
RAEM: An Asynchronous & Randomized Bandwidth Adjustment

Algorithm

Jeff Edmonds, Suprakash Datta, and Patrick Dymond

Computer Science Department

York University, Toronto, Canada

jeff,datta,patrick@cs.yorku.ca

July 1, 2003

Abstract

We study a congestion control mechanism which generalizes the well-known RED (Random
Early Detection) algorithm that achieves smoother transmission rates and higher goodput by
randomly dropping packets. We prove that the system converges quickly.

While TCP works well in practice in general, it suffers from a few drawbacks. In this section,
we address two of these: adding asynchrony in the adjustment times of the jobs and minimizing
the number of packets that are actually dropped.

In our TCP model all jobs adjust their transmission bandwidth at exactly the same time.
The problem with this is that the total bandwidth being utilized then continually decreases and
increases again. Though in practice delays in transmission and the like are likely to introduce
considerable asynchrony to the adjustment times of the jobs, it is still likely that this effect occurs.
Our new model, explicitly adds asynchrony. Inadvertently, this has the additional benefit that is
automatically hits jobs with more bandwidth harder, bringing the system to EQUI faster.

The second drawback addressed in this section is packet loss. One obvious way of minimizing the
number of packets being dropped is to introduce a smaller virtual bottleneck. Instead of actually
dropping packets that are transmitted beyond this smaller bottleneck, the packets are only marked.
The sender is then to react the same as if the packet had actually been dropped, except for the
fact that it would not have to retransmit the packet.

One strategy that has been proposed is called Random Early Detection (RED) [?] marks a
constant fraction of the packets as “dropped”. If there are lots of packets, this still amounts to
both a large number of packets being marked per job and a large number jobs having at least one
packet being marked. This section takes this idea a step further. We design an algorithm RAEM
(random asynchronous early marking), in which the bottleneck will mark only one packet at a time
causing only one job to adjust at a time.

The new model is as follows. Instead of the bottleneck simultaneously signaling all the jobs to
adjust their bandwidth, the bottleneck periodically marks one randomly chosen packet as being
“dropped”. This causes the sender of this packet to adjust, i.e. decrease his bandwidth bi,t by a
multiplicative factor of β. The probability that job Ji with bandwidth bi,t is selected is bi,t/

∑

i bi,t.
The goal of the bottleneck is to determine how often to signal these adjustments in order to maintain
a total bandwidth

∑

i bi,t utilization that is just slightly under the bottleneck’s capacity B and to
ensure that all jobs are allocated the same bandwidth. The difficulty for the bottleneck is that it
has access to very little information about the state of the system. We assume that it does know
the current total

∑

i bi,t bandwidth through it, denoted bt. However, it does not know which job

1

a given packet belongs to and hence it is unable to select a particular job for an adjustment. It
does not know the number nt of jobs active and hence does not know the fair amount of bandwidth
bi,t = B

nt
that each job should be operating at. Finally, it does not know the individual bandwidths,

bi,t, currently being used by the jobs and hence it does not know the amount (1 − β)bi,t that the
bandwidth will drop when a single adjustment occurs. Within this model, we devise an algorithm
for the bottleneck which ensures that all the job’s bandwidths converge to the desired level at least
as quickly, O(B

αn (ln(n) + q)), as they do in the TCP model.
The reason why this bottleneck model inadvertently bringing the system to EQUI faster than

TCP is that there are now two separate forces in this direction. The first such force is that as with
TCP, jobs with more bandwidth bi,t decrease their bandwidth by more, namely by (1− β)bi,t. The
second such force is that jobs with more bandwidth bi,t are more likely to hit with an adjustment

because they are sending more packets that might get marked. Recall that the probability is
bi,t

bt
.

The sum effect is that the difference between the individual bandwidths changes, not linearly, but
quadratically with the current difference.

The first step in designing our algorithm is to define the desired level of bandwidth utilization.
This is set by a fixed function b̃(nt). The goal for the bottleneck is to maintain a total bandwidth
bt =

∑

i bi,t that is equal to b̃(nt), where nt is the current number of active jobs. A good candidate
is b̃(n) = (1−γ)(1−e−cn)B. In order to be as general as possible, however, our analysis allows this
function b̃(n) to be chosen arbitrarily by the implementer subject to the following requirements.
Presumably, it will stay relatively close, yet under, the total bandwidth B and is defined for a
large range of values n. It needs to be monotonically increasing, i.e. more jobs utilize more of the
bandwidth. The last requirement is that the second derivative b̃(n) is negative. (This is mainly

used to insure that δb̃(n)
δn ≤ b̃(n)

n .) This is reasonable because with larger and larger n, b̃(n) will
need to get squeezed closer and closer to the capacity B.

One would think that having the desired bandwidth b̃(nt) be a function of the number of active
jobs would complicate things because the bottleneck does not know this number. However, doing
so allows the bottleneck to guesstimate the number of active jobs. Define ñ(bt) = b̃−1(bt) to be
the inverse function. If the algorithm is working correctly and the current total bandwidth is bt

then ñ(bt) would be the number of active jobs. In general, the bottleneck uses ñ(bt) as its best
approximation of the number of active jobs.

The remaining step in designing the algorithm is to define the function f(bt) = α
(1−β)

ñ(bt)2

bt
,

which tells the bottleneck the frequency (drops per unit time) at which to mark single packets as
being “dropped”. Note this rate depends only on the total bandwidth bt that the bottleneck is
receiving, because this is all that the bottleneck knows about the system. Algorithmically, it then
makes the most sense for a packet to be dropped at a steady rate of once every 1

f(bt)
time units. The

proof of correctness, however, is simpler if the process is made continuous, i.e. every small interval
δt of time the algorithm makes one of the jobs adjust with probability f(bt)δt. The analysis then
focuses on the continuous expected change.

The drop frequency function f(bt) is designed to maintain a steady state at the desired levels,

i.e. that in which each of the n jobs have bandwidth bi,t = b̃(n)
n for a total of bt = b̃(n). This

is done as follows. Each job is increasing its bandwidth at an fixed additive rate of α. Hence
the total bandwidth is increasing at a rate of αn. A single adjustment decreases the single job’s

bandwidth from bi,t = b̃(n)
n to βbi,t = β b̃(n)

n . This decreases the total bandwidth by (1 − β) b̃(n)
n .

The frequency of adjustments per time unit is f(bt). Hence, these adjustments decrease the total

bandwidth at a rate of f(bt)(1 − β) b̃(n)
n . The bottleneck maintains the current total bandwidth by

balancing this increase and this decrease, namely αn = f(bt)(1−β) b̃(n)
n . This is done by setting the

2

adjusting frequency to f(bt) = α
(1−β)

n2

b̃(n)
. Not knowing the number of jobs n, the bottleneck uses the

approximation ñ(bt). The bottleneck’s algorithm is to adjust at a frequency of f(bt) = α
(1−β)

ñ(bt)2

bt

when the current total bandwidth is bt. Standard TCP, as stated in Lemma 6, has all n jobs adjust
every (1−β)B

αnt
time units, giving that the frequency at which some job adjusts is the same.

The rest of this section is to prove an analogous versions of that in [EDDsingle] for this new
asynchronous model of adjusting, namely that the algorithm is competitive with OPT given extra
time and bandwidth. This theorem relies only on Theorem 2. Hence, it is sufficient to prove an
analogous version of it. To simplify the analysis, we assume that during the period of time during
which the algorithm is converging to EQUI, the set J of active jobs remains fixed. The bandwidths
bi,t0 of these jobs, at the beginning of this converging period, however, can be arbitrary. We also
assume a sufficiently large number of randomly chosen adjustments so that the frequency that each
job adjusts is effectively equal to its expected frequency.

Theorem 1 Independent of the initial bandwidths bi,t0 of the n jobs, these bandwidths converge in

time O(B
αn(ln(n) + q)) to be within a factor of (1 − 2−q) of the desired levels bi,t = b̃(n)

n .

According to Theorem 2, this time is the same as that needed for TCP.

Proof of Theorem 1: There are two dynamics that cause this convergence to happen. We will
separate them by considering them in separate stages.

The first dynamic is that as with TCP given in [EDDsingle], the job’s bandwidths converge to
being equal. Lemma 2 proves that after O(B

αn(ln(n)+ q)) time, each job’s bandwidth bi,t is at most

a factor of (1 − 2−q) away from the balanced level bt

n . Note that at this point we do not know the
value of bt. This completes the first stage.

The second dynamic is that when the individual bandwidths are unbalanced, the total band-
width bt decreases lower than it should. However, Lemmas 3, 4, and 5 prove that when the job’s
bandwidths are as close to being equal as they are after the first stage, then the total bt converges

to being within a factor (1 − 2−q) from b̃(n) within time O(B
αn) + O(q

α
δb̃(n)
δn). This completes the

second stage.

The remaining step is to prove that δb̃(n)
δn ≤ b̃(n)

n ≤ B
n . Note that in our candidate function

b̃(n) = (1− γ)(1− e−cn)B, δb̃(n)
δn = (1− γ)e−cnB << b̃(n)

n . We see as follows that this is true for all

legal functions b̃(n). Having a negative second derivative insures that δb̃(x)
δx) ≥ δb̃(n)

δn) for x ∈ [0, n].

It follows that b̃(n) = b̃(0) +
∫ n
x=0

δb̃(x)
δx) ≥ [n] δb̃(n)

δn).

The first step is to determine how the job’s individual bandwidths bi,t change.

Lemma 1
δbi,t

δt = α[1 − (
bi,tñ
bt

)2].

This change moves job Ji’s bandwidth bi,t continuously towards bt

ñ(bt)
, which is the bottleneck’s best

approximation of what each job’s bandwidth should be, i.e. bi,t increases when it is smaller than
this and decreases when it is large.

Proof of Lemma 1: Consider job Ji. It increases its bandwidth at an additive rate of α. The

bottleneck signals for an adjustment from some job at a frequency of f(bt) = α
(1−β)

ñ(bt)2

bt
and when

it does this job is hit with probability
bi,t

bt
. Hence, job Ji’s expected frequency of adjustments is

f(bt)
bi,t

bt
. Each such adjustment decreases its bandwidth by (1− β)bi,t. In conclusion, the expected

3

rate of change of job Ji’s bandwidth bi,t is as follows.

δbi,t

δt
= α − f(bt)

bi,t

bt

(1 − β) bi,t = α −

[

α

(1 − β)

ñ2

bt

]

bi,t

bt

(1 − β) bi,t = α

[

1 −

(

bi,tñ

bt

)2
]

Because jobs with higher bandwidth are more likely selected, we stated that the difference be-
tween the individual bandwidths changes, not linearly, but quadratically with the current difference.
We will now explain what we mean by this.

δ|bmax,t − bmin,t|

δt
= −α

(

ñ

bt

)2
[

b2
max,t − b2

min,t

]

≤ −α

(

ñ

bt

)2

[bmax,t − bmin,t]
2

For example, suppose that one job had control of all B of the bandwidth, giving that |bmax,t −

bmin,t| = O(B). Then
δ|bmax,t−bmin,t|

δt would decrease at a rate of at least α(ñ
bt

)2[B]2 = O(αñ2).
In contrast, in TCP, |bmax,t − bmin,t| decreases linearly and not quadratically, namely at a rate
of α(n

bt
)[bmax,t − bmin,t] = α(n

bt
)[B] = O(αn). Depending on the current value of ñ, O(αñ2) is

considerably faster than O(αn).

We would like to carry this idea further by noting that the differential equation
δ|bmax,t−bmin,t|

δt =

−α(ñ
bt

)2[bmax,t − bmin,t]
2 has the form δ∆

δt = −c∆2. The difficulty, however, is that the “c” is

α
(

ñ
bt

)2
, which keeps changing. We will briefly proceed informally by ignoring this. The solution

of δ∆
δt = −c∆2 is ∆ = 1

1/∆0+ct . It becomes ∆T when T ≤ 1
c∆T

. It is interesting that this time
is independent of the initial difference ∆0. The individual bandwidths become within a constant
factor of each other when ∆T = |bmax,T − bmin,T | = bt

ñ . This takes time 1
c∆T

= 1
α(bt

ñ)2/ bt

ñ = bt

αñ . In

contrast, for TCP
δbi,t

δt = α− α
1−β

n
B · (1−β)bi,t, and hence the differential equation

δ|bmax,t−bmin,t|
δt ≤

−α(n
B)[bmax,t − bmin,t] has the form δ∆

δt = −d∆ with solution ∆ = e−dt∆0. For this system to
converge from the difference ∆0 being the full bandwidth B to being a close to the desired levels
∆T = B

n requires time T = ln(∆0/∆T)
d = O(B

αn log(n)).

We will now be more formal. We will use the function Mt =
n(
∑

i
b2
i,t

)

(
∑

i
bi,t)2

to measure how far the

individual bandwidths are from being equal. This is the reciprocal of that used in [?] for the same
purpose. It has a number of useful properties. Mt is always in the range [1, n]. It is n when the
total bandwidth is on one job and is 1 when the bandwidths are equal. Finally, when Mt is at
most 1 + 2−2q

n−1 , each job’s bandwidth bi,t is at most a factor of (1 − 2−q) away from the balanced

level bt

n .

Lemma 2 Independent of the initial bandwidths bi,t0 of the n jobs, after O(B
αn(ln(n) + q)) time,

each job’s bandwidth bi,t is at most a factor of (1 − 2−q) away from the balanced level bt

n . More
over, the balance measure Mt, defined below, is at most 1 + 2−q.

Proof of Lemma 2: The main task of the proof is that independent of the current state of the
system, Mt decreases at a rate of δMt

δt ≤ −2αn
bt

(Mt − 1). This change causes the value of Mt − 1

to decrease by a factor of e in at most time bt

2αn ≤ B
2αn . (We are assuming that the total bandwidth

bt never exceeds the bottleneck’s capacity B.) Because initially Mt is at most n, Mt − 1 becomes

at most 2−2q

n−1 in at most O(log(n) + q) such half lives. The result follows.
The change in Mt is computed as follows.

Mt =
n
(
∑

i b2
i,t

)

(
∑

i bi,t)
2 =

n
(
∑

i b2
i,t

)

(bt)
2

4

δMt

δt
=

n

b4
t

[(

∑

i

2bi,t

δbi,t

δt

)

(

b2
t

)

−

(

∑

i

b2
i,t

)

(

2bt

δbt

δt

)

]

=
2n

b4
t

[

∑

i

bi,t

(

α

[

1 −

(

bi,tñ

bt

)2
])

b2
t −

(

∑

i

b2
i,t

)

bt

(

∑

i

α

[

1 −

(

bi,tñ

bt

)2
])]

=
2αn

b4
t

[

b3
t − ñ2

∑

i

b3
i,t −

(

∑

i

b2
i,t

)

btn +

(

∑

i

b2
i,t

)

ñ2

bt

(

∑

i

b2
i,t

)]

At this point, it is useful to observe that
∑

i b
3
i ≥ 1

∑

i
bi

(
∑

i b2
i)

2 for any values bi ≥ 0. The intuition

is similar to that for the standard fact that
∑

i b
2
i ≥ 1

n(
∑

i bi)
2. It is more significant to cube the

individual large values before summing than only squaring them. It is interesting, however, that
equality is achieved both when the values are either completely equal or completely unbalance. The
maximum difference occurs when there are two distinct values. The proof has not been included.
Using it, our above expression simplifies.

−
δMt

δt
≥

2αn

b4
t

[

−b3
t +

(

∑

i

b2
i,t

)

btn

]

=
2αn

bt

[

−1 +
n
(
∑

i b2
i,t

)

b2
t

]

=
2αn

bt

(Mt − 1)

We will now see that while the individual bandwidths are unbalanced, the total bandwidth
bt and the approximation ñ(bt) both decreases lower than they should. However, as soon as the
bandwidths are close, they converge quickly to the desired levels b̃(n) and n. Note that depending
on the initial total bandwidth bt and the function ñ() = b̃−1() that was chosen, the initial value of
ñ(bt) could even be infinite. Our first step is to ensure that in such a case ñ(bt) decreases quickly
to at most 2n.

Lemma 3 Independent of its initial value, ñ(bt) becomes at most 2n in time O(1
α

δb̃(n)
δn).

Proof of Lemma 3: By Lemma 1, the rate of change of the approximation bt and hence of ñ(bt)
are

δbt

δt
=

∑

i

δbi,t

δt
=
∑

i

α

[

1 −

(

bi,tñ

bt

)2
]

= α

[

n −

(
∑

i b2
i,t

)

b2
t

ñ2

]

= −αn

[

Mt

(

ñ

n

)2

− 1

]

δ(ñ − n)

δt
=

δñ

δbt

δbt

δt
= −

δñ

δbt

αn

[

Mt

(

ñ

n

)2

− 1

]

.

When the individual bandwidths bi,t are unbalanced, the measure Mt is large, and hence both
bt and ñ(bt) decrease lower than they should. However, for our purposes of decreasing ñ(bt) from
possibly infinity to 2n, this only helps.

Recall that the function b̃(n), which dictates the desired total bandwidth when there are n jobs,
is chosen by the designer. However, we impose on it the requirement that its second derivative is

negative. Hence, 1/ δñ(bt)
δbt

= δb̃(ñ)
δñ ≤ δb̃(n)

δn when ñ ≥ n. This gives:

δ(ñ − n)

δt
≤ −

1
δb̃(n)

δn

α

n

[

ñ2 − n2
]

≤ −
1

δb̃(n)
δn

α

n
[ñ − n]

2
.

Again, the form of this differential equation is δ∆
δt = −c∆2, which as solution ∆ = 1

1/∆0+ct . Hence,

|ñ− n| becomes ∆T = n, independent of its initial value ∆0, in time T ≤ 1
c∆T

= δb̃(n)
δn

n
α

1
n = 1

α
δb̃(n)
δn .

5

The initial total bandwidth bt and the function ñ() may be such that the initial value of ñ(bt) is
as small as zero. As well, having the bandwidths unbalanced may decrease ñ(bt) even lower than
it already is. Our second step is to ensure that in such a case, as soon as the bandwidths are
balanced, ñ(bt) increases quickly to at least 1

2n.

Lemma 4 When the job’s bandwidths are close to being equal, i.e. Mt ≤ 1 + 2−q, independent of
its initial value, ñ(bt) becomes at at least 1

2n in time O(B
αn).

Proof of Lemma 4: The proof of Lemma 3 gives that the change in the total bandwidth is
δbt

δt = αn[1−Mt(
ñ
n)2] ≥ αn[1− (1+2−q)(1

2)2], when Mt ≤ and ñ ≤ 1
2n. At this rate of increase, in

time O(B
αn), this total bandwidth bt would increase by more than the capacity B of the bottleneck,

at which time we would be sure that ñ(bt) ≥
1
2n.

The remaining step is to bound the time required for the approximation ñ to fine tune itself to n.

Lemma 5 When the job’s bandwidths are close to being equal, i.e. Mt ≤ 1 + 2−q, and the approx-
imation ñ(bt) is bounded within [12n, 2n], the total bandwidth bt converges to being within a factor

of (1 − 2−q) of b̃(n) within time O(q
α

δb̃(n)
δn).

Proof of Lemma 5: The difference, |bt−b̃(n)|, between the actual and the desired total bandwidth
will be at most 2−q b̃(n), when the difference, |ñ(bt) − n|, between the bottleneck’s approximation

and the actual of the number of active jobs is at most (1/ δb̃(n)
δn) · 2−q b̃(n). By the statement of the

lemma, |ñ(bt) − n| is initially at most n. Hence, we require |ñ(bt) − n| to decrease by a factor of

n · δb̃(n)
δn ·2q 1

b̃(n)
. In the proof of Theorem 1, it was proved that this is at most 2q. Hence, the number

of time that |ñ(bt) − n| must decrease by a factor of 2 is at most O(q).
The remaining step is to compute how long it takes for the error |ñ−n| to decrease by a factor

of 2. Suppose that |ñ − n| = ǫn for some ǫ ≥ 2−q.

δ|ñ − n|

δt
= −

δñ

δbt

α

n

∣

∣Mtñ
2 − n2

∣

∣ ≤ −
δñ

δbt

α

n

∣

∣

∣

(

1 + 2−q
)

((1 ± ǫ)n)
2
− n2

∣

∣

∣

≤ −
δñ

δbt

αn
∣

∣2ǫ − ǫ2 − 2−q
∣

∣ ≤ −Θ

(

1/
δb̃(n)

δn
· αnǫ

)

.

Note that because ñ(bt) = Θ(n), 1/ δñ(bt)
δbt

= δb̃(ñ)
δñ = Θ(δb̃(n)

δn).
For |ñ − n| = ǫn to decrease by a factor of 2, it must decrease by ǫn

2 . At the above rate of

change, this will take time ǫn
2

δb̃(n)
δn

1
αnǫ = O(1

α
δb̃(n)
δn).

==
One measure worth considering is the length of an adjustment period. Having this long has

the advantage of decreasing the frequency in which the bottleneck and the senders must deal with
adjustments. Having it short has the advantage of decreasing the time D(J) that jobs must wait
until its gets its fair allocation of bandwidth.

Lemma 6 The length of an adjustment period is |τj+1− τj| = (1−β)B
αnT

t

+(1−β)δ, where nT
t denotes

the (average) number jobs alive under TCP during the period.

Proof of Lemma 6: At the point in time when the bottleneck reaches capacity, the total
bandwidth allocated to jobs is clearly the bottleneck’s capacity B. If there is a delay of δ in time
before the senders detect packet loss, then during this time each sender continues to increase its
transmission rate at the additive rate of α. The total transmission rate after this delay will be
B + αnT

t δ.

6

This paper considers two strategy that TCP might take at this point. The first strategy is for
the sender to decrease its transmission rate to the fraction β of its current rate of sending data.
Doing this would decrease the total transmission rate to β(B + αnT

t δ). (It is problematic if this
delay δ is so big that this adjusted rate is still be bigger than the capacity B of the bottleneck.)
The second strategy is to decrease its transmission rate to a fraction β of the current rate that
data passes through the bottleneck without getting dropped. Doing this would decrease the total
transmission rate to only βB. (Here there is no limit on how large the delay δ can be.)

With either strategy, the total bandwidth allocated continues to increase at a rate of αnT
t . The

time required for the total to increase again to B is
B−β(B+αnT

t δ)

αnT
t

in the first strategy and only

B−βB
αnT

t

in the second. The total length of the adjustment period is this plus the δ delay time, which

is either |τj+1 − τj| = (1−β)B

αnT
t

+ (1 − β)δ or |τj+1 − τj| = (1−β)B

αnT
t

+ δ.
==

Theorem 2 Let q ≥ 1 be an integer, s be any value, and J be any set of jobs. For each job Ji

and for all times t = τja
i
+q+j, j ≥ 0, bT

i,t ≥ (1 − βq) sB
nT

t

, where bT
i,t denotes the bandwidth allocated

by TCPs(J) to job Ji at time t and nT
t denotes the number jobs alive at this time. (On the other

hand, at all times t ≥ τja
i
+log(n)/ log(1/β)+q, bT

i,t ≤ (1 + βq) sB
nT

t

.

7

