TABLE OF CONTENTS

=================

1 SCOPE

1

 1.1 Identification

1

 1.2 Document overview

1

2 SYSTEM OVERVIEW

2

3 OPERATING MODES

3

 3.1 Mode descriptions

3

 3.1.1 Initialization mode (modeInit)

3

 3.1.2 Idle mode (modeIdle)

3

 3.1.3 Direct electrode Control mode (modeDirect)
4

 3.1.4 Program script mode (modePgmScr)

4

 3.1.5 Run script mode (modeRunScr)

4

 3.1.6 Fault mode (modeFault)

5

 3.2 Mode transitions

6

 3.3 Commands available in each mode

6

4 COMMAND AND MESSAGE FORMATS

8

 4.1 Command and message packet formats

8

 4.2 Command and message data formats

9

 4.3 Command validation process

9

5 COMMAND/MESSAGE TRANSACTIONS

12

 5.1 NOP

12

 5.2 Initialize

12

 5.3 Manage modes

12

 5.4 Direct control electrodes

13

 5.5 Program script

14

 5.6 Run script

15

 5.7 Manage local control

17

 5.8 Manage faults

17

 5.9 Download RAM memory

18

6 LOCAL CONTROL

19

7 SCRIPTS

20

 7.1 Script application

20

 7.2 Script code format

20

 7.3 Logical script management

21

 7.4 Script instruction execution

22

8 FAULTS

23

 8.1 Programming bugs

23

 8.2 Fatal communication errors

23

 8.3 Fatal script run-time errors

24

APPENDIX A DATA DICTIONARY

25

 A.1 COMMAND DESIGNATORS

25

 A.2 MESSAGE DESIGNATORS

27

 A.3 SCRIPT OP CODES

29

 A.4 FAULT DESIGNATORS

29

 A.5 MODE IDENTIFIERS

29

 A.6 COMMAND AND MESSAGE DATA TYPES

30

APPENDIX B CURRENT AND TIME FORMATS

32

 B.1 ELECTRODE CURRENT

32

 B.2 TIME INTERVALS

32

1 SCOPE

The purpose of this document is to provide a functional description of

the Good Vibrations Engineering Vestibular Stimulator (referred to

herein as "the system" or "the unit"). This description concentrates

on the external interface behaviour of the system. It does not

contain a description of the electronics hardware or software detailed

design.

1.1 Identification

The system being described is version 2.0 and 2.1 of the hardware and

version 1.1 of the software. Hardware version 2.0 dates from December

2000 and uses a hardwired link to a host computer. Hardware version

2.1 dates from February 2001. It is identical to version 2.0 except

that it uses an RF link to the host computer. Software version 1.1

dates from February 2001.

1.2 Document overview

Section 2 gives an overview of the vestibular stimulator system.

Section 3 describes the various operating modes of the system,

describes the process of mode transitions, and lists the commands

available in each mode.

Section 4 describes the format used for commands (instructions sent TO

the system from a host computer) and messages (reports and data sent

FROM the system to a host computer). It also describes the process

used to validate commands that the system receives.

Section 5 lists every command "transaction" available, the resulting

normal behaviour of the system in response to each command, and the

possible fault behaviours. Here a command transaction refers to a

sequence consisting of a command sent to the system and the messages

that it sends back in response.

Section 6 describes the local control possibilities in the system,

i.e., the response of the system to pressing the pushbutton on the

system housing.

Section 7 describes the capability of loading and running

pre-programmed scripts which are stored in the system in non-volatile

memory.

Section 8 summarizes all faults which the system can detect and

describes the behaviour of the system after a fault occurs. Most of

the points in the operation where a fault can be detected and acted

upon are also listed in sections 4 through 7.

Appendix A is a data dictionary containing a list of all symbolic

names and data types used in the body of this document.

Appendix B gives the the electrode current and time data formats used

in commands, messages and script instructions.

2 SYSTEM OVERVIEW

The vestibular stimulator consists of the following functional

elements:

 a) 4 independent current sources; each source can be set to

 deliver from approximately -2.5 to +2.5 mA of current relative

 to a common ground terminal; maximum voltage from each source

 is approximately 12 volts, so that for maximum current drive

 of 2.5 mA, load impedance must be less than 12/0.0025 = 4800

 ohms.

 b) a microntroller (PIC 16C63) which controls the current sources

 based on commands it receives from a host computer or from the

 push of a button on the unit

 c) a communication link, either hardwired RS232 or RF RS232, to a

 host computer

The unit's case (not including the RF modem if that is used) contains

the following external interfaces:

 a) on/off rocker switch

 b) pushbutton for local command of script functions as described

 in section 6

 c) yellow script status LED; this displays the script

 armed/running status as described in section 3.1.5

 d) red fault LED; this lights when a fault is detected as

 described in section 3.1.6.

 e) 4 "tip jacks" (for 2 mm diameter tip plugs) containing the

 current output of each of the 4 current sources

 f) 1 "tip jack" connecting to the common ground of each of the 4

 current sources

 e) a DB-9 RS232 connector (PIN side) which can be connected

 either directly to a host computer or to the RF modem wireless

 link; this interface implements the DTE side of the RS232

 interface

The unit requires from 9 to 13 V DC to operate. There is a holder for

8 AA batteries which will provide a total of 12 V nominal to the unit.

3 OPERATING MODES

3.1 Mode descriptions

A number of operating modes are provided in order to ensure a clean

separation between times when the system is responding to real-time

commands to change electrode current, times when it is having a script

programmed into it, times when it is running a script, etc. In each

mode, only the commands appropriate to that mode will be accepted by

the system. This ensures that no unintended action can arise if, for

example, an attempt is made to send a real-time command or to load a

new script while a script is being run.

The system has the following operating modes. A symbolic name used to

refer to each mode is given in parentheses after the mode description:

 i) Initialization mode (modeInit)

 ii) Idle mode (modeIdle)

 iii) Direct Electrode Control mode (modeDirect)

 iv) Program Script mode (modePgmScr)

 v) Run Script mode (modeRunScr)

 vi) Fault mode (modeFault)

Each mode is described in a subsection below.

3.1.1 Initialization mode (modeInit)

In this mode all hardware control bits of the microcontroller in the

unit are initialized and all program data is initialized. Normally,

the system then automatically transitions to modeIdle. It is

possible, however, for it to transition to modeFault if an error is

detected during initialization.

3.1.2 Idle mode (modeIdle)

In this mode electrodes are commanded to zero current and no other

actions occur. Note that although the electrodes are commanded to

zero current, tolerances in the analog section of the unit can lead to

small currents (on the order of 0.05 mA) on the electrodes -- the

electrodes are NOT physically disconnected from the current sources.

Idle mode has two submodes related to the possibility of local

control:

 i) Local control enabled submode (submodeLclCtrlEnabled)

 ii) Local control disabled submode (submodeLclCtrlDisabled)

This submode is shared by modeRunScr, i.e., if local control is

enabled (disabled) in one of these modes it is also enabled (disabled)

in the other.

In submodeLclCtrlEnabled, it is possible for a user to command a

transition to modeRunScr and to arm the script at address 0000 by

pushing the button on the unit (see section 7 for a complete

description of scripts, and section 6 for a reiteration of local

control issues). In submodeLclCtrlDisabled, this possibility is

removed. If local control is disabled, such a mode transition and

arming of a script can only be done by commands from the host

computer, i.e., by remote control. Note that this remote control is

available whether local control is enabled or disabled.

3.1.3 Direct electrode Control mode (modeDirect)

In this mode the system will respond to real time commands from the

host computer to set any one or all 4 of the electrode currents. This

mode maintains state information consisting of the current setting of

the 4 electrodes, and this data can be downloaded for inspection by

the host computer. When this mode is entered, the electrodes are

commanded to zero current.

3.1.4 Program script mode (modePgmScr)

In this mode the unit will accept commands from the host computer to

upload the contents of script memory, which is stored in a

non-volatile EEPROM. It will also allow script memory to be cleared

(all bytes set to 00 which represents the "stop" script instruction),

and to be downloaded for inspection by the host computer. In this

mode all electrodes are commanded to zero current.

3.1.5 Run script mode (modeRunScr)

In this mode, scripts stored in program memory can be "armed" and run.

Scripts are described fully in section 7, but briefly script memory is

considered to contain a set of instructions for a virtual machine.

These instructions include ones to set electrode currents, to hold or

delay for a given time, as well as simple control instructions such as

unconditional jumps, call/return sequences, and stop. Although the

system views script memory as a homogeneous block of instructions,

several "logical" scripts can be loaded by the user into this memory,

each starting at a different location and with its own stop or jump

instructions which partition it off from the other logical scripts in

memory. Script execution can be commanded to start at any address

location in script memory so that any one of these logical scripts can

be selected to run.

By using commands from the host computer when in modeRunScr, a script

can be immediately started beginning from any location in script

memory. It is also possible to "arm" a script or to prepare it to run

without actually starting it. It can then be started by local

control, i.e., by the user pushing the button on the unit, provided

local control is enabled.

Run script mode has three submodes related to script run/arm status,

only one of which is active at a time:

 i) Script disarmed submode (submodeRunScrDisarmed) When a

 script is neither armed nor running, i.e., in this

 submode, the script status (yellow) LED is off.

 ii) Script armed submode (submodeRunScrArmed) This submode

 maintains state information consisting of the starting

 address in script memory where the script will begin.

 When a script is armed, i.e., in this submode, the

 script status (yellow) LED flashes.

 iii) Script running submode (submodeRunScrRunning) This submode

 maintains state information consisting of all the data

 needed by the virtual machine running the script such

 as the current script "program counter" and "call

 stack". When a script is running, i.e., in this

 submode, the script status (yellow) LED is on

 continuously.

Run script mode also has two submodes, orthogonal to those relating to

script run/arm status, which are related to the possibility of local

control:

 i) Local control enabled submode (submodeLclCtrlEnabled)

 ii) Local control disabled submode (submodeLclCtrlDisabled)

In submodeLclCtrlEnabled, it is possible for a user to command the

following:

 i) if in submodeRunScrDisarmed, a button push commands a

 transition to submodeRunScrArmed with address 0000 armed

 ii) if in submodeRunScrArmed, a button push commands a transition

 to submodeRunScrRunning, starting execution at the current

 armed script address (here the armed script address need not

 be 0000 since any script address could be armed by command

 from the host computer)

This submode is shared by modeIdle, i.e., if local control is enabled

(disabled) in one of these modes it is also enabled (disabled) in the

other.

Note that this local control behaviour, together with that described

in section 3.1.2 for modeIdle, means that if the system is in modeIdle

and local control is enabled (which is the power up state), two

successive button pushes will result in running the script starting a

address 0000: the first button push commands a transition to

modeRunScr with address 0000 armed; the second button push commands

this armed script to begin running.

In this mode, the electrodes are commanded to zero current unless a

script is running.

3.1.6 Fault mode (modeFault)

Fault mode is entered automatically by the system when it detects a

serious fault such as an overflow of the command or message buffer, a

watchdog timer timeout, or a programming error. When this mode is

entered a fault message is sent to the host computer containing an

indicator of the fault type. In this mode the fault (red) LED is on

continuously and all electrodes are commanded to zero. The system can

be reset locally by cycling the power off and on. The system can

reset remotely by a command to clear the fault status and return to

idle mode, or a command to re-initialize the system as if on power up.

3.2 Mode transitions

The possible remotely commanded mode transitions are described in

section 5.3. The possible locally commanded mode transitions were

described in sections 3.1.2 and 3.1.5, and are covered again in

section 6.

Transition from modeInit to modeIdle (or modeFault if an

initialization fault is detected) is automatic.

Faults lead to an automatic transition to modeFault from any mode.

Messages are sent to the host computer every time a mode is exited or

a mode is entered, except for entry into modeInit which cannot be sent

because the message buffer is cleared during initialization.

3.3 Commands available in each mode

The following table shows the command groups or individual commands

available in each mode. Where a command group is given (each command

group is described fully in one of the subsections of section 4), all

commands in that group are available in that mode. Where individual

commands in a group are listed, only those are available.

Mode Command groups available

---- ------------------------

modeInit none

modeIdle

 NOP

 Initialization

 Mode management SelectModeXXX, DldMode

 Local control

 Download RAM memory

modeDirect

 NOP

 Initialization

 Mode management SelectModeXXX, DeselectModeDirect,

 DldMode

 Direct electrode control

 Download RAM memory

modePgmScr

 NOP

 Initialization

 Mode management SelectModeXXX, DeselectModePgmScr,

 DldMode

 Program script

 Download RAM memory

modeRunScr

 NOP

 Initialization

 Mode management SelectModeXXX, DeselectModeRunScr,

 DldMode

 Run script

 Local control

 Download RAM memory

modeFault

 NOP

 Initialization

 Mode management DldMode

 Fault management

 Download RAM memory

4 COMMAND AND MESSAGE FORMATS

4.1 Command and message packet formats

All communication between the unit and the host computer is by packet.

Each packet consists of the data bytes of the command or message plus

header and trailer bytes to delimit packets and assist with

communication error control.

Command and message packets are both in the following format:

 byte 1

 start-of-command/message sync byte

 = binary '10101010' = hex 'aa' = decimal '170'

 byte 2

 number of DATA bytes in the packet, i.e, the number of

 bytes in the packet excluding the header and trailer

 bytes

 = iNDataBytes

 byte 3..iNDataBytes+2

 iNDataBytes bytes containing the actual command or

 message information

 byte iNDataByte+3

 checksum consisting of the sum, modulo hex '100' (so 1

 byte) of the iNDataBytes data bytes in the packet

 byte iNDataByte+4

 end-of-command/message sync byte

 = binary '01010101' = hex '55' = decimal '125'

The system considers a packet to be terminated either when it receives

a number of bytes consistent with byte 2 of the packet, or when a

timeout occurs between received bytes. The timeout duration is

currently set to 1 second.

Note that the implementation buffers messages for transmission because

of the relatively slow speed of communication over the RS-232 wire or

RF link. Therefore it is possible for some messages to be lost if a

command to re-initialize the system (see section 5.2) is sent. This

is because the message buffer is cleared during initialization and

this may happen before all bytes are sent. It is also possible for

the message buffer to overflow if commands are being sent at such a

rate that the resulting messages cannot be sent fast enough. This is

a fault and will result in a transition to modeFault.

Commands are also buffered, and if a very long packet is received it

is possible for the command buffer to overflow. This also is a fault

and will result in transition to modeFault. Note that this situation

should not occur with valid commands since all commands are of limited

length. Command buffer overflow could possibly occur if many commands

are sent in rapid succession and each takes longer to execute than the

time between command reception. This situation has not occurred in

testing, however.

4.2 Command and message data formats

This section describes the formats for the data bytes of commands and

messages. These are the contents of the packets described in the

previous section.

The first byte of each command is a command designator which indicates

the type of command. Each command type has a unique command

designator. These are all referred to by symbolic names of the form

cdgXXX in this document. A complete list of all command designators

and their numerical values is given in Appendix A.

Some commands consist of only the command designator. For example,

the command to enter direct electrode control mode consists of the

single byte cdgSelectModeDirect (which represents the numerical value

02). Other commands require additional data. This follows the

command designator in the command. For example, the command to set

the current on electrode 1 to its maximum positive value is

 cdgSetElectrode (09) 01 ff

where 01 is the electrode number and ff is the hexadecimal value

representing the maximum positive current (Appendix B gives the

correlation between the current data byte and the electric current

value).

A description of each command (the command designator and the data

bytes) is given in section 5. In those descriptions, any information

in the command in addition to the command designator is described as

"<name>" where name refers to the data type. All these data types are

described in Appendix A.

Note that in this report all numerical values in example commands and

messages and in the data dictionary in Appendix A are in hexadecimal

unless otherwise noted.

Messages are formatted exactly like commands. Each message has a 1

byte message designator, referred to as mdgXXX in this document. Some

messages consist only of the message designator (for example, the

message reporting that a particular mode was entered). Some messages

include further information (for example, the message reporting the

current values of all electrodes). The format of each message is also

given in section 5.

4.3 Command validation process

Command validation is in four steps:

 i) first, a complete packet is received. This packet may

 have errors due, for instance, to transmission corruption.

 Such errors are detected in step (ii) below. However,

 even before this it is possible for the system to know

 that a packet was terminated without a complete packet

 being received. This occurs in two conditions:

 a) a timeout occurs. As described in section 4.1, if

 the system is expecting more bytes and they

 are not received before the timeout period of

 1 second elapses, the current packet is

 terminated even though it is known to be

 incomplete. In such a case, the system

 transmits the following message:

 mdgRxCmdTimeout

 b) if the system knows that a new packet should start

 since it just completed processing the previous

 one, but the next byte received is not the

 start-of-command sync byte, syncSOC, then the

 packet is terminated with this single byte and the

 following message is sent:

 mdgCmdRejectedExpectedSOC <byte>

 where <byte> is the invalid byte received.

 In either of these conditions, the command stream is

 resynchronized by scanning any current bytes in the

 command buffer looking for syncSOC. If one is not found,

 the buffer is emptied and the system waits for more

 commands. If one is found, the system attempts to

 interpret commands from that point. In either case the

 following message is sent:

 mdgResync

 ii) when a complete packet is received, the packet is

 validated by checking that the trailing sync byte is in

 the correct position (the leading sync byte has already

 been assured to be present by the previous validation

 step), that the length is consistent with the packet

 length indicator (this will not be the case if a timeout

 occurred) and that the checksum is correct. If these are

 in error, one of the following messages is sent:

 mdgCmdRejectedLengthBad <packet echo>

 mdgCmdRejectedEOCNotPresent <packet echo>

 mdgCmdRejectedChecksum <packet echo>

 Here <packet echo> indicates that the message contains an

 echo of the entire packet including sync, length and

 checksum bytes to assist in debugging the comm link or

 command source. If any of these errors occur, the command

 stream is resynchronized as in (i) and the mdgResync

 message is sent.

 iii) if the packet is validated, the command data bytes are

 examined in an initial command validation. This checks

 that the command designator is in range, that the command

 length is consistent with the command designator and that

 this command is allowed in the current mode. If these are

 in error, one of the following messages are sent:

 mdgCmdRejectedInvalidMode <packet echo>

 mdgCmdRejectedInvalidCdg <packet echo>

 mdgCmdRejectedLengthToCdgBad <packet echo>

 iv) if the command survives packet and initial command

 validation, further validation is carried out on some

 commands to check that data is within range, etc. All

 such cases are indicated when each command is discussed in

 section 5, and the appropriate mdgCmdRejectedXXX messages

 which might result are listed.

 v) if all of the above are satisified, the command is

 validated

Once a command is validated, a CmdAccepted message is sent:

 mdgCmdAccepted <cmd echo>

Here, unlike for the cases of command rejected listed above, only the

data bytes of the command are echoed. Sync bytes, length and checksum

are not included in <cmd echo>.

5 COMMAND/MESSAGE TRANSACTIONS

5.1 NOP

 cdgNOP

 mdgCmdAccepted <cmd echo>

This is the no-operation command. The only effect of this command is

to generate the command echo. It can be used to periodically query

the unit from the host computer to determine that it is still

functioning and in communication range.

5.2 Initialize

 cdgInit

 mdgExitedModeInit

 mdgEnteredModeIdle

This command cause a complete re-initialization of the microcontroller

flags and the program memory as if a power-up occurred. Note that no

CmdAccepted is sent, nor is an "EnteredModeInit" message is sent

because the message buffer is cleared during initialization so any

such messages would be lost.

5.3 Manage modes

The following commands are used to change operating modes:

 cdgSelectModeDirect

 mdgCmdAccepted <cmd echo>

 mdgModeDirectSelected

 [mdgScrStopped IF IN modeRunScr AND SCRIPT IS

 RUNNING]

 [mdgScrDisarmed IF IN modeRunScr AND SCRIPT IS ARMED]

 [mdgModeXXXExited IF IN MODE OTHER THAN modeDirect]

 [mdgModeDirectEntered IF INITIALLY IN OTHER THAN

 modeDirect]

 cdgDeselectModeDirect

 mdgCmdAccepted <cmd echo>

 mdgModeDirectDeselected

 [mdgModeDirectExited IF IN MODE modeDirect]

 [mdgModeIdleEntered IF IN MODE modeDirect]

 OR

 mdgCmdRejectedInvalidMode <packet echo> IF NOT IN modeDirect

 cdgSelectModePgmScr

 mdgCmdAccepted <cmd echo>

 mdgModePgmScrSelected

 [mdgScrStopped IF IN modeRunScr AND SCRIPT IS

 RUNNING]

 [mdgScrDisarmed IF IN modeRunScr AND SCRIPT IS ARMED]

 [mdgModeXXXExited IF IN MODE OTHER THAN modePgmScr]

 [mdgModePgmScrEntered IF INITIALLY IN OTHER THAN

 modePgmScr]

 cdgDeselectModePgmScr

 mdgCmdAccepted <cmd echo>

 mdgModePgmScrDeselected

 [mdgModePgmScrExited IF IN MODE modePgmScr]

 [mdgModeIdleEntered IF IN MODE modePgmScr]

 OR

 mdgCmdRejectedInvalidMode <packet echo> IF NOT IN modePgmScr

 cdgSelectModeRunScr

 mdgCmdAccepted <cmd echo>

 mdgModeRunScrSelected

 [mdgModeXXXExited IF IN MODE OTHER THAN modeRunScr]

 [mdgModeRunScrEntered IF INITIALLY IN OTHER THAN modeRunScr]

 cdgDeselectRunModeScript

 mdgCmdAccepted <cmd echo>

 mdgModeRunScrDeselected

 [mdgScrStopped IF SCRIPT IS RUNNING]

 [mdgScrDisarmed IF SCRIPT IS ARMED]

 [mdgModeRunScrExited IF IN MODE modeRunScr]

 [mdgModeIdleEntered IF IN MODE modeRunScr]

 OR

 mdgCmdRejectedInvalidMode <packet echo> IF NOT IN modeRunScr

The following command requests the unit to download (report) its

current operating mode:

 cdgDldMode

 mdgCmdAccepted <cmd echo>

 mdgMode <iMode>

The value of <iMode> corresponding to each mode is given in Appendix

A.

Several additional messages are sent when automatic mode transitions

occur. These are:

 mdgExitedModeInit AT THE END OF POWER-UP INITIALIZATION

 mdgEnteredModeIdle AFTER AUTOMATICALLY EXITING modeInit

 mdgEnteredModeFault WHEN A FAULT IS DETECTED

 mdgExitedModeFault WHEN FAULT STATUS IS CLEARED (see

 section 5.8)

5.4 Direct control electrodes

In the following commands, the byte values used in <cur>, <cur1),

<cur2), <cur3), <cur4) to represent actual electrode currents are

described in Appendix B.

 cdgSetElectrode <iElectrode> <cur>

 mdgCmdAccepted <cmd echo>

 OR

 mdgCmdRejectedElectrodeRange <packet echo>

 IF iElectrode is not in the range 1 to 4

This command sets a single electrode (<iElectrode> = 1 to 4).

 cdgSetAllElectrodes <cur1> <cur2> <cur3> <cur4>

 mdgCmdAccepted <cmd echo>

This command sets all electrodes simultaneously. Here <curI> is the

current to be applied to electrode i.

 cdgDldAllElectrodes

 mdgCmdAccepted <cmd echo>

 mdgAllElectrodesDld <cur1> <cur2> <cur3> <cur4>

This command requests the unit to download the current value on all

electrodes. This report is in the form of the AllElectrodesDld

message.

NOTE --

Because the communication rate between the host computer and the unit

is set to 1200 baud, the maximum rate at which electrode commands can

be applied is limited to about 10 per second (this depends somewhat on

the exact command sequence since the different SetElectrode commands

and the resulting CmdAccepted messages take a different number of

bytes and therefore a different length of time to transmit). This

baud rate is a comfortable one: it probably covers the rates of

physiological interest; it produced a very low error rate in testing

of the RF link on the unit; and it helps to ensure that commands do

not "pile up" in the command buffer before execution. Because of

this, the baud rate has been left at this relatively low value, and

the electrode command rate is correspondingly limited. If this proves

to be a problem, experiments can be conducted with higher baud rates,

and these may well prove successful. Alternatively, very fast

sequences of electrode currents can be applied using scripts as

described in section 7.

5.5 Program script

Section 7 contains a complete description of the format and use of

scripts. This section describes only the commands needed to load,

clear and otherwise manage scripts stored in the unit's script memory.

These commands do not recognize any aspect of the proper format of

scripts. They consider scripts to be just a sequence of bytes.

Therefore no script errors can be detected when scripts are loaded

using the commands in this section. They can only be detected when a

script is run.

 cdgScrClearMem

 mdgCmdAccepted <cmd echo>

 mdgScrMemCleared

This command clears script memory, writing 00 into all locations.

Since 00 is the script op code for "stop" (see section 7 and Appendix

A), this means that running a script starting anywhere in script

memory will result in an immediate stop after this command has been

used.

 cdgScrUldMem <addrLo> <addrHi> <byte>, ...

 (max 16)

 mdgCmdAccepted <cmd echo>

 mdgScrMemUlded <addrLo> <addrHi> <count>

 OR

 mdgCmdRejectedUldMemAddrRange <packet echo>

This command allows script memory to be uploaded (altered). Up to 16

consecutive memory locations in script memory can be filled with the

bytes specified in the ScrUldMem command, starting at the address

specified in the command. Repeated commands can be used to fill as

much as desired of the script memory. In this command, and in the

ScrMemUlded message, the 2 bytes <addrLo> and <addrHi> are the low and

high bytes respectively of a 16 bit address. Script memory is limited

to decimal 2048 bytes so that <addrHi> must be 07 or lower. The

command rejection message is sent if <addrLo>,<addrHi> or any of the

successive addresses which would be altered are outside of this valid

script memory. It is also sent if more than 16 <byte>s are included

in the command.

 cdgScrDldMem <addrLo> <addrHi> <count>

 mdgCmdAccepted <cmd echo>

 mdgScrMemDld <addrLo> <addrHi> <byte>,

 ... (max 16?)

 SIMILAR COMMENT TO cdgUldScriptMem

 OR

 mdgCmdRejectedDldMemAddrRange <packet echo>

This command requests the system to download the contents of script

memory, starting at <addrLo>,<addrHi> and continuing for <count>

bytes. This download occurs in the ScrMemDld message. Up to 16 bytes

can be requested in a single command. The CmdRejected message is sent

if any of the memory requested would be outside the script memory

address space, or if more than 16 bytes are requested.

5.6 Run script

Section 7 contains a complete description of the format and use of

scripts. This section describes only the commands needed to arm,

disarm, start and stop scripts assuming a valid script is in script

memory. Script errors that can be detected during script execution

are described in section 8.

 cdgScrArm <addrLo> <addrHi>

 mdgCmdAccepted <cmd echo>

 mdgScrArmed <addrLo> <addrHi>

 OR

 mdgCmdRejectedScrArmAddr <packet echo>

This command arms the script starting at address <addrLo>,<addrHi> in

script memory. Once armed, the script can be started either by

sending the cdgScrRunArmed message (see below), or by a single push of

the pushbutton on the side of the unit (provided local control is

enabled).

 cdgScrDisarm

 mdgCmdAccepted <cmd echo>

 [mdgScrDisarmed IF SCRIPT WAS ARMED]

The command disarms any currently armed script. If no no script is

currently armed, no error occurs, but the mdgScrDisarmed message is

not sent.

 cdgScrDldArmed

 mdgCmdAccepted <cmd echo>

 mdgScrArmed <addrLo> <addrHi>

 OR

 mdgScrDisarmed

This command requests the system to download the armed status. If a

script is armed, the ScrArmed message is sent with the address where

the script will start. If no script is armed, the ScrDisarmed message

is sent.

 cdgScrRun <addrLo> <addrHi>

 mdgCmdAccepted <cmd echo>

 mdgScrStarted <addrLo> <addrHi>

This command causes script execution to start immediately at script

address <addrLo>,<addrHi>. The script need not be armed first if this

command is used to start script execution. However, if a script IS

armed when this command is sent, it is disarmed first (and the

ScrDisarmed message is sent), then the script requested in this

command is run.

 cdgScrRunArmed

 mdgCmdAccepted <cmd echo>

 mdgScrStarted <addrLo> <addrHi> ; sent when script start, either immediately after cdgRunScr or after pushbutton with script armed

 OR

 mdgCmdRejectedScrRunNotArmed <packet echo>

This command requests that the currently armed script be started.

Since the address to start has already been specified in the ScrArm

command, it is not needed here. If no script is armed, the

CmdRejectedScrRunNotArmed message is sent.

 cdgScrStop

 mdgCmdAccepted <cmd echo>

 mdgScrStopped <addrLo> <addrHi> ; sent when script stops, either immediately after cdgStopScript or after script "stop" instruction is executed; report stop address

This command stops any running script. The unit enters not-running,

not-armed submode (i.e., submodeRunScrDisarmed) but stays in

modeRunScr. This is exactly equivalent to a ScrStop instruction being

executed by the script (see section 7). If no script is currently

running, no error occurs, but the ScrStopped message is not sent.

 cdgScrTraceOn

 mdgCmdAccepted <cmd echo>

 mdgScrTrace <timerLo> <timerHi> <addrLo> <addrHi>

 at every trace point

This command turns script tracing on. When script tracing is on,

every script command executed causes the sending of the ScrTrace

message which contains the current timer count (a 2 byte counter which

is incremented every 25 ms, but which has no time-of-day connection)

and the address of the current script instruction being executed. The

trace message is sent after the instruction is fetched, but before it

is executed and can help in debugging scripts. NOTE -- if script

instructions are executed in rapid sequence without the use of "delay"

instructions (see section 7), the trace messages can cause message

buffer overflow which results in stopping of the script and entering

fault mode.

 cdgScrTraceOff

 mdgCmdAccepted <cmd echo>

This command turns script tracing off.

5.7 Manage local control

 cdgDisableLclCtrl

 mdgCmdAccepted <cmd echo>

 [mdgLclCtrlDisabled if local control was enabled before cmd was sent]

This command disables local control, i.e., makes it impossible for the

user to affect the state of the system by pushing the button on the

unit (of course, the main power switch on the unit remains functional

and can be used to switch the unit off).

 cdgEnableLclCtrl

 mdgCmdAccepted <cmd echo>

 mdgLclCtrlEnabled

This command re-enables local control after it has been disabled.

5.8 Manage faults

If a fault is detected (section 8 lists all faults which can be

detected) the system enters fault mode. When it enters this mode, the

following message is sent:

 mdgFault <idFault>

Here <idFault> is a single byte numerical designator indicating the

fault type. These are listed in Appendix A.

The host computer can request that this message be sent again any time

the system is still in fault mode by using the following command:

 cdgDldFaultStatus

 mdgFault <idFault>

The following command clears the fault and causes the system to

re-enter idle mode:

 cdgClearFaultStatus

 mdgFaultStatusCleared

 mdgExitedModeFault

 mdgEnteredModeIdle

5.9 Download RAM memory

This command requests that the system download the contents of a

specified range of bytes of the internal microcontroller's RAM. It is

not likely to be of any use to the end user. It exists mainly to

support program debugging and development:

 cdgDldRAM <addrLo> <addrHi> <count>

 mdgRAMDld <addrLo> <addrHi> <byte>

 (max 16)

 OR

 mdgCmdRejectedDldRAMAddrRange <packet echo>

NOTE -- <addrHi> should always be 0 given current processor's RAM

address space.

6 LOCAL CONTROL

Local control has already been described in previous sections.

However, the information is scattered in several places above. Here

it is summarized in one location.

Aside from the power on/off switch, the unit has a single control: a

pushbutton. This button has several functions, all related to

scripts. Which function is active, if any, depends on the current

mode and submode. All these functions can be disabled by the use of

the DisableLclCtrl command, and later re-enabled by the EnableLclCtrl

command. At power up, local control is enabled.

If the button is pushed when local control is disabled, the following

message is sent

 mdgLclCmdRejectedLclCtrlDisabled

If local control is enabled, the following local control transactions

can occur:

 If the unit is in modeIdle, a button push causes the unit to enter

 modeRunScript and to arm the script at address 0000. The

 following messages will be sent:

 mdgModeRunScrSelected

 [mdgModeXXXExited IF IN MODE OTHER THAN modeRunScr]

 [mdgModeRunScrEntered IF INITIALLY IN OTHER THAN

 modeRunScr]

 mdgScrArmed 00 00

 This is the same response (except for CmdAccepted messages) as to

 the following command sequence:

 cdgSelectModeRunScr

 cdgScrArm 00 00

 If the unit is in modeRunScr and a script is armed, a button push

 causes the armed script to start. The following message will be

 sent:

 mdgScrStarted <addrLo> <addrHi>

 This is the same response (except for CmdAccepted message) as to

 the following command sequence:

 cdgScrRunArmed

7 SCRIPTS

7.1 Script application

Scripts are sequences of instructions which can be used to set the

electrode currents and hold the resulting currents for specifed

amounts of time before setting them to the next value. It is forseen

that scripts will be used in two conditions:

 a) as part of research into the vestibular system, to program

 fixed time sequences of electrode currents. These can be

 applied to one or more subjects in an identical fashion,

 perhaps many times, in order to acquire statistics on the

 subjects' response;

 b) if very fast electrode current sequences are desired which

 exceed the command rate of the comm link between the host

 computer and the unit (see the note in section 5.4), a script

 can be programmed into the unit and executed by command from

 the host computer. This script can apply currents which

 change at up to 40 times per second.

7.2 Script code format

Scripts are stored in script memory in a non-volatile EEPROM on-board

the unit. Therefore, scripts remain even after the unit is shut off,

so they need not be re-programmed every time the power is cycled. The

EEPROM currently included has a capacity of hex 800 or decimal 2048

bytes of script "code".

Script "code" consists of a list of instructions for a virtual

machine. Each instruction consists of a 1 byte op code (opScrXXX)

followed by 0 or more bytes of data. The op codes are all given

symbolic names of the form opScrXXX. The numerical value

corresponding to each symbolic name opScrXXX is given in Appendix A.

The following are the valid script instructions:

 1 byte op code data bytes in order after op code

 --------------------- ---------------------------------

 opScrStop

 opScrNOP

 opScrSetElectrode <iElectrode> <cur>

 opScrSetAllElectrodes <cur1> <cur2> <cur3> <cur4>

 opScrDelay <dtimerLo> <dtimerHi>

 opScrGoto <addrLo> <addrHi>

 opScrCall <addrLo> <addrHi>

 opScrReturn

The data in the script instructions are in the following formats:

 <addrLo/Hi> 2 byte address in script memory

 <cur> 1 byte current in the format described in

 Appendix B

 <iElectrode> 1 byte electrode number (1 to 4)

 <dtimerLo/Hi> 2 byte timer tick count (= number of 25 ms

 "ticks")

The ScrStop instruction causes the script to terminate. The unit

enters not-running, not-armed submode (i.e., submodeRunScrDisarmed)

but stays in modeRunScr.

The ScrNOP instruction causes no effect. It can be used as a place

holder to allow minor editting of scripts in-place.

The ScrSetElectrode instruction changes the current on any one

electrode. The ScrSetAllElectrodes instruction changes the current on

all electrodes simulataneously.

The ScrDelay instruction holds the current electrode settings for the

amount of time specified in the instruction. This time is given as a

2 byte value, low byte first, so ranges from 0 to ffff hex or 0 to

65536 decimal. This number represents a time duration in units of

"timer ticks" where each tick is 25 ms long. Therefore delays of over

20 minutes can be specified with a 25 ms resolution. Note that, as

described in section 7.4, normal execution of an instruction takes one

timer tick, so if very precise timing is necessary, it should be

remembered that the actual total time which will elapse till the next

instruction is executed is the delay specified in the ScrDelay

instruction plus one tick.

The ScrGoto instruction causes an unconditional jump to another

address in script memory, so that the next instruction to be executed

will be at that address and running will continue from there. This

can be used to form infinite loops, or just to help in organizing

script memory space.

The ScrCall instruction behaves similarly to the ScrGoto instruction,

except that the address just after the one from which the jump

occurred is saved on a stack (maximum depth 8 addresses). Subsequent

execution of a ScrReturn instruction causes the address from which the

jump occurred to be restored and execution continues from there. This

is equivalent to a subroutine call in a normal programming language.

7.3 Logical script management

The system treats script memory as containing only script

instructions. It does not maintain any "index" or any higher level

logical division of script memory space. Any such higher level

ordering of script memory is the responsibility of the user who

programs and runs scripts.

However, any number of "logical" scripts (i.e., related groups of

instructions that the user intends to be executed in one script run)

can be contained in script memory at any time. Each can be a set of

commands terminated by an opScrStop instruction, or perhaps an

infinite loop formed using opScrGoto. Commands from the host computer

can be used to start any of these logical scripts since the address at

which to start script execution is included in the run-script

instructions.

7.4 Script instruction execution

Script instruction execution is started either by command from the

host computer (see section 5.6), or by a push of the button on the

unit if the unit is in the correct state (see section 6). Execution

starts at the address armed or at the address specified in the ScrRun

command as described in section 5.6.

Each instruction except ScrDelay executes in a single "tick" of the

system 25 ms timer. As described in section 7.2, the ScrDelay

instruction suspends execution for the number of ticks specified in

the instruction. If zero ticks are specified in the ScrDelay

instruction, the next instruction will execute at the NEXT tick, not

immediately (so ScrDelay 0 behaves like ScrNOP).

Because of this 25 ms instruction clock, electrodes can be set every

25 ms by a script run, i.e., at a 1/25 ms = 40 Hz rate.

Script run-time errors are described in section 8.3.

8 FAULTS

Most of the faults which can be detected by the system have been

listed above. For reference all these, plus the ones which have not

yet been covered are listed below.

The occurence of any of these faults results in the following:

 i) any script which is running is stopped

 ii) any script which is armed is disarmed

 iii) all electrodes are commanded to zero current

 iv) the current operating mode is exited

 v) fault mode is entered

Once in fault mode, a fault message is sent indicating the type of

fault. Each fault type is given a numerical designator. These are

referred to here by symbolic names of the form idFaultXXX. The

numerical values represented by these symbolic names are given in

Appendix A.

8.1 Programming bugs

The following faults will only occur if a bug exists in the code:

 idFaultBugMsgBufEmpty

 at a point in the code where the message buffer should not

 be empty, it was found to be empty

 idFaultBugCmdExecuteCdgRange

 at a point in the code where the command designator should

 already have been checked to be in valid range, it was

 found to be outside the valid range

 idFaultBugUnexpectedInterrupt

 the microcontroller has executed an interrupt that should

 have been disabled

 idFaultWatchdogTimer

 the microcontroller watchdog timer went off indicating

 that execution has probably branched off to some invalid

 area in the code; it is possible that this could also be

 an indication that the system is operating normally but is

 too busy in some sense, but this situation has not occured

 in testing; if the watchdog timer goes off, the system is

 re-initialized, but immediately enters mode fault with

 this error indication rather than the normal behaviour

 after initialization of automatically transitioning to

 modeIdle; after the fault is noted, the system can be put

 into modeIdle by executing the ClearFaultStatus command

8.2 Fatal communication errors

The following errors can occur if the system becomes too busy (for

example, if so many commands are sent in rapid succession that the

system cannot keep up), or if a long, invalid command string has been

sent:

 idFaultCmdBufFull

 the command buffer has filled before a legal command was

 found; this is likely only to occur if a long, invalid

 command string is received

 idFaultMsgBufFull

 the message buffer has filled because messages are being

 put out by the system faster than the comm link or the

 software interfacing with the comm link can handle; this

 can occur if commands are sent at a very rapid rate (the

 resulting CmdAccepted messages and any other following

 messages might overfill the buffer), or if tracing is on

 when a time-dense script is being executed

8.3 Fatal script run-time errors

A number of script run-time errors can occur. Each is considered a

fault. These faults are:

 idFaultScrRunInvalidOp

 the byte at the location where an opScrXXX opcode is

 expected has a value different from any legal instruction;

 this can occur if a ScrGoto or ScrCall has been made to an

 incorrect address; it can also occur if a data byte has

 been forgotten in a previous instruction so that the

 system is actually reading a data byte when it thinks it

 is reading an op code

 idFaultScrRunAddrRange

 the address specified in a ScrGoto or ScrCall instruction

 is outside the script memory address space (0 to 7ff hex

 or 0 to 2047 decimal)

 idFaultScrRunStackOverflow

 the script stack has overflowed because of a too deep

 nesting of opScrCall instructions (>8 calls)

 idFaultScrRunStackUnderflow

 the script stack has underflowed because of the execution

 of a ScrReturn instruction without a corresponding ScrCall

 instruction having been executed previously

 idFaultScrRunIElectrodeRange

 the value of <iElectrode> in the ScrSetElectrode

 instruction is outside the legal range (1 to 4)

APPENDIX A DATA DICTIONARY

This appendix gives the numerical values corresponding to all symbolic

names (command and message designators, script op codes and fault

id's). It also gives the formats for all data types used in commands

and messages. In the tables, H'xx' represents hexadecimal value xx.

A.1 COMMAND DESIGNATORS

In numerical order and partitioned into logical groups:

 cdgNOP = H'00'

 cdgInit = H'01'

 cdgSelectModeDirect = H'02'

 cdgDeselectModeDirect = H'03'

 cdgSelectModePgmScr = H'04'

 cdgDeselectModePgmScr = H'05'

 cdgSelectModeRunScr = H'06'

 cdgDeselectRunModeScript = H'07'

 cdgDldMode = H'08'

 cdgSetElectrode = H'09'

 cdgSetAllElectrodes = H'0a'

 cdgDldAllElectrodes = H'0b'

 cdgScrClearMem = H'0c'

 cdgScrUldMem = H'0d'

 cdgScrDldMem = H'0e'

 cdgScrArm = H'0f'

 cdgScrDisarm = H'10'

 cdgScrDldArmed = H'11'

 cdgScrRun = H'12'

 cdgScrRunArmed = H'13'

 cdgScrStop = H'14'

 cdgScrTraceOn = H'15'

 cdgScrTraceOff = H'16'

 cdgDisableLclCtrl = H'17'

 cdgEnableLclCtrl = H'18'

 cdgDldFaultStatus = H'19'

 cdgClearFaultStatus = H'1a'

 cdgDldRAM = H'1b'

In alphabetical order:

 cdgClearFaultStatus = H'1a'

 cdgDeselectModeDirect = H'03'

 cdgDeselectModePgmScr = H'05'

 cdgDeselectRunModeScript = H'07'

 cdgDisableLclCtrl = H'17'

 cdgDldAllElectrodes = H'0b'

 cdgDldFaultStatus = H'19'

 cdgDldMode = H'08'

 cdgDldRAM = H'1b'

 cdgEnableLclCtrl = H'18'

 cdgInit = H'01'

 cdgNOP = H'00'

 cdgScrArm = H'0f'

 cdgScrClearMem = H'0c'

 cdgScrDisarm = H'10'

 cdgScrDldArmed = H'11'

 cdgScrDldMem = H'0e'

 cdgScrRun = H'12'

 cdgScrRunArmed = H'13'

 cdgScrStop = H'14'

 cdgScrTraceOff = H'16'

 cdgScrTraceOn = H'15'

 cdgScrUldMem = H'0d'

 cdgSelectModeDirect = H'02'

 cdgSelectModePgmScr = H'04'

 cdgSelectModeRunScr = H'06'

 cdgSetAllElectrodes = H'0a'

 cdgSetElectrode = H'09'

A.2 MESSAGE DESIGNATORS

In numerical order and partitioned into logical groups:

 mdgCmdAccepted = H'00'

 mdgCmdRejectedInvalidMode = H'01'

 mdgCmdRejectedExpectedSOC = H'02'

 mdgCmdRejectedLengthBad = H'03'

 mdgCmdRejectedInvalidCdg = H'04'

 mdgCmdRejectedLengthToCdgBad = H'05'

 mdgCmdRejectedEOCNotPresent = H'06'

 mdgCmdRejectedChecksum = H'07'

 mdgRxCmdTimeout = H'08'

 mdgCmdExpectedSOC = H'09'

 mdgResync = H'0a'

 mdgExitedModeInit = H'0b'

 mdgEnteredModeIdle = H'0c'

 mdgExitedModeIdle = H'0d'

 mdgEnteredModeDirect = H'0e'

 mdgExitedModeDirect = H'0f'

 mdgEnteredModePgmScr = H'10'

 mdgExitedModePgmScr = H'11'

 mdgEnteredModeRunScr = H'12'

 mdgExitedModeRunScr = H'13'

 mdgEnteredModeFault = H'14'

 mdgExitedModeFault = H'15'

 mdgModeDirectSelected = H'16'

 mdgModeDirectDeselected = H'17'

 mdgModePgmScrSelected = H'18'

 mdgModePgmScrDeselected = H'19'

 mdgModeRunScrSelected = H'1a'

 mdgModeRunScrDeselected = H'1b'

 mdgMode = H'1c'

 mdgAllElectrodesDld = H'1d'

 mdgCmdRejectedElectrodeRange = H'1e'

 mdgScrMemCleared = H'1f'

 mdgScrMemUlded = H'20'

 mdgCmdRejectedUldMemAddrRange = H'21'

 mdgScrMemDld = H'22'

 mdgCmdRejectedDldMemAddrRange = H'23'

 mdgScrArmed = H'24'

 mdgCmdRejectedScrArmAddr = H'25'

 mdgScrDisarmed = H'26'

 mdgScrStarted = H'27'

 mdgCmdRejectedScrRunNotArmed = H'28'

 mdgScrStopped = H'29'

 mdgScrTrace = H'2a'

 mdgLclCtrlDisabled = H'2b'

 mdgLclCtrlEnabled = H'2c'

 mdgFault = H'2d'

 mdgFaultStatusCleared = H'2e'

 mdgRAMDld = H'2f'

 mdgCmdRejectedDldRAMAddrRange = H'30'

 mdgLclCmdRejectedLclCtrlDisabled = H'31'

In alphabetical order:

 mdgAllElectrodesDld = H'1d'

 mdgCmdAccepted = H'00'

 mdgCmdExpectedSOC = H'09'

 mdgCmdRejectedChecksum = H'07'

 mdgCmdRejectedDldMemAddrRange = H'23'

 mdgCmdRejectedDldRAMAddrRange = H'30'

 mdgCmdRejectedEOCNotPresent = H'06'

 mdgCmdRejectedElectrodeRange = H'1e'

 mdgCmdRejectedExpectedSOC = H'02'

 mdgCmdRejectedInvalidCdg = H'04'

 mdgCmdRejectedInvalidMode = H'01'

 mdgCmdRejectedLengthBad = H'03'

 mdgCmdRejectedLengthToCdgBad = H'05'

 mdgCmdRejectedScrArmAddr = H'25'

 mdgCmdRejectedScrRunNotArmed = H'28'

 mdgCmdRejectedUldMemAddrRange = H'21'

 mdgEnteredModeDirect = H'0e'

 mdgEnteredModeFault = H'14'

 mdgEnteredModeIdle = H'0c'

 mdgEnteredModePgmScr = H'10'

 mdgEnteredModeRunScr = H'12'

 mdgExitedModeDirect = H'0f'

 mdgExitedModeFault = H'15'

 mdgExitedModeIdle = H'0d'

 mdgExitedModeInit = H'0b'

 mdgExitedModePgmScr = H'11'

 mdgExitedModeRunScr = H'13'

 mdgFault = H'2d'

 mdgFaultStatusCleared = H'2e'

 mdgLclCmdRejectedLclCtrlDisabled = H'31'

 mdgLclCtrlDisabled = H'2b'

 mdgLclCtrlEnabled = H'2c'

 mdgMode = H'1c'

 mdgModeDirectDeselected = H'17'

 mdgModeDirectSelected = H'16'

 mdgModePgmScrDeselected = H'19'

 mdgModePgmScrSelected = H'18'

 mdgModeRunScrDeselected = H'1b'

 mdgModeRunScrSelected = H'1a'

 mdgRAMDld = H'2f'

 mdgResync = H'0a'

 mdgRxCmdTimeout = H'08'

 mdgScrArmed = H'24'

 mdgScrDisarmed = H'26'

 mdgScrMemCleared = H'1f'

 mdgScrMemDld = H'22'

 mdgScrMemUlded = H'20'

 mdgScrStarted = H'27'

 mdgScrStopped = H'29'

 mdgScrTrace = H'2a'

A.3 SCRIPT OP CODES

 opScrStop = H'00'

 opScrNOP = H'01'

 opScrSetElectrode = H'02'

 opScrSetAllElectrodes = H'03'

 opScrDelay = H'04'

 opScrGoto = H'05'

 opScrCall = H'06'

 opScrReturn = H'07'

A.4 FAULT DESIGNATORS

 idFaultBugMsgBufEmpty = H'00'

 idFaultBugCmdExecuteCdgRange = H'01'

 idFaultBugUnexpectedInterrupt = H'02'

 idFaultCmdBufFull = H'04'

 idFaultMsgBufFull = H'05'

 idFaultTooManyRxCmdErrors = H'06'

 idFaultTooManyTxMsgErrors = H'07'

 idFaultWatchdogTimer = H'08'

 idFaultScrRunAddrRange = H'09'

 idFaultScrRunIElectrodeRange = H'0a'

 idFaultScrRunInvalidOp = H'0b'

 idFaultScrRunStackOverflow = H'0c'

 idFaultScrRunStackUnderflow = H'0d'

A.5 MODE IDENTIFIERS

In the Mode message (response to DldMode command), the current mode is

indicated by a numerical value as follows:

 iModeNone = 0 not in a valid mode (should not be sent)

 iModeInit = 1 initialization mode

 iModeIdle = 2 idle mode

 iModeDirect = 3 direct electrode control mode

 iModePgmScr = 4 program script mode

 iModeRunScr = 5 run script mode

 iModeFault = 6 fault mode

A.6 COMMAND AND MESSAGE DATA TYPES

<addrHi> high order byte of 16 bit address;

 when used in DldRAM command, must be 0;

 when used in DldScrMem command or ScrGoto or

 ScrCall script instruction, must be 0..7f hex

<addrLo> low order byte of 16 bit address;

 any single byte value is acceptable;

 see <addrHi>

<byte> 0..ff hex, 0..256 decimal

<cmd echo> a string of all DATA bytes in a command;

 this does not include the packet header and trailer

 bytes which surrounded the command data bytes when the

 command was transmitted as a packet

<count> number of byte to upload in a CmdUldScrMem or the

 number of bytes to download in a CmdDldScrMem or

 CmdDldRAM command;

 0..10 hex, 0..16 decimal

<cur1> current for electrode 1 in SetAllElectrodes command,

 current on electrode 1 in AllElectrodesDld message or

 ScrSetAllElectrodes script instruction;

 0..ff hex, 0..256 decimal with value given in Appendix

 B corresponding to electrode current

<cur2>

<cur3>

<cur4> similar to <cur1> but for electrodes 2, 3, 4

 respectively

<cur> current to be applied to one electrode in SetElectrode

 command or ScrSetElectrode script instruction;

 0..ff hex, 0..256 decimal with value given in Appendix

 B corresponding to electrode current

<dtimerHi> high order byte of 16 bit count of system timer ticks

 used in ScrDelay script instruction;

 each tick is 25 ms long

<dtimerLo> low order byte of 16 bit count of system timer ticks;

 see <dtimerHi>

<idFault> fault designator; see section A.4

<iElectrode> electrode identifier; 1..4

<iMode> mode number;

 used in Mode message to indicate current mode;

 see section A.5

<packet echo> a string of all bytes in an incomplete or invalid

 packet

<timerHi> high byte of 16 bit current system timer tick count

 used in Trace message;

 each tick is 25 ms long, but this count is not

 synchronized in any way with true clock time;

<timerLo> low byte of 16 bit current system timer tick count;

 see <timerHi>

APPENDIX B CURRENT AND TIME FORMATS

B.1 ELECTRODE CURRENT

Electrode currents are represented by single byte values. Value 00

represents the maximum negative current (-2.56 mA nominal). Value hex

ff represents the maximum positive current (+2.54 mA nominal). Value

80 hex represents nominal 0 current. Each unit change in byte value

represents a current change of 0.02 mA. The relation between byte

value and current is:

 current[mA] = (byte * 0.02) - 2.56

 byte = (current[mA] + 2.56) / 0.02

Note that here all values are in base 10.

B.2 TIME INTERVALS

Time intervals, <dtimerHi>, <dtimerLo>, used in ScrDelay script

instructions are represented by 2-byte values giving a count from

0..65536. Each unit of this count represents 25 ms.

For example, 1 second is represented by decimal 40 or hex 28. To

account for the single timer tick instruction execution time (see

section 7.4), this should be decreased by 1, so that the correct value

to enter into the script instruction for a 1 second delay would be hex

27. This would mean that <dtimerHi> = 00, <dtimerLo> = 27 hex should

be used in the ScrDelay instruction.

As a second example, a longer time interval of 1 minute or 60 seconds

corresponds to 2400 timer ticks (40 per second). Again subtracting

one and converting to hex, the value needed in the instruction is hex

95f. This would mean <dtimerHi> = 09, <dtimerLo> = 5f hex.

1
i

