
120$'
6&287
86(5n6

0$18$/

July 12, 1999
Software Version: 2.7

Part Number: DOC00004

Nomadic Technologies, Inc.
2133 Leghorn Street

Mountain View, CA 94043
TEL 650.988.7200
FAX 650.988.7201

Email: nomad@robots.com



�

:+(5(�&$1�,�*(7�+(/3"�

1. By email: send a description of your problem, 
if possible with the source code of your pro-
gram, to nomad@robots.com.

2. By phone: call +1.650.988.7200 and ask for 
Technical Support.

:+(5(�&$1�,�*(7�62)7:$5("�

For the convenience of timely software distribu-
tion, Nomadic has set up an FTP site for this and 
future Nomadic software releases. From this FTP, 
you can down load the most up-to-date software 
distributed by Nomadic.

In addition, we have setup a directory for you to 
up-load software that you want to share with other 
Nomad users.

To down load (or up-load) software from this FTP 
site, you can simply FTP to ftp.robots.com

Name: robots                Password: N0mad1C

Note the 0 (zero) and 1 (one) in Nomadic.

Once you have logged in, cd to the "pub/files" 
directory. Within this directory, there is a 
NOMAD-README file and an AGREEMENT file. 
Please read these two files carefully. In addition, 
there are seven subdirectories. The NOMAD-
README file provides descriptions of the subdi-
rectories (what they contain) and instructions on 
how to obtain and to extract the software in these 
sub-directories.

If you have any questions regarding how to obtain 
the software or how to run the software, please 
email them to: software@robots.com.

To order additional copies of this manual or other 
manuals, please call +1.650.988.7200 and ask for 
the Sales Department.

',6&/$,0(5�$1'�:$55$17<
,1)250$7,21

Thank you for purchasing a Nomadic Technolo-
gies product. The Nomad and Sensus products 
are warranted to the original purchaser, to be 
free from defects in materials and workmanship 
for a period of one year from the shipping date. 
During this period Nomadic Technologies, Inc. 
will repair or replace, at our discretion, any 
defective components.

This warranty does not apply to any Nomad or 
Sensus products which have been damaged by 
accident, abuse, negligence, improper use, power 
surges, acts of God or have been repaired, altered, 
or modified in any way by anyone other than 
Nomadic Technologies. This warranty does not 
apply to the batteries or antennae.

Nomadic Technologies, Inc. expressly disclaims 
and excludes all other warranties, express, 
implied, and statutory, including without limita-
tion, the warranty of merchantability and fitness 
for a particular purpose.

Nomadic Technologies, Inc. expressly disclaims 
and excludes all liability for incidental and conse-
quential damages, including lost profits or savings, 
and the cost of recovering or reprogramming lost 
data. The Customers maximum entitlement shall 
in no event exceed the cash value of the covered 
item(s) at the time of the item(s) breakdown.

If you have any questions or problems with your 
Nomad or Sensus products contact Nomadic 
Technologies Customer Service at +1.650.988.7200 
for instructions.

In the event that service is required, after notifying 
Nomadic Technologies and receiving a RMA, ship 
your product, together with all accessories, in its 
original packaging, fully prepaid and insured, to 
Nomadic Technologies, Inc. Nomadic Technolo-
gies, Inc. is not responsible for any damages 
incurred during shipping. We will notify you of 
repair costs, if they are not covered by the war-
ranty, before undertaking them and will notify you 
before return shipping your product. The customer 
is responsible for all shipping and shipping insur-
ance costs.

©1994-1999 by Nomadic Technologies, Inc.



�

&219(17,216

Here are the typographical conventions used in this 
manual: 

1 Typewriter characters denote user input at a ter-
minal, as well as code examples, as in:

machine:~/Nomad200/host$ Nserver 

my.world.setup my.robot.setup

2 ã  is a remark, note, or tip, as in:

ã You can have up to 6 robots controlled
simultaneously from the same GUI.

3 P denotes trouble shooting information, as in:

P The robot does not move.

n Is the emergency stop released?
n Are the batteries in place?

4 MWARNING! signals an important point,
as in:

M WARNING! 
Running the robot with batteries under 11V of 
charge may damage the CPU



�

&217(176�

Where can I get help? 2
Where can I get software? 2
Disclaimer and Warranty Information 2
Conventions 3
Contents 4
Introduction 6
The Scout and Super Scout 7

Overview7
Reuse of the API7

Hardware 7
Power buttons 7
"Host" Serial Port 7
"Joystick" Port 7
"Console" Port 7
VGA Port 7
Keyboard Port 7
Radio Modem Power 7
AC Receptacle 7
Status LEDs 8
Getting Started 9
Quick Start 9
Installing the batteries 9
Starting the robot 9
Moving the robot around using the joystick 9
Running the Sonar Bounce Demo 10
3.1.5 Configuring the Network 10
Regular Scouts with a Mercury Radio Modem 10
Super Scouts without a Mercury Radio Modem 10
Super Scouts with a Mercury Radio Modem 10
Configuring the Mercury for Passthrough mode 10
Configuring the domain of your Mercury 11
Configuring the on-board computer 12
Starting a Server 13
Connecting to the Robot 14
Moving the robot 14
Shutdown 16
DIP Switch Settings 17
Battery Maintenance Guidelines 19
Power System 19
On-board Battery Charging and AC Power 19
Battery Monitoring 19
Configurable Auxiliary Power 19
The Status Beeper 19
Usage 19
Storage 20
Battery Lifetime 20
Summary 20
Where to go next? 20
The Graphic Interface 22
Introduction 22
The simulator 23
Running the Nserver with arguments 23
The Map Window 24
The File Menu 24
The Edit Menu 24



�

The Obstacles Menu 24
The View Menu 25
The Show Menu 25
The Control Menu 25
The Robot Window 26
The Robot Menu 26
The View Menu 27
The Show Menu 27
The Refresh Menu 27
The Panels Menu 28
The ShortSensors Window 30
The Options Menu 30
The LongSensors Window 30
The Options Menu 30
Programming the Nomad 32
Programming Concepts 32
Programming Modes 32

Which of these two modes should I use? 32
How can I switch between these modes? 32
Are the modes compatible? 32
How can I specify to which robot/server I want to connect? 33
Simulated vs. Real Robot 33
C and C++ 33

The Global Vectors 33
The State Vector 33

Commands 35
Communication Commands 36
Motion Commands 37
Sensing Commands 38
Server Commands 38

Some Examples 39
Advanced Features 47
Using the Sensors 47
The Sonar Sensors 47
Sensor Description 47
Sensor Physics 47
Electronics characteristics 48
Target characteristics 48
Typical Sonar Data 48
The Setup Files 50
The world.setup file 50
The robot.setup file 51
Using LILO, the LInux LOader 54
Vision Reference 55
Sensus 460 55
BUG REPORT FORM 56
Information About Yourself 56
Information About Your
Environment 56
Description Of Your Problem 56
Additional Information 56
Application Note 57
Setup and Configuration of Scout Communications Using a Pair of Mercury Radio Modems 57
I. Intended Audience 57
II. Recommended Reading 57
III. Connecting to the motor



�

controller 57
IV. Configuring Nserver 58
V. Configuring the Mercury radio 

modems 58

List of Figures

3.1 The Joystick : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 
3.2 The entire graphic interface : : : : : : : : : : : : : : : : : : : : : 11 
3.3 The Command Line panel : : : : : : : : : : : : : : : : : : : : : : 13 
3.4 The soft joystick : : : : : : : : : : : : : : : : : : : : : : : : : : : 14 
3.5 Combined motions : : : : : : : : : : : : : : : : : : : : : : : : : : 14 
3.6 Surroundings of the robots as shown by traces : : : : : : : : : : : 16 
3.7 Programming in Direct and Client mode : : : : : : : : : : : : : : 19

4.1 The graphic interface in the programming environment : : : : : : 27 
4.2 The Four Main Windows : : : : : : : : : : : : : : : : : : : : : : 28 
4.3 The Map Window : : : : : : : : : : : : : : : : : : : : : : : : : : 31 
4.4 The Robot Window : : : : : : : : : : : : : : : : : : : : : : : : : 35 
4.5 Place robot : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37 
4.6 The Recorder Panel : : : : : : : : : : : : : : : : : : : : : : : : : 40 
4.7 The Command Line Panel : : : : : : : : : : : : : : : : : : : : : : 41 
4.8 Entering parameters in the command center : : : : : : : : : : : : 41 
4.9 The soft joystick : : : : : : : : : : : : : : : : : : : : : : : : : : : 42 
4.10 Combined motions : : : : : : : : : : : : : : : : : : : : : : : : : : 42 
4.11 The ShortSensors Window : : : : : : : : : : : : : : : : : : : : : : 43 
4.12 The LongSensors Window : : : : : : : : : : : : : : : : : : : : : : 44

5.1 Programming in Direct and Client mode : : : : : : : : : : : : : : 48 
5.2 The arrangement of the bumper sensors. : : : : : : : : : : : : : : 50 
5.3 Status value bitmap
5.4 The first example. : : : : : : : : : : : : : : : : : : : : : : : : : : 62 
5.5 The second version of the first example : : : : : : : : : : : : : : : 64

6.1 Modelized sound radiation for the Polaroid Transducer (from Leonard) : : : : : : : : : : : 
: : : : : : : : : : : : : : : : : : : : : 74 
6.2 Sonar Scan on a flat and smooth surface : : : : : : : : : : : : : : 77
6.3 Sonar scan on a flat and rough surface : : : : : : : : : : : : : : : 78 
6.4 Sonar scan on a corner : : : : : : : : : : : : : : : : : : : : : : : : 79 



�

&+$37(5��

,1752'8&7,21�

This User’s manual describes the use of the Nomad 
mobile robot. It contains:

■ Some quick notes explaining the difference 
between the Scout and Super Scout, as well as 
the difference between the Scouts and earlier 
Nomad robots

■ A tutorial introduction to the robot use, 
including start-up procedures, the graphic 
interface and simulator, elementary program-
ming and trouble shooting

■ A detailed description of the graphic interface 
and the associated robot simulator

■ An introduction to the programming language. 

■ A description of the robot advanced features: 
sensors usage, configuration files

■ A reference section for the optional vision 
system 

In addition to this "User’s Manual", the "Language 
Reference Manual" contains a detailed description 
of each robot command.



�

&+$37(5��

7+(�6&287�$1'�683(5�6&287

2YHUYLHZ

The Nomad Scout is an integrated mobile robot 
system with ultrasonic, tactile and odometry sens-
ing.  It uses a special multiprocessor low-level con-
trol system that controls the sensing, motion, and 
communitations.  At a high level, the Scout is con-
trolled either by a laptop mounted on top or a 
remote workstation communicating view radio 
modem. Alternatively, the Super Scout is con-
trolled via an on-board PC computer.  Currently, 
the host computer software must run under Linux.  
The Scout is code compatible with the Nomad 200 
class robots.

5HXVH�RI�WKH�$3,

In order to maintain the Application-Programmer 
Interface (API) between the Nomad Scout and the 
Nomad 200, some functions have extra unused 
parameters.  This is because the Scout has one 
fewer degree of freedom in its motion system than 
the Nomad 200.  The N200 used a synchro-drive 
system, with one axis for translation, one axis for 
steering, and one axis for a turret containing the 
sonar sensors as well as other sensor packages.  
The Scout employs a differential drive system, in 
which the user controls the right and left wheels 
independantly.  The extra unused parameters in 
the motion functions (ac,mv,pr,sp,vm) should 
be passed as zero.

+DUGZDUH

Located on the top and the front of the Scout are 
the following.

3RZHU�EXWWRQV

Pressing the gray button with either batteries con-
nection and/or AC power turns the Scout on. 
Pressing the red button will turn the Scout off.

For Super Scout owners, it is important to do a 
"clean shutdown" before turning the robot off to 
ensure file-system integrity.  So please make sure 
that your computer is in power-down safe read-
only mode before powering the robot off. See Chap-
ter 3, Shutdown 

�+RVW��6HULDO�3RUW

Control of the Scout is accomplished through this 
serial port, which defaults to 38400 baud, 8 data 
bits, 1 stop bit, DCE. Your host computer (e.g. lap-
top, radio modem) running client control software 
connects to this port.

For Super Scout owners, this port is disabled.  
Instead, control is accomplished through a TCP/IP 
connection from Nserver.  See "Chapter 3, Connect-
ing to the Robot".

�-R\VWLFN��3RUW

This allows user control of the Scout. Simply hold 
down one of the buttons and move the joystick 
up/down for forward/reverse and left/right for 
left turn/right turn motion.

�&RQVROH��3RUW

This port offers a text-based interface to the Scout’s 
command set (listed in the Language Reference 
Manual).  It powers up at 9600 baud, 8 data bits, 1 
stop bit, DCE. Use of this port is self-explanatory 
by typing "help" at the "Robot->" prompt.

For Super Scout owners, the console port function-
ality may also be accomplished by using telnet to 
connect to port 65000.

9*$�3RUW

Found on Super Scouts only, this port is an access 
to the on-board PC computer’s VGA port.

.H\ERDUG�3RUW

Found on Super Scouts only, this port is an access 
to the on-board PC computer’s keyboard port.

5DGLR�0RGHP�3RZHU

If applicable, this is a 9V power cable for plugging 
into the radio modem power jack. Power to this 
cable is switched off with the main power switch.

$&�5HFHSWDFOH

This is located on the front panel of the Scout and 
is used to supply AC power to the Scout for simul-
taneous AC power and battery charging. This 
Scout’s batteries charge only when the Scout is in 
the on state.



�

6WDWXV�/('V

These consist of three LEDs located on the front of 
the Scout. The green LED indicates power; the yel-
low LED indicates that the batteries are charging; 
the red LED indicates that the battery is low.



��
&+$37(5���

*(77,1*�67$57('�

This chapter is a general introduction to the basic 
operation of the Nomad Scout. You will:

■ Install batteries in the robot 

■ Boot up the robot 

■ Joystick the robot around 

■ Configuring the Radio Ethernet 

■ Start a server 

■ Connect to the robot 

■ Move the robot from the server 

This Quick Start section is followed by an intro-
duction to programming, and instructions on 
proper battery management.

4XLFN�6WDUW�

,QVWDOOLQJ�WKH�EDWWHULHV�

The Nomad is powered by a set of batteries that 
together provide 432 watthours of usage. The set 
consists of a pair of 12V-18AH batteries. The bat-
teries are accessible by unhitching the two latches 
on door on the back of the robot below the 
bumper.

■ If the joystick is plugged in, remove it before 
accessing the batteries.

6WDUWLQJ�WKH�URERW

■ Turn the robot on by pressing the grey button 
on the front panel.

Robots have an alarm that will beep when the 
onboard power gets too low. In that case, you 
should stop using the robot and recharge the bat-
teries. See "Chapter 3 - Battery Maintenance Guide-
lines" for indications on how to recharge the 
batteries.

The robot will accept joystick commands immedi-
ately after you turn it on. However, you cannot 
connect to a Super Scout via software until the 
internal PC finishes booting. When the Super Scout 
is ready for communication, it will beep. Linux 
takes about three minutes to boot.

■ The robot is now operational and can be 
moved using the joystick.

M WARNING! Do not boot close to a wall! After 
booting, the robot will test motor response by 
sending extremely small motion commands 
(so small that the robot won’t noticeably 
move). However, if the encoders have been 
accidentally disconnected, the robot will move 
a few inches, with the possibility of hitting 
something. In this case, contact Nomadic Tech-
nologies, Inc. for assistance.

0RYLQJ�WKH�URERW�DURXQG�XVLQJ�WKH�MR\VWLFN

)LJXUH������-R\VWLFN

The robot comes with a two-axis joystick depicted 
in Figure 3.1. It should be plugged into the 15-pin 
connector on the top of the robot. The joystick is to 
be used in conjunction with either of the two 
motion buttons in the top left corner. Always push 
the motion buttons BEFORE moving the joystick.

■ While holding either button down:

Pushing the joystick forward (backward) will 
move the robot forward (backward). The fur-
ther you push, the faster the robot will go. 

Pushing the joystick left (right) will rotate the 
robot to the left (to the right). The further you 
push, the faster the robot will turn.

Pushing the joystick in a composite direction 
will both translate and rotate, resulting in a 
somewhat circular motion.

Translation/Steering

Translation/Turret Tuning indicator

Zero tuning

Spring switch

Joystick



��
PContrary to popular belief, the bumpers are 

NOT wired to the motors: the robot will keep 
moving even if the bumpers are hit. However, 
when running the robot from a program, you 
can monitor the state of the bumpers and stop 
the robot if they are hit.

The spring switches (see Figure 3.1) cause the joy-
stick to go back to the zero (middle) position when 
released. If they are not engaged, the joystick will 
be free when released, sending motion commands 
to the robot. Since this may cause unwanted 
motions, it is highly recommended to always have 
the spring switches engaged on both axes.

The zero tuning is used to adjust the joystick. If the 
robot is still moving with the joystick in the zero 
position, turn the small knob until the robot is 
immobilized. The tuning indicator gives the direc-
tion of the adjustment.

M WARNING! The robot doesn’t move when 
you joystick it.

■ Are the batteries present, connected, and 
charged (10.8 V minimum)?

■ Is the joystick connected? 

■ Is the Emergency Stop button released (if 
installed)?

5XQQLQJ�WKH�6RQDU�%RXQFH�'HPR

This section is only applicable to Super Scouts. 
Basic scouts can also run the sonar bounce demo, 
but they must first be set up (see below).

Hook a VGA monitor and keyboard to the VGA and 
keyboard ports on the top plate of your Super Scout. 
Turn the Super Scout on and wait for the computer 
to finish booting. Log on as "root" and change 
directories into /usr/local/Nscout/client 
and run "./sbdirect". The Scout should then 
start to move around and avoid obstacles.

������&RQILJXULQJ�WKH�1HWZRUN

This section describes how to configure the net-
working devices on your Scout or Super Scout. 
Refer to the section that describes your robot.

5HJXODU�6FRXWV�ZLWK�D�0HUFXU\�5DGLR�
0RGHP

In regular Scouts, the Mercury modem listens on 

the radio Ethernet for client program socket com-
munication and forward this data to it’s serial port 
which is connected to the serial port of the motor 
controller board. For the socket communication to 
be established, the Mercury must be configured 
with an IP address. To do so, you remove the cover 
of the robot, attach a serial cable, and configure it 
for Passthrough mode using the provided serial 
cable and standard terminal emulation software 
running on a desktop computer. Please refer to 
"Configuring the Mercury for Passthrough mode" 
below for instructions.

6XSHU�6FRXWV�ZLWKRXW�D�0HUFXU\�5DGLR�
0RGHP

Super Scouts with no radio modem have an ether-
net cable running from the internal PC to an exter-
nal 10BASE -T jack which will accept any standard 
ethernet cable. One can create a simple network by 
connecting the ethernet device of an external com-
puter such as a laptop to this jack. Then the on-
board computer can be configured as a node on 
that network as described in "Configuring the on-
board computer" below.

6XSHU�6FRXWV�ZLWK�D�0HUFXU\�5DGLR�0RGHP

If you purchased a Super Scout with an internal 
radio modem, your Mercury is by default config-
ured to act as a network bridge from the internal 
PC’s ethernet to the wireless access point on your 
network backbone. As such, the Mercury will need 
no configuration unless you have configured your 
Access Point to a different domain than the default 
one (if this is the case, please refer to "Configuring 
the domain of your Mercury" below.

&RQILJXULQJ�WKH�0HUFXU\�IRU�3DVVWKURXJK�
PRGH

In order to bring up the configuration menu of the 
Mercury, you must first access its serial port. To do 
so, remove the top place of the scout by undoing 
the screws around its perimeter. The Mercury is 
mounted on the bottom-side of the top plate. On 
the Mercury you will see a DB9 serial connector. 
Once the serial port is located, you can plug in the 
black serial cable provided with the Mercury and 
bring up the configuration menu using a desktop 
computer and standard terminal emulation soft-
ware as described in: "Chapter 6 - Configuration,  
Mercury User’s Guide". Make sure you understand 



��
all of Chapter 6 before continuing. Note that you 
can provide power to the Mercury either by turn-
ing the Scout on, or by removing the power jack 
from the radio modem and replacing it with the 
power jack from the AC adapter provided with the 
robot.

Once you have the main menu up, the following 
changes must be made from the default configura-
tion (if you think that for any reason your unit has 
been changed from the default, select "Reset con-
figuration to "default" from the main menu): Lines 
in the configuration files can be sections, denoted 
by the brackets which enclose them (For example, 
the [hardware] section) and key/value pairs, 
separated by an equals sign. In the configuration 
changes below, we list the key/value pairs which 
must be edited under the section to which they 
belong. If there is a key/value pair in the default 
configuration that is not mentioned below, it 
should be left as found and not edited; we only list 
below those key/value pairs which must be 
changed.

First the following changes must be made to the 
uart0 file:

[hardware]

baud = 38400

[software]

input timeout = 40

delimiters = 0x5c

[passthrough]

socket = tcpbind2

To configure the lan0 file, you must have the fol-
lowing information which you can obtain from 
your network administrator:

■ The wireless network domain number used by 
the Proxim access point(s) you will be connect-
ing to. The default domain as shipped by 
Nomadic is one. This number is referred to 
below as <YOUR DOMAIN>.

■ The robot’s IP address referred to below as
<YOUR IP>.

■ The subnetwork mask referred to as
<YOUR NETMASK>.

■ Your gateway address if you have one, 
referred to as <YOUR GATEWAY>.

From these parameters, you should be able to 
determine (if not already provided) your network’s 
broadcast address. This is a four-octet IP address, 
obtained by replacing every ’1’ bit in the subnet-
work mask with the corresponding bit from your 
robot’s IP address, and replacing every ’0’ bit in the 
subnetwork mask with a ’1’ bit. Consult your net-
work administrator if you need help finding this 
value. We will refer to this value below as <YOUR 
BROADCAST>.

With this information, the following changes 
should be made to the lan0 file:

[hardware]

domain = <YOUR DOMAIN>

[ip]

ip address = <YOUR IP>

netmask = <YOUR NETMASK>

broadcast = <YOUR BROADCAST>

[ip_route1]

destination = <YOUR IP>

genmask = <YOUR NETMASK>

If you have a gateway, you should also make these 
changes:

[ip]

#route = ip_route1

route = ip_route1 ip_route2

[ip_route2]

gateway = <YOUR GAMEWAY>

That’s it. Exit the editor and reset the Mercury by 
selecting "Reset the Mercury-EN" from the main 
menu. Once reset, you should see the station LED 
come on, indicating that the unit has attached to its 
access point. Now try to ping the IP address you 
assigned to the unit from a desktop computer. If 
you have trouble, please refer to your "User’s Man-
ual" or contact Nomadic Technologies technical 
support. When everything is configured properly, 
remove power from the system and replace the top 
plate of the robot.

&RQILJXULQJ�WKH�GRPDLQ�RI�\RXU�0HUFXU\

If your Scout robot will be communicating via 
wireless with a Proxim Access Point which has a 
different wireless domain number than the default 
of one, you will need to configure the Mercury to 
communicate on that domain as well. To gain 



��
access to the configuration, please read the rele-
vant parts of the section: "Configuring the Mercury 
for Passthrough Mode" above.This describes how to 
remove the top plate of your robot and bring up 
the serial configuration menu using standard desk-
top computer terminal emulation software. Once 
you are at the main menu, the key/value pair 
which you must change can be found in the lan0 
file. Select that file and make the following change:

[hardware]

domain = <YOUR DOMAIN>

Once it is done, you can power cycle the Mercury 
and you should see the Station LED come on after 
two to four seconds, indicating that the Mercury 
has associated with its access point. If you have 
trouble, please refer to your "Mercury User’s Guide" 
or contact Nomadic Technical Support. Once 
everything is configured properly, replace the top 
plate of the robot.

&RQILJXULQJ�WKH�RQ�ERDUG�FRPSXWHU

The following applies only to Super Scouts.

The on-board computer on your Super Scout robot 
runs the RedHat 6.0 Linux operating system, 
which stores its network configuration in the /
etc/sysconfig/directory. You must boot up 
in read/write mode and log in as the superuser 
(root) in order to change the configuration. Before 
you begin, you must have the following informa-
tion, which you can obtain from your network 
administrator:

■ The robot’s hostname referred to below as
<YOUR HOSTNAME>

■ The domain referred to below as <YOUR 
DOMAIN>, which together with the hostname 
make up a full Internet name

■ The robot’s IP address referred to below as 
<YOUR IP>

■ The subnetwork mask referred to as
<YOUR NETMASK>

■ Your gateway address if you have one, 
referred to as <YOUR GATEWAY>

From these parameters, you should be able to 
determine (if not already provided), the following 
values:

Your subnetwork’s broadcast address

This is a four-octet IP address, obtained by replac-
ing every ’1’ bit in the subnetwork mask with the 
corresponding bit from your robot’s IP address, 
and replacing every ’0’ bit in the subnetwork mask 
with a ’1’ bit. For example, if your IP address is 
205.162.4.162 and your subnetwork mask is 
255.255.255.0, your broadcast address would 
be 205.162.4.255. Consult your network 
administrator if you need help finding this value. 
We will refer to this value below as <YOUR 
BROADCAST>.

Your subnetwork’s network address
This is a four-octet IP address, obtained by replac-
ing every ’1’ bit in the subnetwork mask with the 
corresponding bit from your robot’s IP address, 
and copying every ’0’ bit in the subnetwork mask 
to the network address directly. For example, if 
your IP address is 205.162.4.162 and your sub-
network mask is 255.255.255.0, then your net-
work address would be 205.162.4.0. Consult 
your network administrator if you need help find-
ing this value. We will refer to this value below as 
<YOUR NETWORK>.

To change your Super Scout’s network parameters:

■ Plug in a keyboard and monitor into the 
Nomad SuperScout’s top panel. 

■ Turn on the robot. After the initial BIOS 
screens go by, you will be left at the prompt 
LILO boot:. Within five seconds, type linux-
rw and press Enter.

■ After the boot sequence completes, you will 
see a new.robots.com login: prompt. Log into 
the robot’s console as root. By default, there is 
no password.

■ Change to the directory /etc/sysconfig/
network-scripts. 

■ Using an editor such as vi or emacs, load the 
file ifcfg-eth0. If you are unfamiliar with 
UNIX-style editors, contact your network 
administrator for help.

Inside this file, you should see the following text: 

DEVICE=eth0 

ONBOOT=yes 

IPADDR=<YOUR IP>

NETMASK=<YOUR NETMASK>

BROADCAST=<YOUR BROADCAST>



��
NETWORK=<YOUR NETWORK>

■ Change to the /etc/sysconfig directory. 

■ Edit the file "network". 

■ The file should be modified to look like the fol-
lowing:

NETWORKING=yes

FORWARD_IPV4=false

HOSTNAME=<YOUR HOSTNAME>.<YOUR 

DOMAIN>

GATEWAY=<YOUR GATEWAY>

GATEWAYDEV=eth0

■ Change to the /etc directory. 

■ Edit the file "hosts". You should modify as 
follows:

127.0.0.1 localhost 

<YOUR IP> <YOUR HOSTNAME>.
<YOUR DOMAIN> <YOUR HOSTNAME>

■ Once you have edited these files, you will 
need to reboot your computer for the changes 
to take effect. Then, you should be able to ping 

the IP address which you assigned to the robot 
from another computer on the network.

6WDUWLQJ�D�6HUYHU�

The Server is a convenient way to send commands 
to the robot and to receive sensing data from the 
robot. It provides an elaborate graphic interface 
and simulation capabilities. You run the server as a 
separate process on a workstation. The server pro-
cess communicates with the robot process through 
radio ethernet, using the TCP/IP protocol. To start 
a server on your workstation:

■ Make sure that you have, in the same direc-
tory, the Nserver executable, and the two 
configuration files world.setup, 
robot.setup.

■ Type the command:

/Nserver

The graphic interface should appear as shown in 
Figure 3.2. The xterm that you used to run 
Nserver will be used to display messages; it will 
be referred to as "the xterm" in the sequel. You 
should now see the following in the xterm:

)LJXUH������7KH�(QWLUH�*UDSKLF�LQWHUIDFH�

================================================================ 
Nomadic Host Software Development Environment (Version 2.6.2) 
Last revision date: 12-Aug-1995 
Copyright 1992,93,94,95, Nomadic Technologies, Inc. 
================================================================ 

Using server tcp port #7019.



��
O The command doesn’t work. Possible causes:

■ Nserver has not been compiled for your 
machine.

Check how to get the proper executable in the 
section "Where can I get help?" at the begin-
ning of this manual. We currently support:

-  Silicon Graphics: MIPS/IRIX5.3 

-  SUN: SPARC/SUNOS4.1, SOLARIS2.3 

-  Linux 2.0, 2.2 systems/X11R6

■ You are not allowed to display on this 
machine. 

Check your DISPLAY environment variable, 
and xhost if necessary

■ Some configuration files are damaged or miss-
ing.

Restore the original files from the distribution, 
or edit the files (refer to Chapter 6 - The Setup 
Files section ).

&RQQHFWLQJ�WR�WKH�5RERW�

For safety reasons, the server is by default config-
ured in simulation, which means that actions do 
not have physical consequences. You are now 
going to connect to the real robot.

■ Make sure that the robot is ON. 

■ Select the ROBOT item in the robot window 
(entitled Robot:Nomad(1)) by clicking with the 
left button.

■ Select REAL ROBOT and release the left but-
ton: the communication starts

The REAL ROBOT menu item turns into SIMU-
LATED ROBOT: if you select it, the connection to 
the real robot will be closed, and your actions will 
be directed to the simulation again. When con-
nected, you can check the information bar of the 
robot window, which should show the actual posi-
tion grayed out (the actual position is a simulation 
concept; see "Chapter 4 - The Graphic Interface. The 
xterm should look like the following:

Robot <-> Host TCP/IP communication 

setup (machine nomad on port 4000)

O The server doesn’t connect to the robot.
Possible causes:

■ The robot is OFF. 

■ The machine name in robot.setup does not 
match the robot name. Edit the file 
robot.setup, paragraph [connect], item 
machine, and type the correct name.

■ The robot is too far away. The range limit 
within one single bridge is about 50 meters 
(150 feet) under normal conditions.

0RYLQJ�WKH�URERW�

You are now going to initialize the robot, and to 
move it around using the soft joystick. Initializa-
tion, or "zeroing", resets the encoders to the "zero" 
position.

)LJXUH������7KH�&RPPDQG�/LQH�3DQHO

■ Select the PANELS item in the robot window, 
and choose COMMAND LINE. The window 
of Figure 3.3 will appear.

■ Select the zr (zeroing) button: zr appears in 
the command line. 

■ Click on Execute to start zeroing. 

■ Select COMMAND LINE again from PANELS 
to close the window. 

O The robot doesn’t initialize. Check the
following:

■ Check if the robot is ON. 

■ The Emergency stop button is released. 



��
■ The Server is connected to the robot (see previ-
ous section).

)LJXUH������7KH�6RIW�-R\VWLFN�)LJXUH�����������

)LJXUH������&RPELQHG�0RWLRQV

After zeroing, you could move the robot by send-
ing motion commands with the command line 
panel. However, it is usually easier to use the soft 
joystick:

■ Select the PANELS item in the robot window, 
and choose JOYSTICK.  The window of Figure 
3.4 will appear. The crosshairs represents the 
two degrees of freedom of the physical joy-
stick. The central dot is the joystick: the robot 
moves according to its position.

■ Make sure that the robot is free to move and 
that no equipment (keyboard, monitor,...) is 
connected to it.

■ With any mouse button, click and drag the
dot to the middle of the top vertical line: the 
robot will move forward. Release the left but-
ton to stop.

■ Click and drag the dot to the middle of the left 
horizontal line: the robot will steer. Release the 

left button to stop.

■ The further you move the dot from the center 
of the crosshairs, the faster will the robot go.

■ As with the physical joystick, combined 
motions are possible, as illustrated in Figure 3.5.

■ To get an idea of the robot motions, you can 
select SHOW in the robot window. Select then 
ROBOT TRACE, and choose SOLID. Move the 
robot: the path is shown. Select NONE to 
remove it.

ã A common mistake is to give an absolute 
meaning to the soft joystick directions, like 
"North", "East", etc. The motions are always 
relative to the current orientation of the 
wheels. Moving the dot to the top will move 
forward, which may be "South" if the robot is 
so oriented.

The dedicated Short Sensor and Long Sensor win-
dows display robot-centered sensor information. 
This is an instantaneous information. It is also pos-
sible to accumulate these data on the screen and to 
get a sensory image of the environment. This 
allows you to navigate from your workstation.

■ Before you can see sonar data, you must turn 
on the sonar.  This can be done from PAN-
ELS/COMMAND LINE by clicking the 
conf_sn button.  Fill in the values with A:8, 
0:0, 1:1, 2:2, ... 15:15.  The meaning of these 
parameters will be explained later.  Once you 
fill in all the fields, click the Execute button.  

■ In the robot window, select SHOW, and 
choose SONARS; dots representing sonar 
readings appear (default color is blue) in the 
robot window, around the robot



��
.

)LJXUH������6XUURXQGLQJV�RI�WKH�URERWV�DV

VKRZQ�E\�WUDFHV�

■ Using the soft joystick, rotate the robot by 
moving the dot on the horizontal axis, left or 
right: sensing data will be accumulated, and 
the surroundings of the room the robot is in 
will start to appear as in Figure 3.6.

■ To stop the accumulating of the data, select 
SHOW and SONARS, INFRARED again. To 
erase the accumulated sensory data, select 
REFRESH in the robot window, and choose 
ALL SENSOR HISTORY.

O Nothing appears, or strange data; check
the following:

■ Is the sonar ON? These sensors must be started 
by sending a conf_sn using the Command 
Center. See "Chapter 4 - The Graphic Interface" 
for a description of how to fill in the fields, as 
well the "Language Reference Manual" for a 
description of the meaning of the fields.

■ Is anything in the way of the sensors?

■ Sonars won’t see smooth objects unless they 
are presenting a surface normal to the direc-
tion of the sound.

■ Dots aligned along circles at some distance of 
the robot are NORMAL; when a sensor doesn’t 
see anything, it returns a constant maximum 
distance value, whose accumulation produce 
circles.

■ Sensor data is not displayed when the position 
of the robot is not available. If a program has 
set the sensor mask so as to exclude position, 
sensor readings are not printed.

You have successfully completed this Quick Start 
section. Your robot is now fully operational and 
ready to use. Subsequent sections will introduce 
programming and proper battery care. Follow the 
instructions of the next section to shutdown your 
robot.

6KXWGRZQ�

This section is applicable only to Super Scouts. 
Basic Scout owners need not worry about shutting 
down their robot, and can simply turn it off. Since 
the Super Scout’s computer system is a complete 
Unix operating system, it must be powered down 
cleanly, otherwise damage can result to the file-
system. The Super Scout is configured at the fac-
tory to boot up in "read-only" mode, which means 
that the file-system is mounted such that it can 
only be read. This allows the Super Scout to power 
down without first unmounting the file-systems. 
That is, it can be simply turned off.

Typically, however, users want to install, copy or 
develop software on the computer system, which 
requires write access, or "read/write" mode. After 
the Super Scout has booted into read-only mode, 
read/write mode can be entered by simply typing 
"exit" at the shell prompt. After various opera-
tions finish, you will get a login prompt. Log on as 
"root" and you will have full file privileges. 
Returning to read-only mode can be accomplished 
by typing "init 1" at the shell prompt. Of course, 
once the computer has re-entered read-only mode, 
the robot can be safely shut off. Or alternatively 
while in read/write mode, you can run /sbin/
shutdown,/sbin/reboot, or type ctrl-alt 
delete on a keyboard plugged into the computer 
to do a clean shutdown. After the shutdown is com-
plete, the robot can be safely shut off.

In summary:



��
■ If the computer is in read-only mode (default 
upon boot up), the robot can be safely pow-
ered down at any time.

■ If the computer is in read/write mode, it can 
be put back in read-only mode by typing 
"init 1" at the shell prompt.

■ Executing /sbin/shutdown or /sbin/
reboot while in read/write mode is another 
way to bring the computer to a safe power 
down state.

When the robot is not in use, it is best to leave it on 
and plugged in, so that the batteries can charge 
(see the section"Power System" in this chapter).

DIP Switches inside the Scout configure the Host 
serial port baud rate. To access these switches, 
remove the top plate of the robot by removing the 
eight screws around the perimeter. The set of four 
switches is located in one of the far faces of the 
controller board inside. The switches are num-
bered 1 through 4 with the following settings:

',3�6ZLWFK�6HWWLQJV

,QWURGXFWLRQ�7R�3URJUDPPLQJ

<figure showing direct and client modes>

)LJXUH������3URJUDPPLQJ�LQ�'LUHFW�DQG�&OLHQW�PRGH�

You are now going to run the robot from a pro-
gram instead of manually sending commands to it. 
There are two ways to run the Nomad robot from a 
program, as illustrated Figure 3.7.

■ Direct mode
Your program communicates directly with the 
robot daemon (the program constantly run-
ning on the robot that accepts commands from 
outside, executes them, and sends data back).

■ Client mode
Your program communicates as a client to the 
server: the server accepts the commands of 
your program (exactly as it accepts your com-
mands from the graphic interface) and trans-
mits them to the robot daemon. The server can 
also transmit your commands to a simulation 

module instead of the real robot.

The client mode is the preferred way of testing and 
debugging a program: you first run your program 
in client mode using the simulator. When your 
program works correctly, you run it still in client 
mode, but using the real robot. You do not have to 
modify anything in your program: a simple switch 
in the server redirects your commands from the 
simulator to the real robot.

The direct mode is used when your program is 
completely correct, to minimize the communica-
tion overhead.

We are going to test the following simple C program:

#include "Nclient.h"

void main()

� � � � %DXG�5DWH

�RQ RQ RQ RQ ����

�RII RQ RQ RQ �����

�RQ RII RQ RQ
������

�GHIDXOW�



��
{

  connect_robot(1); 

  zr(); 

  sp(50,50,0); 

  pr(1000,1000,0); 

  while(State[STATE_CONF_X] < 1000)

    gs(); 

  disconnect_robot(1); 

}

This program: 

■ Connects to the robot 

■ Initializes it using the command zr that you 
already know 

■ Sets the translational speed to 5 inches/s

■ Translates the robot by 100 inches (1000 tenths 
of inches) 

■ Gets the robot state during the motion 

■ Disconnects from the robot 

The include file Nclient.h contains the proto-
types of the robot commands: zr,pr, etc. Let us 
first compile this program:

■ Create a file myprog.c containing the above 
program, and put it in the same directory as 
Nclient.h.

■ Compile it: for instance, 

gcc -o myprog myprog.c Nclient.o

■ Run a server as explained above, but DO NOT 
connect to the real robot.  If a server is already 
running, disconnect from the real robot by tog-
gling REAL ROBOT in the ROBOT item of the 
robot window.

■ From another xterm, run myprog.

The program myprog will connect to the server, 
initialize the simulated robot and move it. You can 
check the motion progress by looking at the 
"Encoder Position" in the information bar of the 
robot window. You can also see which command is 
in progress in "Previous Command".

ã Note that the robot information on the server 
is updated at each gs command. If there were 
no such call in your program, you wouldn’t 

see any motion, because the interface wouldn’t 
be updated. A simple way to update the 
graphic display is to repeatedly send gs() 
from the command line panel.

ã When using pr, you must be aware that if you 
request a long motion (for instance 
pr(10000,1000,0)) without sending fur-
ther commands to the robot, the motion will 
stop before the motion is complete because of 
the time-out mechanism. Once again, sending 
gs() is a good way to keep in touch with the 
robot.

P The simulated robot does not move when

you run the client program.

■ The Server displays the following on the 
xterm:

ERROR: bind call failed in server, 

tcp port #7019 already in use 

You (or someone else) have a process using the 
same port. Most likely it is a Nserver process; you 
can kill it, or you can change the communication 
port by setting the TCP_SERV_PORT variable to 
another value in your program, and accordingly 
the serv port item in the [connect] paragraph of the 
world.setup file.

■ Your program says:

Not connected to any robot 

Your program couldn’t connect to the server: either 
you forgot the connect_robot command, either 
you do not have a Server running, either the com-
munication ports of your server and your program 
do not match.

If your program works correctly in simulation, you 
can now use it with the real robot.

■ Make sure that there is nothing in the way of 
the robot, and that no equipment (keyboard, 
monitor,...) is connected to the robot

■ Select REAL ROBOT in the ROBOT menu.

■ Run myprog.

%DWWHU\�0DLQWHQDQFH�*XLGHOLQHV

3RZHU�6\VWHP

The Scout has two large 12 Volt 17 Ampere-Hour 



��
lead-acid batteries. These batteries are shipped in 
the Scout unplugged. To access the batteries, open 
the battery compartment by undoing the silver 
latches on the right side of the robot. The batteries 
can then be plugged into the connectors found 
between the two battery compartments.

Fully charged, these batteries are capable of sup-
plying power to a Scout and radio modem for up 
to 24 hours of normal operation or 5-8 hours for a 
Super Scout. These batteries can also power an on-
board laptop if desired. The Scout also has 
advanced power and battery management features 
which are listed below.

2Q�ERDUG�%DWWHU\�&KDUJLQJ�DQG�$&�3RZHU

The Scout is equipped with an AC to DC converter 
that is capable of simultaneously charging the bat-
teries and supplying power to the Scout electron-
ics. Simply plug the supplied AC power cord into 
the AC power receptacle on the side of the Scout 
while it is powered on. You will hear a short dou-
ble beep as the Scout acknowledges AC power. 
The Scout’s batteries will be charged and power 
will be supplied through the AC power cord as 
long as it is plugged in. When the Scout’s batteries 
are fully charged, four short beeps can be heard.

%DWWHU\�0RQLWRULQJ

The Scout has three battery states that are periodi-
cally checked to ensure that the on-board batteries 
are not damaged. When the battery monitor senses 
a very low condition, it will automatically turn the 
Scout off. The three battery states can be read 
through the state vector described above in the 
"Power System" section. These states are as follows:

■ Full
Indicates that the batteries are nearly full.

■ Medium
Indicates that the batteries are about half-full.  
A transition from Full to Medium is indicated 
by two long beeps.

■ Low
Indicates that the batteries are very low and 
should be charged soon.  This state is indicated 
by a continuous beep.  The battery monitor 
will only allow the Scout to be in this state for 
60 seconds before it powers the Scout off.

&RQILJXUDEOH�$X[LOLDU\�3RZHU

■ The Scout has a built-in 9V power supply for a 
radio modem.  Additionally, it has provision 
for a factory configured 50 watt supply avail-
able in voltages between 5 and 48V, which is 
intended for supplying laptop power.  The 
Super Scout does not have this option, as the 
auxiliary power supply is used to provide 
power to the on-board PC computer.

7KH�6WDWXV�%HHSHU

The following is a summary of the possible beeper 
sounds and their meanings:

■ Two short beeps of 50ms each
This indicates that the AC power cord has 
been plugged in.

■ Two long beeps of 400ms each
This indicates that the Scout’s batteries are 
about half-full and the battery monitory is in 
the Medium state.

■ Four short beeps of 100ms each
This indicates that the Scout’s batteries are 
now fully charged and the battery monitory is 
in the Full state.  The AC plug can be discon-
nected if desired.

■ Continuous beep
This indicates that the batteries are low and 
the battery monitor will shut the robot down 
in 60 seconds.

8VDJH�

A fully-charged Scout will generally get 24 hours 
or more of battery life. However, a fully-charged 
Super Scout usually lasts only 5-8 hours, depend-
ing on usage. These estimates assume a Nomad 
Scout that has standard equipment installed in it. 
The power system has a low voltage alarm system 
connected to it. Whenever the voltage drops below 
21.6V an alarm will sound. When the alarm is 
heard the robot should be recharged as soon as 
possible. The Scout will shut itself down automati-
cally if it is not plugged in within 60 seconds of the 
low-battery alarm sounding.

6WRUDJH�

When the Nomad is not in use the batteries should 
be disconnected from the robot. This is due to the 



��
fact that a fuse status LED is connected and will 
slowly drain the battery if it is left connected. If the 
batteries will not be used for an extended period of 
time it is best to charge them every 6 months.

%DWWHU\�/LIHWLPH�

When the batteries are maintained according to the 
above specifications they should yield approxi-
mately 200 charge/discharge cycles. When they 
begin to discharge very quickly, or will not hold a 
charge at all it is time to buy a new set. Here are the 
battery specifications for replacing the batteries.

*Power-Sonic has a web site: http:www.power-sonic.com

6XPPDU\

■ Proper maintenance and use of your batteries 
will ensure the proper operation of your 
Nomad, and lengthen the life of your batteries.

■ Low voltage alarms will sound off if the bat-
tery voltage goes too low.  When the alarm 
sounds, the robot should be immediately 
plugged in for recharging.

■ When not in use for an extended period of 
time, the batteries should be disconnected 
from the robot. 

■ If not used for an extended period of time the 
batteries should be charged every 6 months.

■ When used properly the batteries should yield 
approximately 200 charge/discharge cycles.  
Longer battery lifetime is possible if usage is 

light.

:KHUH�WR�JR�QH[W"�

You have completed this introduction to the basic 
operation of the Nomad. You may now:

■ get a more detailed description of the use of 
the graphic interface and the simulator: see 
"Chapter 4 - The Graphic Interface".

■ get an introduction to programming concepts 
and command language features: see "Chapter 
5 - Programming the Nomad"

■ get some information on advanced topics like 
the use of position data, sensors characteris-
tics, setup files, etc: see "Chapter 6 - Advanced 
Features".

BATTERY VOLT
AMP. 

HOUR

INTER.
RESIST

APPROX.
DIMENSION(MM/INCH)

OVR
TER

WEIGHT
KG/LBS

TERM

LEN. WID. HEIGHT

MAIN 12 18 11 181/ 76/  167/ 167/ 6.2/ FASTON

7.13 2.99 6.57 6.57 13.67 250 SER. 

CHARGING VOLTAGE STAND BY USE = 13.5 TO 13.8V AT 20°C (68°F) 

CHARGING VOLTAGE CYCLIC USE = 14.4 TO 15V AT 20°C (68°F) 

CROSS REFERENCE BY MANUFACTURER

TEMPEST YUASA
POWER
SONIC* 

JOHNSON
CONTROL
S

GS

 
PANA
SONI
C

EAGLE

PICHER 

TR 18-12
NPG18-
12

PS-
12170

JC12150
PE12
V15

LCR1
2V17
BP

CFM12V1
8 



��
&+$37(5���

7+(�*5$3+,&�,17(5)$&(

,QWURGXFWLRQ�

The Graphic User Interface (GUI) provides a con-
venient access to the real and simulated robots, 
and to the representation of the world, as illus-
trated in Figure 4.1. Through the GUI, the user 

can send command to robots, monitor command 
execution by seeing the robot actually moving on 
the screen, visualize instantaneous and cumu-
lated sensor data. The user can also create and 
modify a simulated environment, and use it to 
test robot programs.

)LJXUH�����7KH�*UDSKLF�,QWHUIDFH�,Q�WKH�*UDSKLF�'LVSOD\�

To run the GUI, open an xterm, cd to the directory 
where the Nserver is (it should also contain files 
world.setup, robot.setup and 
license.data) and type:

./Nserver 

You will see (Figure 4.2): 

■ The Map window 

■ One robot window 

■ The Short Sensors and LongSensors windows 

The xterm is then used for displaying text mes-
sages from the server.

)LJXUH������7KH�)RXU�0DLQ�:LQGRZV�

The GUI presents 2 different views of the world the robot(s) are in: 

Client Program

World Representation

RobotRobot Daemon

Simulator

Server

Graphic Interface



��
■ A global view ("God’s eye"): the Map window, 
in which all the robots are represented

■ A local view: the Robot window, that displays 
the world as seen by one robot only

Thus, there is only one Map window, but as many 
Robot windows as there are robots (real or simu-
lated). The Map window gives access to the world 
representation, with functions such as: creating 
obstacles, editing obstacles, etc. The Robot window 
allows the display of sensor history, the path of the 
robot, as well as the execution of robot commands. 
Both windows support usual display functional-
ities like zooming and unzooming, scrolling, cen-
tering, etc. Several display parameters are 
controlled by values set up in the file 
world.setup. See "Chapter 6 - the Setup Files sec-
tion" for an explanation of the display parameters.

7KH�VLPXODWRU�

There is no difference in the graphic display 
whether the interface is dealing with a real or a 
simulated robot. By default, the GUI is in simula-
tion mode. The REAL ROBOT option of the 
ROBOT item in the Robot window is used to tog-
gle between the real and the simulated robot.

The Simulated Environment
The simulated robot moves in a two-dimensional 
world populated with other robots, and convex 
polygonal obstacles. These obstacles can be added 
to the current environment from the Map window, 
or by program using the world manipulation func-
tions. The sensor data displayed on the robot win-
dow under simulation comes from modules 
simulating each of the sensors: these modules com-
pute the sensor’s answer according to the current 
(simulated) robot environment.

Actual/Encoder Robot
In the physical world, the robot knows its position 
by integrating the encoders’ information. This is 
not exact information however, since there is some 
slippage of the wheels on the floor. The position of 
the physical robot is different from the position 
given by the encoders, and the difference keeps 
growing. In simulation, the actual robot represents 
this phenomenon. The position of the actual robot 
is equal to the encoder position, plus some error. 
The actual robot and the encoder robot are identi-

cal just after zeroing (the encoders are reset to zero, 
as well as the integrated position), and diverge 
according to the error model afterwards. For exam-
ple, if a gs() command is issued in simulation, the 
position information returned in the State vector 
will come from the encoder robot, but the sensing 
information will be computed (simulated) from the 
actual robot’s position.

On the GUI, you can display Actual and Encoder 
robots in different colors and check for their behav-
ior (when you are in real robot mode, no actual 
robot is displayed).

The parameters describing the behavior of the sim-
ulation modules are in the robot.setup file. See 
"Chapter 6 - the Setup Files section" for an explana-
tion of the simulator parameters.

5XQQLQJ�WKH�1VHUYHU�ZLWK�DUJXPHQWV�

When you run Nserver, the program looks for 
arguments on the command line: the first argu-
ment is expected to be a configuration file for the 
environment, containing among others display 
parameters for the Map window. All the other 
arguments are expected to be configuration files 
for robots. When you run Nserver without argu-
ments, the programs looks for a default Map ini-
tialization file in the current directory: 
world.setup. Thus, calling

/Nserver 

is equivalent to calling 

/Nserver world.setup robot.setup 

if robot.setup is the declared robot configura-
tion file in world.setup (see below). If you want 
to automatically create several robots windows 
corresponding to several real or simulated robot 
(instead of creating them by hand from the graphic 
interface), you do so by providing several setup 
files at the command line level:

/Nserver world.setup robot.setup_A 

robot.setup_A robot.setup_B 

In the example above, three robots will be created, 
two using the setup file robot.setup_A, and one 
using the setup file robot.setup_B.

If you always want to create several robots when 
you run a server, then you can specify their setup 



��
files in the environment configuration file 
(world.setup by default), section robots, item 
setup files. For instance, if you have the following 
in your world.setup file:

[robots] setup.files = robot.setup_A 
robot.setup_A robot.setup_B

then three robots will be automatically created 
each time you call Nserver (without arguments), 
two using the setup file robot.setup_A, and one 
using the setup file robot.setup_B.

ã Command line arguments override the specifi-
cations given in the environment setup file.

7KH�0DS�:LQGRZ�

The Map window allows an application to interac-
tively define and modify the map of the world 
where a robot moves around. The robot world is 
an abstract coordinate system; Its dimensions are 
set in the world.setup file under [physical], 
item size. The two pairs of coordinates at the bot-
tom of the window reflect the current positions of 
the window’s lower-left corner and the upper-right 
corner in the world, respectively. Look for units 
information also at the bottom of the window.

)LJXUH������7KH�0DS�:LQGRZ

Initially, the (0,0) point of the coordinate system is 
the center of the Map window.

This window has six menus: File, Edit, Obstacles, 
View, Show, Control.

7KH�)LOH�0HQX�

The robot map is treated as a disk file. The environ-
ment is described one obstacle per line, each line 
beginning with the number of vertices, followed 
by the x-y coordinates of the vertices enumerated 
counterclockwise.

Choose the menu to select one of the following
five operations:

New Map will create a blank map with no obsta-
cles. All the robots will remain unchanged.

Open Map will prompt you to open a map file, 
which was previously saved by a Save Map or a 
Save Map As operation. After selecting the map 
file, click OK. The map name, along with its path, 
will appear as the name of the window in the
top bar.

Save Map will save the current map to the same 
file that is currently open. If this is the first time to 
save a file, it will prompt you to select the path and 
give a file name.

Save Map As allows you to save the current map 
in a different file. It will prompt you to select the 
path and give a file name.

Quit will quit the whole current server application. 
All windows will be closed.

7KH�(GLW�0HQX�

The Edit menu allows you to edit the obstacles in 
the map. Before performing the following opera-
tions, you have to select an obstacle by clicking on 
the obstacle, in Grab Obstacle mode from the 
Obstacles menu.

Copy will store the selected obstacle in the internal 
clipboard. 

Cut will delete the selected obstacle and store it in 
the internal clipboard. 

Paste will paste on the map the obstacle currently 
in the internal clipboard. It requires a previous 
Copy or Cut operation. The pasted obstacle will 
overlap the one it was copied from, and can
be moved.

Clear will delete the selected obstacle, without 
storing it in the internal clip board.

7KH�2EVWDFOHV�0HQX�

The Obstacles menu allows you to add, delete, and 



��
select obstacles in the map. It has the following 
modes:

Add Rectangles is used to create rectangular 
obstacles. To add a rectangular obstacle, click on a 
position where you want one corner of the rectan-
gle to be, hold and drag the mouse, and release on 
a second position where you want the diagonal 
corner of the rectangle to be. You can repeatedly 
add rectangles when in this mode.

Add Polygons is used to create polygonal obsta-
cles. To add a polygonal obstacle, click on a posi-
tion to be the starting vertex of the polygon, move 
and click on a position to be the second corner of 
the polygon, and continue counterclockwise until 
finally click on a position close enough to the start-
ing vertex. You can repeatedly add polygons when 
in this mode.

ã Currently, only convex polygons are allowed. 
However, overlapping obstacles are allowed, 
so that you can create non-convex shapes by 
overlapping convex polygons.

Grab Obstacle allows you to select an obstacle by 
clicking on it. A selected obstacle has handles at its 
vertices. It can be moved by click and drag, and 
reshaped by moving the handles.

Delete Obstacles will delete obstacles by clicking 
on them. You can repeatedly delete obstacles in 
this mode.

ã New Map option in the File menu will delete 
all the obstacles at once.

7KH�9LHZ�0HQX�

The View menu performs the following operations:

Graphics On displays the robots’ motions in the 
Map and Robot windows during simulation. If this 
option is off, the graphic overhead will be avoided. 
The default for this option can be set on or off in 
the world.setup file, under [graphics], item 
graphics.

Zoom In enlarges the map and centers it on the 
click-on point. You will see a map twice as large.

Zoom Out reduces the map and centers it on the 
click-on point. You will see a map half as large.

Center designates a point in the map as the center 
of the Map window. After selecting Center in the 
View menu, click on a point on the map and the 

point will be the center of the Map window.

Clip allows you to selectively zoom in a region of 
the Map window. After selecting this option, click 
and drag to form a rectangle to select the desired 
region to zoom in.

Slide allows you to move the whole map in the 
window. After selecting this option, position the 
mouse in the map and move the map by dragging 
the mouse.

7KH�6KRZ�0HQX�

The Show menu performs the following opera-
tions:

Map is to switch on and off the display of the 
obstacles. Actual Robot is to switch on and off the 
display of the robot at its actual position (which 
only has meaning in simulation mode) in the Map 
window.

Encoder Robot is to switch on and off the dis-
play of the robot at its encoder position in the 
Map window.

7KH�&RQWURO�0HQX�

The Control menu performs the following opera-
tions:

Create Robot creates another robot in the cur-
rent simulation. It will prompt you for a configu-
ration file.

The robot id of the created robot will be given 
sequentially. A new Robot window will show up 
with its attached Sensors windows. The maximum 
number of robots currently allowed is 6.

ã This is a "manual" creation of a robot. Auto-
matic creation can be achieved using the setup 
files option in the environment setup file

ã Removing a robot is done through the 
DESTROY ROBOT item of the ROBOT menu 
in the corresponding robot window

Speedup Simulation speeds up the simulation 
process by making the simulation process twice 
as fast.

Slowdown Simulation slows down the simula-
tion process by making the simulation process 
half as fast.



��
)LJXUH������7KH�5RERW�:LQGRZ�

7KH�5RERW�:LQGRZ�

The Robot window allows interactive control of a 
robot. This window has five menus: Robot, View, 
Show, Refresh, Panels.

At the bottom of the window are information 
about the current robot position, compass value, 
and the last command issued. In position informa-
tion, X and Y are the coordinates, S is the steering 
direction in degrees, T is the turret direction in 
degrees. Note that the turret is maintained for 
backwards-compatibility with older Nomad 
robots. On the Scout and Super Scout, the turret 
always faces the same direction as the steering 
angle. Degrees range from 0 to 360, with 0 as the 
horizontal right.

7KH�5RERW�0HQX�

The Robot menu has the following options: 

Real Robot switches between the real robot and 
the simulator. When you are switching to the real 
robot, you must make sure that the appropriate 
communication (radio modem or radio ethernet) is 
set up between the robot and the host computer.

M WARNING!!
After switching to the REAL ROBOT, every 
action (commands, joystick motions) per-

formed in the GUI will be directly executed by 
the robot: make sure that the robot’s environ-
ment is safe.

Place Robot allows you to place the robot in a 
given configuration. Synchronization bars and 
handles appear as shown in Figure 4.5. Only the 
robot that are currently displayed in the window 
according to the SHOW menu will be affected by 
place robot operation. If only the Encoder robot is 
shown, then the Encoder position and orientation 
will be reset. Let’s assume that this is the case:

■ Clicking Left with the left button on a (free) 
place will set the new position of the robot to 
this place

■ Click-and-Dragging Left the farthest handle 
will set the turret angle.  Dragging the closest 
handle will set the steering angle. You can 
monitor the value of the angle in the Position 
display at the bottom of the window

■ Clicking Left on one of the synchronization 
bars will align both turret and steering to the 
angle of that bar

■ Click-and-Dragging Right on one of the syn-
chronization bars will move both the steering 
and the turret, keeping their relative angle

To finish, click in the gray label: bars and handles 
disappear. 

ã When connected to a real robot, the only infor-
mation modified is the encoder information: 
placing the robot will only have an effect on 
where the robot thinks it is, but won’t incur 
any motion. Only in simulation is the actual 
robot modified.



��
)LJXUH������3ODFH�5RERW�

There are some specific operations when the two 
robots, Encoder and Actual, are displayed at the 
same time; you can monitor the effects of your 
actions by having both encoder and actual robot 
displayed in the Map window. Note however that 
clicking left will always set the position of both 
Encoder and Actual robots, even if only one is dis-
played.

■ When Encoder and Actual robot are identical, 
the handle and synchronization bars are 
grayed. Gray handles and bars move both 
robots at the same time. To separate them, 
hide one of the robots in the SHOW menu.

■ Clicking Left on some position will reset 
Encoder robot AND Actual robot x-y position. 
Dragging Left will move only one robot at a 
time.

Destroy Robot destroys the robot. All the three 
windows Robot, ShortSensors, and LongSensors 
associated with the robot will disappear. You can 
create a new robot from the Map window Control 
Menu.

7KH�9LHZ�0HQX�

The View menu has the following options: 

Zoom In enlarges the map and centers it on the 
click-on point. You will see a map twice as large.

Zoom Out reduces the map and centers it on the 
click-on point. You will see a map half as large.

Center designates a point in the robot world as the 
center of the Robot window. After selecting this 
option, click on a point on the map and the point 
will be the center of the Robot window.

Clip allows you to selectively zoom in a region of 
the Robot window. After selecting this option, 
click and drag to form a rectangle to select the 
desired region to zoom in.

Slide allows you to move the whole robot world in 
the Robot window. After selecting this option, 
position the mouse in the Robot window and move 
the robot world by dragging the mouse.

7KH�6KRZ�0HQX�

The Show menu has the following options: 

Robot Trace sets various ways to display a trace of 
the robot as it moves. Currently available are Solid 
and Outline. Select None to remove the trace. 
Trace accumulated so far can be removed using the 
REFRESH options.

Map switches on and off the display of the obsta-
cles of the map.

ã Superimposing the obstacles to the traces of 
the sensors gives an idea of how well sensors 
capture the environment

Actual Robot switches on and off the display of 
the robot at its actual position (which only has 
meaning in simulation mode) in the Robot win-
dow.

Encoder Robot switches on and off the display of 
the robot at its encoder position in the Robot win-
dow.

Bumper switches on and off the display of the 
bumper when the robot runs into an obstacle.

Infrared is not supported on the Scout, so this 
menu option does nothing.

Sonar switches on and off the display in the Robot 
window of what the sonar sensors see.

Laser is not supported on the Scout.

7KH�5HIUHVK�0HQX�

The Refresh menu allows you to get rid of the 
graphic robot traces and sensor history accumu-
lated so far. The display of traces and sensor his-
tory will continue on a blank background (use the 

Steering sync bar

Axis handles

Turret sync bar

Label



��
SHOW menu options to stop these). The Refresh 
menu has the following options:

All clears everything mentioned in the rest of the 
menu -  traces and histories.

All Traces clears traces of the actual robot and the 
encoder robot. See the Show menu for setting robot 
traces.

Actual Robot Trace clears the trace of the actual 
robot. 

Encoder Robot Trace clears the trace of the 
encoder robot. 

All Sensor History clears all the histories (succes-
sive sensor marks) mentioned in the remaining of 
the menu. See the Show menu for setting sensor 
display.

Bumper History clears the bumper-related marks 
in the Robot window. 

Infrared History clears the infrared-related marks 
in the Robot window. Note that the Scout does not 
have infrared sensors.

Sonar History clears the sonar-related marks in the 
Robot window. 

Laser History clears the laser-related marks in the 
Robot window. Note that the Scout does not have 
Laser sensors.

Client Graphics clears the drawings made by a cli-
ent program, using instructions such as draw line 
or draw robot.

7KH�3DQHOV�0HQX�

The Panels menu has the following three robot 
monitoring/control methods: 

Recorder displays a Record and Playback center 
for recording robot motion and sensing sequences. 
This option also allows you to play back recorded 
sequences. To use the recorder:

■ Select the items to record by Left-clicking (the 
Recorder uses only the left mouse button)

■ Click on the record button (red dot) to start 
recording. A record is made and time-stamped 
each time the State vector gets updated 
(almost all robot commands update the State 
vector: See "Chapter 5 - Programming the 
Nomad").

■ Click on the stop button (black square) to stop 
recording 

■ Click on the left double-arrow to rewind (the 
single arrow rewinds one recording at a time)

■ Click on the play button (green triangle) to 
play the recording. You can move forward and 
fast-forward, backward and fast-backward in 
the recordings.

Records can be saved to and loaded from a text file 
using LOAD and SAVE options. To dismiss the 
Recorder panel, select Recorder again.

)LJXUH������7KH�5HFRUGHU�3DQHO�

Command Line allows you to type in a robot com-
mand from a console. All of the robot commands 
mentioned in the Language Reference Manual are 
supported.

ã However, you cannot set the individual values 
of the SMask vector from this panel (there is 
no robot command to do this as well); you can 
only reset it with init sensors to one every-
where (all available sensor data gets returned). 
The only way of setting individually the 
SMask vector values is through a client pro-
gram.

The top-half panel contains pre-defined calls 
to standard robot instructions like zr or pr. 
When you click on one of these, the bottom-
half panel drops and displays a number of text 
fields corresponding to the command (zero for 
zr that takes no argument, sixteen for 
conf_sn) (see Figure 4.8).

Other commands can be entered by typing 
their names in the Command line. Typing a 
space after the command name will drop the 
corresponding number of editing fields. Type 



��
a space after each value entered to jump to the 
next editing field.

The command will be actually sent to the robot 
after clicking on EXECUTE. Click on CLEAR 
to cancel, and select COMMAND LINE again 
to dismiss the command panel. The COM-
MAND LINE does not support the user-packet 
commands, the position attachment com-
mands, and the get_rpx command.

)LJXUH������7KH�&RPPDQG�/LQH�3DQHO�

)LJXUH������(QWHULQJ�SDUDPHWHUV�LQ�WKH

FRPPDQG�FHQWHU

Joystick allows you to move the robot or the simu-
lated robot around by moving the mouse in the 
Joystick window (see Figure 4.9) which will appear 
once this option is selected.

)LJXUH������7KH�6RIW�-R\VWLFN�

)LJXUH�������&RPELQHG�0RWLRQV

■ The crosshairs represent the two degrees of 
freedom of the physical joystick. The central 
dot is the joystick: the robot moves according 
to its position.

■ Using any mouse button to click and drag the 
dot to the top or the bottom will move the 
robot forward or backward by sending 
repeated vm commands. The speed value 
depends on how far from the center you move 
the joystick dot (the farther, the faster).

■ Release the button to stop the motion. 

■ Using any mouse button to click and drag the 
joystick dot to the left or the right will steer the 
robot to the left or the right. The farther you 
go, the faster the steering. Releasing the button 
will stop the motion.

■ As with the physical joystick, combined 
motions are possible, as illustrated in Figure 



��
4.10.

ã A common mistake is to give an absolute 
meaning to the soft joystick directions, like 
"North", "East", etc. The motions are always 
relative to the current orientation of the 
wheels. Moving the dot to the top will move 
forward, which may be "South" if the robot is 
so oriented.

To dismiss the Joystick panel, select Joystick again.

7KH�6KRUW6HQVRUV�:LQGRZ

)LJXUH�������7KH�6KRUW6HQVRUV�:LQGRZ�

The ShortSensors Window has only one menu: 
Options.

7KH�2SWLRQV�0HQX�

The Options menu has the following options: 

Show Bumper allows you to switch on and off the 
display of the bumpers when the robot runs into 
an obstacle.

Show Infrared Rays allows you to switch on and 
off the display of the infrared sensor data as radius 
lines.  Note that since the Scout does not have 
infrared sensors, this data will not be meaningful.

Show Infrared Cones, IR Cones Are Arcs, IR 
Cones Are Filled, and Show Infrared Connec-
tions similarly have no meaningful function on 
a Scout.

Global View allows you to switch between global 
view and local view of the robot. In local view, 
the robot’s forward direction is always aligned 
with the upward vertical direction of the window. 
In global view, the robot will rotate with respect 

to the existing environment, as the turret of the 
robot rotates.

7KH�/RQJ6HQVRUV�:LQGRZ

)LJXUH�������7KH�/RQJ6HQVRUV�:LQGRZ�

The LongSensors Window has only one menu: 
Options.

7KH�2SWLRQV�0HQX�

The Options menu has the following options: 

Show Sonar Rays allows you to switch on and off 
the display of the sonar sensor data as radius lines.

Show Sonar Cones allows you to switch on and 
off the display of the sonar sensor data as cones, 
which is closer to the physical reality of sonar sen-
sors but longer to draw.

Sonar Cones Are Arcs allows you to switch on and 
off the display of the sonar sensor data as cones 
with arcs at the outside ends. Arcs are a better rep-
resentation, but take longer to draw.

Sonar Cones Are Filled allows you to switch on 
and off the display of the sonar sensor data as 
cones shaded or outlined. Shaded cones are a bet-
ter representation, but take longer to draw.

Show Sonar Connections allows you to switch on 
and off the display of the sonar distance points 
connected using line segments.

Show Laser is not supported on the Scout.

Show Robot Proximity allows you to switch on 
and off the display of dots when another robot is 
nearby. This display will occur only if a client pro-
gram sends a get_rpx command.



��
Global View allows you to switch between global 
view and local view of the robot. In local view, the 
robot’s forward direction is always aligned with 
the upward vertical direction of the window; all 
the sensors are fixed. In global view, the robot will 
rotate with respect to the environment shown in 
the Map window, as the turret of the robot rotates.



��
&+$37(5��

352*5$00,1*�7+(�120$'�

In this chapter the concepts and techniques 
required to write application programs for the 
Nomad robot are presented. It is recommended to 
read this chapter completely before starting to 
develop software.

To exploit all features of the robot and the pro-
gramming environment the programmer has to be 
familiar with the basic architecture of the system 
and the entailed programming concepts, which are 
presented in the following section. The subsequent 
section gives an overview of the different classes of 
commands that can be used in application pro-
grams. How to use these commands is demon-
strated in the last section of this chapter with 
example programs.

352*5$00,1*�&21&(376�

3URJUDPPLQJ�0RGHV�

An application program can communicate with the 
Nomad in two different ways (see Figure 5.1):

■ Client mode: the application communicates 
with a server, which in turn communicates 
with the robot daemon or the simulator.

■ Direct mode: the application communicates 
directly with the robot daemon.

:KLFK�RI�WKHVH�WZR�PRGHV�VKRXOG�,�XVH"

While developing an application program it is usu-
ally advisable to use the client mode. When using 
the client mode it is possible to switch between real 
robot and simulated robot. This is convenient dur-
ing debugging because the robot cannot be dam-
aged due to a programming error.

Once a program is running stably the direct mode 
can be used: the program can run independently of 
the server.

)LJXUH������3URJUDPPLQJ�LQ�'LUHFW�DQG�&OLHQW�0RGH

+RZ�FDQ�,�VZLWFK�EHWZHHQ�WKHVH�PRGHV"�

To switch between the two modes the program 
simply has to be relinked. The object file Ncli-
ent.o is used for the client mode and the object 
file Ndirect.o is used for the direct mode. In gen-
eral the source code does not need to be changed.

$UH�WKH�PRGHV�FRPSDWLEOH"

The two modes are fully compatible. However, 
commands that are specific to the server/simulator 

will have no effect in direct mode. Nevertheless, 
the procedure call will succeed and return an 
appropriate value. When writing applications that 
are supposed to run in client mode as well as in 
direct mode the programmer has to take these dif-
ferences into account; programs must not rely on 
functionality provided by the server. In the file 
Nclient.h functions that have no effect in direct 
mode are marked. The "Server Commands" section 
in this chapter discusses these commands in detail.

Application 2

Application 1

Server

Simulator

Daemon

Robot
Robot

Client Server Robot

Nclient.o

Ndirect.o



��
+RZ�FDQ�,�VSHFLI\�WR�ZKLFK�URERW�VHUYHU�,�
ZDQW�WR�FRQQHFW"

How to establish a connection with a specific robot 
or server is explained in the section "Communica-
tion Commands".

6LPXODWHG�YV��5HDO�5RERW�

From the programming point of view, there is no 
difference between the simulated robot and the real 
robot: you do not have to change your program to 
switch between them. However, since simulation is 
always an idealization of data, especially regarding 
sensing, you should be ready to experience some 
variations between simulated and real data.

When running in client mode, you can switch 
between real and simulated robot using the REAL 
ROBOT item of the ROBOT menu in the ROBOT 
window. You can also switch from a program using 
the commands real robot and simulated robot. 
Again, these commands will have no effect in direct 
mode. Direct mode always uses the real robot.

If the application relies on realistic sensory data the 
direct mode should be used, since the simulation 
cannot capture all physical aspects of the real 
world.

&�DQG�&���

To control the robot from within a C program, 
you include the Nclient.h header file and link 
your program with the Nclient.o or Ndi-
rect.o library. You can also use the robot from 
C++ by declaring all the commands appearing in 
Nclient.h as external C.

7KH�*OREDO�9HFWRUV�

Information about the current state of the robot, its 
configuration and the readings of the sensors can 
be obtained by an application program through a 
global array, called the State vector. This struc-
ture is updated after the execution of a robot com-
mand (see the "Commands" section in this chapter 
for a detailed description). This structure is 
described in detail below. Table 4.1 provides a 
quick reference to State.

The name fields are values that are defined in 
Nclient.h; they should be used in application 
programs rather than the index into the array. This 
increases readability and is invariant to changes in 
the State vector.

7KH�6WDWH�9HFWRU�

In this section the fields of the state vector are 
explained in more detail. See also Section 6.1.

STATE_SIM_SPEED Simulation speed. The value 
is a factor to the speed of realtime; its unit is 1/10. 
Therefore, 10 corresponds to realtime, with a set-
ting of 5 the simulation of one second will take two 
seconds (half the speed) and with a setting of 20 it 
will take 1/2 second (twice the speed).

STATE_SONAR_0 - 15

The readings of the sixteen sonar. The sonar are 
numbered counter-clockwise consecutively begin-
ning with the front of the robot. The readings cor-
respond to distances in inches (see "Chapter 5 - 
Programming the Nomad").



��
   

)LJXUH������7KH�$UUDQJHPHQW�RI�WKH�%XPSHU�6HQVRUV�

STATE_BUMPER

The readings of the bumpers. There is a total of six 

individial bumper sensors on the robot that are 
arranged in a ring.  Refer to Figure 5.2 for an illus-
tration of their arrangement. Bumper sensor num-
ber n is represented by the nth bit in this value of 
the state vector. The 0th bit is the least significant 
one. A bit is set to one when the corresponding 
bumper is hit.

STATE_CONF_X

The integrated x-coordinate of the robot in 1/10s of 
inches with respect to the start position. This value 
is reset by the commands zr and dp (see the 
"Motion Commands" in this chapter).

STATE_CONF_Y

The integrated y-coordinate of the robot in 1/10s 
of inches with respect to the start position. This 
value is reset by the commands zr and dp (see Sec-

Name State Vector Name                    

0 STATE_SIM_SPEED speed of simulation SMASK_POS_DATA          

...  ... ... ...                     

17 STATE_SONAR_0 sonar data #0 SMASK_SONAR_0           

18 STATE_SONAR_1 sonar data #1 SMASK_SONAR_1           

19 STATE_SONAR_2 sonar data #2 SMASK_SONAR_2           

... ... ... ...                     

32 STATE_SONAR 15 sonar data #15 SMASK_SONAR_15          

33 STATE_BUMPER bumper data SMASK_BUMPER            

34 STATE_CONF_X x position SMASK_CONF_X            

35 STATE_CONF_Y y position SMASK_CONF_Y            

36 STATE_CONF_STEER steering angle SMASK_CONF_STEER        

... ... ... ...                     

38 STATE_VEL_RIGHT translational velocity SMASK_VEL_TRANS         

39 STATE_VEL_LEFT steering velocity SMASK_VEL_STEER         

... ... ... ...                     

41 STATE_MOTOR_STATUS motor status --                      

44 STATE_ERROR error number --                      

0

1 5

3

Front

42



��
tion 5.3.2).

STATE_CONF_STEER

The orientation of the steering in 1/10s of degrees 
with respect to the start orientation, in the range [0; 
3600). This value is reset by the commands zr and 
da (see the "Motion Commands" in this chapter).

STATE_VEL_RIGHT

The velocity of the right wheel in 1/10s of inches 
per second.

STATE_VEL_LEFT

The velocity of the left wheel in 1/10s of inches 
per second.

STATE_MOTOR_STATUS

The status of the motors. The lowest two bits corre-
spond to the two motors. The next five bits apply 
to the new power management and sensing fea-
tures of the Scout. Figure 5.3 shows a bitmap of the 
status value.

)LJXUH������6WDWXV�9DOXH�%LWPDS

R: This bit is set when the right wheel is in motion.

L: This bit is set when the left wheel is in motion.

B1, B0: These bits have the following meaning:

B1 | B0 | Meaning

----+----+-------------

 0  | 0  | Low Battery

 0  | 1  | Med Battery

 1  | 0  | High Battery

 1  | 1  | Reserved

AC
This bit is set when the Scout is plugged into an 
AC source.

CH
This bit is set when the Scout is plugged into an 
AC source and the batteries are charging (i.e. the 
batteries are not fully charged.)

ES

This bit is set when the E-Stop is down. Some mod-
els of the Scout do not have an E-Stop, in which 
case this bit is always 0.

STATE_ERROR Error number
The state vector is updated by all robot motion and 
sensing commands (see the "Commands" section in 
this chapter). Note, however, that the family of 
commands that starts with get only updates a part 
of the state vector. For example, get_sn (get 
sonar) only updates the sonar readings. The com-
mand conf_cp, which configures the compass, is 
an exception in that it does not affect the state vec-
tor at all. If the user wants to force an update of the 
state vector, the command gs() (get state) can be 
issued (see the "Commands" section below).

&RPPDQGV�

This section introduces the robot language. It is 
intended as a general overview. For a detailed 
description of the commands please refer to the 
"Language Reference Manual". Programming the 
Nomad requires the following steps:

■ Establish communication with a robot 

■ Initialize the robot and its sensors 

■ Repeat until done:

- Send motion and sensing commands to the 
robot 

- Get motion and sensing data from the robot

■ Disconnect from robot 

This illustrates the use of the three basic classes of 
robot commands:

■ Communication commands to establish a con-
nection to a robot. 

■ Motion commands to move the robot and to 
obtain its current configuration.

■ Sensing commands to configure the sensors 
and to receive the sensory data.

In the remainder of this section one subsection is 
dedicated to each of these groups of commands. A 
common property of almost all of the commands is 
that they update the global vector State (see the 
"State Vector" section in this chapter). The value 
returned by the functions themselves is TRUE if the 
command was successfully transmitted to the 

RLB1 B0ACCHES

0123457 6



��
robot, and state information came back correctly. It 
is not an indication that the command was success-
fully completed. Usually, the user’s program will 
have to monitor the state of the robot (for instance, 
the robot integrated coordinates, or the robot 
speeds) to make sure that a command has been 
successfully executed.

The reason why monitoring of commands is 
required to determine success is that commands 
are executed asynchronously: the function itself 
will return immediately, and while the intended 
action starts on the robot, the program will move 
on to the next instruction. For instance, if you send 
pr(1000,1000,0), a command that tells the 
robot to move forward by 100 inches, the com-
mand will return immediately (and probably even 
before you see the robot actually moving). If your 
program’s next line is pr(-1000,-1000,0), this 
will cause the robot to stop the previous motion 
and start this next one, requesting a move into the 
opposite direction. The only exceptions are the 
commands zr and ws, that initialize the robot’s 
encoders and wait for the robot to stop, respec-
tively. These functions will only return after the 
execution of the command has been completed.

&RPPXQLFDWLRQ�&RPPDQGV�

The application program can connect to the server 
or directly to the robot. This is determined by the 
object file the application is linked with. In case of 
Nclient.o the connection will be established 
with the server and in case of Ndirect.o with 
the robot.

If the user decides to use the server two variables 
can be used to specify the connection:

SERVER_MACHINE_NAME is a string that should 
contain the name of the machine the server is run-
ning on or its IP-address. If that name is computer, 
for example, you have to issue the C-command 
strcpy (SERVER_MACHINE_NAME, "computer"); 
before connecting to the server. Furthermore, the 
variable SERV_TCP_PORT determines to which 
socket the application program will connect to. For 
the server and the application to be able to commu-
nicate they both have to connect to the same 
socket. The socket number the server connects to is 
specified in the file world.setup. Assign the 
number given there to the variable 

SERV_TCP_PORT before connecting to the server.

When connecting directly to the robot the variable 
ROBOT_MACHINE_NAME has to contain the name 
or the IP address of the robot. This variable can be 
assigned by using the C-command strcpy ( 
ROBOT_MACHINE_NAME, "128.12.24.8");, 
assuming that the IP-address of the robot is 
128.12.24.8.

For the case of communication failure, the user can 
specify a timeout for the robot. This is done with 
the command conf_tm. After the specified time 
has elapsed the robot will stop; if the application 
program crashes this hopefully prevents the robot 
from crashing into a wall.

int create_robot (long robot_id)

Causes the server to create a new robot with the ID 
robot_id. A robot window and the sensor win-
dows will be created. After the creation of the 
robot the application program can connect to it. 
The return value is the argument upon success, 
otherwise zero. This command has no effect when 
connecting directly to the robot using Ndirect.o.

int connect_robot (long robot_id)

Establishes a socket connection between applica-
tion program and server (if using Nclient.o) or 
between application program and robot (if using 
Ndirect.o). Only after this command has been 
issued successfully commands can be sent to the 
robot. The return value is the argument upon suc-
cess, otherwise zero.

int disconnect_robot (long robot_id)

Disconnects the application program from the 
server (if using Nclient.o) of from the robot (if 
using Ndirect.o). The return value is TRUE upon 
success, otherwise FALSE.

int tk (char *talk_string)                                           
(talk)

If speech synthesis is present this command will 
send the string talk_string to it. With this com-
mand you can make the robot speak. This is partic-
ularly helpful for debugging.

. unsigned int conf_tm (int timeout) 
(configure timeout)



��
Sets the timeout of the robot to timeout seconds. If 
the robot does not receive any commands within 
this period the robot is stopped.

0RWLRQ�&RPPDQGV�

To fully understand the robot motion commands it 
is helpful to have some knowledge about the drive 
system of the robot, which consists of two indepen-
dent axes. These axes are the right and left wheels. 
The combination of these two wheel motions can 
produce translational motion, rotation, or a combi-
nation of these to describe an arc.

These two axes can be controlled in two different 
control modes: velocity and position control. In 
velocity control the goal is to maintain a given 
velocity, whereas position control attains and 
maintains a given position relative to the current 
position of the robot.

For all motion commands velocities are specified 
in 1/10s of inches per second. Positions are speci-
fied relative to the current position. All commands 
return TRUE upon successful transmission to the 
robot, FALSE otherwise.

The format of commands which control each axis 
independently is (right wheel, left wheel, unused), 
where the unused value should be passed as zero 
and ignored on return. It is included for API back-
wards-compatibility with models that have three 
axes of control.

int ac (int r_ac,int l_ac,int unused)  
(acceleration)

This command sets the accelerations for the two 

axes in units of 0.1in/s2. The acceleration must be 

lower than 800 0.1in/s2. When doing only very 
small motions with position control the accelera-
tions should be set to small values; otherwise the 
robot will accelerate very abruptly, move further 
than the desired position, accelerate abruptly into 
the opposite direction to compensate for the error, 
and so on.

. int sp (int r_sp, int l_sp, int 
unused)(speed)

This command sets the maximum speeds for the 
two axes. The maximum velocities must be lower 

than 400 0.1in/s2.

. int vm ( int r_vm, int l_vm, int 
unused) (velocity move)

This command controls the two axes of the robot in 
velocity mode. The arguments to this function are 
the desired velocities for the two axes; they can be 
negative but their absolute value has to stay below 
the maximal value given above (see sp). A velocity 
of zero will maintain the current position.

When a vm command is issued the robot will move 
its axes at the requested velocity and will continue 
moving unless another motion command is issued, 
or a timeout occurs (see conf_tm).

. int pr (int r_pr, int l_pr, int 
unused) (position relative)

This command controls the three axes of the robot 
in position mode. The arguments are the desired 
position relative to the current one. 

Note that if the distances are different, one axis may 
complete its motion before the other. Note also that 
the function call will return immediately. To wait 
for the motion to be completed the user should issue 
the command ws after the pr. A parameter of zero 
will maintain the current position. 

int mv (int r_mode,int r_mv,int 
l_mode,int l_mv,int unused1,int 
unused2)              (move)

This command allows the user to drive both axis 
independently from each other in velocity or posi-
tion control mode. There are two arguments for 
each axis:

■ The first argument determines the control 
mode by specifying

- MV_VM for velocity control, 

- MV_PR for position control, and 

- MV_IGNORE if the motion for that axis should 
remain unaltered, and 

■ The second argument is a velocity if velocity 
control is the specified mode or a position if 
position mode was requested.

For example, pr (MV_VM, 100, MV_VM, 100, 
MV IGNORE, MV IGNORE) will cause the robot to 
start translating at 10 inches per second.



��
int st (void )             (stop)

The robot will stop after this command has been 
sent. However, since the function call returns 
immediately, the robot can still be decelerating 
after the termination of the command. It is recom-
mended to issue a ws (see below) after an st.

int ws (unsigned char r_ws, unsigned 
char l_ws,unsigned char unused, 
unsigned char time-
out)                                                
(wait for stop) 

This allows the user to wait for some or all of the 
axes to be stopped. The first three arguments are 
TRUE if the command should return after the stop-
ping of that particular axis; the argument should 
be FALSE if the status of an axis does not need to 
be monitored. If not all of the specified axes have 
stopped before timeout seconds have elapsed the 
function returns.

. int lp (void)                                                      
(limp)

After the robot has stopped it will still try to main-
tain its position. That means that any attempt to 
push it will cause the motors to drive the robot into 
the opposite direction. This command cause the 
robot to go in limp mode. After executing it, posi-
tion will no longer be maintained and the robot can 
be pushed around. This control mode is sometimes 
referred to as floating.

int zr (void) (zero)

This function resets the internal coordinates of the 
robot to (x, y, theta) = (0, 0, 0). It has no external 
effects, however.

int dp (int x, int) (define position)

Sets the robot position to (x,y).

int da (int th, int unused) (define 
angles)

The orientation of the steering is set to th 1/10s of 
degrees.

int get_rc (void)                                 
(get robot configuration)

Issuing this command updates the following 
entries in the state vector: STATE_CONF_X, 
STATE_CONF_Y, STATE_CONF_STEER, 

STATE_CONF_TURRET.

int get_rv (void)                                    
(get robot velocities)

Issuing this command updates the following 
entries in the state vector: STATE_VEL_RIGHT, 
STATE_VEL_LEFT.

6HQVLQJ�&RPPDQGV�

For each of the sensors there exists a command to 
configure it and another one to obtain the readings. 
In general the sensory readings will be obtained 
with the gs command (see below) that stores read-
ings in the State vector. However, dedicated 
functions exist to save bandwidth.

int gs (void) (get state)

Updates the State vector.

int conf_sn (int rate, int order[16])      
(configure sonars)

This command will configure the sonar; please 
refer to the Language User Manual for details on the 
configuration of the sonar.

int conf_tm (unsigned int time - out)                
(configure timeout)

Sets the timeout of the robot to timeout seconds. If 
the robot does not receive any commands within 
this period, the motion will be stopped.

int get_sn (void)                                               
(get sonar)

This command will update the sonar data in the 
State vector.

int get_bp (void)                                              
(get bumper)

This command will update the bumper data in the 
State vector.

������6HUYHU�&RPPDQGV�

The commands introduced in this section require 
the application to be connected to a server. Called 
from programs that connect directly to the robot 
(linking with Ndirect.o) they will have no effect. 
For a more elaborate description of these com-
mands please refer to the "Language Reference  Man-



��
ual."

Commands related to the server:

server_is_running (void) 

Returns TRUE if a server is connected to the same 
socket the application is connected to.

quit_server (void) 

Called from an application that is connected to a 
server, this command will cause the server to exit.

Commands related to the world representation: 
The application program can modify the world 
data base of the server. The polygons that are 
passed as arguments to the following functions 
have to be convex and the points are given in coun-
terclockwise order.

add_obstacle (long obs[2*MAX VERTI-
CES+1]) 

Add an obstacle to the world representation of the 
server.

delete_obstacle (long obs[2*MAX VER-
TICES+1]) 

Delete an obstacle from the world representation 
of the server.

move_obstacle (long obs[2*MAX VERTI-
CES+1], long dx, long dy) 

Translate an obstacle of the server’s world repre-
sentation by (dx, dy).

Commands related to drawing in the map window:

draw_robot (long x, long y, int th, 
int unused, int mode) 

This command draws a robot at the given configu-
ration into the ROBOT window of the server. For a 
description of the arguments and mode refer to the 
"Language Reference Manual".

draw_line (long x_1, long y_1, long 
x_2, long y_2, int mode) 

This command draws a line into the ROBOT win-
dow of the server. For a description of the argu-
ments and mode refer to the "Language Reference 
Manual".

draw_arc (long x_0, long y_0, long w, 
long h, int th1, int th2, int mode) 

This command draws a circular arc into the map 
window of the server. For a description of the 
arguments and mode refer to the "Language Refer-
ence Manual".

place_robot (int x, int y, int th, int 
unused) 

With this command the client program can request 
the user to input a robot position via the graphic 
interface.

Commands to switch between real and simulated 
robot:

real_robot (void) 

Called from an application program, this com-
mand causes the server to send the commands 
(from the application program) to the real robot 
instead of sending them to the simulated robot.

simulated_robot (void) 

This command has the inverse effect of 
real_robot. 

6RPH�([DPSOHV�

In this section, the development of a small applica-
tion program is presented. Step by step, we are 
going to increase its capabilities to demonstrate 
how to program the robot. The first program in 
Figure 5.4 just connects to the robot, initializes it, 
moves 10 inches forward, and finally disconnects 
again. It will be the starting point for further 
refinement. For information on how to compile 
programs and how to run them in connection with 
the server please refer to the section in"Chapter 3 - 
Starting a Server"; you will have to adapt the first 
two lines of the procedure main to adjust the com-
munication parameters to your specific environ-
ment. This program should be used in conjunction 
with a server. The user can then choose if the real 
or the simulated robot will be used.

If your program connects to the real robot you 
should see the robot move ten inches forward. 
Nothing will happen if you use the simulated 
robot. The reason for this is that the simulator only 
updates the screen when the State vector is 



��
updated. The simulator basically displays the 
robot as represented by the state vector. If you 
manually issue a gs command in the command 
line window you will be able to see the result of 
this little program.

Now we will extend this program to move the 
robot in a square. While it is moving it will monitor 
the bumpers and if one of the bumpers is hit the 
program will abort.

To make the robot move in a square we will issue 
eight motion commands: first a translation, then a 

steering rotation, repeated for the four sides of the 
square. However, pr does not wait for the current 
motion to be completed, so the user must be care-
ful not to overwrite a commanded motion before it 
is completed. We will implement a function that 
monitors the velocity of a given axis. This will 
allow the program to determine when a motion 
has been completed. In order to do so we could use 
the command ws, but we want our program to 
issue the command gs while waiting so that the 
simulator gets updated and we are able to follow 
the motion on the screen.

void wait_for_stop (int axis)

{

/*

 * Example 1 Version 1 

 * 

 * This program will connect to the robot, initialize it, 

 * move forward monitoring the bumpers, and disconnect. 

 * 

 */

#include "Nclient.h" 

#define ROBOT_ID 1 /* the ID of the robot */ 

void main (void)

{

  int i;

  /* setup connection parameters */ 

  SERV_TCP_PORT = 7019; 

  strcpy (SERVER_MACHINE_NAME, "computer");

  /* establish connection */ 

  if (!connect_robot (ROBOT_ID) )

    exit (0 );

  /* initialize robot */ 

  conf_tm (2); 

  zr (); 

  ac (200, 200, 0);  

  sp (100, 100, 0);

  /* move robot 10 inches */ 

  pr (100, 100, 0);



��
  /* disconnect */ 

  disconnect_robot (ROBOT_ID);

)LJXUH������7KH�)LUVW�([DPSOH�

void wait_for_stop(int axis)

{

  /* wait for motion to begin */ 

  while (State [axis] == 0)

    gs();

  /* wait for motion to end */ 

  while (State [axis]!= 0)

    gs();

}

The above procedure requires as an argument the 
index to the State vector that contains the veloc-
ity of the axis to be monitored. It first waits for the 
motion to be started by remaining in the first 
while-loop until the velocity differs from zero. 
Then it waits for the motion to be completed; this is 
recognized by the velocity becoming zero again. 
Inside both while-loops the command gs() is exe-

cuted to update the State vector, and therefore 
the simulator screen.

We will now extend the procedure 
wait_for_stop to monitor the bumper while 
waiting for the motion to be completed. This can 
be realized using the bumper reading in the state 
vector.

int wait_for_stop_or_bumper (int axis) 

{

  /* wait for motion to begin */ 

  while ((State [axis] == 0) && (State [STATE_BUMPER] == 0))

    gs(); 

  if (State [STATE_BUMPER]!= 0)

    return (FALSE);

  /* wait for motion to end */ 

  while ((State [axis]!= 0) && (State [ STATE_BUMPER ] == 0))

    gs(); 

  if (State [STATE_BUMPER] != 0)

    return (FALSE); 

  return (TRUE);

}

Now the while-loop is also terminated when the 
bumper data assumes a value different from zero, 
which indicates a bumper hit. The new procedure 
wait for stop or bumper returns TRUE if the motion 
was completed without a bumper hit and it returns 

FALSE if a bumper was hit. This allows us to write 
the second version of our example program, listed 
in Figure 5.5. In that listing the code for the proce-
dure wait for stop or bumper has been left out for 
brevity.

/*

 * Example 1 Version 2 



��
 * 

 * This program will connect to the robot, initialize it, 

 * move in a square monitoring the bumpers, and disconnect. 

 */

#include "Nclient.h" 

#define ROBOT_ID 1 /* the ID of the robot */ 

int wait_for_stop_or_bumper (int axis) 

{ . . . }

void main (void) 

{

  int i;

  /* setup connection parameters */ 

  SERV_TCP_PORT = 7019; 

  strcpy (SERVER_MACHINE_NAME, "zulu");

  /* establish connection */ 

  if (!connect_robot (ROBOT_ID))

    exit (0);

  /* initialize robot */ 

  conf_tm (2); 

  zr (); 

  ac (200, 200, 0); 

  sp (100, 100, 0);

  /* move in a square */ 

  for (i = 0; i < 4; i ++)

 {

    /* move straight */ 

    pr (200, 200, 0); 

    /* we can only wait for one wheel using this function.

     * consider the advantages and disadvantages of the ws() function

     * over our wait_for_stop_or_bumper() 

     */

    if (!wait_for_stop_or_bumper (STATE_VEL_RIGHT))

      break; 

    /* turn 90 degrees */ 

    scout_pr (0 , 900); 

    if (!wait_for_stop_or_bumper ( STATE_VEL_RIGHT))



��
      break; 

 } 

  /* stop robot */ 

  st(); 

  /* disconnect */ 

  disconnect_robot (ROBOT_ID); 

}

)LJXUH�����7KH�6HFRQG�9HUVLRQ�RI�WKH�)LUVW�([DPSOH

Having gained some familiarity with the robot, we 
are now going to develop a wanderer program. 
This program will cause the robot to wander 
around in an unknown environment. It will move 
forward until the front sonars detect an obstacle, 

then it will choose a new direction for motion 
based on the reading of the sonar to the rear and 
on the side. First, we will develop a few proce-
dures that will be helpful for the wanderer pro-
gram.

/* returns the minimum sonar reading of the front 5 sonars */ 

int get_min_dist (void)

{

  int i; 

  int min_value = 255; /* max. sonar reading */

  /* use sonars 0,1,and 2 and remember minimum value */ 

  for (i = 0; i < 3; i++)

    if (State [STATE_SONAR_0 + i] < min_value)

      min_value = State [STATE_SONAR_0 + i];

  /* use sonars 14 and 15 and remember minimum value */ 

  for (i = 0; i < 2; i++)

    if (State [STATE_SONAR_14 + i] < min_value)

      min_value = State [STATE_SONAR_14 + i];

  return (min_value);

}

The function get min sonar uses sonars 1, 2, 3, 15, 
and 16. It determines the shortest sonar reading 
and remembers it in min_value. Once all five sonar 
are examined, the smallest value is returned. This 

will help us in determining if an obstacle is in our 
way. Once we have determined that this is the case 
we want to choose another direction to wander. 
That can be done with the following procedure:

/* returns the angle that is the freest direction */ 

int get_best_dir (void)

{

  int i; 

  int max_value = 0; /* min. sonar reading */ 

  int best_dir; /* to remember the direction */

  /* use sonars 3 through 13 */ 

  for (i = STATE_SONAR_3; i <= STATE_SONAR_13; i++)



��
    if (State [i] < max_value)

    {

      /* remember value and direction */ 

      max_value = State [i]; 

      best_dir = i - STATE_SONAR_0;

  } 

  /* do we want to rotate left or right? */ 

  if (best_dir < 8)

    best_dir = best_dir - 16;

  /* return angle to rotate in 1/10 of degrees if enough space */ 

  if (max_value < 30)

    return (best_dir * 225); 

  else

    return (-1);

}

This function returns the angle in 1/10s of degrees 
that we should rotate in order to be facing into the 
direction with the most free space. In the for-loop 
we find the largest sonar reading among the sonars 
4 through 14; we remember that value in the vari-
able max value. The variable best dir stores the 
number of the sonar that had this value as its
reading. In order to do so we have to subtract 
STATE_SONAR_0, otherwise we would store the 
index of that sonar in the state vector.

After these values have been determined, we can 
compute the angle that we have to rotate the robot 
by to face into the freest direction. However, since 

it is faster to rotate clockwise by 10° that it is to 

rotate counterclockwise by 350° we change best dir 
to the appropriate negative number if necessary.

Since there should be a way to indicate that there is 
no free space at all, the function will return -1 if the 
largest sonar reading does not exceed 30. Other-
wise the angle is returned. As two neighboring 

sonar have an angle of 22.5°, we simply have to 
multiply by 225 to obtain the value in 1/10s of 
degrees.

Using these two functions and the 
wait_for_stop routine from the previous exam-
ple the wanderer looks as follows (again, for brev-
ity the bodies of the procedures are omitted):

/*

 * Example 2 The wanderer 

 * 

 * This program will let the robot wander around. 

 */

#include "Nclient.h" 

#define ROBOT_ID 1 

/* returns the minimum sonar reading of the front 5 sonars */ 

int get_min_dist (void) 



��
{ . . . }

/* returns the angle that is the freest direction */ 

int get_best_dir (void) 

{ . . . }

/* wait for a certain axis to stop */ 

void wait_for_stop (int axis) 

{ . . . }

void main (void)

{

  int i; 

  int angle;

  /* setup connection parameters */ 

  SERV_TCP_PORT = 7019; 

  strcpy (SERVER_MACHINE_NAME, "computer");

  /* establish connection */ 

  if (!connect_robot (ROBOT_ID))

    exit (0);

  /* initialize robot */ 

  conf_tm (2); 

  zr (); 

  ac (200, 200, 0); 

  sp (100, 100, 0);

  /* as long as there is free space */ 

  while ((angle = get_best_dir ())!= -1)

  {

    /* turn into that direction */ 

    pr (0, angle); 

    wait_for_stop (STATE_VEL_RIGHT);

    /* start wandering and monitor sonars */ 

    vm (100, 100, 0); 

    while (get_min_dist () < 30)

      gs();

  /* stop the robot and wait for it to be stopped */ 

  st();   

  ws (TRUE, TRUE, TRUE, 3);}



��
  /* disconnect */ 

  disconnect_robot (ROBOT_ID); 

}

This little program tries to keep a safe distance 
from obstacles. You might want to try to 
improve it. 



��
&+$37(5��

$'9$1&('�)($785(6

8VLQJ�WKH�6HQVRUV�

7KH�6RQDU�6HQVRUV�

6HQVRU�'HVFULSWLRQ�

The Sensus 200 is a ring of 16 Polaroid 6500 sonar 
ranging modules. The Polaroid 6500 is an acoustic 
range finding device that has been widely used in 
the mobile robotics community. It can measure dis-
tances from 6 inches to 35 feet, with a typical abso-
lute accuracy of +- 1 percent over the entire range.

The standard Polaroid system in long-range mode 
(the one currently used on the Nomad robot) emits 

56 cycles of a 49.4 kHz square wave through a 
transducer. A blanking period follows, during 
which the internal circuitry is reset and stabilized. 
The transducer then acts as a receiver, feeding the 
detected echoes in a time variable gain amplifier. 
The gain factor of this device increases with time to 
compensate for spreading loss and the attenuation 
of sound in air. The output of the amplifier then 
goes to a thresholding circuit. As soon as the 
threshold is exceeded, the time elapsed since the 
beginning of the transmission of the pulse is mea-
sured, and converted into distance through an 
appropriate calibration factor.

6HQVRU�3K\VLFV

)LJXUH������0RGHOL]HG�VRXQG�UDGLDWLRQ�IRU�WKH�3RODURLG�7UDQVGXFHU��IURP�/HRQDUG�

Sound characteristics The transducer does not emit 
energy homogenously in all directions, but instead 
form lobes of decreasing intensity, as illustrated in 

the chart of Figure 6.11.

According to the results of extensive experiments 
conducted by various researchers (Lang, Kuc, 

Leonard), the radiation pattern of Polaroid Trans-
ducers is not symmetric, and varies from one 
transducer to another. These effects are more sig-
nificant for the side lobes.

The attenuation of ultrasound in air increases with 
frequency, and depends on temperature and 
humidity. Typical values for 50 KHz are an attenu-
ation of 0.6 to 1.8 dB/m for variations in tempera-

ture from 17 to 28°C and variation in relative 
humidity from 15 to 70%. The speed of sound in air 
is expressed as c = 331.4 * sqrt(T/273) m/sec, T 

-20 dB

-80 dB

-60 dB

-40 dB

0 dB

-60 0 20 40 60-20-40

1. Most of the information relative to sonars in this section come 
from Leonard J., DurrantWhyte H., Directed Sonar Sensing for 
Mobile Robot Navigation, Kluwer Academic Publishers, 1992. 
Thanks to Dr. Billur Barshan, Bilkent University, Turkey for 
useful comments on the physics of the Sonar transducers.



��
being the ambient temperature in degrees K.

(OHFWURQLFV�FKDUDFWHULVWLFV

The following three sources of errors in range mea-
surements are related to the specifics of the sensor 
circuitry (Leonard):

■ Transmitted Pulse duration

All the timing is based on the assumption that 
the start of the transmitted pulse is the part of 
the returned echo that actually exceeds the 
detector threshold. If this is not the case, the 
error can be as much as 8 inches.

■ Time Variable gain amplifier

The ideal exponential curve that would exactly 
cancel beam spread and attenuation losses is 
approximated by a 12-step only piecewise con-
stant function. Even if this function was 
exactly given, it should be different according 
to temperature and humidity conditions. Since 
the returned energy is a function of the inci-
dent angle (as shown in the radiation pattern), 
the visibility angle changes with range.

■ Capacitive charge-up in the threshold circuit

For strong reflected signals, 3 cycles are 
enough to charge up to the threshold: the cali-
bration usually accommodates that delay. For 
weaker signals, charge-ups can take place over 
a considerably longer time, resulting in errone-
ously elongated range values.

One major source of uncertainty in distance 
estimation coming from these characteristics is 
the existence of weak returns, as opposed to 
strong returns:

■ Strong returns possess enough energy to 
exceed the threshold promptly, giving very 
accurate measurements,

■ Weak returns cause time-delay range errors: 
the threshold is reached only after a long 
charge-up and changing gain in the amplifier. 
The threshold is only exceeded by the random 
combination of a slow charging-up period and 
jumps in the non-linear time variable gain 
amplifier. 

7DUJHW�FKDUDFWHULVWLFV

Targets can be divided in two groups:

■ Reflecting objects, of dimensions larger than 

the wavelength (6.95 mm at 20°C),

■ Diffracting objects, of dimensions smaller than 
the wavelength.

Objects whose overall size is smaller than the 
wavelength are usually rare (one can think of wire 
fences for instance), but rough surfaces like con-
crete, or textured walls present small asperities 
which actually behave as diffractors, as the experi-
mental data will show. Smooth surfaces like metal-
lic desks, painted walls, doors, etc, are reflectors. 
Those are the most common in indoor environ-
ments, which supports the commonly heard asser-
tion that most indoor surfaces act as mirrors with 
respect to sound waves. Slightly rounded convex 
edges with radius of the order of the wavelength 
produce weak specular echoes: some ornamental 
(carved) table legs and cardboard boxes often have 
this character.

One consequence of the reflective properties of 
surfaces is the multiple echo effect: the sound wave 
bounces around, and eventually reaches the 
receiver after several reflections: because of attenu-
ation, the energy level of the incoming wave is 
very likely to be quite low, one possible origin of 
what is called a "weak return".

7\SLFDO�6RQDU�'DWD�

A good representation of sonar data is the sonar 
scan: a dot representing the measured distance is 
drawn on the sonar axis. Repeated measurements 
over a given angular range, for instance one every 
degree over the whole circle, give a sonar scan. 
Sonar scans are the basic data that can be used for 
map building or navigation purposes. Since the 
sonar are mounted horizontally on the robot, 
which can itself be oriented to any angle, one of 
them can be used directly to make measurements, 
using the robot to set it at desired angle and dis-
tance with respect to the targets.

■ Smooth flat surface

The scan of Figure 6.2 is typical of the response 
of a flat, smooth surface. The central feature is 
an arc of circle, centered with respect to the 
surface’s normal. This pattern is caused by the 
main lobe: although the sonar is rotating, as 
long as there is in the active cone of the main 



��
lobe a patch of surface normal to the direction 
of the wave, it gets reflected back. Since we are 
in the main lobe, where energy is high, the 
thresholding circuit is promptly triggered, and 
the measurement is very precise: we get an arc 
of circle of constant radius.

When the normal to the surface leaves the 
main lobe, the energy is reflected away from 
the source. However, the secondary lobe 
comes into effect, with the same property: if 
the normal to the surface is within the second-
ary lobe, the sound gets reflected. Since the 
secondary lobe carries less energy than the 
main lobe, we have a time-delay range error 
because the thresholding circuit takes more 
time to be triggered. We also get an arc of cir-
cle, but of slightly greater radius. Note that the 
secondary lobe dots may be accidentally 
aligned with the actual wall, which in the past 
have induced people to try to match lines to 
sonar readings, but this is purely coincidental: 
physics of the sonar dictates that circles should 
be fit to sonar scans.

)LJXUH������6RQDU�6FDQ�RQ�D�)ODW�DQG�6PRRWK�6XUIDFH�

The sonar rotating further, the secondary lobe also 
leaves the normal to the surface: nothing can be 
seen any more (there are actually other lobes to fol-
low, until the whole half circle, but they are too 
weak to give an answer), and the plots are drawn 

to infinity (equal to the maximum detectable dis-
tance). One interesting phenomenon can be 
observed at the junction of the main and secondary 
lobe: provided that the scan is detailed enough, 
one consistently gets readings that are extremely 
erroneous, more than twice the actual distance. 
These are caused by some low energy coming at 
the junction of the two lobes. The pattern of Figure 
6.1 shows a single frequency (f=49.9KHz), with 
zero energy at the junction of two lobes. The 
Polaroid sensor has a finite bandwidth around this 
resonant frequency. Therefore, the sidelobes of a 
range of frequencies are superposed. Each fre-
quency produces zeroes at slightly different loca-
tions, and the net superposed effect is not zero.

■ Rough flat surface

The scan of Figure 6.3 is typical of a rough sur-
face. It can be understood if we consider that a 
rough surface is made of numerous small 
asperities, of dimension close to the sound 
wavelength. Thus, the primary lobe always 
picks a small patch normal to its axis, and 
return the corresponding distance. This is the 
only case where the sonar scans bears a strong 
resemblance with the actual map of the room.

)LJXUH������6RQDU�6FDQ�RQ�D�)ODW�DQG�5RXJK�6XUIDFH�

■ Corner

The scan of Figure 6.4 is typical of a smooth 
corner. The central pattern is an arc of circle 
centered about the corner. It comes from a 
double specular reflection at the corner (one 



��
from each surface). We also have two neigh-
boring arcs that we can attribute to the second-
ary lobes. The leftmost and rightmost arcs 
come from specular reflection on the corner’s 
sides. One interesting point is that the corner’s 
side reflections could also give secondary lobe 
arcs, if the sonar was a bit farther from the cor-
ner. In the present case, it happens to be that 
these secondary lobe arcs actually come from 
the corner, as we verified by unfolding it (then 
the arcs disappeared).

Note that when the sonar is close to the corner, 
it is difficult to predict where the returned 
echo is actually coming from, because there is 
a competition between a weak, but specular 
echo (the secondary lobe on the corner side), 
and a strong, but distant echo (the main lobe 
on the corner). Additionally, there may be 
multiple echo phenomena that can create addi-
tional error, depending whether the first echo 
to trigger the threshold circuit comes from a 
single-hit echo, or from multiple reflections on 
the corner sides.

The language commands related to sonar sen-
sors are conf sn,get_sn; the sonar data is 
stored in the State vector, at indexes ranging 
from STATE_SONAR_0 to 
STATE_SONAR_15. Refer to "Chapter 5 - Pro-
gramming the Nomad", and to the "Language 
Reference Manual".

)LJXUH������6RQDU�6FDQ�RQ�D�&RUQHU�

7KH�6HWXS�)LOHV�

The setup files are a convenient way to set a num-
ber of configuration parameters for the applica-
tions using the Nomad robot. The file world.setup 
mostly sets graphic parameters for the MAP win-

dow of the graphic interface. It also sets the com-
munication port (Unix socket) that will be used by 
the client programs to connect to the server, and 
the default configuration file(s) for the robot(s). 
The robot.setup file sets graphic parameters for 
the ROBOT window, and simulation parameters. It 
also sets the connection parameters for the robot.

You can have only one setup file for the MAP win-
dow; its default name is world.setup: this name is 
used when you start an Nserver without argu-
ments on the command line. If you do use argu-
ments, the first one should be the name of the MAP 
window setup file (any name), and the following 
arguments should be the name(s) of ROBOT setup 
files. The server will automatically create as many 
robots as there are ROBOT setup files. There is also 
an option in the MAP setup file that allows you to 
specify ROBOT setup files as well. Any command 
line specification will override the setup file speci-
fication.

If you want to change any of the parameters, you 
simply edit the file and modify the values. Upon 
restart of the Nserver, your new values will take 
effect. The syntax of both files is the same: after the 
Copyright banner, the file is subdivided in sections 
with a section title in brackets:

[graphics] 

In each section appear items with their values, sep-
arated by the equal sign: 

grid origin = +0+0 

Comments start with a semi column and end at the 
end of the line. Line continuation (if the data is too 
long to fit on one line) is possible by putting a 
backslash at the end of each line except the last 
one.

7KH�ZRUOG�VHWXS�ILOH�

[physical] 

■ size encodes the physical size of the world 
for simulation and graphic representation pur-
poses. The world is rectangular; its size is 
expressed in tenth of inches. World units are 
also tenths of inches. After the size comes the 
origin. An origin of (0,0) will be at the left bot-
tom corner of the rectangle. Shifting the world 
by -Width/2, -Height/2 will set the origin to 



��
the middle of the rectangle, which is the 
default. The default value of 87360x87360-
43680-43680 is a square world of 1/64th sq. 
mile, with origin at the center.

[graphics]

■ graphics is off if the graphic interface (Map 
window, robot window) is to be disabled by 
default, for instance to speed up simulations. 
This can also be done by toggling the Graphics 
ON switch in the VIEW menu of the MAP 
window.

■ world_geom is the pixel size and position of 
the MAP window, expressed in X fashion, 
upon creation of the graphic interface. The 
position is the position of the left top corner of 
the MAP window relatively to the left top cor-
ner of the screen. These can be modified using 
the window manager.

■ world_zoom is the default zooming factor; 
100% is 1 pixel per world unit (1/10th inch). 
50% is 0.5 pixel per world unit. The default 
12.5% is 0.125 pixels per world unit, which is 1 
pixel for 8 tenths of an inch. Zooming can also 
be achieved using the zooming options of the 
VIEW menu.

■ world_center is the world position of the 
center of the MAP window upon creation of 
the graphic interface. It is expressed in world 
coordinates (10th of inches) in the world coor-
dinate system. This position can also be 
changed in a variety of ways: the horizontal 
and vertical slides of the MAP window, and all 
the options: ZOOM IN, ZOOM OUT, CEN-
TER, CLIP, SLIDE, of the VIEW menu.

■ grid_origin, grid_incr relate to a rect-
angular grid laid on the MAP window. This 
grid is a visual aid for the user: it provides the 
world dimensions, and can be used (for 
instance) when creating obstacles. The origin 
and increment size of the grid are expressed in 
world coordinates, relative to the world origin.

■ grid_dot_color sets the colors for the grid 
dots. 

■ grid_shad_color sets the colors for the 
shadow dots. These shadow dots are offset by 
1 pixel right and down relative to the regular 

grid dots. They allow the grid to be seen even 
in the presence of obstacles.

■ default_map is used as a short cut if you use 
frequently the same map and want to load it 
automatically upon creation of the server. It is 
set to a path to the map you want to use, for 
example: /maps/my office.map. The 
default value is none.

[menu toggle]

■ display is set to solid if you want the robot 
to be represented as a solid circle in the MAP 
window, to outline if you want it to be rep-
resented as a hollow circle.

■ encoder and actual enable the display of 
the encoder and real robots (see Section 4.1.2). 
The default value is on. This display can be 
dynamically changed using the SHOW menu 
of the MAP window.

■ grid enables the display of the grid; its 
default value is on.

[connect]

■ serv_port is the number of the port that cli-
ent programs may use to connect to the server. 
This number has to match the number set by 
the client program (variable 
SERV_TCP_PORT).

[robots]

■ setup_files sets the names of the robot 
setup files. This is used if you usually work 
with several robots, and want to avoid creat-
ing them by hand each time you run an 
Nserver. Each name is separated from the 
next by a white space. The server will create as 
many robots as there are setup files. The setup 
files specification can be overridden by com-
mand line arguments.

ã If you want to create three identical robots, put 
the name of your setup file three times on this 
line.

7KH�URERW�VHWXS�ILOH�

[simulation]

■ sim_speed is the ratio simulated time/clock 
time. If set to 2.0, the simulation will run twice 
as fast as the real time. The simulation can also 



��
be accelerated/decelerated using the CON-
TROL menu of the MAP window.

■ timeout is the default timeout value for the 
simulated robot. It is equivalent to the default 
value given in the file timeout.cfg on the 
real robot (/usr/local/share/robotd). 
See also the command conf_tm.

■ translation sets the default speed for both 
the right and left wheels. See also the com-
mand sp.

■ steering and rotation are ignored when 
the simulator is in Scout mode.

[infrared]

Everything in the infrared section is ignored when 
the robot is a Scout.

[sonar]

■ firing_rate and firing_order have 
the same meaning as the corresponding 
parameters of the function conf_sn: the inter-
val between two firings in slices of 0.004 secs, 
and the firing order. However, since dynamic 
simulation of the sonars is not implemented, 
only the list firing order is actually used to 
detect which are the active sonars. As with the 
parameter order[] of the function conf_sn, a 
marker 255 can be used to stop the list.

■ dist_min and dist_max set the range of the 
simulated sonars in tenths of inches.

■ halfcone is half the angular range of the 
main lobe of the sonar, in tenths of degrees. 
If this value is set to 0, a simple ray model of 
the sonar is used, in which the actual dis-
tance to the object hit by the beam is simply 
modified by the error coefficient described 
below. If the value is not zero, a cone is used 
to simulate the sound beam, and the inci-
dence angle of the beam to surfaces is con-
sidered. Using the simple model increases 
the speed of the simulation.

■ critical is the maximum angular difference 
in tenths of degree between the sonar axis and 
the normal to the surface for the sensor to 
return a value. If the difference is larger, the 
simulated sonar is assumed not to have got 
any echo back, and the maximum distance will 

be returned.

■ overlap sets the minimal apparent size of a 
surface to be detected when using the conical 
model. It is expressed as a ratio (0.5 = 50%) to 
the angular range of the main lobe. If the angu-
lar sector connecting the two endpoints of a 
segment within the sound cone is larger than 
overlap * (2 * halfcone), then this segment is con-
sidered visible.

■ error is an absolute random error factor. It is 
expressed as a percentage of the real value: the 
resulting distance is computed as value * (1 + 
random[-1,1] * error), so if the item error is set to 
0.2, the simulated values will be randomly dis-
tributed between 80% and 120% of the geomet-
ric values.

[laser]

This section is ignored when the simulator is in 
Scout mode.

[other]

■ bumper_mode is on if the simulated robot has 
bumpers, off if not.

■ compass_mode is ignored by the Scout.

[mask] 

This value is ignored on the Scout.

[motion]

■ bounce sets the distance that the simulated 
robot should go back after hitting a wall. 
The value is the time in seconds during 
which the bouncing motion occurs. The dis-
tance bounced is the current speed multi-
plied by this value. Note that a simplified 
control model is used: the wheels are sup-
posed to be still spinning forward during 
the bouncing motion, so that the encoder 
robot will move on (and will probably cross 
the obstacle) while the actual robot will be 
pushed off the obstacle.

■ pos_*_bias, zero_*_bias and 

neg_*_bias set the error model for the motion 
of the two axes: Right wheel and Left wheel. 
They are percentage errors on robot velocities. 
For both axes, the same model is used:

- systematic bias: zero_*_bias 



��
- directional bias: pos_*_bias and neg_*_bias 

- directional random error interval: pos_*_int 
and neg_*_int;

Directional bias means a bias related to a par-
ticular direction of motion, positive or nega-
tive. If commanded * is the commanded value 
(translation, steering or rotation), then the sim-
ulated value will be:

if (commanded_* > 0) 

simulated_*=commanded_*(1+zero_*_bias

+pos_*_bias)(1+random[-

1,1]*pos_*_int) 

else 

simulated_*=commanded_*(1+zero_*_bias

+neg_*_bias)(1+random[-

1,1]*neg_*_int)

The provision for a difference in negative and posi-
tive is to take into account gravity when the robot 
has to move on slanted surfaces. It is actually 
something that has been implemented for future 
releases when the client program will be able to set 
simulation parameters. For now, the difference can 
be ignored.

[graphics]

■ wind_name is the name of the ROBOT win-
dow for the associated robot. 

■ robot_geom is the pixel size and position of 
the ROBOT window, expressed in X fashion, 
upon creation of the graphic interface. The 
position is the position of the left top corner of 
the ROBOT window relatively to the left top 
corner of the screen. It can be modified using 
the window manager.

■ robot_zoom is the default zooming factor; 
100% is 1 pixel per world unit (1/10th inch). 
50% is 0.5 pixel per world unit. The default 
12.5% is 0.125 pixels per world unit, which is 1 
pixel for 8 tenths of an inch. Zooming can also 
be achieved using the zooming options of the 
VIEW menu.

■ robot_center is the world position of the 
center of the ROBOT window upon creation of 
the graphic interface. It is expressed in world 
coordinates (1/10th of inches) in the world 

coordinate system. This position can also be 
changed in a variety of ways: the horizontal 
and vertical slides of the ROBOT window, and 
all the options: ZOOM IN, ZOOM OUT, CEN-
TER, CLIP, SLIDE, of the VIEW menu.

■ ssen_geom, lsen_geom, joy_geom set 
the pixel size and position of the SHORT SEN-
SORS, LONG SENSORS and JOYSTICK win-
dows respectively. These can be modified 
using the window manager.

■ com_coor and rec_coor set the pixel posi-
tion of the COMMAND LINE window and the 
RECORDER window. These can be modified 
using the window manager.

■ *_color set the colors of the different graphic 
entities displayed in the ROBOT, SHORT SEN-
SORS and LONG SENSORS windows, includ-
ing actual and encoder robot.

[menu toggle]

■ bumper, infrared_ray, ..., 

long_local set the default values of the tog-
gle switches that govern graphic displays in 
the SHORT SENSORS and LONG SENSORS 
windows. See Chapter 4 for a description.

■ robwin_bumper, ..., robwin_laser set 
the default values of the toggle switches that 
govern graphic display of sensor data in the 
ROBOT window. See also the SHOW menu for 
this window.

■ display is set to solid if you want the robot to 
be represented as a solid circle in the ROBOT 
window, to outline if you want it to be repre-
sented as a hollow circle.

■ trace is set to outline or solid if you want the 
robot to show its path as it moves, to none else. 
See also the SHOW menu for this window.

■ encoder and actual enable the display of 
the encoder and real robots (see Section 4.1.2). 
The default value is on. This display can be 
dynamically changed using the SHOW menu 
of the ROBOT window.

[recorder]

■ infraredp, .., commandp set the default 
values of the item that will be recorded when 



��
starting the recorder. See also Section 4.3.5.

■ tape_len sets the maximum length (in 
recordings) of a recorder "tape".

[connect]

■ conn_type select between serial and TCP/IP 
(ethernet) communication.

■ machine is the machine name of the robot. It 
is the name you use to login or telnet to the 
robot. The robot comes with its name set as 
nomad.

■ tcpip_port is the port used by the server to 
communicate with the robot via ethernet.

■ serial_port and serial_baud configure 
the serial connection (usually radio modem)

■ retrans sets the repeat of every message that 
generates a time out. It should be used only 
with serial port connection.

■ normal_timeout is the timeout for all com-
mands that are supposed to return immedi-
ately (zr and ws are not: they have their own 
internal timeout).

8VLQJ�/,/2��WKH�/,QX[�/2DGHU�

The LILO loader allows you to select different 
bootable partitions on the robot’s hard drive. The 
robot comes with three different partitions: 
linux-ro (which is the default), linux-rw, and 
ms-dos.

■ linux-ro

This partition is read-only. The files cannot be 
written. A clean shutdown of the system is not 
required, and the robot daemon robotd is 
started automatically.

■ linux-rw

Files are writable on this partition, but a clean 
shutdown of the system is required. The robot 
daemon is started automatically.

■ ms-dos

This partition is not used for the robot (no 
robot daemon or robot support), but is some-
times useful for some subsystems (like vision 
systems).

When the robot is powered up, the 

LILO boot: 

prompt appears after boot-up messages. You will 
have 5 seconds to start typing the name of the par-
tition you want to boot from. TAB will display the 
list of available partitions. If no partition is entered, 
the default partition will be used. Refer to the 
Linux documentation for indications on how to 
change the boot default partition.



��
&+$37(5���

9,6,21�5()(5(1&(�

This chapter describes the use of different vision 
system available for the Nomad Super Scout robot. 
The Sensus 460 is a color frame grabber that merely 
discretizes the video signal and makes the result-
ing memory image available to the user.

6HQVXV�����

The frame grabber needs to be connected to the 
robot for power and video signal using the connec-
tors on the top plate. Mount the camera and point 
it to some meaningful scene. Then plug a VGA 
monitor and a keyboard in the robot. You can run 
the demo by executing:

/usr/local/robot-devices/bttv/exam-
ples/video

if your robot is configured with a bttv (VideoLogic) 
video capture card. If your robot is configured 
with a Matrox Meteor video capture card, execute:

/usr/local/robot-devices/meteor/exam-
ples/video

Please refer to the supplied video capture card 
documentation if you are unsure which card your 
robot is configured with. When running the video 
program, you will see a 5 frame-per-second update 
of the video data from the camera. Make sure that 
the iris is not closed, which could result in little or 
no image.



��
$33(1',;�$�

%8*�5(3257�)250

Thank you for reporting bugs, malfunctions and 
suggested improvements regarding this release of 
Nomadic’s software. Please email the following 
information to bugs@robots.com. This information 
will help us to figure out your problem faster.

,QIRUPDWLRQ�$ERXW�<RXUVHOI

■ Your Name

■ Your Organization

■ Your E-mail address

■ Your robot(s) serial number(s)

■  The date of this report

,QIRUPDWLRQ�$ERXW�<RXU
(QYLURQPHQW

■ Your machine type (example: Sparc10)

■ Your operating system (example: SunOS)

■ The program and version you are using
(example: Nserver version 2.6.1)

'HVFULSWLRQ�2I�<RXU�3UREOHP

Include the answer to the following questions:

■ What were you doing when the problem 
occurred? 

■ Is the problem reproducible? 

■ Does the problem occur on the robot and/or 
the simulator?

$GGLWLRQDO�,QIRUPDWLRQ

■ Copy of the world.setup and 
robot.setup files 

■ Core file, if there is one

■ Smallest sample of code that reproduces the 
problem 

You can also mail this form to:

Nomadic Technologies Software Department 
2133 Leghorn St. 
Mountain View, CA 94043-1605 
USA



��
$33(1',;�%

$33/,&$7,21�127(

6HWXS�DQG�&RQILJXUDWLRQ�RI�6FRXW�
&RPPXQLFDWLRQV�8VLQJ�D�3DLU�RI�
0HUFXU\�5DGLR�0RGHPV

By Jake Sprouse
Nomadic Technologies, Inc.
August 1999

,� ,QWHQGHG�$XGLHQFH

This application note applies if you own a regular 
Nomad Scout mobile robot, along with a pair of 
Mercury radio modems with which you intend to 
do serial cable replacement. This document does 
not apply if you have a Nomad SuperScout robot 
(i.e. a robot with an onboard PC), or if you are 
using one Mercury radio modem along with a 
Proxim RangeLAN2 access point.

,,� 5HFRPPHQGHG�5HDGLQJ

This document references the Scout Beta 1.2 
"READ THIS FIRST" document (referred to below 
as the Scout README) which you should have 
received with your Scout. You also should have 
received a manual with your Mercury radio 
modems. Both of these documents will be helpful 
in understanding the instructions below. You will 
also need to understand enough about serial com-
munications to know the difference between serial 
ports which are wired as DCE (data communica-
tions equipment) and DTE (data terminal equip-
ment).

,,,� &RQQHFWLQJ�WR�WKH�PRWRU
FRQWUROOHU

The controller board on Nomad Scout-series robots 
is called the Intellisys 175 (I175) board. This board 
has two serial ports via which it can accept com-
mands. The first is the CONSOLE port and is 
labeled as SERIAL 1 on the board itself. This port 
presents a text-based interface which can be 

brought up for debugging purposes by connecting 
a terminal or terminal-emulator to it at 9600 baud, 
8 data bits, 1 stop bit, and no parity. The CON-
SOLE port is a female plug and is wired as DCE, 
meaning one can connect a desktop PC to it using a 
standard serial cable (no gender changers or null-
modem adapters).This serial port is usually 
brought out to an equivalently-wired serial port on 
the top front panel of the robot.

Normally, however, commands are accepted over 
the HOST port which is labeled as SERIAL 2 on the 
I175 board. Data is transmitted through this port in 
a binary packetized format at 38400 baud, 8 data 
bits, 1 stop bit, and no parity, giving much more 
efficient communications.

This port is wired at DTE although it is also a 
female plug; this means that to connect to it using a 
desktop PC one would need to use a standard 
serial cable along with a null-modem adapter.

On the top front panel of the robot there is a serial 
port adjacent to the CONSOLE port which is 
intended to connect to the HOST port. It uses a 
female connector and is wired as DCE, such that 
you could connect to it from a PC using a serial 
cable just as you would with the CONSOLE port. 
Depending on how your robot was shipped, this 
external port may or may not actually be con-
nected to the SERIAL 2 port on the I175. If your 
robot was shipped with no Mercury radio modem 
installed, then it is connected via a special cable. 
Otherwise, this special cable is left unconnected 
under the top panel and the SERIAL 2 port is con-
nected directly to the pre installed Mercury.

The following table describes how one would con-
nect to the HOST port of your robot from both a 
desktop PC (wired as DTE) and a Mercury (wired 
as DCE); use a standard RS232 plus the listed 
adapter:

Connecting from:  to: Adapters needed:

SERIAL 2 on I175 Desktop PC Null Modem Adapter



��
,9�&RQILJXULQJ�1VHUYHU

The best way to approach the problem of configur-
ing your communications system is to break it 
down into parts. First we will make sure that 
Nserver is configured correctly. We will test the 
configuration with the workstation connected 
directly to the robot via serial cable. First, you may 
want to lift the wheels of the robot off of the floor 
so that it is not able to move if Nserver sends a 
motion command; you can use a block of wood or 
a couple of textbooks to support it. Now, connect 
your workstation to the SERIAL 2 port on the I175 
(or the HOST port on the front top panel if it is con-
nected) using a standard RS232 cable plus the 
adapters listed in the table above. You may need to 
remove the top plate of your robot in order to 
access the I175; this procedure is described in the 
Scout README.

Once you have the cable connected, turn the robot 
on and proceed with configuring Nserver. 
Nserver’s configuration is stored in the 
robot.setup file. At the end of a file is a section 
called [connect]; you should edit that section to 
look like the following:

[connect]

conn_type  = serial ; Taipei or serial

machine  = nomad  ; for tcpip

tcpip_port  = 65001  ; for tcpip

serial_port  = 1   ; for serial: 1 = ttyS0, 2 = ttyS1

serial_baud  = 38400 ; for serial

retrans = off

normal_timeout = 10.0 sec

special_timeout = 10.0 sec

server_delay  = 0.002 sec; the avg roundtrip delay 
between client and server

robot_delay = 0.01 sec ; the avg roundtrip delay 
between client and robot

The setting for serial_port may be different if you 
are connecting to something other than the first 
serial port on your workstation.

Now start Nserver and select "Real Robot" from 
the "Robot" menu. Once connected, you should be 
able to joystick the robot using the joystick menu.

9� &RQILJXULQJ�WKH�0HUFXU\�UDGLR�
PRGHPV

Now, the only thing left to do is to establish a wire-
less link in place of the serial port. To do this, we 
will configure your radio modems for RMP 
passthough mode. RMP (Radio Modem Protocol) 
is a protocol designed by Nomadic specifically for 
data transmission over wireless links. Any data 
received on the serial port is packetized into Ether-
net frames and sent to the opposite unit. How the 
data is packetized and what opposite unit to send 
to is completely configurable by you.

The default configuration for your Mercuries puts 
them into RMP passthrough mode. However, we 
will discuss all of the relevant settings.

First, look in the lan0 configuration file. This is 
where we will set up radio communications. The 
important parameters here are the radio domain 
and the station type. These are both found in the 
[hardware] section of this file. The domain 
parameter must be the same on both of your radio 
modems. You may want to set it to something 
other than the default of 1 if you have other Mer-
cury radio modems in your lab; this will serve to 
isolate the pair from the others. The "station type" 
describes whether your units should be masters, or 
stations which associate with them. Configure the 
Mercury which will be attached to your worksta-
tion as a master, and configure the one to be 
attached to your Scout as a station.

HOST port on top panel Desktop PC (none needed)

SERIAL 2 on I175 Mercury Gender Changer

HOST port on top panel Mercury
Null Modem Adapter + 
Gender Changer

Connecting from:  to: Adapters needed:



��
Now, go to the uart0 file. This file describes what 
the Mercury does with data destined to or received 
from the serial port; we will configure it to use 
RMP passthrough mode for this data. In the 
[hardware] section, set the baud rate to 38400, 
and make sure the data bits are set to 8, the parity 
is set to none, and the stop bits are set to 1; this 
matches the configuration of the I175’s HOST port.

The [software] section describes how to pack-
etize data received on the serial port; i.e. how to 
determine when a packet of data has been 
received, and how that packet of data should be 
sent to the wireless network. To accommodate the 
data protocol used in communicating to the I175 
board, we set the "input timeout" parameter to 40 
(characters, which is the maximum packet size) 
and we set the "delimiters" parameter to "0x5c", 
which is the character used to signify and end of 
packet. We also set the "protocol" parameter to 
"passthrough" which tells the unit to send these 
data packets to the configured network protocol 
verbatim (i.e. pass them through).

Now, scroll down to the [passthrough] section. 
The only parameter here is called "socket" and it 
tells us which network binding should be used to 
pass the data to. Set this to "rmpbind".

Next, find the [rmpbind] section. This is where 
we configure how RMP will work. The default set-
tings will be adequate here (if you think you need 
more configuration, please consult the "Mercury 
User’s Guide"). The protocol should be set to 
"rmp" meaning that the RMP protocol should be 
used for this network binding. The destination 
address parameter should be set to "dynamic"; this 
means that packets are sent to all RMP units until 
an RMP packet is received, after which packets 
will be sent to that unit only (this has the effect of 
making the two units in your system "find" each 
other automatically).

Save this configuration in both of your radio 
modems and reset them. You should see the MAS-
TER LED light up on the master radio modem, 
after which the STATION LED will light up on the 
other unit. Now connect the "master" radio modem 
to your workstation.

You can run a simple test here if you like. Using a 
terminal emulation package on your workstation 

configured for 38400 8N1, type some random char-
acters. You should see the SERIAL RX light on the 
Mercury flash, indicating that the characters are 
being received properly (if you get an ERROR 
LED, check the [hardware] section of the uart0 
file). After you’ve typed about 40 characters, you 
should see the RADIO Tx/Rx LED light up on both 
Mercuries and the SERIAL TX light on the second 
Mercury, indicating that the data was successfully 
passed through (it may be difficult to see these 
lights as the flash very briefly).

Now, connect the "station" radio modem to 
SERIAL 2 on the I175 (or the HOST port on the 
front top panel if it is connected) using a standard 
RS232 cable plus the adapters listed in the table 
from Section III.

Again, you may need to remove the top plate of 
your robot in order to access the I175. Apply 
power to this Mercury using the supplied jack.

At this point the serial cable is replaced, and you 
should be able to joystick the robot from Nserver 
as described in Section IV.


	Where can I get help?
	Where can I get software?
	Disclaimer and Warranty Information
	Conventions
	Contents
	Chapter 1

	Introduction
	Chapter 2

	The Scout and Super Scout
	Overview
	Reuse of the API
	Hardware
	Power buttons
	"Host" Serial Port
	"Joystick" Port
	"Console" Port
	VGA Port
	Keyboard Port
	Radio Modem Power
	AC Receptacle
	Status LEDs

	Chapter 3

	Getting Started
	Quick Start
	Installing the batteries
	Starting the robot
	Moving the robot around using the joystick
	Running the Sonar Bounce Demo
	3.1.5 Configuring the Network
	Regular Scouts with a Mercury Radio Modem
	Super Scouts without a Mercury Radio Modem
	Super Scouts with a Mercury Radio Modem
	Configuring the Mercury for Passthrough mode
	Configuring the domain of your Mercury

	Configuring the on-board computer
	Starting a Server
	Connecting to the Robot
	Moving the robot

	Shutdown
	Introduction To Programming
	Battery Maintenance Guidelines
	Power System
	On-board Battery Charging and AC Power
	Battery Monitoring
	Configurable Auxiliary Power
	The Status Beeper
	Usage
	Storage
	Battery Lifetime
	Summary
	Where to go next?

	Chapter 4

	The Graphic Interface
	Introduction
	The simulator
	Running the Nserver with arguments

	The Map Window
	The File Menu
	The Edit Menu
	The Obstacles Menu
	The View Menu
	The Show Menu
	The Control Menu

	The Robot Window
	The Robot Menu
	The View Menu
	The Show Menu
	The Refresh Menu
	The Panels Menu

	The ShortSensors Window
	The Options Menu

	The LongSensors Window
	The Options Menu


	Programming the Nomad
	Programming Concepts
	Programming Modes
	Which of these two modes should I use?
	How can I switch between these modes?
	Are the modes compatible?
	How can I specify to which robot/server I want to connect?
	Simulated vs. Real Robot
	C and C++

	The Global Vectors
	The State Vector

	Commands
	Communication Commands
	Motion Commands
	Sensing Commands
	5.3.4 Server Commands

	Some Examples

	Advanced Features
	Using the Sensors
	The Sonar Sensors
	Sensor Description

	Sensor Physics
	Electronics characteristics
	Target characteristics
	Typical Sonar Data

	The Setup Files
	The world.setup file
	The robot.setup file

	Using LILO, the LInux LOader

	Vision Reference
	Sensus 460
	Appendix A

	BUG REPORT FORM
	Information About Yourself
	Information About Your Environment
	Description Of Your Problem
	Additional Information
	Appendix B

	Application Note
	Setup and Configuration of Scout Communications Using a Pair of Mercury Radio Modems
	I. Intended Audience
	II. Recommended Reading
	III. Connecting to the motor controller
	IV. Configuring Nserver
	V. Configuring the Mercury radio modems


