the grid induces a net on a
large ball around the image of the center of the grid.
This basic property will be later used in our analysis to
show that in any low-distortion embedding, the image
of the wall induces a net in R

d.
We begin by stating the main topological lemma

that will be used in the proof. We only need the 2-
dimensional version of the lemma, but it is in fact
convenient to prove it for any fixed dimension. Its
proof follows easily by the nesting lemma from [MS08]
(corollary 2.2).

Lemma A.2. (Main topological lemma) Let d ≥
2, and let Bd be the unit ball in R

d. Let f : Bd → R
d
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be a continuous map, such that f(0) is in the closure
of the unbounded connected component of R

d \ f(∂Bd).
Then, there exist x, x′ ∈ Bd, with ‖x − x′‖2 ≥ ξd, and
f(x) = f(x′).

Since the metrics we are dealing with are not
isometric to d-grids, we need to prove the property for a
slightly more general class of graphs, that we call central
contractions of grids. Intuitively, a central contraction
is obtained from a grid, by adding an arbitrary set of
edges between vertices that are close to the center of the
grid.

Definition A.1. (Central contraction of a grid)

Let J be a d-dimensional grid, with V (J) = {vi : ∀j ∈
[d], 0 ≤ ij ≤ kj}, and E(J) = {{vi, vi′} : ‖i− i′‖1 = 1},
with each edge having unit length. Let J ′ be a graph
obtained from J by adding a finite set of edges {vi, vj},
each having an arbitrary positive length, and such that
for each t ∈ [d], it, jt ∈ {kt(1

2 − ξd

8d2 ), . . . , kt(1
2 + ξd

8d2 )}.
Then, J ′ is called a central contraction of J .

We prove the above statement using lemma A.2.
Informally, the argument is as follows. Consider a low
distortion non-contracting embedding f of a central
contraction of a grid, in which there is a large empty ball
close to the image of the centroid of the grid. Let B1 be
the largest such ball. We can find a vertex u∗ which is
close to the centroid, and its image lies on the boundary
of B1. Since u∗ is close to the centroid, there is a
sufficiently large sub-grid Q centered at u∗. We extend
f linearly to a continuous mapping g̃ of an appropriate
d-dimensional simplicial complex Q̃ for which Q is a net.
The complex Q̃ is chosen to be homeomorphic to a solid
d-cube, which is in turn homeomorphic to the unit ball.
Since the expansion is small, the image of each simplex
of Q̃ is small, relative to the radius of B1. Therefore, we
can slightly modify the mapping g̃, so that the image
of the complex avoids the interior of B1. By applying a
suitable homeomorphism on a subset of R

d, we obtain
a continuous map of Q̃ into R

d, such that g̃(u∗), lies on
the boundary of the unbounded connected component
of R

d\g̃(∂Q̃). Since Q̃ is homeomorphic to the unit ball,
we can apply lemma A.2, to obtain two points in Q̃ that
are far from each other, and have the same image under
g̃. Since Q is a net on Q̃, we can find vertices that are
far from each other in Q, and their images are very close
under f , contradicting the non-contraction hypothesis.

Lemma A.3. (From grids to nets) Let d ≥ 2, and
let J = (V,E) be a d-dimensional grid with V (J) =
{vi : ∀j ∈ [d], 0 ≤ ij ≤ kj}, and E(J) = {{vi, vi′} :
‖i − i′‖1 = 1}, such that for each j ∈ [d], kj ≥ R, for
some R ≥ c · 128·d

ξd
. Assume that each edge of J has

unit length. Let J ′ be a central contraction of J . Let
f : V (J ′) → R

d be a non-contracting embedding of J ′

into R
d with expansion c. Then, for any p ∈ R

d, with
‖p − f(vk1/2,...,kd/2)‖2 ≤ R/16, there exists u ∈ V (J ′),
with ‖p− f(u)‖2 ≤ 2 · c.
Proof. Let f be a non-contracting embedding of J ′

into R
d with expansion c. Assume for the sake of

contradiction that there exists a point p ∈ R
d, with

‖p − f(vk1/2,...,kd/2)‖2 ≤ R/16, such that for any u ∈
V (J), ‖p− f(u)‖2 > 2 · c.

Let u∗ be the vertex of J which is nearest to p under
f . That is, u∗ = argminu∈V (J)‖p− f(u∗)‖2. Since f is
non-contracting, we have

DJ(u∗, vk1/2,...,kd/2) ≤ ‖f(u∗) − f(vk1/2,...,kd/2)‖2

≤ ‖f(u∗) − f(p)‖2

+ ‖f(p) − f(vk1/2,...,kd/2)‖2

≤ 2 · ‖f(p) − f(vk1/2,...,kd/2)‖2

≤ R/8

Therefore, there exist i∗ ∈ Z
d, such that for each j ∈ [d],

i∗j ∈ {kj/8, . . . , 7kj/8}, with u∗ = vi∗ .
Let A = {vi1,...,id

∈ V (J) : ‖i − i∗‖∞ ≤ 3R/8},
and define the vertex-induced subgraph Q = J [A].
We construct a d-dimensional simplicial complex Q̃
corresponding to the graph Q as follows. The set of
0-simplices of Q̃ is A. For each i ∈ Z

d, such that for
each j ∈ [d], ij ∈ {i∗j − 3R/8, i∗j + 3R/8 − 1}, let Ti

be the triangulation of the hypercube Ai = Q[{vj : j ∈
{i1, i1 + 1} × . . . × {id, id + 1}}]. We add to Q̃ all the
simplices in Ti.

Let g be the restriction of f on V (Q). Recall that
for a simplicial complex K, |K| denotes the union of all
its simplices. Let g̃ be the linear extension of g on |Q̃|.

Let B1 = B(p, ‖p− f(u∗)‖2). Note that f(V (J)) ∩
Int(B1) = ∅. We proceed to define a map h̃ : |Q̃| →
R

d \ Int(B1). For each point x ∈ |Q̃| with g̃(x) /∈
Int(B1), we set h̃(x) = g̃(x). For each point x ∈ |Q̃|
with g̃(x) ∈ Int(B1), let rx be the ray starting at p and
passing through g̃(x). We set h̃(x) to be the point where
rx intersects ∂B1.

Define ϕ : |Q̃| → R
d where for each 0-simplex

vi1,...,id
∈ Q̃, ϕ(vi) = (i1 − i∗1, . . . , id − i∗d), and for

all other points x ∈ Q̃, ϕ(x) is defined via a linear
extension.

Let C denote the unit ball in R
d under the �2 norm.

We define a map μ : C → |Q̃| as follows. Let μ(0) = u∗,
and for each x ∈ R

d \ {0}, let μ(x) = ϕ−1(3R
8 ·x · ‖x‖2

‖x‖∞
).

Consider the map ψ : C → R
d \ Int(B1) defined

by ψ(x) = h̃(μ(x)). The map ψ is clearly continuous.
Furthermore, ψ(C) is homeomorphic to a subset of the
unit ball in R

d, under a homeomorphism that sends 0 to
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the boundary of the unit ball. We can thus apply lemma
A.2 and obtain points y, y′ ∈ C, such that ‖y−y′‖2 ≥ ξd,
and ψ(y) = ψ(y′). Let μ(y) = x, and μ(y′) = x′, for
some x, x′ ∈ |Q̃|. Let σ, σ′ be simplices of Q̃ such that
x ∈ σ, x′ ∈ σ′. Pick vertices w,w′ ∈ Q̃, with w ∈ σ,
w′ ∈ σ′.

Observe that for each p ∈ |Q̃|, ‖h̃(p) − g̃(p)‖2 < c.
Thus,

‖f(w) − f(w′)‖2 = ‖h̃(w) − h̃(w′)‖2

≤ ‖h̃(w) − h̃(x)‖2

+ ‖h̃(x′) − h̃(w′)‖2

< ‖g̃(w) − g̃(x)‖2

+ ‖g̃(x′) − g̃(w′)‖2 + 4 · c
≤ 6 · c(A.1)

Since J ′ is a central-contraction of J , it follows that for
each u, v ∈ V (J ′), DJ′(u, v) ≥ DJ(u, v) −R · ξd

4d . Thus,

DJ′(w,w′) ≥ ‖ϕ(w) − ϕ(w′)‖1 −R · ξd
4d

≥ ‖x− x′‖1 − ‖ϕ(w) − x‖1

− ‖ϕ(w′) − x′‖2 −R · ξd
4d

≥ 1
d
· 3R

8
· ‖y − y′‖2 − 2 · d−R · ξd

4d

≥ 1
d
· 3R

8
· ξd − 2 · d−R

ξd
4d

>
ξd
8d

· R− 2 · c ≥ 14 · c(A.2)

Combining (A.1) and (A.2) we obtain a contradiction
of the fact that f is non-contracting.

A.8 Unsatisfiable instances We will now show
that if there exists an embedding of M into �2∞ with
small enough distortion, then ϕ is satisfiable. Fix an
embedding f of M into �2∞ with distortion less than
7/2−100ε. Let r = 10 · ε, and let c > 0 be a sufficiently
large constant, to be determined later. Let A be a rim
of the input graph. Let γ(A) denote the union of all
balls of radius r in R

2 centered in the images of points
that are at distance at most c · ε from A. I.e.

γ(A) =
⋃

x:D(x,A)≤c·ε
B(x, r)

Definition A.2. (Vertex inside a rim) We say
that a vertex v is inside a rim A if f(v) is contained in
a bounded path-connected component of R

2 \ γ(A).

Lemma A.4. For every v ∈ Vϕ, there exists a rim A
such that v is inside A.

Proof. Consider the set T ⊂ R
2 defined by T =⋃

x∈X−Hϕ
B(f(x), r). By the non-contraction of f we

have f(v) /∈ T .
Let J be the union of all rims together with the

boundary of the grid X , and let J ′ = {x ∈ X − Hϕ :
D(x, J) ≤ c · ε}. Let p /∈ J ′. By lemma A.3 we have
that f(X−Hϕ) induces a r-net in a ball of radius Ω(cε)
around f(p). Therefore, B(p, r) ∩ ∂T = ∅. Thus, for all
points q ∈ X −Hϕ such that B(q, r) ∩ ∂T 
= ∅, we have
q ∈ J ′.

Let Y be the closure of the component of R
2 \ T

containing f(v). By the non-contraction of f it follows
that all the points p ∈ J ′ such that B(f(p), r) ∩ ∂Y 
=
∅, must be at distance at most c · ε from either the
boundary of X , or exactly one of the rims. It clearly
cannot be the case that these points in J ′ are close to
the boundary ofX , since then the distance between f(v)
and all the rims would be Ω(L), which contradicts the
fact that f has expansion O(1). Therefore, these points
are at distance at most c · ε from exactly one rim A.

It remains to show that γ(A) does not intersect the
boundary of an unbounded component of R

2\T . Indeed,
observe that if this happens then f(A) must have
diameter Ω(L), a contradiction. We have thus obtained
that f(v) is in a bounded component of R

2 \ γ(A),
concluding the proof.

Lemma A.5. Let K be a copy of the domino gadget.
Then, xK is inside one of its two rims, i.e. a domino
piece must either be placed colouring at least one of the
two squares of the domino gadget black.

Proof. Assume for the sake of contradiction that xK is
not inside a rim of K. By lemma A.4 it follows that
xK is inside some rim A not in K. By inspecting the
construction it follows that D(xK , A) ≥ 5/2. Moreover,
there exists a rim A′ in K such that for any a ∈ A,
a′ ∈ A′, we have D(a, a′) ≥ 4. Let JA = {x ∈ X −Hϕ :
D(x,A) ≤ c · ε}. We have that f(xK) is contained in
a bounded component of R

2 \⋃
x∈JA

B(x, r). It follows
that the component that contains f(xK), contains also
a ball of radius 5/2−O(ε) centered at f(xK), that does
not intersect T . It follows that ‖f(xK)−f(A′)‖∞ > 4+
5/2 − O(ε) = 11/2 − O(ε). However, D(xK , A

′) = 3/2,
implying that the distortion of f is at least 11/3−O(ε) >
7/2, a contradiction.

The proofs of lemmas A.6, A.7, and A.8 bellow are
similar to the proof of lemma A.5, and are omitted from
this extended abstract.

Lemma A.6. Let Ci be a clause gadget. Then yi is
inside one of its three rims, i.e. at least one of the three
squares of each clause gadget must be black.
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Lemma A.7. Let K1,K2 be distinct copies of the
domino gadget. Let A1 be a rim of K1 that is attached
to a rim A2 of K2. If xK1 is inside A1, then xK2 is not
inside A2, i.e. the domino pieces can not be placed so
that two adjacent squares are both black.

Lemma A.8. Let K is a copy of the domino gadget, and
let Ci be a clause gadget. Let A1 be a rim of K that is
attached to a rim A2 of Ci. If yi is inside A2, then xK

is not inside A1.

Lemma A.9. If M embeds into �2∞ with distortion less
than 7/2 −O(ε), then ϕ is satisfiable.

Proof. Considering any way of covering the domino
gadgets with domino pieces and colouring at least one
square of each clause gadget black. From this we
will produce a satisfying assignment χ. Consider the
variable χi. Because no two adjacent squares are both
black, the domino pieces are placed on the rectangular
path of the variable gadget Vi either with each piece’s
black square pointing counter clockwise or each pointing
clockwise. Set χi = 1 iff it is counter clockwise. Now
consider a clause Cj . We must prove that it is satisfied
by this assignment. At least one of the three squares
in the clause gadget Cj must be black. Let χi be
the variable corresponding to the literal gadget L〈i,j〉
adjacent to this black square. Because no two adjacent
squares are both black, the black square of the domino
pieces placed on this literal gadget must face towards
the variable gadget Vi ending in a black square. Hence,
the square in the variable gadget Vi adjacent to this
literal gadget must be white. If χi appears in Cj as a
positive literal, then this white square is the clockwise
most square in this domino gadget. Hence, we set χi = 1
satisfying the clause Cj . Similarly, if χi appears in Cj

as a negative literal.
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