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Abstract

John Tsotsos asked his AI students to work on having an AI solve a jigsaw puzzle, though it
is NP-complete. This paper considers the search time of the recursive backtracking algorithm for
solving it when the puzzle pieces are generated randomly with a planted solution. Feeling that
a jigsaw puzzle should have a particular image when completed, we set the probability that two
pieces fit together locally to be just small enough that with high probability the planted solution
is unique. We were surprised to see that in this case the recursive backtracking algorithm which
expands a rectangle from a corner has expected 1 + Θ(ǫ) branching width. In contrast, this
width is exponential if it attempts to put together just the edge pieces into a frame, build a
triangle from a corner, or build a block in the middle. If the probability of pieces fitting together
is increased just to the point that there is an exponential number of complete solutions, then no
matter which order the pieces are put together it takes an exponential amount of time to find
one of these exponentially many solutions. It is also interesting that for the different orders of
completing the puzzle, there are very different “reasons” for the exponential blowup. We coded
the algorithm and it ran just as described.
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Introduction

The problem is to put together a Jigsaw puzzle. The player is given n = W ×L unit square pieces
with an integer assigned to each edge of each piece. The pieces must be assembled on a W × L
grid so that for any two adjacent squares the integers on the edges connecting the squares are
equal4. Erik and Martin Demaine[5] proved that this problem is NP-complete. For this reason,
we particularly consider puzzles which are randomly generated with a planted solution. More
specifically, starting with n = W × L pieces already put together in a W × L grid, we randomly

choose for each pair of connected pieces the same one of q =
√

4n
ǫ integers so that they do fit

together. Then we mix up these pieces, knowing that there is at least one solution. We will see
that locally each piece connects to Θ(

√
ǫn) others while globally there is a 1−Θ( ǫ

1.5√
n
) probability

that the planted solution is the unique solution. The algorithm considered is recursive backtracking
to fill the board in a prescribed order Ln = 〈ℓ1, ℓ2, . . . , ℓn〉, where ℓt = 〈i, j〉 gives the coordinates
on the table to fill a piece at time t. When multiple pieces legally fit a location, the algorithm
branches. This forms a branching tree where the nodes at depth t have an outgoing edge for each
piece that legally fits into location ℓt given that pieces in the path from the root to the node have
been placed in Lt−1 = 〈ℓ1, ℓ2, . . . , ℓt−1〉. Given how many pieces fit locally together, this tree at
each node will branch a lot. A branch terminates when a mistake is found because there are no
remaining pieces that fit the current location. For most orders Ln of doing this, the width of this
tree grows exponentially with t for much of the algorithm and then resolves to the unique solution
in the end with t = n. This is the case if the recursive backtracking algorithm first attempts to
put together just the edge pieces into a frame, if it builds a block in the middle, or if it grows a
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triangle from a corner of the puzzle. These three different orders have three different reasons for
this growth. Surprisingly however, if Ln is the order which starts in a corner and fills in a growing
rectangle, then the expected total width of the branching tree at each point in time is only 1+Θ(ǫ).
This means that one about every ǫ steps of t, an incorrect piece locally fits into Lt, but the mistake
is quickly resolved leaving only the branching tree consisting of only a single path towards the
construction of the unique solution. With a good data structure for finding matches, this gives a
linear expected time algorithm for solving this random instance. This we coded and it ran just as
described.

For completion we should consider what happens when the probability of pieces fitting together
is increased just so that there is an exponential number of complete solutions. No matter which
order the pieces are put together the branching tree width is going to be exponential. Instead of
trying all possibilities in parallel, it is better to use recursive backtracking to do a depth first search
of this branching tree in hopes that it will find one of these many solutions quickly. Still it take an
exponential amount of time to find one of these exponentially many solutions. This expected time
decreases as the number of complete solutions increases further.

1 Previous Work

Jigsaw puzzles [19, 20] are perhaps the most popular form of puzzle. The original jigsaw puzzles
of the 1760s were cut from wood sheets using a hand woodworking tool called a jig saw, which is
where the puzzles get their name.

The shape-matching and the image processing communities, when considering jigsaw puzzles,
focus exclusively on how to determine if two pieces fit together locally [1, 3, 4, 7, 14, 13, 15, 18, 21].
They rely on the assumption that if two shapes locally fit together, then they will be together in the
final global solution. In contrast, this paper assumes that the problem of which pieces fit together
locally has already been solved, assumes that each piece locally fits with many pieces, and worries
about combinatorial blowup in searching for a global solution.

It is taught in graduate courses in complexity theory and discussed in Martin Gardner’s book
of games [9] that the solving a jigsaw puzzle is undecidable if the pieces can be used an arbitrarily
large number of times. This was proved in 1966 by Berger [2]. The basic idea is to have the square
solution encode an accepting computation of a TM. Simply having this TM nondeterministically
solve SAT, the problem is shown to be NP-complete if it is changed so that the instance specifies
Θ(n) pieces and the goal is to put together n of them into a square. This result is also in an
unpublished 1977 work of Garey, Johnson, and Papadimitriou [12], and used in Levins theory of
average-case completeness [16]. It is a bigger challenge to prove that the problem is NP-complete
even when each piece must be used exactly once. A proof given in [1] reduces it to the set partition
problem [11]. Given integers x1, . . . , xn, we want to learn whether they can be partitioned into two
sets that sum to the same value. To do this we make for each i ∈ [n] a puzzle piece that has height
1 and length xi. The partitioning is possible iff these can be put into a frame of height 2 and length
1
2

∑

i xi. This is unsatisfying for two reasons. The first is that set partition can be approximated

to an accuracy of 1+ǫ in time Θ(n
3

ǫ ). The second is that though the size of the description of
the input 〈x1, . . . , xn〉 is

∑

i log(xi), the actual size of the puzzle instance is exponentially bigger,
namely

∑

i xi. In contrast, in 2007, Erik and Martin Demaine [5] proved that the version of the
jigsaw puzzle problem considered here is NP-complete, namely each of the n pieces is a unit square
and all n pieces need to be placed so that their sides match. They reduce it to the 3-partition
problem, which is strongly NP-complete [10, 11]. Given 3n integers, the task is to partition them
into triples each with the same sum.
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The problem of solving an NP-complete problem on random instances with a planted solution
has been considered in many other settings. Just to mention two, Frieze and Kannan [8] consider
the planted clique problem and Flaxman [6] planted 3-SAT.

2 The Puzzle Problem

Given parameters n and ǫ, our puzzle is randomly generated with a planted solution as follows. We
start with a square grid of n =

√
n×√

n unit square pieces5. Let m = 4
√
n be the number of edge

pieces. For each pair of adjacent pieces, one of q =
√

4n
ǫ = m

2
√
ǫ
integers is assigned randomly to

both of the connection-sides. The assigned integer represents the connecting feature between the
two sides which could arise from the shape or from the picture on the pieces. (Nothing significant
would change if we matched a male edge with its female complement.) We chose q so that, with
high probability, the planted solution is the unique solution. Once the pieces are constructed, they
are randomly permuted and rotated and presented to the algorithm. The algorithm must arrange
the pieces on the W × L grid so that the assigned integers of connected sides match.
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Figure 1: A jigsaw puzzle with random connection between the pieces.

3 The Algorithm

The following parallel or recursive backtracking algorithm is considered. The algorithm depends
on a predetermined ordering Ln = 〈ℓ1, ℓ2, . . . , ℓn〉 in which the locations on the board are filled.
Let Lt = 〈ℓ1, ℓ2, . . . , ℓt〉 denote the prefix filled at time t.

We prove the following.

Theorem 1 (Unique Solution): The expected number of pieces that connect to a given side of
a non-edge piece is 2

√
ǫn. However, with probability 1 − Θ(ǫ), the planted solution is the unique

solution. With probability Θ(ǫ), a single piece can be rotated. With probability Θ(ǫ2), there will be
identical pieces. If we consider two solutions to be identical if their only differences are these or
you condition the distribution to have no rotatable or identical pieces, then the solution is unique
with probability 1−Θ( ǫ

1.5√
n
). Lemma 2 and Figure 3.A show the types changes that will most likely

appear.

5We could more generally consider the rectangular grid n = W × L, but then notation and constants would be
unnecessarily complicated. As long as W,L ≥ 3, the results would be the same except that the number of edge pieces
m = 2W + 2L− 4 would be different.
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ℓ1, . . . , ℓn specifies the order locations are filled.
loop

〈loop−inv〉: You have grown a subsolution for locations specified in Lt−1 = 〈ℓ1, ℓ2, . . . , ℓt−1〉.

The algorithm attempts to place a piece in the location given by ℓt.
If there is a unique piece that fit in that location

place it and continue
else if there are more than one such pieces

branch and continue with each option in parallel.
else if no piece fits in this spot,

terminate this computational branch.
end loop

Figure 2: We choose to present this algorithm using parallel threads but the same branching tree
could be traversed using recursive backtracking. The number of threads/stackframes at level t of
this tree will be the expected number ways N(t) of legally filling in the locations Lt = 〈ℓ1, ℓ2, . . . , ℓt〉
with pieces. If there is only one valid full solution, then one expects to have to search half the tree
even if this is done with recursive backtracking.

Theorem 2 (Build the Edge Alg): If this parallel/recursive backtracking algorithm begins by
filling in the edge pieces along one side of the puzzle, then the search space of possible subsolutions
blows up at a rate of 2Θ(

√
ǫt) and then the number of valid ways to complete the edge pieces is

eΘ(
√
ǫm) where m = Θ(

√
n) is the number of edge pieces. See Figure ??.A.

Theorem 3 (Shape in Middle Alg): If this algorithm begins with filling in some shape in the
middle of the puzzle, then the size of this search space is nΘ(logn). In fact, when the shape has grown
to being a logn × logn square, there will be this many subsolutions with none of the connections
being the planted one. See Figure 4.B

Theorem 4 (Triangle in Corner Alg): If this algorithm grows a triangle from a corner piece,
then the size of this search space is 2Θ(ǫ

√
n). See Figure 3.B. More specifically, if the shape grown

from the top-left corner of the puzzle has w′ ≤ O(
√
n) bottom-right corners, then we expect Θ(ǫw′)

of them to have two pieces fit in them (see Figure 3.B.h′) giving 2Θ(ǫw′) ways of choosing which
combination of these pieces to use.

Theorem 5 (Rectangle in Corner Alg): If this algorithm grows a rectangle (of width and height
at least two) from a corner piece, then the expected number of threads/stackframes at any one level
t will be 1 + Θ(ǫ). Lemma 2 and Figure 3.A.g & h. show the types of changes that will most likely
appear. This theorem is still true if in addition to the planted solution, Θ(n) more pieces are choose
randomly and pieces can be reused.

Theorem 6 (Many Solutions): If the probability of two pieces connecting is 1
q′ = 2

ǫ · 1
q , where

1
q is that defined above at which the planted solution is w.h.p. unique, then the number of solutions
becomes exponential. Instead of trying all possibilities in parallel, it is better to use recursive back-
tracking to do a depth first search of this branching tree in hopes that it will find one of these many
solutions quickly. Still it take an exponential amount of time to find one of these exponentially many
solutions. This expected time decreases as the number of complete solutions increases further.
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Figure 3: (A) shows the most likely local changes producing different subsolutions for a rectangle
being grown from a corner. (B) the same for a triangle being grown from the corner. For each type
of change, the the probability of it occurring is given. See Lemma 2 for the proof.

4 Running Time and Number of Subsolutions

The algorithm’s running time is Time(n) =
∑n

t=1N(t)·Find(n) where N(t) is the expected number
of threads/stackframes at level t of this tree, which is the number ways of legally filling in the
locations Lt = 〈ℓ1, ℓ2, . . . , ℓt〉 with pieces and Find(n) is the time to check which of the unused
pieces fit into a given location. For example, in the case that two pieces fit only if they are supposed
to then all subsolutions are unique, i.e. N(t) = 1 and Time(n) =

∑n
t=1 1·O(t) = O(n2). In our case,

we will have N(t) = 1 + Θ(ǫ) and assume that we have a data structure so that Find(n) = O(1),
giving Time(n) = Θ(n).

5 Dynamics of the Recursive Backtracking Algorithm

Lemma 1 The following table gives the expected number of pieces C that can be correctly placed in
a given location given the stated neighboring pieces have already been placed correctly/incorrectly.
See Figure ??.

Type Neighbors Previous Math Expected Number

a: nonedge right of A 1 + 4n · 1
q Θ(

√
ǫn)

b: edge right of A 1 +m · 1
q 1 + 2

√
ǫ

c: nonedge right of A & below B correct 1 + 4n · 1
q2

1 + ǫ

d: nonedge right of A & below B incorrect 4n · 1
q2

ǫ
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Figure 4: Each of the four figures specifies the set of t locations Lt that the algorithm has filled
during the first t time steps. The X specifies the location of the first piece placed. This piece is
assumed to be placed correctly. Each piece location in Lt “owns” the connection-side to its left
and above it as indicated by the arrows. The edge piece locations only “own” one if its sides. The
circled arrows are connection-sides that were over counted. In contrast, the solid circles are ones
that were not counted. Fig (A) shows the entire puzzle, (B) is a Lt growing in the middle of the
puzzle, (C) is a triangle growing from a corner, and (D) is a rectangle growing from a corner.

Proof of Lemma 1: For situation (a), let α ∈ F denote the connecting feature on the right side
of A. We must find a piece B that has the mirrored α feature on one of its four sides. There are n
such pieces B, 4 ways to rotate it, and one connection to be matched, giving the expected number

4n · 1q = 4n ·
√

ǫ
4n = Θ(

√
ǫn). The plus one is because the planted solution provides one guaranteed

connection. The computations for the others are similar except for (d). Here if A and B are not
placed as in the planted solution, then there is not the plus one guaranteed planted piece.

Having Θ(
√
ǫn) pieces fitting locally to a given piece implies lots of branching for the recursive

backtracking algorithm. However, if the algorithm fills in the puzzle row by row, our next step
places a piece on a location to the right of some piece A and below some piece B. See Figure ??.B.
If both A and B are placed correctly, then because of the planted solution, there is definitely
the planted piece C that can go there next. More over Lemma 1.c gives that with probability ǫ
there is an addition incorrect piece C ′ that also fits. Hence, for approximately 1

ǫ such steps, the
algorithm forks. Because C ′ is placed incorrectly, there is not a planted piece that fits and with
only probability ǫ there is a piece D′ that happens to fit. In this way, algorithm quickly detects that
this branch is incorrect and terminates it. This is why the number of living branches hovers around
one. A first problem is that completing the first row requires exponential growth. A solutions to
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this is to instead grow a rectangle. A second problem is that when the last piece placed in the
current row has an error, this error may not be detected until one (and possibly more) additional
rows have been completed. It turns out that when one builds a rectangle from a corner, this is not
a problem, but when one builds it in the middle of the puzzle then even when there is not planted
solution, there is exponential branching growth.

Most people when putting together a jigsaw puzzle build a line following an edge of the solution.
The dynamics in this case are different. See Figure ??.A. As before, after placing piece A, there
is definitely the planted piece C that can go next to it and with probability Θ(

√
ǫ) there is an

additional piece C ′. But with a line of edge pieces it is harder to detect when there is an error.
The reason is that both C and C ′ have a planted piece that belongs next to it. Branching every
approximately Θ( 1√

ǫ
) such pieces placed, grows the tree at the rate of 2Θ(

√
ǫt). If this would continue

for all m edge pieces the branching width would be 2Θ(
√
ǫm). We would think the main reason for

finding a mistake would be that the piece you want to place next has already be placed earlier. If
one was needing the m edge pieces in a random order, then one would expect to wait

√
m until

a piece is needed twice. This suggests growth to 2Θ(
√
ǫm). If these were the only dynamics, then

provably there would be a unique way of putting together the edge pieces. But there is an additional
dynamic that allows this number be at least eΘ(

√
ǫm). See Theorem 2.

This dynamic is that there are dependencies between the events that non-planted pieces fit
together. Suppose, for example,that A·BCDE ·F and W ·XY ·Z are two sequences of edge pieces
within the planted solution. Then with probability 1

q2
, the connections happen to match so that

A ·XY ·F is also a valid sequence. It follows for free that W ·BCDE ·Z is also valid sequence.
This cycle could also have lengths longer than two. The graph in Figure 5.D helps us to better
understand these dependencies.

6 The Number of Subinstances without a Planted Solution

When there is not a planted solution, the distribution independently selects four integers for each
puzzle piece instead of selecting the same integer for two pieces if they touch in the planted solution.
LetN ′(Lt) denote the expected number of valid subsolutions, i.e. number of valid ways of arranging t
of the n pieces into the t locations, Lt = 〈ℓ1, ℓ2, . . . , ℓt〉. Computing N ′(Lt) is fairly straightforward,
namely multiply the number of possible subsolutions with the probability that such a subsolution
is valid. The first is

(n
t

)

t!4t ≈ (4n)t because this is the number of ways of choosing, arranging,
and rotating the t pieces. Note that each such location ℓi ∈ Lt contributes a factor of 4n to this

count. The probability that such subsolution is valid is (1/q)# of integers to match. We will say
that each location “owns” its left and top connection-sides which are both valid with probability 1

q2
.

It’s bottom and right connection-sides are counted by the location below and that to its right. See
Figure 4. Hence, its total contribution to the expected number of valid subsolutions N ′(Lt) is the

multiplicative factor 4n× 1
q2

= 4n×
√

ǫ
4n

2
= ǫ, causing N ′(Lt) to decreases with ǫt as the number of

locations filled grows. Each edge piece location contributes m to the number of solutions, because
this is the number of edge pieces and their rotation is fixed. We will say that an edge location
“owns” only one of its connection-sides, i.e. adjacent to the edge of the puzzle. Its other two side
connections will be counted by other locations. Again see Figure 4. Hence, an edge piece location
contributes a multiplicative factor of m · 1q = 2

√
ǫ to N ′(Lt). When growing a shape from the corner

(see Figure 4.C and D) all the required connections have been counted exactly once each. However,
for the full puzzle, the W + L connections between the edge pieces on the bottom and right edge
of the puzzle and their interior pieces still need to be included in the probability calculation. See
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Figure 4.A. This gives N ′(Ln) ≈ (ǫ)n × (2
√
ǫ)

m ×
(

1
q

)W+L
= ǫΘ(n)n−Θ(m). On the other hand, if a

shape is grown in the middle of the puzzle (see Figure 4.B) then we over counted factors of 1
q when

computing the probability.

Proof of Theorem 3 (Shape in Middle Alg): Consider the recursive backtracking algorithm
which grows a t = w · ℓ piece rectangle in the middle of the puzzle. As seen in Figure 4.b, the
number of connections over counted is Over(Lt) = w + ℓ ≥ 2

√
t. This gives N(Lt) ≥ N ′(Lt) ≥

ǫt · qw+ℓ = ǫt · (4n)2
√
t which is maximized to nΘ(logn) by setting t = Θ(log2 n) giving the stated

result. Note that when the square grows any larger, the ǫt effect of the area dominates killing any
reasonable possibility of a non-planted solution.

7 Counting the Number of Objects that can be Swapped.

Having the planted solution means that there maybe many others that are similar. Hence, it is
important to count the number of local changes that can be made to the planted subsolution. These
prove the lower bounds on the number of valid subsolutions needed for Theorems 1 and 5.

Lemma 2 Figure 3.A and B shows a number of shapes of blocks and for each gives the probability
that there is such a block within the planted solution that can be swapped with another or rotated.

Proof of Lemma 2: For Figure 3.A.a, we consider the probability that two pieces of the puzzle
are identical and hence can be swapped. There are at most n2 such pairs of pieces and 4 ways of
rotating the second to make it the same as the first and four edge connections that must be the
same giving the expected number identical pairs to be 4n2 · 1

q4
= 4n2 ·

(

ǫ
4n

)2
= ǫ2

4 . For (g), there are
at most m locations along the side of Lt and at most 4n pieces to rotate to place there and three
edges to match giving the expected number of such swaps be 4mn · 1

q3
= 16

√
nn ·

(

ǫ
4n

)1.5
= Θ(ǫ1.5).

Similarly, (b): n · 1
q2

= Θ(ǫ); (c): m2 · 1
q3

= Θ( ǫ
1.5√
n
); (d): 8n2 · 1

q6
= Θ( ǫ

3

n ); (e): 2n · 1
q3

= Θ( ǫ
1.5√
n
);

(f): m2 · 1
q4

= Θ( ǫ
2

n ); (g): 4mn · 1
q3

= Θ(ǫ1.5); (h): 4n · 1
q2

= Θ(ǫ); (h′): 4w′n · 1
q2

= Θ(ǫw′); (i):

r = w′(4n)r · 1
q2r

= Θ(ǫrw′). Here w′ ≤ O(
√
n) is the number of bottom-right corners in the triangle

shape grown from the top-left corner of the puzzle and r is the number of pieces in the structure
that we are trying to place into such a corner.

8 An Upper Bound on the Number of Subsolutions

This section proves the upper bounds needed for Theorems 1 and 5, by bounding the expected
number N(Lt) of subsolution allocations of pieces to the locations specified in Lt.

Lemma 3 a) When Lt is a rectangle grown from the corner like Figure 4.c, N(Lt) ≤ 1 +O(ǫ).

b) When Lt is the full puzzle with no duplicate pieces or self similar pieces, then N(Ln) ≤ 1+O( ǫ
1.5√
n
).

To prove this, one has to make sure that there are not many complex methods for forming a
new subsolution from the planted solution. Such a method would not break the planted solution
into individual pieces from which to build the subsolution, because this requires far too many
edge connections to be correct. Instead the planted solution is broken into what are called meta-
pieces, which are then rearranged to form the new subsolution. Because the inner meta-piece
connection-sides are guaranteed to be valid by the planted solution, we only have to worry about
the connection-sides between the meta-pieces. The locations in Lt of these connection-sides will be
called the solution’s framework. See Figure 5. Stated in a slightly different way, we construct (count)
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subsolutions for locations Lt as follows. The edge between two locations for pieces in Lt we will refer
to as a connection-location. Two connection-sides of pieces will meet here in a solution. First we
form a framework F consisting of a set of connection-locations within Lt that partitions its t piece
locations into connected components that we will refer to as meta-locations. A solution S is formed
by cutting out of the planted solution a meta-piece for each such meta-location. The expected
number of subsolutions for Lt can then be computed as N(Lt) =

∑

R NF (R) · NS(F ) · prob(S),
where the sum is over the parameters R of a subsolution, NF (R) is the number of frameworks F
consistent with these parameters R, NS(F ) is the number of placements S of the pieces within Lt

consistent with F , and prob(S) is probability that all the necessary connection-sides in S are valid.
For placement S to be valid, each of the e non-planted connections between sides must happen to be
correct. Assuming independence the probability of this is 1

qe . However, there is some dependencies
between these events.

3α 4α

α2α1

ch

cf

3h

f76ff54ff31f f2

f

b

1

2

3

4

5

6

7

8

9

w’

2

1

h 2

h1

2h

c

e
d
α21α

d’

D

0

1

x

a

A

x
C

x
B

h11

1

2

eg

i
2i

α43α

Figure 5: Each of the three figures uses dotted lines to mark off the set of t locations Lt that the
algorithm has filled during the first t time steps. Figure A is for a rectangle growing from the corner,
(B) a triangle from the corner, and (C) an edge from the corner. The X specifies the location of the
first piece placed. The solid lines specifies a framework within this Lt. Pairs of pieces placed across
such a line need to be not next to each other in the planted solution, while the pieces connected
by dotted lines merge into meta-pieces pieces which appear together in the planted solution. The
small arrows specify for each meta-piece the sides that the piece “owns”. The large arrows specify
for each framework-component which sides it “owns”. An arrow is circled if being in c0 it moves
but does not have an edge to pay for it. Luckily with (A) c0 ≤ 2. (D) shows a graph with nodes
being connection-sides, solid edge between two if they touch in the planted solution, and a dotted
edge if they touch in the subsolution.

Consider some framework F . Let e denote the number of connection-locations in it. Partition
these into connected framework-components by viewing them as edges of a graph. For example in
Figure 5.A, the framework-components are labeled A.a through A.i2. Note the sides of the puzzle
do not connect these components. Components A.i1 and h1 are interesting in that one is contained
in the other. Note that component A.a separates out five meta-locations, A.b three, and the piece
locations between these components A.a and A.b form one big meta-location whose bottom edge
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is the framework-component A.f. A framework-component will be classified with d ∈ {0.0, 0, 1, 2}
if it can be translated within Lt through at most d dimensions once their shape and rotations have
been fixed and hence can be in at most 1, 2,

√

|Lt|, or |Lt| places. Then let cd denote the number
of such framework-components. For example, c0.0 = 3 includes A.g, A.i1 and A,i2 because they
cannot be placed anywhere else, while c0 = 2 amusingly includes A.h1 and h2 because these two
components could be swapped with each other. c1 = |{A.a, c, e1, e2, and f}|, and c2 = |{A.b, d,
and d’}|. We can now bound the number of frameworks.

Lemma 4 If Lt is a rectangle growing from a corner, the number of frameworks F consistent with
parameters R = 〈e, c0.0, c0, c1, c2〉 is NF (R) ≤ 8e · 2c0 √

n
c1 nc2 · 1

c0!c1!c2!
.

Proof of Lemma 4: We bound the number of frameworks by describing one with log2(8
e ·

2c0
√
n
c1 nc2) bits. This encoding will first tell the shapes and rotations of each framework-

component as a rigid structure and then translate each of them within Lt. Consider a component
with e′ of the connection-locations. Define shape and rotation by starting one of its connection-
locations placed in Lt and growing it in a breadth first search order. For each of the e′ connection-
locations in the framework, we use 3 bits to specify which of the remaining 3 Manhattan sides
adjacent to this side are also sides of the framework. Doing this for each of the components uses
at most 3e = log28

e bits. The next step is to place each component within Lt. As described when
defining these counts, c0.0 is the number of components than can go in at most one place within
Lt, c0 in at most two places, c1 at most

√
n, and c1 at most n. This is why log2(2

c0
√
n
c1 nc2)

more bits specifies the locations of these framework-components. The extra 1
c0!c1!c2!

factor arises
because our description leads to the same framework F if the components were presented in any of
the c0!c1!c2! orderings.

Given a framework F giving a set of meta-locations, a placement S of pieces within Lt is formed
by cutting out of the planted solution a meta-piece for each such meta-location. First the meta-
locations will be classified by the number d ∈ {0, 1, 2} of dimensions through which they can be
translated and hence can be in rotated and moved to at most 4, 4

√
n, or 4n places when choosing

where to cut them out of the planted solution. More specifically, a meta-location will be considered
to move in d = 0 dimensions if it contains a corner piece, d = 1 if it contains an edge piece but
no corner piece, and d = 2 if it contains no edge pieces. Let r0, r1, and r2 denote the number of
each type. For example, there are r1 = 6 d = 1 meta-locations in Figure 5.A and they all touch the
left edge of the puzzle, while framework-component (b) separates out three d = 2 meta-locations.
Assuming independence in choosing where to cut out the meta-pieces, the number of placements S
of the pieces within Lt consistent with F is NS(F ) ≤ 4r0 (4

√
n)r1 (4n)r2 . Dependencies between the

choices, however, allow us to obtain a slightly better upper bound. Because of its complexity, this
will be delayed until Lemma 7 below. We will first give some relationships between the parameters.

Lemma 5 Suppose Lt is a rectangle growing from a corner with width and height at least two. If
R = 〈e, r0, r1, r2, c0.0, c0, c1, c2〉 is possible for a framework then
a) If e = 0, then r0 = 1 and r1 = r2 = c0 = c1 = c2 = 0,
b) else e ≥ 2, r0 ≤ 4, and c0 ≤ 2.
c) e ≥ 2(r2+c2) + r1+c1.
d) If Lt is the full puzzle with no duplicate pieces or self similar pieces, then e ≥ 2(r2+c2)+r1+c1+1.

Proof of Lemma 5: When there are e = 0 connection-locations defining the framework, then
clearly all the pieces located in Lt form one meta-piece and it contains the start corner marked
x. Otherwise, e ≥ 2 because these edges must cut between two meta-pieces and the width and
height of Lt is at least two. r0 ≤ 4 because there are at most this many corners. Actually, r0 = 1
until close to the end. In contrast, c0.0 could be big because, the framework-components can be
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arbitrarily nested as shown with A.i1 and i2. However, the rotation of these framework-components
place each in a unique location. Hence, having a large c0.0 does not matter. On the other hand,
because Lt is a rectangle growing from a corner, there can be two bottom right corners, namely
the right most in the last completed row and the right most in the row currently being filled. This
allows the framework-components A.h1 and h2 to be swapped. But because one of these corners
has height one, Figure 5.A.h1 and h2 can be swapped but i1 and i2 cannot and hence c0 ≤ 2. In
contrast, if Lt is grown as a triangle as in Figure 5.B, then c0 could be Ω(

√
n).

The next thing to prove is that e ≥ 2(r2+c2) + r1+c1 by having each of the r2 meta-piece with
d = 2 privately own one of its top most and one of its left most connection-locations; each of the r1
meta-piece with d = 1 own either its top or its left most depending on where the edge of the puzzle
is; each of the c2 framework-components with d = 2 own one of its bottom most and one of its
right most connection-locations; and each of the c1 owns one or the other depending on where the
edge of the puzzle is. See respectively the small and larger arrows in Figure 5.A. The component
depicted in Figure 5.A.f spans from one side of Lt to the other. Both it and the meta-piece it cuts
off need to own connection-location (large and small arrow). This is not a problem because the
theorem requires that Lt has width and height at least two. (This is in contrast growing the edges
seen in Figure 5.C.fi.)

When Lt is the full puzzle, we need to prove that the number of connection-locations e is at
least one bigger than previously stated. With no duplicate pieces or self similar pieces, component
like Figure 5.A.d don’t happen and those like b and f contain at least two puzzle locations, and
hence either its width or height can “own” not one but two connection-locations.

We will now bound the probability that the solution formed is valid.

Lemma 6 The probability that all the necessary side connections in the pieces placement S are
valid is prob(S) ≤ 1

q2(r2+c2)+r1+c1−a
, where a is defined both within this proof and that for Lemma 7.

Proof of Lemma 6: For such a subsolution S to be valid, each of the e non-planted connections
between sides must happen to be correct. Assuming independence, the probability of this is 1

qe .
However, there is some dependencies between these events. For example, if two identical pieces are
being swapped as in Figure 3.A.a and Figure 5.A.d vs d′, then the piece at location d′ in the planted
solution fits into location d in the subsolution with probability 1

q4
, but then for free you get that

d fits in d′. Hence, the calculation 1
qe is double counting the probability of these events. To better

understand these dependencies form the graph as seen in Figure 5.D. The proof of Lemma 5 has
each meta-piece and each framework-components privately own one or two connection-locations
for a total of 2(r2+c2) + r1+c1. Denote this number by e′ ≤ e. The solution S places a puzzle
piece in each location in Lt and as such puts a connection-side of a piece on either side of each
connection-location. The graph will have 2e′ node for each of these connection-sides. Put a dotted
edge between two such sides if we need their features to be the same for the subsolution to be valid
because they touch at one of these e′ connection-location within the solution S. Put an solid edge
between them if their features are guaranteed by the distribution to be the same because they touch
in the planted solution. Note each node has degree at most two making the graph a collection of
cycles and paths. For each such cycle or path, all the connection-sides in it by transitivity need the
same feature α ∈ F . Each of the e′ connection-location in the framework corresponds to a dotted
edge, those features match with probability 1

q . Traversing around a cycle/path, each such dotted
edge is independent and hence can be count when computing our probability that the subsolution
is valid until we reach the last dotted edge in a cycle. Because this last dotted edge connects the
two ends of a path that we already know all have the same feature, we already know its two features
are the same. Let a denote the number of such cycles. The result that prob(S) ≤ 1

qe
′−a

follows.
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Now that we understand the dependency better, we can get a better lower bound the number of
potential subsolutions.

Lemma 7 The number of placements S of the pieces within Lt consistent with F is NS(F ) ≤
4r0 (4

√
n)r1−a (4n)r2, where a is defined both within this proof and that for Lemma 6.

Proof of Lemma 7: We bound the number of different placement of the pieces S by counting
the number of bits needed to communicate one given a framework F . The same dependencies that
arose in the probabilities allows us to save bits. Again, suppose two identical pieces are being
swapped as in Figure 3.A.a. The description of the solution S begins as described above, i.e. that
the meta-location Figure 5.A.d will get the meta-piece cut out of meta-location A.d′. Specifying d′

requires log(4n) bits. Instead of using a another log(4n) bits to specify that the meta-location d’
will get the meta-piece at d, we use one bit to state that this is a swap. In general, we will follow
the cycles in the probability graph define in the proof of Lemma 6. Given the placement of the
pieces S, we describe it as follows. We start with the placement of the top corner piece marked x.
We assume that it is correct. For example, in Figure 5.A, this specifies all the pieces being placed
in the meta-location from the corner x all the way down to framework-component A.f, excluding
the meta-pieces cut out of these pieces. When placing a meta-piece that lies on a cycle in the graph
from the proof of Lemma 6, we follow the cycle. For each edge of the cycle, one additional bit is
used to specify whether or not the cycle is over. If not, log(4n) bits (or log(4

√
n) bits for d = 1)

are used as before to specifying where in the planted solution to cut it out. If this is the end of
the cycle, then it is already known where the last meta-piece comes from. It comes from where the
first meta-piece in the cycle was put. Lemma 6 used a to denote the number of these cycles. For
d = 2 meta-pieces, there were two connection-locations associated with them and hence two such
cycles. Hence, each of these two cycle can be paid for by the savings of these log(4n) bits, for a
total of log(4

√
n) bits of savings for each of the a cycles.

We can now prove N(Lt) ≤ 1 +O(ǫ) as follows.

Proof of Lemma 3: If Lt is a rectangle growing from a corner, the expected number of subso-
lutions is

N(Lt) =
∑

R

NF (R) ·NS(F ) · prob(S)

≤
∑

R

(

8e · 2c0
√
n
c1 nc2

1

c0!c1!c2!

)

(

4r0 (4
√
n)r1−a (4n)r2

)

(

1

q2(r2+c2)+r1+c1−a

)

.

In case (a) of Lemma 5, e = r1 = r2 = c0 = c1 = c2 = 0 and the term in the sum is one. This
counts the subsolution consistent with the planted solution. Otherwise, plugging in e ≥ 2, r0 ≤ 4,

c0 ≤ 2, and q =
√

4n
ǫ and simplifying gives

N(Lt) ≤
∑

R,e≥2

1

c0!c1!c2!
O(

√
ǫ)2(r2+c2)+r1+c1

Using e ≥ 2, gives that the next term isO(ǫ). Hence, the geometric sum overR = 〈r1, r2, c1, c2〉 gives
N(Lt) ≤ 1 +O(ǫ). When Lt is the full puzzle with no duplicate pieces or self similar pieces, then

Lemma 5.e gives that e′ is one bigger than stated. This improves the result to N(Ln) ≤ 1+O( ǫ
1.5√
n
).
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9 Subsolutions for Edge Pieces from the Planted Solution

We now consider putting together the edge pieces of the puzzle.

Proof of Theorem 2 (Build the Edge Alg): Section 5 argued that the branching tree width
grows at the rate of 2Θ(

√
ǫt). If this was able continue for all m edge pieces the branching width

would be 2O(
√
ǫm) where m = Θ(

√
n) is the number of edge pieces. We now prove that there are

in fact this number of valid ways to complete the edge pieces. The proof is very similar to that in
Lemma 3. We form an exponential number of valid subsolutions starting by breaking the planted
rectangle of m edge pieces into r meta-pieces (frameworks 5.C). There are

(m
r

)

ways of doing this.
Then we choose how to order these r pieces into a valid subsolution. If we stated that the probability
of being valid is 1

qr because each of these r non-planted connections is independently valid with

probability 1
q , then the expected number of valid subsoltions would be computed as

(m
r

)

r! 1qr = Θ(1).
However, depending on this ordering there can be dependencies between the events of these meta-
pieces correctly fitting together. To get a large number of valid subsolutions, we will only consider
those permutations for which this dependency is maximized, i.e. the cycles in Figure 5.D all have
length two. We define now an algorithm for merging pairs of the meta-pieces together until there
is one solution containing all of the edge pieces. The loop invariant is that there are r′ ≤ r such
unmerged meta-pieces left and that if we wanted we could order these meta-pieces so that each new
connection is between pieces that belong together in the planted solution, i.e. for each one BC..DE,
there is a meta-piece ending in A and one beginning with F , where A and F are the pieces placed
next to B and E in the planted solution. We maintain this loop invariant while making progress
as follows. Let BC..DE be the meta-piece that we have been growing. We choose one of the other
r′−1 other meta-pieces X..Y . By the loop invariant, there are other meta-pieces F..G and V..W
such that merging them as BC..DE ·F..G and V..W ·X..Y would place together pieces that are
next to each other in the planted solution. To obtain a different solution, we swap these and merge
them as BC..DE ·X..Y and V..W ·F..G. The probability that the new E ·X connection matches
is 1

q . But given that they do match, we get that W ·F match for free. This maintains the loop

invariant, multiplies the number of subsolutions by r′−1
q , and decreases r′ by two. The expected

number of valid permutation produced in this way is r′−1
q

r′−3
q

r′−5
q · · · 1q ≥ ( r

eq )
r

2 . Another potential
way in which the above considered subsolutions may be invalid is that the corner pieces may not
have distance L or W between them as required. But these are the most likely distances and hence
the probability that this is correct is at least 1

m3 . Combining these gives that the number of valid

subsolutions is at least N(Lt) ≥ maxr
(m
r

)

( r
eq )

r

2
1
m3 ≥ maxr(

m
er )

r(2
√
ǫr

em )
r

2 ≥ maxr(
2
√
ǫm

e3r
)
r

2 ≥ e
√
ǫm

e4 by

setting r = 2
√
ǫm

e4
.

10 Exponential Time with Many Solutions

For completion we should consider what happens when the probability of pieces fitting together is
increased just so that there is an exponential number of complete solutions. Instead of trying all
possibilities in parallel, it is better to use recursive backtracking to do a depth first search of this
branching tree in hopes that it will find one of these many solutions quickly. Theorem 6 proves
that it still take an exponential amount of time to find one of these exponentially many solutions.

Proof of Theorem 6 (Many Solutions): Let the probability of two pieces connecting be 1
q′ ≥

1√
n
, which is at least 2

ǫ times that at which the planted solution is unique. Split the sequence

13



of locations to be filled into two phases L〈n−n′〉 =
〈

ℓ1, ℓ2, . . . , ℓ〈n−n′〉
〉

and the rest L〈last n′〉 =

〈ℓn−n′+1, . . . , ℓn〉, where the size of the second phase is n′ = 1
8q

′2 ≤ n
8 . Similarly partition the pieces

so that there is not a dependence between them. Colour the planted solution like a chess board
and let S〈last n′〉 be a subset of n′ of the black puzzle pieces so that having a planted solution has
no effect on putting these together. Let S〈n−n′〉 be the remaining n−n′ pieces. Lets assume that
the recursive backtracking algorithm when trying pieces cycles through them S〈n−n′〉 followed by
S〈last n′〉. In Section 6, we proved that in the unplanted distribution, the number of valid ways

of placing n pieces in t locations is
(

4n
q2

)t
. The same argument proves that the number of valid

subsolution in which the pieces in S〈n−n′〉 are placed in L〈n−n′〉 is at least
(

4(n−n′)
q′2

)〈n−n′〉
≥ 2n/2. The

recursive algorithm will try each of these subsolution. Then for each, the probability (expected
number) that there is a valid way of completing the solution by placing the pieces in S〈last n′〉

in L〈last n′〉 is at most
(

4n′

q′2

)n′

=
(

1
2

)n′

. Hence, the algorithm likely must try 2n
′
of the L〈n−n′〉

subsolution until it finds one that leads to a valid solution. At our smallest connection probability
1
q′ =

1√
n
, this number is 2q

′2/8 = 2n/8 and it decreases as the connection probability increases.

11 Thanks

I would like to thank John Tsotsos for his enjoyable AI class in which he got me thinking about
this problem and Russell Impagliazzo for advising me on the problem.
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