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function in P . (In fact, the function is in AC1). This function, which we will refer to as theIterated Multiplexor, can be described as follows. The function has two parameters k and d,which, for optimal results, are set at k = logn and d = logn= log log n. (All logarithms in thispaper are base 2.) The input to the function can be thought of as a complete ordered k-ary treewith depth d+ 1, counting the root as depth 1. Each of the kd leaves is labeled with an input bit.Every interior (i.e., non-leaf) node of the tree is labeled by a 2k input bit string, which is thoughtof as explicitly describing a function from f0; 1gk to f0; 1g. This initial labeling induces a labelingof every node by a bit as follows. The induced bit of a leaf is just its original label. If an interiornode u is labeled by a function fu, and its children, in order from left to right, have induced bitsb1; : : : ; bk, then the induced bit for u is bu = fu(b1; : : : ; bk). The output of the Iterated Multiplexoris the induced bit of the root. The input to the function is of length kd+2k �Pd�1i=0 ki 2 O(n2). TheIterated Multiplexor function can easily be seen to be in AC1.Suppose that for each node of the tree, the 2k bits describing the function are �xed, andmoreover on each level all the functions are identical. Then the Iterated Multiplexor becomesa composition of these functions. For example, consider the case d = 3, where the nodes atlevel i � 3 are labeled by fi. Then the restricted function has k3 boolean inputs, which we canpartition into k2 vectors of length k, ~xij, i; j 2 f1; : : : ; kg. We can write the restricted function asf1(f2(f3(~x11); : : : ; f3(~x1k)); : : : ; f2(f3(~xk1); : : : ; f3(~xkk))). Intuitively, the circuit depth complexityof this function should be the sum of that for f1, f2, and f3, since any circuit should have tocompute at least some of the values for f3 before going on to f2, etc.To prove an 
(log2 n= log log n) depth lower bound for the Iterated Multiplexor function, itsu�ces to prove that the circuit depth of the composition of functions is roughly the sum of thedepths required for each of the functions involved: if the functions being composed are randomlychosen k bit functions, then they require depth k � o(k). Hence, if there are d = logn= log lognlevels of these, then the necessary circuit depth should be approximately dk 2 
(log2 n= log logn).There are no known examples of functions where the depth of the composition is smaller than thesum of the depths. For example, if all of the functions are parity on n bits, the composition of d suchfunctions is parity on nd bits. The depth of the composition is then roughly 2 log nd = d(2 log n), dtimes the depth of the function being composed. This also shows that to gain via composition, weneed to start with a function not in NC. The iterated Multiplexor construction gets around this,by composing arbitrary functions on O(log n) bits, rather than �xed functions.Proving that circuit depth is additive under composition seems extremely di�cult, even forrandom functions.Therefore, Karchmer et al [4] suggested an abstraction of the communication game for theComposition of Functions. They call this game the Universal Composition Relation, since anyprotocol solving this problem will also solve the associated communication game for any compositionof functions. (Thus, a lower bound for any composition implies the same lower bound for theUniversal Composition Relation.) In addition, the known protocols for the communication gamefor a composition of randomly chosen functions also apply to the Universal Composition Relation.Therefore, the hope is that a lower bound for the Universal Composition Relation problem willyield insight into the circuit depth of compositions; it is at least a necessary �rst step.We now give an informal description of the Karchmer-Wigderson communication game [5] andthe Universal Composition Relation. Let f be a boolean function on k bit inputs. The Karchmer-Wigderson game for f;Rf is as follows. One player, called the A-Player, is given a k bit vector xfor which f(x) = 0, and the other, the B-Player, a y for which f(y) = 1. The object of the gameis to �nd a bit position i where the two di�er, i.e., xi 6= yi.Consider the harder game, which we call the Universal Game, where as before, the two players2



are each given a k bit vector and must �nd a di�ering bit position. However, they are only promisedthat their vectors are di�erent. It is known that the complexity of this game is between k � 1 andk+2. The lower bound follows similarly as the lower bound for testing equality, and we will presentan adversary argument for it later. For the upper bound, it is easy to achieve k+ log k: one playersends his input and the other replies by the position of a di�erent bit. To achieve k + 2, we usethe following protocol. The players alternate in sending one bit each, from the beginning of theirinputs (i.e., the A-player sends his bit 1, then the B-player sends his bit 2, then the A-player sendshis bit 3, etc.) However, if any player sees that the received bit is not equal to his correspondingbit, he \raises his hand" as follows: in the next round he sends 1, and in all the following roundshe sends 0. This way the players exchange the total of k bits. Now, each of them sends a bit whichis 0 if he raised his hand before, and 1 otherwise. If no player raised the hand, the only di�erencemust be the bit k (using the promise that the inputs are not equal). If one of the players raised hishand, there is a di�erence just before the last 1 sent by him. If both players raised their hands, wetake the earlier of the two positions where they last sent 1. We can read out the answer from thecommunicated k + 2 bits. (For more results on the complexity of this game see [11].)The communication complexity of Rf for a random function f is almost the same as for theUniversal Game: k�o(k). Basically, one player needs to communicate his entire input to the otherplayer. The di�erence between the games is that in the Universal Game, the players are merelypromised that their inputs are di�erent, whereas in Rf , they are also told a particular way in whichtheir inputs di�er. Since the games are of comparable di�culty, the moral would seem to be thatbeing told that, for your inputs x and y, f(x) 6= f(y) for a random function f does not convey anymore useful information than being told x 6= y.The Universal Composition Relation is obtained by applying this intuition in an analogous wayto the Karchmer-Wigderson game for a composition of d random functions f1; : : : ; fd.The composition function has kd inputs, which can be thought of as labeling the leaves of acomplete ordered k-ary tree of depth d+1. Similarly as for the Iterated Multiplexor function, anyinput induces a labeling of every node of the tree. If a node u at level i � d has children with labelsb1; : : : ; bk, from left to right, then the induced label for u is fi(b1; : : : ; bk). The two players in theKarchmer-Wigderson game are each given such a labeled tree, with the labels at the root di�erent.Their goal is to �nd an input bit (i.e., leaf) where their inputs di�er.The obvious protocol for this problem is as follows. The protocol is divided into d rounds, eachrequiring k + O(1) bits of communication. Initially, the players know that the root (level 1) hasdi�erent labels in their two labelings. At the beginning of the rth round, the players agree on anode at level r that has di�erent labels. The players communicate k+O(1) bits to �nd a di�erencein labels of children of this node. Such a di�erence must exist, since both players compute thenode's label from the labels of the children in the same way. This begins the next round. After drounds the players agree on a leaf labeled di�erently. Hence an upper bound on the communicationcomplexity of the game for the composition of any d functions on k bit inputs is kd+O(d).The protocol only uses the facts that the two roots have di�erent labels and that, if a node islabeled di�erently in the two inputs, then one of its children is also labeled di�erently. It followsthat one of the leaves is labeled di�erently. Thus, this upper bound also holds for the followinggame.De�nition 1.1 The Universal Composition Relation with parameters d and k, denotedUCRd;k, is de�ned as follows. Each player has as input a boolean labeling of all the nodes of anordered complete k-ary tree of depth d + 1, counting the root as depth 1. The label of the root forthe A-Player is 0 and for the B-Player is 1. The two inputs must satisfy the following condition:3



for every interior node of the tree, if the node is labeled di�erently in the two players' inputs, thenat least one of the children of the node is labeled di�erently. The goal of the players is to agree ona leaf node which is labeled di�erently in their two trees.In this paper, we prove the following lower bound:Theorem 1.2 CC(UCRd;k) � dk �O(d2(k log k)1=2)This bound is almost tight for d = o((k=logk)1=2). If this same bound were proven for the IteratedMultiplexor Function, it would yield an 
((log n)3=2(log logn)�1=2) bound on circuit depth bysetting d = "(k=logk)1=2 for a suitable constant " > 0. The goal now, in order to separate AC1 fromNC1 is to use these techniques to prove the lower bound for the Iterated Multiplexor function. Thismotivated us to re-examine the case for d = 1. We give a proof directly in terms of communicationcomplexity that there is a function on k bits requiring 
(k) circuit depth, i.e., CC(Rf ) = 
(k).Although this fact can be easily established using a simple counting argument, our proof has theadvantage of being an \adversary argument," which is more in line with the proof techniques usedfor the Universal Composition Relation. We hope our results will provide a step towards a theoryfor circuit depth.An extended abstract of this paper appeared in [1]. Subsequently, using di�erent (and highlyinteresting) techniques, H�astad and Wigderson [3] obtained a lower bound of dk�2O(d) for UCRd;k.This is better for small values of d. However, even if extended to the actual composition of functions,this would give a depth bound of at most 
(log n log logn), whereas ours would give one of the form
((log n)3=2=(log log n)1=2). Recently, McKenzie and Raz [7] used a notion similar to predictability(our main concept) to prove a separation of monotone P from monotone NC. Unfortunately, noprogress has been made in using our techniques for their original purpose, proving circuit depthlower bounds. It would be interesting to see if this is because our techniques are "natural" in thesense of Razbarov and Rudich ([8]). While we do not see how to use a general lower bound oncompositions to derive a "natural" property, such a property might be implicit in our proofs.In Section 2, we give a formal de�nition of communication complexity, and review some of itsbasic properties and connections to circuit complexity. In Sections 3 to 6, Theorem 1.2 is proved.First, in Section 3, we describe the argument for the depth two informally. In Section 4 we developour main technical tool, the concept of predictability. The formal proof is presented in Sections 5and 6, separately for the depth two and general depth. Section 7 gives the new proof of the existenceof a function requiring linear depth circuits to compute.2 Communication ComplexityFor a general reference on communication complexity see [6]. A communication protocol is amethod by which two parties, each with a private input, compute a function of the two inputs bysending messages to each other. Each message should be a single bit. Who speaks next should bedetermined by the conversation so far, and the output of the protocol should be determined by thetotal conversation. Formally,De�nition 2.1 Let X,Y , and Z be �nite sets. Then a two-person t-message communicationprotocol consists of a function T from f0; 1g<t to f\A-player"; \B-player"g, a function PA fromX � f0; 1g<t to f0; 1g, a function PB from Y � f0; 1g<t to f0; 1g, and a function Out from f0; 1gtto Z. For x 2 X; y 2 Y , the conversation up to message i determined by the protocol on inputsx; y is given by Ci = Ci(x; y) where C0 = " and Ci+1 = (Ci; PA(x;Ci)) if T (Ci) = \A-player", andCi+1 = (Ci; PB(y;Ci)) otherwise. The output of the protocol on inputs x; y is Out(Ct(x; y)).4



We will use the following general property of communication protocols.De�nition 2.2 Let P be a t-message communication protocol on input sets X and Y . Let i � t,and let C 2 f0; 1gi. Let x 2 X; y 2 Y . We say that the pair hx; yi is consistent with C ifCi(x; y) = C. We will denote the set of pairs consistent with C by SC . We will let SAC be the set ofx 2 X so that there is a y 2 Y with hx; yi 2 SC , and similarly SBC = fy j 9x 2 X; hx; yi 2 SCg.Lemma 2.3 ([6, Proposition 1.14]) For any protocol and any C 2 f0; 1gi, SC = SAC � SBCWe are concerned with communication protocols for problems of the following form. We arepromised that a certain relationship holds between the two inputs. If the relationship holds, theprotocol should output a string which bears a certain relationship to the pair. Formally,De�nition 2.4 A communication task T on sets X;Y;Z consists of a relation R : X � Y !f0; 1g and a relation R0 : X � Y � Z ! f0; 1g, so that for every x; y satisfying R(x; y), thereexists a z 2 Z with R0(x; y; z). A protocol performs communication task T if, for every x; ysatisfying R(x; y), the output satis�es R0(x; y;Out(Ct(x; y))). The communication complexityof a communication task T , denoted CC(T ), is the least t such that there is a t-message protocolperforming the task.For every Boolean function f on k bit strings, we can associate a communication task whosecomplexity is exactly the minimum depth, D(f), of a circuit over the basis f^;_;:g that computesf . The task is, given inputs hx; yi, for which f(x) = 0 and f(y) = 1, to �nd a bit position where xand y di�er.De�nition 2.5 Let f be a function from f0; 1gk to f0; 1g. The communication task for f ,denoted Rf , is given by X = Y = f0; 1gk, Z = f1; : : : ; kg, R(x; y) holds if and only if f(x) = 0 andf(y) = 1, and R0(x; y; z) holds if and only if xz 6= yz, i.e., x and y di�er in the bit position z.This task characterizes the depth of a formula computing f :Theorem 2.6 ([5]) CC(Rf ) = D(f).The following theorem is proved using a counting argument, comparing the number of Booleancircuits of depth d to the number of functions on f0; 1gk .Theorem 2.7 ([9]) Let f be a randomly chosen Boolean function on f0; 1gk. Then, with highprobability, D(f) � k �O(log k).Finally, we recast De�nition 1.1 in this formal setting.De�nition 2.8 Let k; d be positive integers. Let � be the complete k-ary tree of depth d+1, rootedand ordered. Let � 0 be the set of all nodes of � except for the root, X = f0; 1g� 0 , and LA; LB 2 X.We say the pair LA; LB is as promised, if (i) there exist a node i on the second level of � (i.e.,a child of the root) such that LA(i) 6= LB(i) = 1, and (ii) for every interior node i 2 � satisfyingLA(i) 6= LB(i), there is a child i0 of i with LA(i0) 6= LB(i0).Let Z be the set of leaves of � . The Universal Composition Relation with parameters d; k,denoted UCRd;k, is the communication task on X;X;Z with R being the \as promised" relationand R0(LA; LB ; j) if and only if LA(j) 6= LB(j). 5



3 The Case d = 2: OverviewThe proof for general d involves a great deal of complicated notation and messy details, which tendto obscure the basic intuition. Therefore, we will �rst present the proof for the special case of d = 2.In this section, we give an intuitive overview to motivate the next two sections, which present theproof.Let us consider the task UCR2;k. Each player is given a f0; 1g labeling L of the complete k-arytree of depth 3. Since the root is always labeled 0 in the A-Player's input, and always labeled 1 inthe B-Player's, we can ignore the labeling of the root. Let �1 be the root of the tree, �2 be the kchildren of the root and �3 be the k2 leaves. For such a labeling L, let L1 be the induced labelingon �2 and L2 on �3. The bit labeling L2 can either be thought of as k2 bits indexed by �3 or ask vectors indexed by �2. For node i 2 �2, bi is used to denote the ith bit of L1 and ~cvi is used todenote the ith vector of L2 which labels the children of i. This is called the child vector of i. SeeFigure 1.
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Player A Player BFigure 1: The inputs for UCR2;kWe would like to show that any reasonable protocol �rst communicates enough bits to �nd adi�erence in the players' L1 vectors and then �nds a di�erence in the child vector of this di�erentlylabeled node. This will take twice as many communication bits as to �nd a di�erence in two distinctk bit vectors, i.e., twice as long as the Universal Game. A simple argument that the UniversalGame requires k � 1 bits is as follows.Each player is given a k bit vector, with the only requirement being that they are di�erent. Theymust �nd an index where the vectors are di�erent. The lower bound will be proved by a simpleadversary argument. Given a �xed protocol that is assumed to solve the task in fewer steps, wegive a procedure for an adversary to �nd an input pair on which the protocol fails. The adversaryrestricts the set of inputs in each round in order to �x the conversation between the players upto the current time step. After a certain number of bits have been communicated, let SA be theset of vectors x that can be given to the A-Player and be consistent with the conversation so far.De�ne SB similarly. The adversary will maximize jSA \ SBj in order to maintain the symmetrybetween the players. A bit communicated by the A-Player partitions SA into those vectors onwhich he communicates a 0 and those on which a 1 is communicated. The adversary chooses thehalf that keeps the intersection SA \ SB as large as possible. This at most halves the intersection.Similarly, for bits communicated by the B-Player. After t bits, jSA \ SB j � 2k�t. Hence, afterk � 2 bits jSA \ SB j contains at least four vectors. If the protocol ends at this point and outputsa bit position i, then the adversary can �nd at least two of the four vectors which are the same at6



this index (actually, only three vectors are necessary for this). These two vectors are given to thetwo players. Therefore, the protocol fails on this input. So any protocol solving this task requiresk � 1 bits of communication.This adversary strategy can be summarized by saying that the adversary delays breaking thesymmetry between the players for as long as possible, in order to make it di�cult for the players to�nd a di�erence. At the last minute, this symmetry has to be broken in order to keep the promiseof giving them di�erent vectors.The same tension between making the players' inputs the same and making them di�erentoccurs in our lower bound. The lower bound is broken into stages, one stage per level. In the�rst stage, the adversary maintains the symmetry between the players' values for both L1 and L2.Just before the players can communicate the k bits describing L1, their L1 vectors are �xed to bedi�erent. In the second stage, the same is done with L2. The symmetry is kept until just beforethe players can communicate one child vector in L2.The lower bound is more complicated than above, because the players may communicate bitsabout L2 during the �rst stage of the protocol, including hybrid bits involving both the L1 and L2parts of the input or bits which involve many places in the L2 vector. For simplicity, we will ignorethe last two complications and come back to them later.The intuition is that bits communicated about L2 during the �rst stage of the protocol arewasted. The players do not know which of the k2 bits in L2 to communicate. On the other hand, ifthe players wait until a di�erence in L1 is known, then they can concentrate on �nding a di�erencein the corresponding child vector within L2.Suppose, pessimistically, that the players communicate k bits about L2 during the �rst stage.They could either communicate a lot of bits about a few child vectors or a few bits about lots of childvectors. Either way this is not useful for the players. Assume lots of bits have been communicatedabout a few child vectors. Remember that the adversary only needs to make these child vectorsdi�erent for the two players if the corresponding bits in L1 are di�erent. Thus, the adversary willsimply make the corresponding bits in L1 the same, freeing her to �x the entire child vectors inthe same way for both players. Thus, the many bits communicated about L2 could have beenreplaced by only a few bits about L1. On the other hand, if only a few bits about any particularchild vectors are known, these bits will not signi�cantly help the players once a di�erence in theL1's is discovered, and the players focus on one child vector. The dividing line between lots ofbits communicated and a few will be set to k=l bits; the parameter l will be set to pk in order tooptimize the lower bound. Note there are at most l child vectors for which at least k=l bits havebeen communicated.Therefore, the general strategy for the adversary is as follows. During the �rst k� l� f bits ofcommunication, where f is a small \fudge factor", we assume pessimistically that the players learnk�l�f bits about L1 and another k�l�f bits about L2. After this period, the adversary performsa \clean-up" which further restricts the allowable input pairs. The adversary �rst identi�es at mostl child vectors for which the players know at least k=l bits, and �xes the corresponding bits in L1.This leaves only f bits of L1 unknown; the adversary must now break the symmetry at the L1 level.If no hybrid bits concerning both L1 and L2 have been communicated, this is simple: the adversarypicks a di�erent L1 vector for each player from the 2f possible vectors. In the real proof, this will bemore complicated. Once this symmetry is broken, the parties may know many places in which theirL1's di�er, and hence know that the corresponding child vectors are di�erent. But they will notknow more than k=l bits about any one of these child vectors. Thus, the adversary will be able toforce the protocol to go for about k�k=l more steps before any of these rows are in danger of beingforced to be the same for both players. This yields a lower bound of 2k�O(l+k=l) = 2k�O(k1=2)7



bits for any protocol solving the task.The players have more options than in the above discussion. Although it does not appear tohelp them, instead of communicating a bit about L1 or a bit about L2, they could communicatea bit about the combination. Our lower bound gets around this complication by (more or less)converting one combination bit into one bit about L1 and one bit about L2. Another complicationis that, if the players communicate \hybrid" bits, the number of bits known about a child vector isnot well-de�ned. For this purpose, we need to de�ne a formal measure.For example, suppose over a sequence of communication bits, the A-Player tells the B-Player,\I am not telling you any of my values, but I will tell you that if the �rst bit of the �rst childvector in my L2 is 0, then all k bits in the second child vector are zero. On the other hand, ifthis �rst bit is 1, then I reveal no information about this second child vector." The question nowis whether the B-Player is considered to know k or zero bits about this second child vector. Auseful information measure for many applications is Entropy. Because half the time k bits aboutthe second child vector are revealed and half the time 0 bits are revealed, Entropy measures thenumber of bits revealed as the average k=2. Our adversary, however, wants to be more cautious byassuming that the B-Player knows more than this. We de�ne a measure of \predictability" to bethe probability of guessing the value. If the B-Player completely knows the child vector then theprobability of guessing it is 1 and if he knows nothing about it, then the probability is 2�k. Themeasure is the average of these, (1 + 2�k)=2 � 1=2. A predictability of 1=2 is then interpreted tomean that the B-Player knows everything but \1 bit" about this child vector. The next sectionformally de�nes this measure.4 PredictabilityConsider a set of vectors S � W � indexed by the set �, and whose elements lie in set W . For ourpurposes, W will be the set of k-bit vectors f0; 1gk, making v 2 S a vector of vectors of bits, or,alternately, a matrix of bits. However, we will only use the nature of W in this section to providesome motivating examples of how the Lemmas proved here will be used.De�nition 4.1 For every vector v 2 S and index i 2 �, let vi 2 W be the element of the vectorindexed by i.For every subset of indices � � �, let Proj(v; �) 2 W ��� be the sub-vector of v indexed bythe indices not in � (i.e., a projection which removes the elements of v indexed by �). Similarlylet Proj(S; �) = fProj(v; �) j v 2 Sg be the projection of S removing the elements indexed by� from every vector in S. We write Proj(v; i) instead of Proj(v; fig) and Proj(S; i) instead ofProj(S; fig).For every w 2 Proj(S; �), let Cons(S;w) = fv 2 S j Proj(v; �) = wg be those vectors in Sconsistently extending the vector w to the elements indexed by �. A function E from Proj(S; �) toS is called an extension function if, for all w 2 Proj(S; �); E(w) 2 Cons(S;w). Note that anyextension function is 1-1, since Proj(E(w); �) = w.Suppose t bits have been communicated about an input in W � and let S be the set of inputsconsistent with this conversation. We can safely assume jSj � 2�t � jW �j. An interesting questionis, for i 2 �, how many of these bits were communicated \about the ith element". Since the actualbits communicated could depend on all the elements, this is not a clear-cut issue. Furthermore,if for example the bitwise parity of all the elements were revealed, each element, given the com-munication, would still be completely uniformly distributed, and so its conditional entropy, given8



the conversation, would still be large. Thus, we must also condition on the other elements. Notethat this gets us into the reverse situation, in that if the protocol communicates the parity of theelements, it simultaneously reduces all of their conditional entropies given the other elements to 0.We will discuss this problem later in this section.More precisely, look at the following distribution: choose a random vector v 2 S, and revealProj(v; i). We want to measure the conditional randomness of vi. The set Cons(S; Proj(v; i))contains all vectors v that are consistent with the revealed information. Therefore, the probabilityof being able to predict the value of vi is 1=jCons(S; Proj(v; i))j. We de�ne the predictability asthe expectation of this probability.De�nition 4.2 The predictability of the ith element in S isPredi(S) = Expv2S � 1jCons(S; Proj(v; i))j� :If the ith element vi of v 2 S is �xed as a function of the other elements, then Predi(S) = 1. Ifthis element is completely undetermined, then Predi(S) = 1=jW j. We can think of log(Predi(S) �jW j) as the \number of bits known about element i", since if S is the set of inputs consistent witht independent bits communicated about vi, Predi(S) = 2t=jW j.Think of S as being partitioned according to Proj(v; i). The number of equivalence classes isjProj(S; i)j. The size of the equivalence class of v is jCons(S; Proj(v; i))j. The contribution of vtowards the expectation in the de�nition of the predictability is 1=jCons(S; Proj(v; i))j. So thetotal contribution of the vectors in any equivalence class is 1 and the expectation is just the numberof classes normalized by the number of vectors. This gives the following lemma which can be usedas an alternate de�nition of predictability.Lemma 4.3 Predi(S) = jProj(S; i)j=jSj.Another measure of the amount of information that has been communicated about vi is calledthe collision probability and is denoted CPi(S). It is the probability that, for two vectors ran-domly chosen (with replacement) from S, the ith element is the same, i.e., CPi(S) = Probv;v02S [vi =v0i]. The predictability of i is an upper bound on this probability.Lemma 4.4 CPi(S) � Predi(S).Proof: For any v 2 S, there are at most jProj(S; i)j vectors v0 2 S such that vi = v0i. HenceProbv02S [vi = v0i] � jProj(S; i)j=jSj = Predi(S), and we average over v 2 S.How does throwing away vectors from S a�ect the predictability?Lemma 4.5 Let S0 � S. Then Predi(S0) � jSjjS0jPredi(S):Proof: Note that Proj(S0; i) � Proj(S; i). Therefore,Predi(S0) = jProj(S0; i)jjS0j � jProj(S; i)jjS0j = jSjjS0jPredi(S):9



Suppose t bits have been communicated about the vectors v in S, i.e., jSj = 2�t � jW �j. Anatural property to want is that, for all l, at most l elements of v can have more than t=l bits\revealed about it". The problem is that after only log(jW j) bits have been communicated, it ispossible that, for all i 2 �, Predi(S) = 1, implying that log(jW j) bits have been communicated\about each of the elements". Consider the following example, for W = f0; 1gk . Suppose that forj 2 f1; : : : ; kg, the bit j of communication reveals that the parity of the column j is 0. Then foreach i 2 �, the row vi is uniquely determined by the other rows Proj(v; i). Therefore, for all i 2 �,Predi(S) = 1.We will get around this problem as follows. When an element becomes highly predictable inS, this element is �xed as a function of the other elements and then ignored. From then on, theset of vectors Proj(S; i) is considered in place of S. In our previous example, if any one of therows vi is �xed as a function of the other rows, then no information at all is known about theremaining elements Proj(v; i). The vi value is �xed as a function of Proj(v; i), by choosing onevector v 2 Cons(S;w) for each w 2 Proj(S; i). (I.e., we are �xing an extension function whichmaps Proj(S; i) 1-1 to S0 � S.) This is equivalent to the condition that the set of all chosen vectorsS0 satis�es jS0j = jProj(S0; i)j = jProj(S; i)j, we will use this concise formulation later in the paper.The following lemma says that if at most t bits have been revealed about S, then there exists a setof at most l elements such that, if we �xed them in this way, then no more than t=l bits have been\revealed about" any of the other elements.Lemma 4.6 Let jSj � 2�t � jW �j and j�j � l > 0. Then there exists a subset of elements � � �such that� j�j � l, and� 8i 2 � � �; Predi(Proj(S; �)) < 2t=l=jW j.Proof: Initially, let � = ;. We will keep adding indices to �, maintaining the property thatjProj(S; �)jjW ���j � 2�t�1� j�jl �:For � = ;, this property is true because jSj � 2�t � jW �j. Now assume for � � � the property holdsand and that there is an index i 2 � � � for which Predi(Proj(S; �)) � 2t=l=jW j. By Lemma 4.3,jProj(S; � [ fig)jjProj(S; �)j = Predi(Proj(S; �)) � 2 tljW j :It follows thatjProj(S; � [ fig)jjW ����figj � 2 tljW j � jProj(S; �)jjW ����figj = 2 tl � jProj(S; �)jjW ���j � 2 tl � 2�t�1� j�jl � = 2�t�1� j�[figjl �:Thus the property holds for � [ fig. Eventually, for all i 2 � � �, Predi(Proj(S; �)) < 2t=l=jW j.Since Proj(S; �) �W ���, it follows that1 � jProj(S; �)jjW ���j � 2�t�1� j�jl �and thus j�j � l. 10



At certain points in the argument, we will want to ensure that the players are given vectors thatare distinct at many locations. We will do this by partitioning W for each i 2 � with a randomfunction gi : W ! f0; 1g, and promising that, for every i 2 �, gi(vAi ) = 0 and gi(vBi ) = 1, wherevA and vB are the inputs for the A-player and the B-Player.Lemma 4.7 Suppose for all i 2 �, Predi(S) � 1=(4j�jm). For each i 2 �, pick uniformly atrandom the functions gi :W ! f0; 1g. Then Prob[(9v 2 S)(8i 2 �)gi(vi) = 0] > 1� j�j � 2�m.Proof: For notational convenience, assume, without loss of generality, that � = f1; : : : ; j�jg. LetS0 = S and let Si = fv 2 Si�1 j jCons(Si�1; P roj(v; i))j > mg, for i = 1; : : : ; j�j.First we prove by induction on i thatjSij � �1� i2j�j� jSj:For i = 0, it is trivial. Let 1 � i � j�j. By the induction assumption jSi�1j � jSj=2. Thus, byLemma 4.5, Predi(Si�1) � 1=(2j�jm). By Markov inequality,Probv2Si�1 [jCons(Si�1; P roj(v; i))j � m] � m � Expv2Si�1 � 1jCons(Si�1; P roj(v; i))j�= m � Predi(Si�1) � 12j�j :Thus for a random v chosen uniformly from Si�1 the probability that jCons(S; Proj(v; i))j � mand hence v 62 Si is at most 1=(2j�j). HencejSij � �1� 12j�j� jSi�1j � �1� 12j�j��1� i� 12j�j � jSj > �1� i2j�j� jSjand our claim follows by induction. Applying the claim to i = j�j, we have that Sj�j is nonempty.Now we will construct a sequence of vectors v(j�j); : : : ; v(0) as follows: Let v(j�j) 2 Sj�j. Fori = j�j; : : : ; 1, select v(i�1) 2 Cons(Si�1; P roj(v(i); i)) such that gi(v(i�1)i ) = 0, if possible. Letv = v(0). Since v(i) 2 Si, jCons(Si�1; P roj(v(i); i))j > m and these (more then m) vectors havedistinct ith entries. So the probability that gi will be 1 on all of them is less than 2�m. Therefore,v(0) exists with probability at least 1 � j�j � 2�m, and gi(v(0)i ) = 0, for all i 2 �, since v(0)i = v(i�1)iby the construction.The following discussion and lemmas formalize the idea that \a hybrid bit communicated con-cerning all levels of the tree is no worse than a single bit communicated for each level." We considerthe general situation where the indices in � are partitioned, as � = Sdi=r �i. We would like to viewS in a way that presents the uncertainty in picking an element of S hierarchically, �rst picking theinformation indexed by �d, then by �d�1,. . . ,�r. This gives the following hierarchy tree repre-sentation of the set S. (One confusion that should be avoided is that, in our example, � itself hasa tree structure. The hierarchy tree has the same depth, but it is much larger and the choices inthe hierarchy tree are in reverse order, largest index depth �rst to smallest last.)De�nition 4.8 Let r < d be integers, let � = Sdi=r �i be an ordered partition of �, and let S �W �.De�ne ��j = Sji=r �i, and ��j = ����j�1. Let S�j = Proj(S; ��j�1) �W ��j . In the degeneratecase we set S�d+1 = f�g, where � is the single \null" vector (i.e., a vector with 0 coordinates).11



We de�ne the extension set for L�j 2 S�j, denoted XS(L�j), as the set of all labeling of�j�1 which can be consistently added to L�j, i.e., XS(L�j) = Proj(Cons(L�j; S�j�1); ��j).The hierarchy tree HS for S with respect to this partition is a treeof total depth d + 2 � r. See Figure. Each node at depth d + 2 � jis labeled with an element Lj 2 W �j . Hence, the path from the rootto this node is labeled with an element L�j = hLj ; : : : ; Ldi 2 W ��j .The hierarchy tree, however, is pruned so that at this depth it onlycontains those nodes corresponding to the elements L�j 2 S�j �W ��j . (Note that the root at depth 1 is �, the unique elementof S�d+1, and the leaves at depth d + 2 � r are the elements ofS�r = S.) The parent of a node L�j 2 S�j for r � j � dis L�j1 = Proj(L�j ; �j) 2 S�j+1. Its the children are labeledwith the elements Lj�1 2 XS(L�j) and correspond to the elementsL�j�1 = hLj�1; Lj; : : : ; Ldi 2 Cons(L�j; S�j�1).
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leaves elements of SWe now formalize the intuition that a hybrid bit about a v 2 S can be replaced by a simple bitabout each level Proj(v; �j).Lemma 4.9 Let H be a �nite tree rooted at �, and let H1; : : : ;Hp be a partition of the leaves ofH. Then there is b, 1 � b � p and a non-empty subtree H 0 of H also rooted at �, so that all leavesof H 0 are in Hb, and, for every interior node h 2 H 0, if h has C children in H, h has at least C=pchildren in H 0.Proof: Mark every leaf by a number i between 1 and p according to which set Hi it belongs to.Mark interior nodes in order of decreasing depth, so that each node has the label that appears mostfrequently at its children (breaking ties arbitrarily). Let b be the label of the root �. We de�ne H 0as the tree containing all the nodes such that all the nodes on the path from it to the root havelabel b, i.e., the tree containing the root, its children labeled by b, their children labeled by b, etc.Lemma 4.10 Let S �W � and let S1, . . . , Sp be a partition of S. Then there is b, 1 � b � p and asubset S0 of Sb such that for any j, r � j � d+1 and any L�j 2 (S0)�j, jXS0(L�j)j � jXS(L�j)j=p.Proof: Apply Lemma 4.9 to the hierarchy tree HS to get a subtree H 0. De�ne S0 as the set of allleaves of H 0.5 Proof for d = 2Now we prove the lower bound. We start with the special case of d = 2, since it illustrates thetechnique while avoiding certain complications. We prove that the players need to communicate atleast 2k � 3pk �O(log k) bits. 12



5.1 NotationWe use the notation from Section 3 and Section 4.There are two equivalent representations for the inputs to the players. See Figure 2. In the bitrepresentation, we think of the inputs as bits indexed by a complete k-ary depth 3 tree, � = �1[�2[�3. The bit of the root which is the sole element of �1 is 0 for the A-player and 1 for the B-player.The bit labeling node i 2 � is denoted by bi. Then L1 is the sub-array of bits indexed by �2 andL2 the sub-array of bits indexed by �3.In the child vector representation, we think of the inputs as instead labeling the depth 2 tree�1, �2 with elements from W = f0; 1gk , the child vectors of the interior nodes in the tree. Thus, thelabel of the root �1 is L1, and the labels of the leaves �2 describe L2. (The label of the original rootis not signi�cant, since this is always 0 for the A-player and 1 for the B-player.) The set of indicesis then � 0 = �1 [ �2, the root and its k children respectively. We use the notation ~cvi to denote thechild vector of node i 2 � 0. Hence, if i0 is the jth child of i in � , bi0 = ~cvi(j). Throughout the paperwe use the child vector representation, unless we explicitly say otherwise.
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Bit Representation Child Vector RepresentationFigure 2: The bit and the child vector representation of the inputsLet bi; b0i; i 2 � be two inputs in bit representation, and let ~cvi; ~cv0i; i 2 � 0 be the same labelingsin child vector representation. We say the promise is kept at node i 2 � 0 if either bi = b0i or~cvi 6= ~cv0i. The pair is as promised if it satis�es the relation R, or, equivalently, if the promise iskept at all nodes i.Let us �x a protocol supposedly solving the problem with fewer than 2k � 3pk � log(6k3) bitsof communication. Let l = pk and t = k � l � log(2k2). (We assume that l and t are integers,otherwise we round l up and t down.)For C a partial conversation, let SAC be the set of hL1; L2i labelings that can be given to theA-Player and be consistent with the conversation C so far. De�ne SBC similarly.5.2 The First Stage ConversationDuring the �rst stage, the adversary will pick C to maximize the symmetry between the players.More precisely, the adversary will �nd a conversation C and a set S � SAC \SBC that is \full" in thefollowing sense. Let HS be the hierarchy tree for S with nodes S�3[S�2[S�1. See Figure 3. Theset S�3 consists of a single root �. Its children are S�2 = XS(�) = Proj(S; �1) is the set of possibleL2 which might arise from a labeling in S. For a given L2 2 S�2, XS(L2) is the set of all L1 withhL1; L2i 2 S. After almost k bits have been communicated, the adversary wants many possibleL2's that could be given to either player, so that it will be hard to �nd a di�erence in the leaves.13
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Figure 3: The hierarchy tree HS for SThere may still be a few vectors in L2 that have been the subject of signi�cant communication, sothe adversary will want to make the corresponding bits of L1 identical, while allowing the playersto be given distinct L1's to keep the promise at the root. To do this, the adversary also wants asmany as possible L1's for each possible L2.Lemma 5.1 Fix any protocol for UCR2;k. Then there exists a C 2 f0; 1gt and an S � SAC \ SBCso that jS�2j � 2k2�t; and, for each L2 2 S�2, jXS(L2)j � 2k�t = 2k2(2l).Proof: Partition the set W � 0 of labelings hL1; L2i according to the �rst t bits of communicationthat would result if both players are given this labeling. (This choice of inputs is not as promised,but the protocol is still de�ned.) If hL1; L2i is in SC , the class of the partition corresponding topartial conversation C, then hL1; L2i 2 SAC \ SBC . Obtain the conversation C and subset S � SCby Lemma 4.10; the guarantee on size of extension sets is exactly as above, since the number ofclasses in the partition is at most p = 2t, jS�2j = jXS(�)j � jXW � 0 (�)j=p = 2j�3j=p = 2k2�t, andfor every L2 2 S�2, jXS(L2)j � jXW � 0 (L2)j=p = 2j�2j=p = 2k�t.5.3 Breaking Symmetry for L1Between the stages, the adversary does some \cleaning up". At this point, enough informationhas been communicated about L1 for the players to start �nding a di�erence. On the other hand,intuitively, only a few child vectors in L2 have had signi�cant amounts of information revealedabout them. The adversary wants to identify the child vectors of L2 for which more than k=lbits have been communicated, �x these as functions of the remaining child vectors, and ensure thecorresponding bits of L1 are �xed to be the same for both players. Then the adversary can breakthe symmetry for L1, by partitioning possible values for L1 between the two players, ensuring thatthe players are given distinct values as promised. This process is described formally as the proofof the following lemma:Lemma 5.2 Fix any protocol for UCR2;k. Then there are:1. a partial conversation C 2 f0; 1gt;2. a set of nodes � � �2, j�j � l;3. a set T � (f0; 1gk)�2��; 14



4. an extension function E1 : T ! (f0; 1gk)�25. extension functions EA; EB : E1(T )! f0; 1g�satisfying(i) For all L2 2 E1(T ), EA(L2) 2 SAC and EB(L2) 2 SBC .(ii) For all L2; L02 2 E1(T ), the promise is kept for the pair of inputs EA(L2) and EB(L02) at alli 2 � [ �1.(iii) For all i 2 �2 � �, Predi(T ) � 2k=l+l � 2�k;Proof: Let C and S be as guaranteed by Lemma 5.1.First, we identify the child vectors in L2 where \a lot of information has been communicated".By Lemma 4.6 since jS�2j � 2k2�t > 2k2�k (i.e., no more than k bits have been communicated aboutL2), there exists a subset � � �2, j�j � l, such that if these are ignored, then the remaining childvectors i 2 �1 � � have predictability Predi(Proj(s�2; �)) � 2k=l � 2�k (i.e., no more than k=l bitshave been communicated \about each of these child vectors"). For each elementM of Proj(S�2; �),choose a single extension E1(M) 2 S�2; let H 0 � S�2 be the set of all values of E1(M). Notethat E1 and Proj(L2; �) are one-to-one correspondences between H 0 and Proj(S�2; �). Let S0 =fhL1; L2i 2 S j L2 2 H 0g. Note that (S0)�2 = H 0 and XS0(L2) = XS(L2) for every L2 2 H 0.As far as we know, the child vectors of nodes in � might now be constant in S0. In order tohave the promise kept for these nodes, the adversary now �xes the bits of L1 labeling the nodesin �. To choose values of bits indexed by �, we again use Lemma 4.10, similarly as if j�j bits arecommunicated. More precisely, we partition S0 into p � 2l sets according to the bits bi; i 2 �; thenby lemma Lemma 4.10, there are �bi, i 2 � and S00 � S0 such that:(i) For all labelings in S00, and all i 2 �, bi = �bi.(ii) j(S00)�2j � j(S0)�2j=2l = jProj(S�2; �)j=2l(iii) For all L2 2 (S00)�2, jXS00(L2)j � jXS0(L2)j=2l = jXS(L2)j=2l � 2k2Let T = Proj((S00)�2; �). Then since (S00)�2 � H 0 and the function Proj(L2; �) is one-to-one on H 0, jT j = j(S00)�2j � jH 0j=2l. Therefore, by Lemma 4.5, the predictability of any childvector can go up by at most a factor of 2l over its predictability in Proj(H;�). Therefore, for alli 2 �2 � �, Predi(T ) � 2lPredi(Proj(S�2; �)) � 2k=l+l � 2�k (i.e., no more than k=l + l bits havebeen communicated \about each of these child vectors"), so condition (iii) of the lemma is proved.For the other conditions, we need to de�ne the extension functions EA and EB . We start byusing E1 to go from a labeling of �2 � � to an entire L2. Now we need to �nd L1's. The trickypart is to ensure the promise at the root is kept, i.e. that the L1 vectors are di�erent. Thus, theadversary must now break the symmetry between the two players' possible values for L1. For eachL2 2 T 00, one L1 vector is chosen for the A-Player from the remaining set S(L2) and one is chosenfor the B-Player. In this way, the L2 chosen for each player at the end of the protocol will �x theL1 vectors for the two players in an asymmetric way as a function of the L2. In order to ensure thatthe players get di�erent L1 vectors special care needs to be taken. The adversary chooses a functionG : f0; 1gk ! f0; 1g randomly. The A-Player will be given an L1 from G�1(0) and the B-Playerfrom G�1(1). We must ensure that for each L2 2 E1(T ), XS00(L2)\G�1(0) and XS00(L2)\G�1(1)contain at least one vector each. To see that this is the case with high probability, note that foreach such L2, L2 2 (S00)�2, thus jXS00(L2)j � 2k2 and for a random function G, the probability15



that all elements of this set are 1's of the function, ProbG[XS00(L2)\G�1(0) = ;], is at most 2�2k2 ,and likewise for all 0's. Therefore, since there are at most 2k2 such M , the probability that thereis such an M is small; namelyProbG[(9L2 2 E1(T ))(XS00(L2)\G�1(0) = ;_(XS00(L2)\G�1(1) = ;)] � 2jT j � 2�2k2 � 21�k2 < 1:So we pick a function G where this never occurs, and for each L2 2 E1(T ), we select LA1 2XS00(L2)[G�1(0) and LB1 2 XS00(L2)[G�1(1) and set EA(L2) = hLA1 ; L2i and EB(L2) = hLB1 ; L2i.Then for any L2; L02 2 E1(T ), let L = EA(L2) 2 S00 and L0 = EB(L02) 2 S00. Then sinceG(L1) = 0 and G(L01) = 1, L1 6= L01, and so the promise is kept at the root for the pair L and L0.For i 2 �, since L;L0 2 S00, bi = �bi = b0i, so the promise is kept at each i 2 �. So condition (ii) ofthe lemma holds.Since S00 � S � SAC \ SBC , L 2 SAC and L0 2 SBC . Thus condition (i) of the lemma holds.In the general case, d > 2, we will need to use Lemma 4.7 to handle this step, because we willneed to break the symmetry simultaneously for many vectors.5.4 The Second StageDuring the second stage of the lower bound the players continue to communicate bits. This stagecontinues for t0 = k � k=l � l � log(3k) bits of communication. Since, for each player, we have�xed L1 as the functions EA; EB of L2, and we have �xed the rest of L2 as the function E1 ofProj(L2; �), bits communicated partition the set T of possible Proj(L2; �)'s. More precisely, lookat the conversation produced on inputs EA(M) and EB(M) for each M 2 T for t + t0 bits. (Asbefore, such a pair need not be as promised for the protocol to be de�ned.) The �rst t bits arealways C. So this partitions the set T into at most 2t0 subsets, at least one of which T 0 � T , isof size at least jT j=2t0 . Now by Lemma 4.5 the predictability of any child vector has gone up byat most the same factor. Since for T we had 8i 2 �2 � �, Predi(T ) � 2k=l+l � 2�k, we now have8i 2 �2 � �, Predi(T 0) � 2k=l+l � 2t0 � 2�k = 2� log(3k) = 1=(3k).Summarizing:Lemma 5.3 Fix any protocol for UCRd;k. Let t00 = t+ t0 = 2k � k=l � 2l � log(6k3). Then thereare:1. a conversation C 0 2 f0; 1gt00 ;2. a set of nodes � � �2, j�j � l;3. a set T 0 � (f0; 1gk)�2��;4. an extension function E1 : T ! (f0; 1gk)�25. extension functions EA; EB : E1(T )! f0; 1g�satisfying(i) For all L2 2 E1(T 0), EA(L2) 2 SAC0 and EB(L2) 2 SBC0.(ii) For all L2; L02 2 E1(T 0), the promise is kept for the pair of inputs EA(L2) and EB(L02) at alli 2 � [ �1.(iii) For all i 2 �2 � �, Predi(T 0) � 1=(3k) 16



5.5 Choosing The InputsThe protocol ends at this point and outputs Out(C 0) 2 �3, claiming that bOut(C0) 6= b0Out(C0). Theadversary must �nd a pair hLA1 ; LA2 i and a pair hLB1 ; LB2 i which are consistent with C 0, which areas promised at all nodes, and for which the speci�ed leaf Out(C 0) is labeled the same.The adversary chooses these inputs by choosing two vectors LA2 , LB2 independently and uniformlyat random from the set E1(T 0) (since E1 is one-to-one, this is equivalent to sampling from T 0). This�xes the inputs hLA1 ; LA2 i = EA(LA2 ) and hLB1 ; LB2 i = EB(LB2 ).The claim is that with probability at least 1=6, these inputs meet the adversary's requirements.First, the pair is consistent with C 0 by Lemma 5.3 (i).We now compute a lower bound on the probability that the pair of inputs is as promised. ByLemma 5.3 (ii) the promise is kept for all nodes in �1[�. So we just need to look at the probabilitythey keep the promise at nodes i 2 �2 � �. For the promise to be kept at such nodes, it su�cesthat, for each i 2 �2 � �, ~cvi 6= ~cv0i. Now, ~cvi and ~cv0i are parts of two uniform and independentsamples from T 0. Lemma 4.4 states that the probability, for two samples randomly chosen (withreplacement) from T 0, that the ith component is the same, is no more than Predi(T 0), which isbounded by Predi(T 0) � 1=(3k) using Lemma 5.3 (iii). Thus, the probability that at least one ofthe k such child vectors is the same is no more than 1=3 and the input pair is as promised withprobability at least 2=3Now let us calculate the probability that the speci�ed index of �2 is labeled the same. Let pbe the probability that for a random L2 2 E1(T 0), bOut(C0) = 1. Because both players' L2's areidentically and independently chosen from E1(T 0), this probability is the same for both players andthe probability that the label is di�erent is 2p(1 � p) � 1=2.Thus, the probability that the pair is as promised and the bits bOut(C0) are the same is at least2=3� 1=2 = 1=6. Therefore, there exists a choice of inputs which causes the protocol to fail. Sincethis holds for an arbitrary protocol, we getTheorem 5.4 CC(UCR2;k) � 2k � 3pk � log(6k3) .6 Proof for d � 36.1 OverviewAlthough the proof is considerably more complicated, the intuition behind the case d � 3 is thesame as that for d = 2. In both, the adversary tries to delay progress on the part of the protocolas long as possible, where progress means �nding a di�erence in the players' labeling deep in thetree. If the players know a di�erence at some node at level i they can �nd a di�erence at leveli+ 1 within k bits of communication. Thus approximately every k bits we begin a new \stage" ofthe lower bound. During the stage r, the adversary assumes that the players have already found adi�erence in the level r � 1 and tries to prevent them from �nding a di�erence in the level r.The way this is modeled in the proof is for the adversary to �nd a conversation for the �rst rstages and a set of possible inputs for each player where each pair of possible inputs leads to thisconversation. Furthermore, the way we model \the players know no di�erence beyond depth r inthe tree", is to make these sets identical as far as their possible Lr+1; : : : ; Ld parts. This means thatwe cannot guarantee to ful�ll the promises in these parts, since we cannot guarantee any di�erencesat these levels. However, we make sure that this set is large, so that two random elements of theset are likely to have enough di�erences to ful�ll the promises. By �xing L1; : : : ; Lr as functions ofLr+1; : : : ; Ld in di�erent ways for the two players, we ensure the promises are kept for these levels.17



More precisely, at the end of stage r, the adversary has �xed a conversation Cr and a smallset �r � �r+1 which are the child vectors in Lr+1 about which \signi�cant communication" hasoccurred. The adversary maintains a set of labelings Tr of ��r+1 � �r which are possible for bothplayers. This speci�es possible labelings Lr+2; : : : ; Ld symmetrically for the players, as well as the\unpredictable" parts of Lr+1. Then the labeling of �r , and hence Lr+1 is determined by anextension function Er symmetrically for both players, which are then asymmetrically extended tocomplete labelings by functions EAr and EBr . Intuitively, since the sets of inputs for the two playersare the same as far as their labelings of ��r+1 go, the players do not yet know a di�erence at the(r + 1)st level.The delicate part is when the players have revealed enough information to almost �nd a di�er-ence at the rth level. In order not to violate a promise, we need to break symmetry at the rth level,but maintain it at the (r + 1)st. The steps towards doing this are:1. Identify the set of nodes �r+1 at level r + 1 where \signi�cant information has been commu-nicated".2. Fix the child vectors of these nodes as functions of the rest of Lr+1.3. Fix the bits labeling these nodes.4. For each i 2 �r+1 � �r, partition the elements of f0; 1gk between the players to make surethat these child vectors di�er.6.2 NotationLet l = pk= log k, a1 = dk=l, a2 = dl log k, a3 = 4d log k + 4, and s = k � a1 � a2 � a3 � 2l =k � O(d(k log k)1=2). Fix any protocol which supposedly solves UCRd;k using at most sd bits ofcommunication. We call the time from the bit (r � 1)s+ 1 to bit rs of the conversation stage r ofthe protocol.For j, 1 � j � d+1, let �j represent the nodes of the complete, depth d+1, k-ary tree at depthj, so �1 is a single root, �2 its k children, etc. Remember, in the child vector representation,Li is an array of elements of f0; 1gk indexed by �i; in the bit representation it is an arrayof bits indexed by �i+1. For notational convenience, we will think of a labeling as having bothrepresentations. In particular, we will call a function an extension function even if its input isin one format and output in the other, as long as the input and output are identical where theyare both de�ned (if, say, both were converted to bit representation). For a labeling L, we use thenotation bi, i 2 ��2, to represent the bit labeled by i in the bit representation of L and ~cvi; i 2 ��d,to represent the k bit string indexed by i in its child vector representation.In the proof, after stage r we will have a set of partial labelings Tr, each member is a possiblelabeling Lr+2; : : : ; Ld, plus the part of Lr+1 which is indexed by �r+1��r (for a set �r representingthose child vectors in Lr+1 about which \too much information has been revealed"). We will useLemma 4.10 on this set, with respect to the partition �r+1 � �r, �r+2, . . . , �d, so all references tothe hierarchy tree for Tr are with respect to this partition.Let LA and LB be labelings of ��2, with bit representations bAi and bBi and child vector repre-sentations ~cvAi and ~cvBi . We say the pair is as promised for node i 2 ��2 if either bAi = bBi or~cvAi 6= ~cvBi . The pair is as promised for the root i 2 �1 if ~cvAi 6= ~cvBi .
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6.3 Induction AssumptionThe inductive statement is analogous to Lemma 5.2. We will prove, by induction on r = 0; : : : ; d�1,that:Lemma 6.1 Let 0 � r � d� 1. Then there are:1. a partial conversation Cr 2 f0; 1gsr;2. a set of nodes �r � �r+1, j�rj � l;3. a set Tr � (f0; 1gk)��r+1��r ;4. an extension function Er : Tr ! (f0; 1gk)��r+15. extension functions EAr ; EBr : Er(Tr)! f0; 1g�satisfying(IND-i) For all L�r+1 2 Er(Tr), EAr (L�r+1) 2 SAC ; and EBr (L�r+1) 2 SBC ,(IND-ii) For all LA�r+1; LB�r+1 2 Er(Tr), the promise is kept for the two inputs EAr (LA�r+1); EBr (LB�r+1)at all i 2 �r [ ��r.(IND-iii) For all L�r+2 2 T�r+2r , and for all i 2 �r+1 � �r, Predi(XTr(L�r+2)) � 2�(s+a3+l) =2a1+a2+l � 2�k;(IND-iv) For all d+ 1 � j � r + 3 and for all L�j 2 T�jr , jXTr (L�j)j � 2�kr � 2j�j j.Intuitively, this lemma says that the adversary can maintain a symmetrical set of L�r+1's, Er(Tr),which can be inputs to either player. Any two inputs from this symmetrical set can be given tothe two players without breaking promises in non-symmetrical parts, by suitable and asymmetricalextensions to a complete input. Any part of Lr+1 that is predictable given the conversation sofar has had the corresponding bit in Lr �xed to ensure the promise is kept there. So the playersstill need to work hard to �nd any di�erence in Lr+1. Finally, the number of possible labelingsLr+2; : : : ; Ld in the set is large enough that the players know no more than kr bits about any Lj ,even given Lj+1; : : : ; Ld.6.4 The Base CaseFor r = 0, we can pick �0 = ;, and T0 = (f0; 1gk)��1 , the set of all labelings of all nodes except theroot of the tree; C0 = "; E0, EA0 , and EB0 are all the identity function. All conditions above arevacuously satis�ed.6.5 Induction StepAssume we have Cr�1; Tr�1; �r�1; Er�1; EAr�1; EBr�1 as in the induction claim. We want to �ndCr; Tr; �r; EAr ; EBr that satisfy the claim at r. Remember, Er�1(Tr�1) is a set of tuples hLr; : : : ; Ldithat could be given to either player and be consistent with the conversation Cr�1 when extended byEAr�1 or EBr�1 to get L0; : : : ; Lr�1. These extensions are guaranteed to keep promises in the lowerlevels and at those parts of Lr that are indexed by �r�1. The other parts of Lr are unpredictable,and not much total information has been revealed about Lr+1; : : : ; Ld. So, while the players mighthave found a di�erence in level Lr�1, intuitively they have not found a di�erence at level Lr orabove. In the induction step, we need to argue that, after s more bits of communication, while theymight be able to �nd a di�erence in Lr, we can keep Lr+1; : : : ; Ld symmetrical for the two players.19



6.5.1 Picking the Conversation for Stage rFirst, we must pick a conversation for stage r that does not give away too much information aboutany level of the labeling.Partition Tr�1 by associating each L�r 2 Tr�1 with the bits communicated on the pair ofinputs EAr�1(Er�1(L�r)) for the A player and EBr�1(Er�1(L�r)) for the B player. (This pair is notas promised, but the protocol is still de�ned on it.) The �rst (r � 1)s bits communicated will beCr�1. The s bits communicated in stage r thus create a partition of Tr�1 into at most 2s pieces.The adversary, by Lemma 4.10, can �nd a subset T 0 � Tr�1 and a conversation Cr extendingCr�1 so that all members of T 0 yield conversation Cr, and so that the following holds: for all j,r + 1 � j � d+ 1, and for all L�j 2 (T 0)�j, jXT 0(L�j)j � 2�s � jXTr�1(L�j)j.In particular, for j = r+1 and any i 2 �r+1��r, induction assumption (IND-iii) and Lemma 4.5yield Predi(XT 0(L�r+1)) � 2s � Predi(XTr�1(L�r+1)) � 2s � 2�(s+a3+l) = 2�(a3+l) (i.e., even givenLr+1; : : : ; Ld, any place in Lr not indexed by �r�1 is still pretty unpredictable). For j � r + 2, byinduction assumption (IND-iv) we have jXT 0(L�j)j � 2�s � jXTr(L�j)j � 2�(k(r�1)+s) � 2j�j j. So atmost s more bits have been revealed about any Lj , r + 1 � j � d.6.5.2 Finding Predictable Places in Lr+1Intuitively, we want to argue that the adversary can arrange for the promises to be kept at levelLr without revealing any di�erences in Lr+1. The problem is that there are possibly a few placesin Lr+1 where signi�cant communication has occurred. If we make those places di�erent in Lr, theplayers will be on their way to �nding a di�erence in Lr+1. So we must �nd those places, and arguethat we have enough slack in Lr to make those places identical while still allowing promises to bekept.For each L�r+2 2 (T 0)�r+2, we know that jXT 0(L�r+2)j � 2�(k(r�1)+s) �2j�r+2j � 2�kd �(2k)j�r+1j.By Lemma 4.6, for each such L�r+2 there is a subset �0 � �r+1 of the indexes for Lr+1, js0j � l,such that if we remove these child vectors, the other child vectors i 2 �r��0 are unpredictable, i.e.,Predi(Proj(XT 0(L�r+2); �0)) � 2kd=l � 2�k = 2a1 � 2�k.These predictable child vectors represent the places where the players might �nd a di�erence inLr+1 quickly, if they knew the corresponding bits in Lr were di�erent. So we would like to �x thebits corresponding to �0 in Lr to be constant and identical for both players. Unfortunately, the set�0 depends on Lr+2; : : : ; Ld. Fortunately there are not too many possible sets.We associate each L�r+2 2 (T 0)�r+2 with the set �0 described above. This partitions (T 0)�r+2into at most j�r+1jl � kdl = 2a2 classes. Now we use Lemma 4.10 with r0 = r + 2 to get a subsetT 00 � T 0 a set �0 � �r+1, j�0j � l, and a set T 0�0 � (T 0)�r+2. De�ne �r = �0 and T 00 to be the set ofall L�r 2 T 0 such that Proj(L�r; ��r+1) 2 T 0s0 , i.e., the set of extensions of all elements of T 0s0 byall consistent Lr+1 and Lr. The following conditions are now satis�ed:� for all j, r + 3 � j � d + 1, and for all L�j 2 (T 00)�j, jXT 00(L�j)j � 2�a2 � jXT 0(L�j)j �2�((r�1)k+s+a2) � 2j�j j.� For all L�r+2 2 (T 00)�r+2, and all i 2 �r+1 � �r, Predi(Proj(XT 00(L�r+2); �r)) � 2a1 � 2�k.� For any L�r+1 2 (T 00)�r+1, we have Predi(XT 00(L�r+1)) = Predi(XT 0(L�r+1)) � 2�(a3+l).The �rst two conditions are implied by Lemma 4.10 and our choice of �r = �0, the last conditionfollows from Subsection 6.5.1.To ensure that promises are kept for i 2 �r, we �x the corresponding bits in Lr as follows:Partition T 00 into at most 2l sets according to the values of bi, i 2 �r, in Er�1(L). Applying20



Lemma 4.10, we get bits �bi, i 2 �r, and a set T 000 � T 00 with jXT 000(L�j)j � 2�l � jXT 00(L�j)j, forevery L�j 2 T�j, and such that for every L�r 2 Er�1(T 000), and every i 2 �r, bi = �bi. Then wehave (applying the similar conditions for T 00 and Lemma 4.5):Lemma 6.2(i) For all L�r 2 Er�1(T 000), EAr�1(L�r) 2 SACr and EBr�1(L�r) 2 SBCr .(ii) For all LA�r; LB�r 2 Er�1(T 000), for EAr�1(LA�r) and EBr�1(LB�r) the promise is kept at all i 2��r�1 [ �r�1 [ �r.(iii) For any L�r+1 2 (T 000)�r+1, and i 2 �r � �r�1, Predi(XT 000(L�r+1)) � 2�a3 .(iv) For all L�r+2 2 (T 000)�r+2, and for all i 2 �r+1 � �r, Predi(Proj(XT 000(L�r+2); �r)) �2a1+l � 2�k.(v) For all j, r+3 � j � d+1, and for all L�j 2 (T 000)�j, jXT 000(L�j)j � 2�((r�1)k+s+a2+l) �2j�j j �2�rk � 2jtj j.6.5.3 Breaking Symmetry for LrAt this point, the vectors in Lr corresponding to �r � �r�1 are somewhat unpredictable, but notsu�ciently so that it would be hard for the players to agree on a di�erence there with a fewbits of communication. The corresponding bits in Lr�1 have been �xed as a function of Lr inan asymmetrical way, so if no such di�erence existed, we would violate the promise. Thus, theadversary is no longer able to both keep symmetry at these places and keep the promises there. Soto ensure promises are kept, the adversary breaks the symmetry in a very strong sense.Randomly choose for each index i 2 �r � �r�1 a function gi from child vectors f0; 1gk to f0; 1g.The adversary restricts inputs for player A to those where gi( ~cvi) = 0 for all such i and for B tothose where gi( ~cvi) = 1 for all such i. Call such an input Lr a promise keeper for the appropriateplayer. If LAr is a promise keeper for A and LBr for B, then LA and LB keep the promise at alli 2 �r � �r�1, since we must have ~cvAi 6= ~cvBi .Let L�r+1 2 (T 000)�r+1. By Lemma 6.2 (iii), for all i 2 �r � �r�1,Predi(XT 000(L�r+1)) � 2�a3 = 116k4d � 14j�rj(j� j+ log j�rj+ 2)By Lemma 4.7, setting m = j��rj + log j�rj + 2, the probability that there is no promise keeperfor A in XT 000(L�r+1), is at most j�rj=2m = 1=(4 � 2j� j) � 1=(4j(T 000)�r+1j), and similarly forB. Therefore, for some choice of ~g, there are such promise keepers PKA(L�r+1); PKB(L�r+1)for all L�r+1 2 (T 000)�r+1. De�ne EAr (L�r+1) = EAr�1(Er�1((PKA(L�r+1))) and EBr (L�r+1) =EBr�1(Er�1((PKB(L�r+1))).Let Tr = Proj((T 000)�r+1; �r). For each M 2 Tr, arbitrarily select an extension Er(M) 2(T 000)�r+1. Note that (Tr)�j = (T 000)�j for all j, r + 2 � j � d and that XTr (L�r+2) =Proj(XT 000(L�r+2); �r) for all L�r+2 2 (Tr)�r+2.6.5.4 Verifying the Induction Hypothesis for rWe now have de�ned Cr; �r; Tr; Er; EAr and EBr . We need to verify that the induction hypothesisholds for these de�nitions: 21



(IND-i) By Lemma 6.2 (i), for all L�r 2 Er�1(T 000), EAr�1(L�r) 2 SACr and EBr�1(L�r) 2 SBCr .Therefore, for L�r+1 2 Er(Tr) letting LA�r = Er�1(PKA(L�r+1)) 2 Er�1(T 000); and LB�r =Er�1(PKB(L�r+1)) 2 Er�1(T 000); we have EAr (L�r+1) = EAr�1(LA�r) 2 SACr and EBr (L�r+1) =EBr�1(LB�r) 2 SBCr .(IND-ii) De�ning LA�r 2 T 000 and LB�r 2 T 000 as above, by Lemma 6.2 (ii), the promise is kept at alli 2 �r�1[�r�1[�r. It is also kept at i 2 �r��r�1 because gi( ~cvAi ) = 0 and gi( ~cvBi ) = 1. Thusfor all LA�r+1; LB�r+1 2 Er(Tr), the promise is kept for the two inputs EAr (LA�r+1); EBr (LB�r+1)at all i 2 �r [ ��r.(IND-iii) By Lemma 6.2 (ii), for all L�r+2 2 T�r+2r and all i 2 �r+1 � �r, This follows sincePredi(XTr(L�r+2)) = Predi(Proj(XT 000(L�r+2); �r)) � 2a1+l � 2�k:(IND-iv) By Lemma 6.2 (i), for all j, r + 3 � j � d+ 1 and all L�j 2 T�jr ,jXTr (L�j)j = XT 000(L � j) � 2�kr2j�j j:6.6 The Last Stage ConversationSome of the induction hypothesis become degenerate when r = d � 1. In this case, note thatTd�1 � (f0; 1gk)�d��d�1 and Ed�1(Td�1) � (f0; 1gk)�d is a symmetric set of possible labelings Ldof the last level that can be extended to both players. So we are in the analogous position toSubsection 5.4.Applying Lemma 6.1 when r = d� 1 gives us Cd�1; �d�1; Td�1; Ed�1; EAd�1; EBd�1 so that:(i) For all Ld 2 Ed�1(Td�1), EAd�1(Ld) 2 SACd�1 ; and EBd�1(Ld) 2 SBCd�1 :(ii) For all LAd ; LBd 2 Ed�1(Td�1), the promise is kept for the two inputs EAd�1(LAd ); EBd�1(LBd ) atall i 2 �d�1 [ ��d�1.(iii) (Only applies to �, the trivial unique root of the hierarchy tree for Td�1, and XTd�1(�) =Td�1.) For all i 2 �d � �d�1, Predi(Td�1) � 2�(s+a3+l);(iv) Does not apply.Then the last s bits of the protocol (on inputs EAd�1(Ed�1(M)) for player A and EBd�1(Ed�1(M))for B) partition Td�1 into at most 2s classes. (The �rst s(d� 1) bits are always Cd�1). We pick Tdto be the largest class, and Cd to be the corresponding conversation. Then we have:Lemma 6.3 (i) For all Ld 2 Ed�1(Td), EAd�1(Ld) 2 SACd and EBd�1(Ld) 2 SBCd.(ii) For all LAd ; LBd 2 Ed�1(Td), the promise is kept for the pair of inputs EAd�1(LAd ) and EBd�1(LBd )at all i 2 �d�1 [ ��d�1.(iii) For all i 2 �d � �d�1, Predi(Td) � 2s � 2�(s+a3+l) = 2�(a3+l) � 1=(16k4d) � 1=(16j�dj).
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6.7 Picking the InputsThe protocol ends after sd bits and outputs I = Out(Cd) 2 �d+1, claiming that bAI 6= bBI . We claimthere exist LA and LB such that they keep all promises, are consistent with Cd, and bAI = bBI .The adversary chooses these inputs by choosing two elements MA, MB independently anduniformly at random from the set Td. This determines the input vectors, by LAd = Ed�1(MA),LBd = Ed�1(MB), LA = EAd�1(LAd ) and LB = EBd�1(LBd ). We show that, with non-zero probability,all promises are kept and bAI = bBI .From Lemma 6.3, we know that the pair is always consistent with Cd and that all promises arekept at all i 2 ��d�1 [ �d�1.We now compute a lower bound on the probability that the pair of inputs is as promised at nodesin �d � �d�1. For the promise to be kept at such nodes, it su�ces that, for each such i, ~cvAi 6= ~cvBi .Now, ~cvi and ~cv0i are parts of MA;MB , which are uniform and independent samples from Td.Lemma 4.4 states that the probability, for two samples randomly chosen (with replacement) fromT 0, that the ith component is the same, is no more than Predi(Td) � 1=(16j�dj) (by Lemma 6.3(iii)). Thus, the probability that one of the j�dj � j�d�1j such child vectors is the same is no morethan 1=16. Thus, the input pair is as promised with probability at least 15=16.As in Subsection 5.5, we have the probability that bAI = bBI is at least 1=2, since they are thesame bit in LAd and LBd , and these two are both uniformly and independently distributed in thesame set Ed�1(Td).Thus, the probability that the pair is as promised and bAI = bBI is at least 15=16 � 1=2 = 3=16.Therefore, there exists a choice of inputs which causes the protocol to fail. Thus, there is no validprotocol with communication complexity at most sd = dk �O(d2(k log k)1=2).7 The Multiplexor Game, d = 1De�nition 7.1 The Same Function 1-Multiplexor Communication Game is played on a�xed set of vectors U � f0; 1gk. An adversary chooses two vectors v0; v1 2 V and one functionf 2 f0; 1gU , with the restriction that f(v0) = 0 and f(v1) = 1. Player P0 is given (v0; f) andplayer P1 is given (v1; f). The players' goal is to �nd an index i 2 [1; k] for which the vectors aredi�erent.In fact, this is the Iterated Multiplexor Game for d = 1 in which the function f is knownto the players (instead of the adversary only promising that there is such a function). It is theKarchmer-Wigderson Rf game, when f is part of the input.Theorem 7.2 The Same Function 1-Multiplexor Game requires 
(log jU j) bits of communication.In particular, for U = f0; 1gk, 
(k) bits are needed.Note that Theorem 7.2 can be proved by a simple counting argument. Riordan and Shannonin 1942 [9] proved there are many more functions in f0; 1gf0;1gk than there are circuits with deptho(k). Since CC(Rf ) = Depth(f), it follows that there are functions with high communicationcomplexity. If the adversary gives both the players such a function, the lower bound follows. It isnot di�cult to see that the converse is also true; a lower bound for the Same Function 1-MultiplexorGame yields, within a constant factor, a matching bound for Rf for some f . However, the countingargument of [9] is notorious for yielding no intuition for constructing hard functions. Hopefully,our new techniques will provide new insight especially when combined with other communicationcomplexity type proofs. 23



The following proof also provides techniques which might be useful in translating our lowerbound for the Universal Composition Relation into an actual circuit lower bound. A major toolused in the lower bound for the Universal Composition relation is to keep symmetry between theplayers to as large an extent as possible. As a bit communicated by one player restricts that player'sset of possible inputs, we want to restrict the other player's inputs in the same way. However, inthe communication game for any real function, this symmetry is lost from the very start, since oneplayer has only inputs from f�1(0) and the other has inputs from f�1(1).This lack of symmetry is even a problem in the simple Same Function 1-Multiplexor game. Forany f , the set of inputs that the two players can have are disjoint, and we must give the players thesame function f . Our lower bound has to get around this obstacle, which is also a major problemfor converting the Universal Composition Relation bound into a real circuit bound. We do this byviewing the entire input as being composed of two parts, the function and the vector. Althoughthe set of vector-function pairs allowed for the two players are disjoint, we keep both the set ofpossible vectors and the set of possible functions symmetrical for the two players. We also need tomaintain a fullness property, which is that for any vector still in our set and any function still inour set, the pair can be given as an input to one of the two players. In e�ect, we �nd a smallerversion of the Same Function 1-Multiplexor game after each bit of communication.This separation of the input into several parts and maintaining symmetry for each part might beuseful in proving circuit lower bounds for larger depth Multiplexors, but the situation is certainlymuch more complicated. A somewhat simpler game where these techniques might apply is thedirect sum of two Same Function 1-Multiplexor games. To get a lower bound signi�cantly morethan k for this direct sum game is an open problem.Proof of Theorem 7.2: Given a �xed communication protocol, the adversary goes throughthe protocol round by round maintaining a set of vectors V � f0; 1gk and a set of functionsF � f0; 1gf0;1gk from which v0, v1, and f are chosen. We prove by induction on t that:Lemma 7.3 Fix any protocol for the Same Function 1-Multiplexor game on U . Let c = 12:27. Let0 � t < logc(jU j). Then there is a partial conversation C 2 f0; 1gt, a set V � U , and a set offunctions F � f0; 1gU so that:1. 8v 2 V; 8f 2 F; if f(v) = 0, then hv; fi 2 SAC and if f(v) = 1, then hv; fi 2 SBC .2. jV j � jU jct�13. FV = f0; 1gVRemember from Section 4, that FV � f0; 1gV is de�ned to be the set of projections of elementsof F onto V , i.e., the set of functions mapping vectors in V to f0; 1g which are consistent withsome function in F . Because we are no longer considering the vectors not in V , we do not carewhat value f takes on these vectors. Property 3 states that all functions de�ned on V are possible.In fact, the proof is easier if we assume that for every function in FV , there is one and only onefunction consistent with it in F . In this case, jF j = 2jV j.If we can prove Lemma 7.3, the theorem follows. Applying it to t = (k � 2)= log c bits ofcommunication, by property 2, after no more than V still contains at least three vectors. At thispoint, the communication game is over and the protocol must specify an index 2 [1; k] for whichthe vectors v0 and v1 are di�erent. At least two of the three vectors in V have the same bit at thespeci�ed index. One of these two vectors is given to the A-player and the other to the B-player.By property 3, there exists a function f 2 F for which f(v0) = 0 and f(v1) = 1. This function24



is given to both players. By Property 1, the protocol's communication pattern on (v0; v1; f) is asstated. It follows that the protocol fails to �nd a di�erence in the vectors given these inputs. So itremains to prove Lemma 7.3.Clearly, when t = 0, V = U , F = f0; 1gU , and the three properties hold. Assume thatC; V; F meet the three properties for time t � 1 and that given the conversation C, the A- playercommunicates during round t. For every pair (v; f) for which f(v) = 0, the protocol determines thebit the A-player will communicate if given the pair. We will denote this bit by bv;f . The rules of thegame ensure that the A-player will never be given a pair (v; f) for which f(v) = 1. Therefore, theprotocol does not specify a bit for this pair. In this case, de�ne bv;f = �. (This represents the factthat the adversary is able to set this bit to 0 or 1 as needed.) With this notation, the statement\If the conversation so far is C, and f(v) = 0, then the A-player communicates the bit a given thepair (v; f) in round t", becomes simply \[bv;f 2 fa; �g]".The adversary proceeds in three steps to obtain the new values for C, V , and F .1. First, she �nds F 0 � F of size (3=2)jV j such that 8v 2 V; 9av 2 f0; 1g; 8f 2 F 0; [bv;f 2fav ; �g].2. Next, she �nds V 0 � V of size 2jV jc such that F 0V 0 = f0; 1gV 0 .3. Finally, she �nds a bitCt 2 f0; 1g and a subset V 00 � V 0 of size jV jc such that 8v 2 V 00; 8f 2 F 0;[bv;f 2 fCt; �g].It should be clear that, after these steps, C;Ct, V 00 and F 0 satisfy the three properties of theLemma.Before we give a formal proof that step 1 is possible, we give an intuitive argument for motiva-tion. The goal of step 1 is to �nd a subset F 0 of the functions for which bv;f is constant with respectto f for each v. Consider any v 2 V . This vector partitions F into 3 parts: those f 's for which bv;fequals 0, 1, and *, i.e 0 is communicated, 1 is communicated, and f(v) 6= �. The adversary is freeto choose between the 0 and the 1 part, by setting av appropriately and, either way, is able to keepthe entire * part. The * part (i.e., those f 2 F for which f(v) = 1) is likely to make up about halfof F , and the adversary is able to choose the larger of the 0 and the 1 parts; so meeting the goalfor any particular v, should be possible while restricting F by at most a factor of 3=4. Initially, Fis of size 2jV j. Therefore, we expect jF 0j to be of size 2jV j(3=4)jV j = (3=2)jV j. The problem withthis argument is the statement that half the v; f pairs should give a *, which is true initially, butis not guaranteed to remain true as we restrict F .A formal argument goes as follows. The vector ~a = av1 : : : avjV j 2 f0; 1gV is said to be consistentwith the function f 2 F , if 8v 2 V; [bv;f 2 fav; �g]. In other words, ~a and f are consistent, if ~aagrees with the bit the A-player will communicate during time step t if given v; f , whenever thislast is actually possible. Step 1 can be rephrased as the adversary's �nding a ~a which is consistentwith (3=2)jV j functions in F . Towards this goal, she constructs a 2V � FV = 2V � 2V Booleanmatrix M . Each row is labeled by an ~a 2 f0; 1gV and each column is labeled with a function f 2 Fwith the fV 's taking on all possible values. The entry M~a;f is set to be 1 if and only if ~a and f areconsistent.For a given f 2 F , let l 2 [0; n] be the number of v 2 V for which f(v) = 1, i.e., for whichbv;f = �. Then the number of ~a consistent with f is 2l, since we are free to pick a(v) 2 f0; 1g foreach such v. This is also the number of 1's in the column labeled by f . Because FV = f0; 1gV ,there are �jV jl � functions f 2 F where the number of v 2 V for which f(v) = 1 is l. It follows thatthe total number of 1's in the matrix is PjV jl=0 �jV jl �2l = (1 + 2)jV j = 3jV j.25
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