
Formal Methods for the Speci�cation and

Design of Real-Time Safety Critical

Systems�

Jonathan S. Ostro�

April, 1992

Abstract

Safety critical computers increasingly a�ect nearly every aspect of
our lives. Computers control the planes we
y on, monitor our health

in hospitals and do our work in hazardous environments. Comput-
ers with software de�ciencies that fail to meet stringent timing con-

straints have resulted in catastrophic failures. This paper surveys
formal methods for specifying, designing and verifying real-time sys-

tems, so as to improve their safety and reliability.

�To appear in Journal of Systems and Software, Vol. 18, Number 1, pages 33{60, April
1992. Jonathan Ostro� is with the Department of Computer Science, York University
4700 Keele Street, North York, Ontario, Canada, M3J 1P3. This work is supported by
the Natural Sciences and Engineering Research Council of Canada.

1

CONTENTS 2

Contents

1 Introduction 3

2 De�ning the terms 6
2.1 Major issues that formal theories must address : : : : : : : 13

3 Real-Time Programming Languages 14

4 Structured Methods and/or Graphical Languages 15
4.1 Structured Methods : 15
4.2 Graphical Languages with a formally de�ned semantics : : 16

4.2.1 Statecharts and synchronous languages: : : : : : : : 16
4.2.2 Petri Nets : 17

5 Logics and Algebras 21
5.1 Real-Time Temporal Logic : : : : : : : : : : : : : : : : : : : 24

5.1.1 The TTM/RTTL framework | explicit clock linear
logics : 26

5.1.2 MTL | hidden clock linear logics and other RTTL
fragments : 32

5.1.3 Branching time temporal logics : : : : : : : : : : : : 36
5.1.4 Interval and other temporal logics : : : : : : : : : : 38

5.2 Process Algebras : 39
5.2.1 UPA | Untimed Process Algebras : : : : : : : : : : 39
5.2.2 TPA | Timed Process Algebras : : : : : : : : : : : 42

5.3 RTL | Real Time Logic and Event Action Models : : : : : 48
5.4 Assertional and other formal methods : : : : : : : : : : : : 50

5.4.1 Real-Time Hoare Logic : : : : : : : : : : : : : : : : 50
5.4.2 Putting Time into Proof Outlines : : : : : : : : : : : 51

5.5 Hybrid Models : 52

6 Future trends 54

1 INTRODUCTION 3

1 Introduction

Computers are increasingly used to monitor and control safety critical sys-
tems. Real-time software controls aircraft, shuts down nuclear power reac-
tors in emergencies, keeps telephone networks running, and monitors hos-
pital patients. The use of computers in such systems o�ers considerable
bene�ts, but also poses serious risks to life and the environment.

Safety critical systems must satisfy real-time constraints if they are
to e�ectively perform their intended function. The newsletter Software
Engineering Notes regularly reports incidents involving malfunctioning of
real-time or embedded computer systems. For example, the �rst
ight of
the space shuttle was delayed by a subtle timing error, which was traced to
an improbable race condition in the
ight control software [31]. In another
incident, a software error caused a stationary robot to move suddenly with
impressive speed, to the edge of its operational area. A nearby worker was
crushed to death. The �ring mechanism of an already deployed ballistic
missile system was recently analyzed using methods discussed in this survey.
It was discovered that a certain sequence of events, unknown to the design
team, would lead to the inadvertent �ring of a missile [40].

Real-time software must satisfy not only functional correctness require-
ments, but also timeliness requirements. For example, consider the follow-
ing \hard" real-time constraints: if the temperature of a nuclear reactor
core is too high an alarm must be generated within some deadline; spray
painting a car on a moving conveyor must be initiated at some suitable
time and terminated some time later; when an aircraft enters an air tra�c
control region, the
ight controller must be informed in a timely fashion;
once the approach of a train is detected, car and pedestrian tra�c at the
train intersection must be halted before the train reaches the intersection;
if the computer controlling a robot does not command it to stop or turn in
time, the robot might collide with another object on the factory
oor.

There is general consensus in the software and control systems literature
that real-time systems are di�cult to model, specify and design [142,42,17,
121,74,137,73]. In addition, experience has shown that software components
of systems are problematic perhaps even more so than mechanical or other
hardware components.

Software is complex (consider the documentation needed for even simple
modules), non-robust (small errors have major consequences) and software

1 INTRODUCTION 4

is notoriously di�cult to test (the number of test cases that must be checked
becomes unmanageably large even in small systems) [115].

This does not necessarily mean that the software controlling real-time
systems is poorly designed. Many companies do as much as is commercially
feasible with current design methods to make their products more reliable.
However, as the burden of controlling complicated systems is shifted onto
the computer, so does the complexity of the resulting software increase.
Old-fashioned servo-control systems could be tested in isolation. The new
more complex software controllers are more di�cult to check exhaustively,
no matter how intelligently designed the test suite is.

It has been conjectured that formal, mathematically precise methods
should be used to design real-time safety-critical systems. Turning this
conjecture into sound practice has proved to be extremely di�cult | many
practically-oriented software engineers will probably consider the conjecture
to face insurmountable hurdles.

But what bene�ts do \theorists" hope to obtain by the use of a formal
framework? A list of the bene�ts includes:

� In the process of formalizing informal requirements, ambiguities, omis-
sions and contradictions will often be discovered.

� The formal model may lead to hierarchical semi-automated (or even
automated) system development methods.

� The formal model can be veri�ed for correctness by mathematical
methods (rather than by intractable case by case testing).

� A formally veri�ed subsystem can be incorporated into a larger system
with greater con�dence that it behaves as speci�ed.

� Di�erent designs can be evaluated and compared.

Some researchers think that a speci�c real-time veri�cation methodol-
ogy is not needed. Conventional wisdom dictates that programs should be
designed to function correctly, independent of hardware speed. One ex-
treme position [138] views introducing time with grave suspicion. Time
may be an issue in implementation (\use a faster machine if you miss the
deadline") but should never appear in a speci�cation. Furthermore, there

1 INTRODUCTION 5

is a danger in overspecifying and making the veri�cation task more com-
plex than it ought to be. In contrast, de Roever [22] considers it essential
that foundational research be undertaken into formal methods for real time
systems if reliable and safe systems are to be constructed.

If the designer is dealing with �xed schedules on a single processor,
then it may be possible to get away with using untimed standard veri�-
cation methods. Certainly one should abstract out time and use standard
techniques wherever it is possible to do so. However, the work discussed in
this survey clearly shows that tampering with the speed of the computer
will not solve the main problems facing the designers of real-time software.

Time is not just another programming variable. Time is continuous,
monotonic and divergent whereas program variables generally do not have
such properties. Since time ranges over an in�nite domain, all the tools that
have been developed for �nite state veri�cation cannot be naively applied
to real-time systems. With some e�ort, �nite state methods can be made to
work for real-time systems, but to do this certainly requires the adoption of
speci�c formalisms to deal with explicit timing constraints. Proof systems
for dealing with untimed in�nite state systems must be re�ned if they are
to deal safely with timed systems.

If time dependencies are introduced into a design, then there should be
good reasons to do so. Mok [92] cites the following cases in which timing
constraints play an important role.

� The control surfaces of some modern aircraft must be adjusted at a
high rate to prevent catastrophic destruction. This places an upper
bound on the response time of the avionics software system. Lower
bounds are needed in operating systems which require a potential
intruder to wait for some minimum time before retyping a password
that has been entered incorrectly. In these cases, the \physics" of the
application dictates the timing requirements.

� In the Byzantine Generals Problem, the non-faulty processors (gener-
als) must arrive at a consensus to perform some action in the presence
of other processors that can exhibit faulty behaviour. There is no
asynchronous solution to the Byzantine Generals Problem. However,
a solution is possible if the generals adopt the synchronous protocol of
voting in rounds. In each round of voting the generals must complete

2 DEFINING THE TERMS 6

a set of communication actions within a real-time deadline. Thus,
time is an essential synchronization mechanism for solving certain
task coordination problems.

� In the NETBLT protocol proposed by a group at MIT, the receiver
guarantees the sender that it will be able to process incoming packets
at a certain rate, or alternatively, it will meet the deadline associ-
ated with each packet. Since the sender does not need to wait for
an acknowledgment from the receiver, network throughput can be
signi�cantly improved, especially for networks where the round-trip
transmission time is long compared with the width of a packet (e.g. in
�ber optics communication systems). Thus, time is a control mecha-
nism which can be exploited to solve problems more e�ciently.

In the rest of this survey, we de�ne more carefully what a real-time
system is (Section 2). Three increasingly formal techniques are surveyed
for dealing with real-time systems.

� Section 3 discusses real-time programming languages.

� Section 4 discusses structured analysis methods and graphical or vi-
sual modelling languages.

� Section 5 discusses logics and algebras.

Section 6 speculates on future trends.

2 De�ning the terms

This section describes the important features of real-time systems. The
following problems are also posed: the modelling problem, the veri�cation
problem, the design development problem and the controller synthesis prob-
lem. These are some of the main problems that theorists hope to tackle
with formal methods.

An algorithm is usually represented as a program. Correctness of the
algorithm means that the program satis�es some desired speci�cation (or
property). Therefore, in standard program veri�cation, three concepts are
needed. A programming language is needed for representing algorithms,

2 DEFINING THE TERMS 7

a speci�cation language for expressing properties, and a satisfaction rela-
tion (or proof system) for verifying the correctness of the algorithm. An
important subjective issue revolves around the choice of syntax for the
programming and speci�cation languages | does the syntax simplify the
expression of algorithms and speci�cations, or does it get in the way of the
designer.

To properly develop the concepts mentioned above, some additional
notions must be introduced. A formal semantics must be provided so that
the behaviour of the program and the meaning of the speci�cations are
clearly de�ned. The proof system must be shown to be sound with respect
to the semantics, so that only those programs whose behaviours satisfy the
speci�cation can be proven correct. An unsound proof system is dangerous
because it can be used to prove anything (papers on the assignment axiom
for arrays were, for years, �lled with errors). Furthermore, it is useful if the
proof system is complete so that every correct program can be veri�ed for
correctness in the proof system. Other issues such as the expressiveness of
the languages and the complexity of decision procedures must be explored.

An algorithm usually takes some data as input, performs a computa-
tion and outputs the result of the computation to the user. For real-time
programs, the situation is more complex. The environment in which the
program operates can no longer be ignored, because of the intensive non-
terminating interaction of the program with its environment. Such systems
are often called embedded systems, discrete event dynamic systems, reac-
tive systems, or process control systems. We shall refer to all of these as
\real-time systems".

Ordinary programming languages are not expressive enough to repre-
sent the complex features of real-time systems such as concurrency, nonde-
terminism, synchronization between processes and real-time constraints on
the events of such systems. Programming languages must therefore be ex-
tended if they are to deal with real-time systems. A model of the intended
real-time notions is therefore needed.

A model is a representation, often in mathematical terms, of the im-
portant features of the system that is being studied. A common modelling
technique is to de�ne the state of the system (a \snapshot" at an instant in
time of all the variables de�ning the system). A state may persist for some
period of time, after which there is some change to a new state (as real-
time systems are dynamic). Such a state change is referred to as an event

2 DEFINING THE TERMS 8

or a transition. The model may be used to simulate possible behaviours
of the system which helps the designer understand the system better. A
simulation of the system is a sequence of states and events capturing the
behaviour of the system. A simulation may show the presence of bugs in
the system, but never their absence [23]. Analysis of the system behaviour
must be undertaken to show the correctness of the system. The system is
correct provided that its behaviour satis�es the associated speci�cation.

The terms \model" and \speci�cation" are often used interchangeably.
In this survey, a model is a description of the system, perhaps in great
detail, or perhaps at a more abstract level. A speci�cation is the list of
requirements that the system must ideally satisfy. A model describes how
the system actually behaves. A speci�cation prescribes how we would like
it to behave.

What are the most important features of a real-time system? The Ox-
ford Dictionary of Computing de�nes a real-time system as follows:

[A real-time system is] any system in which the time at which
the output is produced is signi�cant. This is usually because
the input corresponds to some movement in the physical world,
and the output has to relate to that same movement. The lag
from input time to output time must be su�ciently small for
acceptable timeliness.

The IEEE Standard Dictionary of Electrical and Electronic Terms (Wi-
ley 1978) gives the following de�nition:

Real-Time: (A) Pertaining to the actual time during which a
physical process transpires. (B) Pertaining to the performance
of a computation during the actual time that the related phys-
ical process transpires in order that results of the computation
can be used in guiding the physical process.

In software engineering, the term \real-time system" usually refers to
the software or programming code (called the controller in this survey).
The lag time from input to output in the controller must be su�ciently
small. However, there is implicitly always another object that is associated
with the controller. That object is the physical world or environment in
which the controller �nds itself. Since the environment is always implicitly

2 DEFINING THE TERMS 9

there, let us give it a name and call it the plant . Then we can refer to the
plant and perhaps even reason about it. In fact, the lag time or response
time of the controller is determined by the physical nature of the processes
in the plant. The primary goal of the designer is to ensure the correct
behaviour of the plant. This is achieved by designing a controller that will
interact and control the plant. We may draw an automatic control diagram
that is familiar to control engineers:

-
Human Inputs
Setpoints, or

PlantController

Disturbances

Measured Variables

Signals

Control -

6

?

The complete system under development (SUD) is divided into two parts:
the controller and the plant. The plant is that part of the system that
is to be controlled. It is often a physical or technological process such as
a chemical reaction, airplane or robot. The plant is usually a \given";
the designer is not free to change it, although there is usually some kind
of \control technology" through which the plant can be controlled (e.g.
control valves can be opened or certain plant events can be forced to occur
through interlocks). The \open-loop" behaviour of the plant (without the
controller) is usually unsatisfactory in some important respect.

It is the task of the controller to ensure that unsatisfactory behaviour in
the plant is eliminated. The diagram above indicates the role that feedback
plays in the controller. Feedback restores equilibrium after disruptions
caused by disturbances to the plant. After measuring the current state of
the plant the controller can take corrective action by issuing appropriate
control commands.

2 DEFINING THE TERMS 10

There is usually much more freedom in the design of the controller than
in that of the plant. In fact, the controller is often implemented by real-time
software precisely so that the logic of the controller, or the computation
that it performs, can easily be changed if necessary. As a result, the design
of a real-time system di�ers from straight programming (e.g. coding an
algorithm) in two important respects:

1. The plant is part of the overall system. A real-time system is one in
which the controller software must synchronize with the plant pro-
cesses whose progress it cannot directly control, so as to ensure that
the plant behaves safely and reliably.

The design formalism must be
exible enough to represent the plant
as an integral part of the complete system. Unsatisfactory plant be-
haviour can then be examined, and the e�ect of di�erent control poli-
cies on the plant can be evaluated. Potential failures of the plant
must be represented in the plant model so that the controller can
be checked to see that it functions correctly. A model of the plant
will enable the designer to extract the lag and real-time response
times that the controller must implement. Furthermore, a determin-
istic formalism developed for a real-time programming language (to
guarantee predictable behaviour), may be unsuitable for representing
nondeterministic and asynchronous event driven plant behavior.

2. The plant must be veri�ed for correctness. The essential concern of
the designer is to ensure that the plant behaves in a safe, acceptable
fashion. The correctness of the control software is only a means for
ensuring correct plant behaviour. If the software of the controller fails
(relative to its local speci�cation) in a fashion that has no impact on
the plant, then no harm has been done. By contrast, the controller
can satisfy all kinds of requirement speci�cations, but if those re-
quirements do not translate into proper behaviour of the plant, then
the veri�cation e�ort will have been in vain. An important corol-
lary is that a speci�cation of the system must primarily refer to the
states, events and properties of the plant (not to the behaviour of the
controller software).

Consider the following robot example1. The system under development

1The robot example was used in a discussion on real-time issues on Usenet in 1990 with

2 DEFINING THE TERMS 11

(SUD) is a robot arm together with position sensors, a force sensor, a
camera, a tactile sensor, a gripper, a joystick and keyboard for input, and
a computer to control the various parts. Formally, we may write

SUD = plantkcontroller

where k indicates the parallel composition of plant and controller processes.
The plant is further de�ned by

plant = armksensorskactuators

where

sensors = positionSensorskforceSensorktactileSensorkCamera

and
actuators = gripperkjoystickkkeyboard

The model of the plant will have to represent certain timing constraints.
The camera works at 30 Hz, and the force sensor at 400Hz. The robot and
position sensors work at 1000Hz, the joystick at 25Hz, and the tactile sensor
at 120Hz.

The required speci�cations are: design a controller that will enable a
user to manipulate the arm to perform various tasks at certain speeds, e.g.
welding a part to an auto on the assembly line. The sensor measurements
must be scanned at the correct rate. The actuators must be activated at
the correct time. If an unfamiliar obstacle is encountered stop the arm
movement within one second.

The speci�cation S of required behaviour so far only refers to elements
of the plant such as the arm, the sensors and actuators. The controller
must still be designed, and so its constituent parts cannot yet be referred
to in the top level speci�cation.

Having speci�ed as precisely as possible the plant, and the speci�ca-
tion S that it must satisfy, the controller must now be designed. It was
necessary to structure the description of the plant with the parallel compo-
sition operator. So too, it is often also necessary to structure the controller
description.

contributors Duncan Thomson and David Stewart

2 DEFINING THE TERMS 12

For example, it is possible that only some of the sensors will be used at
any one time. A logical way to separate the control functions is by having
one task supervise the control signals to the robot and another task read
the camera. Other distinct tasks can read the position and force sensors.
If only the force sensor is needed for a particular task, and not the camera,
then it is simply a matter of starting up the appropriate tasks without the
need to change any code.

Without concurrency the software must be constructed as a single con-
trol loop called a cyclic executive. Such a large sequential program with
multiple conditional
ags such as \if (using camera) do action" is di�cult
to design robustly because of the di�erent time frames and functions that
must be accommodated. The structure of this loop cannot retain the logi-
cal distinction between controller modules. It is di�cult to ensure that the
executive synchronizes in a timely fashion with the plant processes, without
the explicit notion of concurrent tasks in the controller software.

In a concurrent controller, each time frame is handled by a di�erent task.
The frequency of each task can be speci�ed separately, and the burden of
deciding what to run when is placed on the operating system scheduler.
Even if the timing changes, there is no need to reprogram the controller.
The real-time operating system is designed so as to be capable of adapt-
ing to the new requirements. If a large sequential program is used, the
entire program would have to be restructured to satisfy the new timing
requirements.

The use of concurrency is not without cost. There must be a run time
support system to manage execution of controller tasks or processes. Such
run time schedulers are often not considered in formal veri�cation methods,
but should be for a complete treatment of all system issues. Scheduling is
treated as one discipline and veri�cation as a di�erent one. Methods that
treat, in a uni�ed framework, all aspects of veri�cation and scheduling have
not been su�ciently developed.

There is one part of the design process that is informal and intuitive.
When the real world (e.g. of valves, pumps, vehicles, and robot arms) is
translated into a formal mathematical model plant (e.g. of states, events
and time bounds), there is no guarantee that the mathematical model prop-
erly represents the actual objects to be controlled. Similarly, there is no
guarantee that the model controller is an accurate representation of all
important facets of the actually implemented software (together with the

2 DEFINING THE TERMS 13

hardware, CPU and run time system). This translation of real world ob-
jects into mathematical entities is by its very nature informal and intuitive.

As more experience is gained with a particular formalism, and actual
designs based on the formal methods are experimentally checked in the �eld,
so the formalism will gain more credibility. This is no di�erent from the
methods used in related disciplines. For example, a civil engineer will model
the real world of bridges, beams and winds using the formal techniques of
Newtonian physics. As more bridges are built and actually succeed in
practice, so the Newtonian models gain credibility.

In certain cases, the pure Newtonian model must be adjusted with
\safety factors" to account for the approximate nature of the models used.
It is not clear what the software equivalent of safety factors is.

The fact that one part of the design procedure remains informal and ex-
perimental does not in any way detract from the need to use formal design
procedures in the rest of the design. Just as the civil engineer uses formal
Newtonian models for bridge building, and thereby increases con�dence in
the design, so too the designer of software uses formal methods to increase
con�dence in the correctness of the real-time system design. A proof of
correctness is always relative to the formal models and speci�cations pro-
vided.

2.1 Major issues that formal theories must address

Formal methods for real-time systems must address the following problems:

Modelling: Select appropriate models and formal notations for adequately
describing plants and controllers. These notations must deal with the
dynamic and reactive nature of the plants, and allow for the proper
expression of timing properties.

Veri�cation: The veri�er is presented with a formal mathematical model
SUD where SUD = plantkcontroller, and a speci�cation S of how
the plant should behave. The veri�cation problem involves demon-
strating that SUD satis�es the speci�cation S.

Development: In controller development a speci�cation S is given that
the plant must satisfy (the controller is not given). A disciplined
method is sought whereby designers can be helped to construct a

3 REAL-TIME PROGRAMMING LANGUAGES 14

controller so that SUD satis�es S. In development the controller
should be built in a modularly structured compositional fashion (\con-
troller architecture").

Synthesis: If controller development is fully automated, then it is called
controller synthesis.

There are a few surveys in the literature of formal methods for real-
time systems design [60,22,133]. This survey uses syntactic categories to
classify the various formalisms. There are three main directions that must
be distinguished, arranged by increasing formality and hence abstractness
of approach. The �rst category to be dealt with is real-time languages.
Then formalisms with visual speci�cation languages are treated. Finally
logics and algebras are discussed.

3 Real-Time Programming Languages

Modern real-time languages such as Ada [139], Chill [18], Occam [76] and
Conic [65,79] typically have delay and timeout features for implementing
timing constraints. In addition, these languages incorporate features such
as task decomposition, abstraction (information hiding), communication
and concurrency mechanisms that simplify the description of complex con-
troller software.

For example, in Ada, a module can be decomposed into several tasks.
A task can be further divided into two parts: the task speci�cation and the
body of the task. During initial program development, only the speci�ca-
tion part of the tasks needs to be de�ned. The speci�cation parts can be
compiled to check for overall controller consistency. Later, the task bodies
can be speci�ed in more detail. The speci�cation part is done by senior
designers, because the speci�cation represents the interface between soft-
ware components. An error in such code may therefore have more serious
rami�cations than an error within a task body. A task can then be given
to a junior programmer for coding.

Conic implements several useful recon�guration primitives. The prim-
itives allow for dynamic insertion or deletion of tasks or modules, while
the rest of the system continues to run. Thus maintenance to controller

4 STRUCTUREDMETHODSAND/OR GRAPHICAL LANGUAGES15

software can be implemented without shutting down the plant. Occam has
been used as a target language for process algebras (see Section 5.2).

The advantage of these languages is that at the end of the design pro-
cess, the controller is available in directly executable code. However, most
real-time programming languages lack an underlying abstract mathematical
model. As a result the precise semantics is unspeci�ed or even uncertain,
and there is a proliferation of irrelevant detail not needed at the level of
abstract speci�cation. Usually the code must be converted into a formal
notation (e.g. Petri Nets) before the code can be veri�ed. If these languages
alone are used, then the plant is not usually represented, although pseudo
plant processes can be coded. Thus there is no method to formally verify
whether the controller satis�es the requirements speci�cation S.

4 StructuredMethods and/or Graphical Lan-

guages

4.1 Structured Methods

Structured methods for real-time systems [44,141] originated in systems
analysis methods used in industry starting a decade ago. These methods
provide a structured set of system (read: controller) requirements. The
system requirements specify what problem the controller must solve, and
how the controller must be structured.

The system requirements includes various views and layers of the con-
troller such as (a) data
ow diagrams to decompose the controller, its func-
tions and its
ow of data, (b) control
ow diagrams (enhanced state transi-
tion diagrams) to represent the system dynamics, (c) a requirements dictio-
nary which is an alphabetical listing of all inputs, outputs, data and control

ows, and (d) a table of response times in which the incoming and outgo-
ing events (from and to the plant) are listed with their respective repetition
rates or response times. The timing requirements are not particularly well
integrated with the rest of the requirements.

These methods have been used with some success in actual industrial
applications. However, these methods have no formal semantics. The re-
sulting controller design cannot be executed for simulated behaviour, nor
can they be compiled into code (e.g. into Ada or C). There is no support for

4 STRUCTUREDMETHODSAND/OR GRAPHICAL LANGUAGES16

formal veri�cation. Nondeterministic plant behaviour cannot be suitably
modelled.

4.2 Graphical Languages with a formally de�ned se-

mantics

4.2.1 Statecharts and synchronous languages:

Statecharts [38] represents an improved version of the structured methods.
A graphic tool called \Statemate" [41] exists to implement the formalism.
Methods similar to that of Statecharts may be found in [29].

In Statecharts, the normal state transition diagram is enhanced with
hierarchical and compositional features. For example, states can be clus-
tered into super-states with the possibility of \zooming in" and \zooming
out" of states. In AND decomposition, states are split into orthogonal
(concurrent) subcomponents that communicate via broadcasting. OR de-
composition decomposes a state into sub-states such that control resides in
exactly one sub-state.

Statemate is formally based on a precisely de�ned (although rather
complex) semantics. As an important consequence, there is an automated
simulation tool which allows the user to execute the model. Exhaustive
checking of all possible behaviours (for small systems) is supported. Models
(e.g. of the controller) can be compiled into a target environment, although
this tool is not yet fully developed. Formal veri�cation is not yet supported,
nor are time constraints treated in su�cient detail.

According to [86], the real-time aspects of Statecharts semantics is un-
derdeveloped. A notation is needed for periodic timing functions, and for
the speci�cation of timing exceptions without the need to introduce addi-
tional states.

Recently, some progress has been made in providing formal analysis
techniques for Statecharts. A fully abstract compositional semantics of
Statecharts has been presented [53].

The simplest kind of semantics uses the operational notion of the set of
all observable behaviours of a program or system. A behaviour may be de-
�ned as an in�nite sequence of states that the system computes in one run.
Such an operational semantics cannot usually be used to deliver a compo-
sitional (modular) semantics. In a compositional semantics, a compound

4 STRUCTUREDMETHODSAND/OR GRAPHICAL LANGUAGES17

system M1kM2 is described in terms of the semantics of the component
systems M1 and M2. A fully abstract semantics de�nes the behaviour of
the system in su�cient detail without violating the principle of composi-
tionality, i.e. such a semantics does not distinguish between more systems
than is necessary to provide a compositional semantics.

The importance of compositionality is that structured program veri�-
cation can be undertaken. Components of the system can be checked in-
dependently, and then combined to provide a veri�ably correct compound
program.

In addition to the abstract semantics of Statecharts presented in [53],
there is an alternative version of Statecraft semantics. In [119], a semantics
is presented that uses micro and macro-steps. Observable macro-steps are
decomposed into a number of micro-steps. If event A triggers B then these
events occur in subsequent micro-steps within the same macro-step. Thus a
chain of causality inside one macro-step is modelled by a sequence of micro-
steps. This avoids some of the causal paradoxes that occur in synchronous
languages such as Statecharts.

The \synchrony hypothesis" assumes that a program instantly reacts to
external events. In practice this means that the reaction time of the con-
troller is always shorter than the minimum delay separating two successive
external events in the plant. In addition to Statecharts, the languages Es-
terel [11], Signal [9] and Lustre [16] have been designed with the synchrony
hypothesis in mind. The synchrony hypothesis must be applied with care
as it can lead to causal paradoxes such as events disabling their own cause.
This hypothesis is not always realistic, as the plant usually involves spon-
taneous behaviour that may occur at any moment of time. Languages such
as Esterel do not allow for nondeterminism which is also not realistic for
representing plants.

4.2.2 Petri Nets

Petri Net theory [116,129] was one of the �rst formalisms to deal with
concurrency, nondeterminism and causal connections between events. Ac-
cording to [91] it was the �rst uni�ed theory, with levels of abstraction, in
which to describe and analyze all aspects of the computer in the context
of its environment (computer + program + aircraft). Such a method must
perforce contain a theory of concurrency, because of the three ingredients,

4 STRUCTUREDMETHODSAND/OR GRAPHICAL LANGUAGES18

at most one | the program | is sequential. Previously the various com-
ponents of the total system had to be described in diverse and unrelated
ways. The computer hardware would be described by low level automata
theories, the program by code in a sequential programming language, and
the interaction of the program with its environment by narrative prose.

The classic Petri Net model is a 5-tuple (P; T; I;O;M). P is a �nite set
of places (often drawn as circles) representing conditions. T is a �nite set
of transitions (often drawn as bars) representing events. I and O are sets
of input and output functions mapping transitions to bags of places (the
incidence functions). M is the set of initial markings.

Places may contain zero or more tokens (often drawn as black circles).
A marking (or state) of the Petri Nets is the distribution of tokens at a
moment in time (i.e. M :P ! N where N is the nonnegative integers). To-
kens in Petri Nets model dynamic behaviour of systems. Markings change
during execution of the Petri Nets as the tokens \travel" through the net
(modelling
ow of materials for example).

The execution of the Petri Nets is controlled by the number and dis-
tribution of the tokens (the \state"). A transition is enabled if each of its
input places contains at least as many tokens as there exists arcs from that
place to the transition. When a transition is enabled it may �re. When a
transition �res, all enabling tokens are removed from its input places, and
a token is deposited in each of its output places.

Given an initial state (distribution of tokens), the reachability set is
the set of all states that result from executing the Petri Net. Properties
such as boundedness, liveness, safety and freedom from deadlock can be
checked by analyzing the reachability graph. The reachability graph is
usually constructed using an interleaving operational semantics.

Boundedness means that the number of tokens which any place in the
net can accumulate is bounded. Boundedness implies that the system is
�nite state. In a Petri Net, a transition is said to be live if it is potentially
�reable in all reachable markings. Liveness in the program veri�cation sense
is a di�erent concept meaning that the transition must eventually occur.

In Petri Nets causal dependencies and independencies in some set of
events are explicitly represented. It is therefore easy to provide a nonre-
strictive partial order semantics. Events which are independent of each
other are not projected onto a linear timescale. Instead a non-interleaving
partial order relation of concurrency is introduced. In an interleaved execu-

4 STRUCTUREDMETHODSAND/OR GRAPHICAL LANGUAGES19

tion, one cannot di�erentiate whether two events occur one after the other
because the �rst is a prerequisite of the second, or whether this order in
time is solely by chance [129].

There are also some structural analysis techniques that use linear alge-
bra to check for invariants. Every marking can be represented as a vector,
and the Net can therefore be modelled as a set of linear algebraic equa-
tions. An example of an invariant is a place-invariant, in which every place
in the Net is assigned a weight, so that the weighted token count remains
constant during the execution of the Net. The dual of the place-invariant is
the transition-invariant. Since invariants are the characteristic solutions of
the net equations, it is possible to compute them by well known techniques
in linear algebra. These invariants are useful in the analysis of net liveness
properties or of facts (propositional formulas that are true in all cases).

For large nets it is hard to compute the invariants. Usually, there are
in�nitely many invariants (a linear combination of invariants is also an
invariant). Therefore it is often di�cult to obtain the interesting ones. If
the user supplies the invariant, it is somewhat easier to check automatically
that the invariant holds true. If it does not hold, it is relatively easy to see
where the net or the invariant must be modi�ed.

Generic \health" checks such as the absence of deadlock can be per-
formed. Such checks are not always useful as some kinds of deadlock may
be allowed (e.g. program termination).

Controllers are speci�ed by augmenting the plant Net with additional
places and transitions to model the required controlled behaviour. For
example, let the plant be a Petri Net elevator, and suppose it is required
that the elevator be allowed to be disabled for possible maintenance work.
A new place must be added to elevator, representing the emergency stop
request. A new transition, representing the stop event, is also inserted into
the net. The stop event is connected to the place in elevator that controls
the elevator movement. Short of introducing a speci�cation logic, there
is no way (other than by modifying the details of the Net) to specify the
abstract requirement that \if the stop event is requested then the elevator
must eventually come to a halt and be disabled".

Ordinary Petri Nets have been criticized for not being able to deal with
fairness and data structures (e.g. the data in a measure header) [62,94],
although the number of tokens at a particular place in the net can simu-
late a local program variable. Structuring mechanisms such as composition

4 STRUCTUREDMETHODSAND/OR GRAPHICAL LANGUAGES20

operators are not inherently part of the theory, and there is no calculus
to transform a net into a real-time programming language. Unlike state
machines, a \place" in a Petri Net cannot easily be identi�ed with a place
in the corresponding program code. A further problem is that the reacha-
bility graph su�ers from state explosion as Petri Nets become larger, thus
impacting on the ability to scale up analysis to larger systems.

Ordinary Petri Nets are still an object of intense research aimed at
putting Petri Net theory on �rm mathematical grounds. However, prac-
tically speaking such standard nets are not up to the task of modelling
complex systems. For this reason, higher level nets (coloured nets) and
stochastic nets have been introduced to extend the modelling power of
Petri Nets [13].

In coloured nets, the main idea is that the tokens themselves may have
values (or colours). Coloured Nets allow for a more concise manageable
representation of systems. They can be used to model data and resources
that reside in the system. As long as the number of colours is �nite, a
Coloured Net is equivalent to a (much larger) ordinary Petri Net. An
in�nite number of colours allow for the expressive power of Turing machines
so that most general questions become undecidable.

Petri Net theory was one of the �rst concurrent formalisms to deal with
real-time. Two basic timed versions of Petri Nets have been introduced:
time Petri Nets [88] and timed Petri Nets [124]. Both have been used
in recent work [145,125,87,72,12,27]. There are two questions that arise
when time is introduced to net theory: (a) the location of the time delays
(at places or at transitions), and (b) the type of the delay (�xed delays,
intervals or stochastic delays) [140].

Timed Petri Nets are derived from classical Petri Nets by associating a
�ring �nite duration (a delay) with each transition of the net. The transi-
tion is disabled from occurring for the delay period, but is �red immediately
after becoming enabled. These nets are used mainly in performance evalu-
ation.

Time Petri Nets (TPNs) are more general than timed Petri Nets. A
timed Petri net can be simulated by a TPN, but not vice versa. Both a
lower and an upper bound are associated with each transition in a TPN. A
state in the reachability graph is a tuple consisting of a marking, and a vec-
tor of possible �ring intervals of enabled transitions in that marking. Since
transitions may �re at any time in the allowed interval, states in the reach-

5 LOGICS AND ALGEBRAS 21

ability graphs may have an unbounded number of successors (if continuous
time is used). This adds complexity to the next-state function. Various
techniques such as state classes and enumerative analysis techniques [12]
have been introduced to overcome this problem. There are no necessary and
su�cient conditions for boundedness (�niteness of the reachability graph);
however, some su�cient conditions have been provided.

Perhaps the most general Petri Nets available for real-time problems are
the ITCPN (interval timed colour Petri Net) models of [140]. These nets
are higher level nets, and an interval is used to specify the timing charac-
teristics, by attaching a timestamp to every token. The resulting semantics
is quite elegant because both the timing and the colour are attributes of
tokens. A software tool called ExSpect is available for performing analyses
on ITCPNs.

In [72], safety properties of TPNs are analyzed without the need to
necessarily generate the entire reachability graph. The idea is to work
backwards from high-risk states to determine if these hazardous states are
reachable. This backward method uses the inverse Petri net (reversed input
and output functions), and is practical only when a small number of unsafe
states is considered. The idea is to work backwards from unsafe states to all
critical states (i.e. states having at least two successors). When a critical
state is reached, interlocks can be used to force the system to take those
paths that do not lead to unsafe states.

A similar backward method is employed in the real-time temporal logic
approach to controller design in [103,107] (see Section 5.1.1). Instead of
dealing with unsafe states one at a time, a predicate (characterizing a pos-
sibly in�nite set of unsafe states) is used. Weakest preconditions are used
to work backwards to critical predicates. The advantage of using predi-
cates (rather than individual states) is that much larger systems can be
treated. The method has been semi-automated. The backward method is
an example in which the same basic idea is applicable in two very di�erent
computational models.

5 Logics and Algebras

Logics and algebras provide the most abstract approach to the analysis of
real-time systems. These approaches typically consist of several elements.

5 LOGICS AND ALGEBRAS 22

One element is a high level, formal speci�cation language in which the
requirements that the system must satisfy can be speci�ed. A second el-
ement is a proof system (or �nite state decision procedures) in which the
correctness of the system relative to the speci�cation can be veri�ed. An-
other important element (that is not always provided) is a set of heuristics
and general guidelines for using the approach on systems larger than the
standard \textbook" examples.

Some researchers have investigated the general properties that any spec-
i�cation formalism must satisfy [55]. This is in contrast to the development
of speci�c frameworks for doing veri�cation. In [114], the relations that
must hold between plant (environmental) variables and controller (soft-
ware) variables are speci�ed. These relations are used to express under
what conditions a design is feasible, and what formal functional or rela-
tional properties a software requirements document must satisfy.

The current rigorous approaches to real-time systems are:

� Real-Time Temporal Logics,

� Algebraic Approaches (process algebras),

� RTL (Real-Time Logic) and Event/Action Models, and

� Assertional calculi

In this survey, a syntactic classi�cation has been used based on the style
of speci�cation. The same underlying semantic model may often be applied
to di�erent syntactic speci�cation styles. For example, both process alge-
bras and temporal logics may be endowed with a discrete time semantics.
Alternatively, in each case, a dense time semantics may be chosen. The
classi�cation of formal approaches could also have been performed on the
basis of semantic models rather than syntactic speci�cation styles.

There are a variety of timed transition systems (e.g. the timed automata
discussed in [77]) that are being promoted as general models of real-time
systems. These timed transition systems are not discussed in this survey
as an independent group, but are treated individually where they relate to
a particular speci�cation language.

Some of the speci�cation approaches are complementary. For example,
temporal logic is good at describing properties that pertain to the complete

5 LOGICS AND ALGEBRAS 23

system such as safety, liveness, fairness, and real-time response. However,
temporal logic speci�cations are relatively unstructured, and could bene�t
from the more structured notions of processes algebras [22]. Process alge-
bras are not good at specifying inherently global properties such as fairness
which involve the complete computation. There is currently no theory that
combines the best features of each formalism.

The following areas of research are listed below for the sake of complete-
ness. They do not at present deal with real-time issues. However, they may
be extended in the future to deal with real-time constraints.

� VDM [59] and Z [136] are speci�cation languages based on set theory
and predicate logic. These methods have been found useful for spec-
ifying large commercial systems [36], but are weak in their ability to
deal with concurrency and real-time. They use concepts from clas-
sical programming logics such as Hoare's triples [49], and Dijkstra's
weakest precondition calculus [23,35]. In [113], the �rst extension of
Hoare triples to concurrent systems was provided.

� Control theoretic approaches based on algebraic methods and for-
mal language theory have been developed for complex discrete event
dynamic systems [123,122,54,15,75]. These methods are good at mod-
ular synthesis of controllers. They have on the whole not yet been
extended to deal with real-time constraints, nor do they deal with
data structures. Also noteworthy are the synthesis methods proposed
in [84,24], and the automata based methods of [80,1].

� UNITY [19] is a speci�cation and veri�cation framework that uses ex-
tended state-transition systems to model plants and controllers (ab-
stract programs). A logic, which is similar to temporal logic (but
simpler), is used for speci�cation and veri�cation. A UNITY pro-
gram describes what should be done. A mapping to a particular ar-
chitecture is concerned with implementation details such as the type
of machine that should be used. For example, the same abstract pro-
gram can be mapped to a set of concurrent processors, to a single
CPU using multiprogramming, or to a systolic array. This leads to
a separation of concerns. Correctness is concerned with verifying the
abstract program. Complexity is computed from the mapping to an
implementation.

5 LOGICS AND ALGEBRAS 24

5.1 Real-Time Temporal Logic

The following discussion is taken from [104]. Temporal logic has its origins
in philosophy, where it was used to analyze the structure or topology of
time [130]. In recent years, it has found application in computer science,
especially in the areas of software veri�cation and knowledge-based systems
[30,117,70,112,69,67,28,66].

In physics and mathematics, time has traditionally been represented as
just another variable. First order predicate calculus is used to reason about
expressions containing the time variable, and there is thus apparently no
need for a special temporal logic.

Philosophers found it useful to introduce special temporal operators,
such as 2 (henceforth) and 3 (eventually), for the analysis of temporal
connectives in language. The new formalism was soon seen as a potentially
valuable tool for analyzing the topology of time. For example, various types
of semantics can be given to the temporal operators depending on whether
time is linear, parallel or branching. Another question that may be asked
is whether time is discrete or continuous.

The temporal operators have been found useful for specifying program
behaviour. A structure of states (e.g. a sequence or tree of states) is the
key concept that makes temporal logic suitable for program speci�cation. A
formula, containing temporal logic operators, is interpreted over a structure
of states.

In programming languages, the structures represent the computations
executed by a program. Such a computation may be used to interpret
a temporal formula. In this way, a programming language is said to be
endowed with a temporal semantics.

Some of the di�erent types of temporal semantics include:

� Interval semantics [134,95,96]. The semantics is based on intervals
of time, thought of as representing �nite chunks of system behaviour.
An interval may be divided into two contiguous subintervals, thus
leading to the chop operator.

� Point semantics, in which temporal formulas are interpreted as re-
quiring some system behaviour with respect to a certain reference
point in time. Past operators refer to the time prior to the reference
point. Future operators refer to the time after the reference point.

5 LOGICS AND ALGEBRAS 25

Obviously, a point cannot be divided, and there is thus no simple
de�nition of a chop operator.

Point semantics may be further divided2 into three classes.

{ Linear semantics [83,120,81]. In linear semantics, each moment
has only one possible future corresponding to the history of the
development of the system.

{ Branching semantics [25,20]. In branching time semantics, time
has a tree-like nature in which, at each instant, time may split
into alternative courses representing di�erent choices made by a
system.

{ Partial order semantics. Partial order semantics has been ex-
plored only recently. The reader is referred to [81] and other
articles in the same volume as [81] for further information.

Once the type of structure to be used for interpreting temporal formu-
las is selected, there is still a further decision to be made. How are the
structures to represent program executions or computations? There are at
least two possibilities.

� Maximal parallelism [52,62]. The number of instructions in concur-
rent processes that can be executed simultaneously is maximized.
Thus, two processes are never both waiting to achieve a shared com-
munication.

� Interleaved executions. Concurrent activity of two parallel processes
is represented by interleaving their atomic actions [82]. Fairness and
time bound constraints are then used to exclude inappropriate inter-
leavings (e.g. a sequence in which an enabled action is never exe-
cuted).

The various temporal logics can be used to reason about qualitative
temporal properties. Safety properties that can be speci�ed include mu-
tual exclusion and absence of deadlock. Liveness properties include termi-
nation and responsiveness. Fairness properties include scheduling a given

2Ron Koymans has pointed out [61] that interval semantics may also be coupled with
linear/branching/partial orders | in practice interval semantics have tended to use linear
time orders. However, in theory these are orthogonal issues.

5 LOGICS AND ALGEBRAS 26

process in�nitely often, or requiring that a continuously enabled transition
ultimately �re.

Various proof systems and decision procedures for �nite state systems
can be used to check the correctness of a program or system.

In real-time temporal logics, quantitative properties can also be ex-
pressed such as periodicity, real-time response (deadlines), and delays.
Early approaches to real-time temporal logics were reported in [10,63,111].
Since then, real-time temporal logics have been explored in great detail.

5.1.1 The TTM/RTTL framework | explicit clock linear logics

The TTM/RTTL framework was �rst presented in [111], and in detail in
[102]. It includes the following elements: (a) a semantic model of time, (b)
a generic computational model (Timed Transition Models3) for modelling
plants and controllers, (c) an abstract speci�cation language (Real-Time
Temporal Logic), (d) veri�cation methodologies including model-checking
for �nite state systems, and a deductive proof system for in�nite state
systems, and (e) heuristics for constructing proofs and controller synthesis
methods [104,105,110,107,109,108]. The �rst four elements represent an
extension of untimed Manna-Pnueli temporal logic [82] to timed systems.
Each of these elements is discussed below.

Semantic model of time: The notion of a possible behaviour or trajec-
tory � of a system is given by an in�nite sequence of states qi and events
�i de�ned as

�
def
= q0

�0! q1
�1! q2 � � �

�i�1
! qi

�i!

representing a possible run or computation of the system.
A discrete notion of time is employed using an external (conceptual)

explicit clock . There is a distinguished tick transition, corresponding to the
movement of the clock whose current time is represented by the variable t,
with type(t) (the set of all values that t can have) the nonnegative integers.
The clock event tick occurs in�nitely often (\time must make progress") in
the trajectory �. When the clock tick occurs it increments t by one (\time
never decreases"). No event other than the clock tick can change the time.
The clock ticks are interleaved with other system transitions.

3Originally called Extended State Machines.

5 LOGICS AND ALGEBRAS 27

Time bounds on events determine when they may occur relative to the
clock ticks. A lower time bound l on the event � means that it may not
occur prior to l ticks of the clock. An upper time bound u means that �
must occur no later than u ticks of the clock (unless � is preempted by some
other event). Thus an event that is continuously enabled over an interval
of time does not actually occur for l ticks of the clock, but must occur by
u ticks of the clock or become disabled.

Many events may occur between two ticks of the clock, in which case
the events can only by distinguished by temporal ordering, not by time. A
discrete time domain necessarily sacri�ces information about precise times.

A computational model: Timed Transition Models (TTMs) provide an
e�ective representation of realizable systems. Concrete real-time program-
ming languages, Petri Nets and Statecharts can be mapped into TTMs.
Most real-time features such as delays, timeouts and various scheduling
constraints can be represented. True parallel processing, multiprogram-
ming, communication through shared variables as well as message passing
over channels can also be modelled.

A TTM M is de�ned as a 3-tuple M = (V;�;T), where V is the set of
activity4 and data variables (including the clock variable t). � is a predicate
asserting an initial condition on the variables. T is the set of all transitions
(representing events). Each transition has an enabling condition, transfor-
mation function, and lower and upper time bounds.

TTMs may be composed in parallel with each other to obtain more
complex TTMs. A graphical language such as Statecharts is used to visu-
ally represent TTMs to the designer. The visual notation of Statecharts is
extended by annotating each transition with its enabling condition, trans-
formation function, and lower and upper time bounds.

For the transition

4An activity variable is also sometimes called a control or location variable. An activity

is any particular value that the activity variable may assume. The word \activity" is used
rather than \state" as the word \state" is reserved for the global vector of all values of
activity and data variables. An activity has persistence as opposed to a transition which
occurs instantaneously.

5 LOGICS AND ALGEBRAS 28

-� [l; u] : guard ! [count := count + 1]

A
AAU

�
��7

greenred

'
&

$
%

'
&

$
%

the variable count is an example of a data variable that counts the num-
ber of times the tra�c light has changed from the activity red to green.
The intended operational meaning is as follows. The transition is said to
be enabled if (a) the guard is true, and (b) the TTM currently resides in
activity red. The lower time bound l guarantees that once � becomes en-
abled, then it may not occur for at least l ticks of the clock. Meanwhile,
other enabled transitions may occur and disable � . After � has been con-
tinuously enabled for more than l ticks of the clock, then the transition �
may be taken, instantaneously moving the TTM from red to the activity
green, and simultaneously incrementing the counter by one. After having
been continuously enabled for u ticks of the clock, either � must be taken
before the next clock tick or be preempted by the occurrence of some other
transition that disables � .

A spontaneous transition � [0;1] represents an event that may occur
at any moment. However, it may also delay occurring forever. Sponta-
neous transitions are useful for modelling nondeterministic unpredictable
behaviour in the plant. Examples include the failure of various devices (e.g.
a pump or a valve). Spontaneous transitions can also representing situa-
tions where the designer initially has no knowledge of the time bounds.

More than one transition may be enabled and eligible (by virtue of
its bounds) to occur at any point in time. In such a case, the order of
transitions (in a behaviour) are chosen nondeterministically. This is typical
of how the interleaving approach represents a process that must occur along
several edges at the same time.

In [71], a set of transformations for taking a given TTM into a new
TTM that is bisimulation equivalent is proposed. These transformations
can be used to show that an implementation TTM is correct with respect
to a speci�cation TTM (in the style of process algebras discussed in the

5 LOGICS AND ALGEBRAS 29

next section).

Concise speci�cation language: RTTL (real-time temporal logic) is
used to specify the properties to be veri�ed. Given the timed transition

model SUD
def
= plantkcontroller, the objective is to check that SUD

satis�es a speci�cation S (which is a formula of RTTL).
An example of an RTTL formula is the bounded response time given by

8T [(red ^ t = T)! 3(green ^ T + 3 � t � T + 5)]

In the above formula, the clock variable t is a
exible variable. The quan-
ti�ed variable T is a rigid variable. The clock variable is called
exible
because it changes from state to state in the trajectory. By contrast, the
rigid variable T retains the same value over all states in the trajectory,
and is used to record the time when red becomes true. Accordingly, the
above formula asserts that if the tra�c light is red at time T , then even-
tually within 3 to 5 ticks from T the light must turn green. The bounded
response property may be abbreviated by the formula

red! 3[3;5] green

RTTL is an explicit clock logic because an RTTL formula may explic-
itly use the clock time variable t with any of the arithmetic operators (e.g.
+;�;=;�; >), using arbitrary �rst order quanti�cation over rigid time vari-
ables. Hence RTTL is very expressive but undecidable (see Section 5.1.2).
RTTL may be used to: (a) refer to absolute times (e.g. \do some action on
January 22nd 1998"), or (b) relate adjacent temporal contexts (e.g. \every
stimulus A is followed by a response B, and then by another response C
that is within 5 ticks of the original stimulus A").

Veri�cation via model-checking and proof systems: The model-
checking5 problem is as follows: check whether all legal trajectories of a
�nite state timed transition model SUD satisfy a speci�cation S. The
challenge is to construct a �nite reachability graph, even though the time
domain is unbounded.

5The notion of model-checking was �rst explored by Clarke and others [20] in the
context of (untimed) branching time temporal logics.

5 LOGICS AND ALGEBRAS 30

In [105,109], algorithms (and an implemented veri�er) are provided for
checking a subset of RTTL speci�cations. The veri�er represents processes
in a fashion close to the mathematical de�nition of TTMs. All kinds of data
variables are treated including booleans, enumerated or numerical types,
lists, sets and sequences. If an RTTL property fails to hold, then the failing
trajectories are provided, making it possible to debug the system.

Model-checking su�ers from exponential explosion in the size of the state
space, when dealing with the parallel composition of processes. Model-
checking is suitable for checking small core parts of real-time systems. Re-
duced models, such as the synchronization skeleton of a mutual exclusion
protocol, can also be treated. Large systems will often require di�erent
techniques.

For large systems (or in�nite data domains) a deductive proof system
must be used. A sound �rst order proof system for RTTL is presented in
[104]. The proof system reduces to standard Manna-Pnueli temporal logic
if all the upper and lower bounds are zero and in�nity respectively.

An advantage of RTTL is that no new temporal operators are intro-
duced. As a result, all the proof rules of Manna-Pnueli temporal logic can
be used. In addition, certain rules are added for the real-time part of the
reasoning [104,108]. Systems in which there are mixed fairness and time
constraints can also be handled.

Pragmatics | Semi-automated proof and synthesis methods: A
proof system, with perhaps some small examples to illustrate the method of
proof, is not on its own su�cient to make the proof system practically useful
for in�nite state systems. Additional guidelines and heuristics must provide
insight to the design and veri�cation procedures. Automated support tools
(beyond model checking for �nite state systems) are needed. Theorem
provers must be provided with adequate tacticals (built in heuristics) to
support veri�cation.

RTTL has heuristics for doing proofs using proof diagrams and weakest-
preconditions [104,108]. A proof diagram is an abstract view of a state
reachability graph. It is not con�ned to �nite state systems because a node
in the proof diagram is a predicate that can characterize a possibly in�nite
set of states. The proof diagram contains the intuition of system execu-
tions without the distracting proliferation of states. Most of the reasoning

5 LOGICS AND ALGEBRAS 31

takes place in the ordinary predicate calculus, with temporal or real-time
reasoning introduced only where absolutely needed.

Constraint logic programminghas been used to semi-automate the heuris-
tics. The language CLP(<) was used initially [106], but more recently the
constraint logic language PrologIII [107] has been investigated for providing
automated support. Methods of synthesizing controllers (for some in�nite
state systems) to satisfy given plant speci�cations are provided in [107] (see
also the last paragraph of Section 4.2.2).

In [64], it is claimed that explicit clock logics such as RTTL do not
\hide" time in accordance with the original philosophy of temporal logic
(which was to abstract from time as much as possible). Speci�cations are
not as succinct as hidden clock logics. However, most of the reasoning
about time in RTTL involves the use of abbreviated formulas (similar to
the bounded operators of hidden clock logic). Explicit time is resorted to
only in those instances where needed (e.g. to refer to adjacent time contexts
or other properties that hidden clock logics cannot specify).

It has also been claimed [56,62] that while the interleaving model of
computation may be adequate for qualitative analysis of systems, a more
realistic model such as maximal parallelism is needed for real-time sys-
tems. This claim is refuted by the interleaving model in the TTM/RTTL
framework, in which system actions are interleaved with clock ticks. A
careful incorporation of time allows for an adequate representation of most
real-time phenomena while preserving the simplicity associated with inter-
leaving models, namely, at any one point in time only one transition can
occur and has to be analyzed.

The main disadvantage of the framework is its lack of compositional
proof methods, although some of the synthesis methods allow for a modular
style of controller development. The question of modular speci�cation and
veri�cation methods is an active area of research in the �eld. Manna-
Pnueli temporal logic has recently been provided with a compositional proof
system [82]. Since RTTL is based on the untimed Manna-Pnueli system, it
appears that their compositional methods should also carry over to RTTL.

The TTM/RTTL framework is a state-based, linear discrete time, in-
terleaved, asynchronous, explicit clock logic formalism. It is state-based
because states rather than actions are the primitive components of be-
haviours. State-based approaches may be more general than action based
methods (e.g. process algebras) because state based methods can easily

5 LOGICS AND ALGEBRAS 32

encode actions as well as histories of actions It is di�cult to extract the
state from action based formalisms.

TTM/RTTL uses a discrete time domain rather than a dense (e.g. the
rationals) time domain. If simplicity of use can be preserved, the more gen-
eral modelling powers of a dense time domain would be preferable. Con-
currency is modelled by interleaving rather than a partial order or maximal
parallelism. It is asynchronous because a �nite number of events can oc-
cur between clock ticks. In a synchronous model, all concurrent activity
happens in lock-step with the tick of the clock.

Many of the choices made in TTM/RTTL computational model are
independent of each other. For example, RTTL can be de�ned over dense as
well as continuous time domains. It can be given a branching time semantics
or be based on time intervals. The choice of semantics is, in principle,
independent of the syntax of the speci�cation language [61,46]. The reader
is referred to [118,46,47] for other explicit clock logics. In particular, [47]
compares explicit clock logics with hidden clock logics.

5.1.2 MTL | hidden clock linear logics and other RTTL frag-
ments

Metric Temporal Logic (MTL) [64] is a fragment of RTTL in which ref-
erences to time are restricted to bounds on the temporal operators. For
example, the formula A ! 3�5B means that if A occurs then eventually
within 5 time units B must occur. No references to an explicit clock are al-
lowed and hence MTL is called a hidden clock or bounded temporal operator
logic.

Interpretations for MTL are metric point structures based on a linearly
ordered time domain. A distance function provides a metric for time. Var-
ious time constraints can be imposed on the distance function, depending
on the notion of time that is used (e.g. transitivity, irre
exibility, and the
existence of absolute di�erences).

In the hidden clock approach, 3�5 is a new temporal operator that
restricts or bounds the scope of the qualitative operator 3. The bounded
formula 3�5B predicts the occurrence of B within 5 time units from now.
The qualitative formula3B asserts that B will eventually happen, but puts
no bound on when.

In [64], a real-valued time domain is used. This allows MTL to ex-

5 LOGICS AND ALGEBRAS 33

press certain properties of continuous time variables (e.g temperature and
pressure) more succinctly than discrete time logics. MTL does not allow
references to an absolute point in time, nor does it allow the speci�er to
relate adjacent temporal contexts. A sound proof system for MTL is pro-
vided.

An important extension to the literature on MTL is a compositional
proof system for Occam style programs [52,50]. The proof system uses
the maximal parallelism model of program execution . Because the proof
system is compositional, the properties of a compound system P1kP2 (the
parallel composition of two simpler processes P1 and P2) can be deduced
from speci�cations of its constituent parts (P1 and P2), without any further
information about the internal structure of these parts. Compositionality
is important for scaling up the application of the proof system to deal with
large systems in a structured fashion.

It is not clear whether the proof system can be extended to reason about
complex plant descriptions, which are not always representable in Occam.
The extra chop operator, needed for compositional proofs, makes the rea-
soning relatively complex. Nevertheless, once a module's speci�cation is
�xed, any implementation of the module with the same speci�cation can
be used, without having to redo the proof.

Alur and Henzinger [6] have compared various ways in which to restrict
RTTL to obtain decidable fragments of the logic. These fragments are
restricted to �nite state, propositional temporal properties. There are at
least four interesting syntactic fragments of RTTL:

� MTL [7,64] is a discrete time propositional version of the bounded
operator logic discussed above.

� XCTL [43] is a discrete time propositional explicit clock logic. The
atomic timing constraints allows the primitives of comparison and
addition. XCTL restricts the quanti�cation level. It allows only one
outermost level of quanti�cation over rigid time variables. The quan-
ti�cation is therefore never explicitly displayed. On the other hand, it
allows general arithmetic timing expressions, including addition and
subtraction of variables and constants.

� TPTL [7] is a discrete time propositional logic whose timing con-
straints allow comparison and addition (but only of integer constants,

5 LOGICS AND ALGEBRAS 34

i.e. no variables). TPTL uses auxiliary static timing variables to
record the value of the clock at di�erent states, but replaces the ex-
plicit references to the clock itself by a special type of freezing quan-
ti�cation.

� MITL [5] employs a dense time domain. It has a bounded-operator
syntax, but cannot express punctuality properties. A punctuality
property states that the event B follows A in exactly 3 seconds.

All of the above fragments can be interpreted over discrete, dense and
continuous time domains. The fragments can then be compared for expres-
siveness, and complexity of satis�ability and model-checking.

Satis�ability is important in the homogeneous veri�cation case. Let the
implementation I and the speci�cation S (that the implementation must
satisfy) can both be given as temporal logic formulasFI and FS respectively,
in the appropriate fragment of RTTL. Then the implementation I meets
the speci�cation S i� the implication FI ! FS is valid (or, equivalently, if
the conjunction FI ^ :FS is unsatis�able). Only propositional versions of
temporal logics are decidable for satis�ability. Decidability depends on the
nature of the time domain (discrete, dense etc.) and the operations on the
time domain that are permitted.

Model checking is important in the heterogenous veri�cation case. The
implementation I is given by a timed automaton or timed transition system
[4,5] AI . The speci�cation S is given by a temporal logic formula FS. To
do the check, a timed automaton A:FS is constructed from the negation
of the speci�cation :FS . The implementation I satis�es the speci�cation
S precisely when the product automaton AI � A:FS has no run (timed
observation sequence).

Let RTTL(<,s) denote the restriction of RTTL to propositions and tim-
ing constraints containing only ordering (<), successor(s), and congruence
over time (e.g. all times with an even time di�erence from the initial state).
Thus, RTTL(<,s) is interpreted over a discrete time domain, and can be
used to specify constant lower and upper time bounds on the time distance
between events. The various logics are compared in Table 1 for satis�ability,
model checking and expressiveness over discrete and dense time domains
relative to RTTL.

For any real-time logic that is closed under boolean operations, and
that can express punctuality, the satis�ability problem is undecidable for

5 LOGICS AND ALGEBRAS 35

Discrete Time Satis�ability Model Checking Expressiveness

RTTL undecidable undecidable
RTTL(<,s) nonelementary nonelementary < RTTL
XCTL PSPACE-complete PSPACE-complete < RTTL
TPTL EXPSPACE-complete EXPSPACE-complete =RTTL(<,s)

MTL EXPSPACE-complete EXPSPACE-complete =RTTL(<,s)

MITL EXPSPACE-complete EXPSPACE-complete < RTTL(<,s)

Dense Time Satis�ability Model Checking
RTTL undecidable undecidable
RTTL(<,s) undecidable undecidable
XCTL ? ?
TPTL undecidable undecidable
MTL undecidable undecidable
MITL EXSPACE-complete EXPSPACE-complete

Table 1: Comparison of linear propositional real-time logics

5 LOGICS AND ALGEBRAS 36

a dense time domain. MITL cannot express punctuality properties, and is
thus less expressive than the other logics, but remains decidable even if the
time domain is dense.

In [43] it is shown that XCTL and TPTL/MTL are incomparable. For
each of these logics, there is a property expressible in one which is not
expressible in the other. Each of these properties is a reasonable real-
time requirement. In the discrete time case, TPTL and MTL are equally
expressive (it is conjectured that this equality does not extend to dense
domains [46]).

There are doubly-exponential-time decision procedures for both TPTL
and MTL. The veri�cation algorithm for MTL depends, exponentially, on
the value of the largest time constant involved. It is a little less expensive
than the algorithm for TPTL, which depends exponentially on the value of
the product of all time constants.

XCTL is not closed under negation, and hence cannot be used to solve
the homogeneous veri�cation problem. However, a special model-checking
algorithm for XCTL has been given that is doubly exponential in the size
of the speci�cation formula and singly exponential in the size of the model.

5.1.3 Branching time temporal logics

Linear time and branching time logics are incomparable. For example,
branching time logics cannot express general fairness constraints in the
syntax of the language (although certain fairness conditions can be im-
posed by external constraints on the reachability graphs when doing model
checking for example). Linear time logics can directly specify fairness. On
the other hand, branching time logics can express certain existential path
conditions (e.g. it is always possible for the system to eventually do some
action). Such path constraints cannot generally be expressed in linear time
logics.

Although the validity problem for (untimed) branching logics is EXTIME-
complete, model checking is in PTIME. Model checking is performed with
a special purpose algorithm (relabelling of the program reachability graph)
and does not use the satis�ability procedure. The algorithm for model-
checking branching time logics is linear in the size of the reachability graph,
and linear in the size of the formula to be checked.

Linear time logics cannot use this special purpose algorithm, and hence

5 LOGICS AND ALGEBRAS 37

untimed model checking in the linear case is exponential in the size of the
formula. Model checking for branching time logics has therefore been ap-
plied more successfully than that of linear time logics, although additional
constructs must be employed to deal with fairness [20].

There is no consensus among researchers as to whether branching time
or linear time logics are more suited to veri�cation. In practice, branching
time logics are usually used to verify �nite state systems by model checking
because of the e�ciency of the model checking algorithms. Linear time
logics usually come with a deductive proof system for dealing with the
in�nite state systems.

In [3,2], a branching real-time time logic called TCTL is proposed. It
is based on hidden clock bounded operators. For TCTL, the validity prob-
lem for dense time domains is undecidable, yet model-checking is decidable.
The complexity of model checking is exponential in the number of clocks
(each new process or hardware device needs its own clock), and doubly ex-
ponential in the product of the timing constants that appear in the formula.
It is linear in the product of program and formula size.

In [26], a bounded operator branching time logic called RTCTL is intro-
duced. The satis�ability problem in this logic is doubly-exponential-time-
complete. Model checking has a polynomial time algorithm.

A branching time logic called TPCTL is introduced in [37]. The logic
deals with real-time constraints and reliability. For example, the following
property can be speci�ed: \after a request for service there is at least a
98% probability that the service will be carried out in 2 seconds".

Formulas of TPCTL are interpreted over a discrete time extension of
Milner's Calculus of Communicating Systems (see process algebras later)
called TPCCS. Probabilities are introduced by allowing two types of tran-
sitions, one labelled with actions and the other labelled with probabilities.
A probabilistic strong bisimulation for equivalence of processes is de�ned,
which has a sound and complete axiomatization. The model checking al-
gorithm is exponential in the size of the TPCCS process, and polynomial
in the size of the formula and number of arithmetic expressions.

Because of the action based nature of TPCTL, it is di�cult to specify
state-based properties such as: \henceforth, if the train is at the crossing
then the gate must be down". Propositions such as \the gate is down"
must be encoded indirectly through actions that change the state of the
model, in which case the speci�cation becomes unnecessarily complicated.

5 LOGICS AND ALGEBRAS 38

TPCTL is one of the few logics that can express both hard and soft real-
time deadlines, a feature useful in the veri�cation of communication proto-
cols in noisy media. Strong assumptions on the behaviour of the medium
(e.g. the medium never loses more than three consecutive messages) can be
replaced with weaker assumptions (e.g. successful transmission with some
probability).

5.1.4 Interval and other temporal logics

Interval based real-time temporal logic speci�cations have been developed
in [96,36]. In [36], Moszkowski's ITL [95] is embedded in the theorem prover
HOL (higher order logic). Why not use HOL directly? There are two rea-
sons. First, ITL avoids the proliferation of time variables in speci�cations,
as do all temporal logics. Second, ITL is su�ciently general to express any
discrete computation, yet speci�c enough to have a natural operational in-
terpretation, which HOL does not. Since ITL has an executable subset
(called Tempura), programs and their speci�cations can be expressed us-
ing the same notation. Very little is known about the expressiveness and
decidability of these logics in comparison to the linear and branching time
logics. Interval logics have been used for speci�cation and simulation, but
not much work has been done on deductive calculi or model checking for
veri�cation.

TRIO [34] is a �rst order logic augmented with temporal operators
(similar in style to linear temporal logics). The choice of �rst order logic
was motivated by reasons of naturalness, simplicity and compactness of
speci�cation. The two temporal operators Futr(A; t) and Past(A; t) mean
that A holds at a time t in the future (resp. in the past) with respect to the
current time. From these two basic operators many other derived temporal
properties can be de�ned such as \always in the future" and \sometime in
the past".

TRIO does not have a deductive calculus. Instead a major goal of TRIO
is executability of speci�cations, although this is only done on �nite time
domains, leaving it up to the user to extrapolate to in�nite domains. This
method runs the risk of making the user think a formula is true (by a check
on a �nite time domain) when in actuality the property is false on say a
dense time domain.

5 LOGICS AND ALGEBRAS 39

5.2 Process Algebras

5.2.1 UPA | Untimed Process Algebras

Algebraic approaches such as CSP [48], CCS [90] and CIRCAL [89] have
been important in analyzing concurrent processing. These process algebras
provide structured methods for the analysis of discrete event systems. A
few constructs lead to a language capable of expressing the full complexity
of parallel or distributed computing. The constructs include sequential and
parallel composition, nondeterministic choice, concealment and recursion.
Several computational models have been developed giving these algebras a
precise denotational semantics. The computational models lead to methods
for doing compositional veri�cation.

Algebraic laws relating the algebraic constructs allow for the transfor-
mation of one system into another. In CSP, if P is a process and a an
event, then a! P denotes a process that �rst engages in the event a, and
then behaves exactly as described by P . Shared events require simultane-
ous participation of both the processes involved. A typical example of a
shared event is the communication over a channel in which a message is
sent by one process and received by some other.

If a pair of processes initially engage simultaneously in some shared
event c, then the relevant algebraic law is

(c! P)k(c! Q) = (c! (PkQ))

STOP is a process that never engages in any events, but also never termi-
nates. If c and d are both shared events (in the alphabet of both processes)
then the law

(c! Pkd! Q) = STOP if c 6= d

shows how a pair of processes P and Q, running in parallel, deadlock if they
disagree on what the �rst action should be. Non-shared events are events
in the alphabet of P but not in that of Q, or vice versa. Non-shared events
occur independently of Q whenever P engages in them (and vice versa).
Thus the parallel composition operator k is de�ned in such a way that
events in the alphabet of both operands require simultaneous participation
of them both, whereas the remaining actions of the system occur in an
arbitrary interleaving.

5 LOGICS AND ALGEBRAS 40

The synchronous nature of interactions simpli�es the analysis of con-
current systems. It is then claimed that the asynchronous nature of lower
level handshaking via semaphores, monitors and condition queues can be
abstracted away. However, broadcasts to the world (as in Ethernet proto-
cols) are not easily modelled by CSP processes.

A common computational model of a process P is a 3-tuple (E;F;D),
where E is the alphabet or set of process events. F is the set of failures
and D the set of divergent traces.

A trace is a behaviour of a process. It is a �nite sequence of events
of the process, recording the actions that the process has engaged in up
to some point in time. Divergent traces (\in�nite loops") occur when a
process engages in an in�nite unbroken sequence of internal events invisible
to the environment. As a result the environment is left waiting eternally
for a response.

A failure is a tuple (tr;X) where tr is a trace of P and X is a set of
events o�ered by the environment of the process. If it is possible for P to
deadlock when placed in this environment, then X is said to be a refusal
of P . Thus a failure (tr;X) means that P can engage in the sequence of
events recorded by tr, and then refuse to do anything more, in spite of
the fact that its environment is prepared to engage in any of the events of
X. The set of all traces (behaviours) of P can easily be obtained from the
failures of P ; the domain of the failures relation F is the set of traces of P .

Several constraints are imposed on (E;F;D) to fully capture the be-
haviour of nondeterministic concurrent processes. The computational model
provided a mathematically precise de�nition of the operators (e.g. sequen-
tial or parallel composition). The model is also used to prove the correctness
of the algebraic laws. An operator (such as parallel composition) is shown
to be well-de�ned by assuming that the operands satisfy the constraints,
and then demonstrating that the composition of the operands also satis�es
the constraints.

A complete description of a family of increasingly sophisticated mod-
els for providing CSP speci�cation semantics is provided in [100]. These
computational models include the counter model, the trace model, the di-
vergences model, the readiness model, and the failures model (described
above).

Most existing proof methods in CSP focus on bottom-up methods, in
which each component is proved and compositionally used to develop more

5 LOGICS AND ALGEBRAS 41

complex systems. Recent work has been performed on top down develop-
ment (re�nement) from abstract high level system requirements to imple-
mented executable component parts (e.g. as an Occam task). The algebraic
rules preserve the meaning and equivalence of the abstract process and its
implementation. So far, the re�nement methods treat only safety properties
of trace based nondivergent cyclic networks.

A speci�cation S is allowed to be any predicate on behaviours (traces).
For example, consider the speci�cation that the process SUD = controllerkplant
must never deadlock. Let SUD=tr be the process described by SUD after
engaging in the trace tr. Then the speci�cation S is given by:

(SUD=tr) 6= STOP for all traces tr of SUD

A semantic proof that SUD satis�es S proceeds by taking an arbitrary
trace tr, and showing that in all cases there is at least one event by which
tr can be extended. The use of satis�es is compositional, i.e. a proof
of a property of a compound process can be constructed from a proof of
correctness of its parts.

Another way of doing proofs is to provide a proof system. For example,
an axiom for the process STOP is given by STOP satis�es tr =<>, where
<> is the empty trace. An axiom or rule is provided for each operator. A
proof that P satis�es S is reduced to a number of smaller derivations on
the syntactically simpler subcomponents of P . Ultimately, the veri�cation
task is reduced to tautology checking of statements written in the speci�ca-
tion language. Allowing speci�cations to be any predicate over traces has
the advantage of expressivity, but its generality makes fully formal veri�-
cation di�cult. For this reason, a restricted speci�cation language such as
temporal logic is often used [128].

In other frameworks such as CCS, the emphasis is on de�ning a series
of equivalences (bisimulations), each equivalence de�ning a di�erent model
of concurrency. Thus certain processes that might be considered identical
in CSP, would be di�erent in CCS. CCS has a form of modal logic to
specify the observable behaviour of processes. CSP has a richer set of
laws than CCS allowing for optimizing designs and implementations. CCS
concentrates on a minimal set of operators needed for the full expression of
nondeterministic concurrency and its resulting equivalences.

In CCS, a system is veri�ed by using the notion of a bisimulation. For
example, consider a protocol veri�cation problem where one has a speci�ca-

5 LOGICS AND ALGEBRAS 42

tion S and an implementation I. The main idea is that both are formulated
in the same language, namely, as processes in a process algebra. The spec-
i�cation is abstract and high level. The implementation contains many
details, data structures and microcode. One can abstract from the imple-
mentation details by renaming certain internal actions to be a silent action.
Then, one can apply the axioms of the algebra for proving the equality be-
tween the speci�cation and the implementation. Bisimulation on �nite
state automata can be decided in O(m log n) time (using the Paige/Tarjan
algorithm).

Let k stand for the parallel composition operator with some hiding of
internal actions. Let � stand for the bisimulation equivalence between
processes. The speci�cation S of required system behaviour is speci�ed as
a (simple) process. The object is to �nd the unknown process controller
that is the solution to the equation

plantkcontroller � S

Thus the notion of correctness is captured by bisimulation. Using equa-
tional laws such as PkQ � QkP , we can try to solve the above equation
for controller.

5.2.2 TPA | Timed Process Algebras

Untimed Process Algebras have been extended with timing constructs in
several ways including (in alphabetical order):

� ACP� (Real-Time ACP) [8]. A dense time domain is used.

� ATP (Algebra of Timed Processes) [97].

� CCSR (Calculus of Communication Shared Resources based on CCS)
[32,33]. This algebra also provides a proof system for dealing with
priority based access to scarce resources.

� TCSP (Timed CSP) [126,127,132,128]. A dense time domain is used.

� TCCS (Temporal CCS) [93]. A complete set of axioms is presented
for discrete time domains, but the semantics can be given as either
discrete or dense.

5 LOGICS AND ALGEBRAS 43

� TCCS (Timed CCS) [144]. Discrete or dense time domains can be
used.

� TPCCS (Timed Probabilistic CCS) [37]. TPCCS was already dis-
cussed in the context of branching time temporal logic in the previous
section. A discrete time domain is used.

� TPL (Temporal Process Language) [45]. A discrete time domain is
used.

� U-LOTOS (Urgent LOTOS) [14]. Discrete or dense time domains can
be used.

We mention a few examples illustrating syntactic extensions for timed
behaviour and then describe the general principles involved.

In TCSP, the CSP syntax is enriched with the additional process WAIT
d, where d is a non-negative unit of time. The wait process terminates
successfully after d units of time. All events recorded by processes relate to
a conceptual global clock, and a process can only engage in a �nite number
of events in a bounded period of time.

There is a constant delay � associated with each action. Consider a user
interface of a vending machine V M . The insertion of a coin is modelled
by the action coin and a time tdrop is the time allowed for the coin to drop
before the event button is made available. The user then presses the button
and the machine then o�ers a drink coke after a short delay tcoke. If the
operator \;" stands for sequential composition of processes (i.e. P ;Q means
do P then do Q) then the timed behaviour of the vending machine can be
speci�ed as [21]

VM = coin ! WAIT (tdrop � �);

button ! WAIT (tcoke � �);

coke ! WAIT (treset � �);VM

The vending machine presents the user with no choice of product, so the
button is an unnecessary feature of the interface. The hiding operator
VMnbutton may be used to conceal the button event from the user. Hid-
den events occur as soon as they become available so we obtain using the
algebraic rules

5 LOGICS AND ALGEBRAS 44

VMnbutton = coin ! WAIT (tdrop + tcoke � �);

coke ! WAIT (treset � �);V MS

The delays before and after the button event are una�ected by the hiding
operator.

In TCCS (temporal CCS), the construct (t):P denotes a process that
will evolve into process P after exactly t units of time. �:P denotes the
process that is willing to wait any amount of time before behaving like P .

As an example, consider the alternating bit protocol ABP . The process
ABP is the parallel composition of the sender, the receiver and the medium.
Internal events (such as the acknowledgment signal between the medium
and the sender) are hidden or projected out.

In the internal behaviour of the sender, r is the time that the sender
will wait after sending a message before assuming the message has been
lost and retransmitting.

The speci�cation S that ABP must satisfy is

S = �:send:(d):receive:(d):S

i.e. S is a process that after some time sends a message, followed by a
transmission delay of d clock units. The transmission delay is the time that
it takes to transmit the message and receive an acknowledgment. Once the
message is received and acknowledged (this also takes d clock units), the
same behaviour is then repeated. The protocol is veri�ed to be correct by
showing that if r > 2d then

ABP = S

The equality is interpreted in a labelled transition graph semantics. It
means that the graph of ABP is the same as that of S, modulo the occur-
rence of any number of internally hidden transitions.

In [32,33], an extended version of CCS called CCSR is presented. CCSR
deals with timing properties as well as resource sharing based on a priority
semantics. Most real-time formalisms capture delays due to synchroniza-
tion. Resource speci�c details are abstracted out by assuming idealistic
operating environments. The problem with this abstraction is that true

5 LOGICS AND ALGEBRAS 45

parallelism may take place only at the system level where a group of shared
resources is executed simultaneously. Each resource, however, is inherently
sequential in nature. A resource can only execute a single action at one
point in time. This constraint leads naturally to an interleaving notion of
concurrency. On the other hand, scheduling algorithms ignore the e�ect
of process synchronization except for simple precedence relations between
processes.

The computation model of CCSR treats synchronization and schedul-
ing. It is resource based in that multiple resources execute synchronously,
while processes assigned to the same resource are interleaved according to
their priorities. CCSR possesses a prioritized equivalence for terms, based
on strong bisimilarity. An equational proof system is provided for syn-
tactic manipulation of terms based on resource con�guration and priority
ordering.

In [98], an overview of the above timed process algebras (TPAs) is pre-
sented as well as a unifying framework for treating them. The authors of
[98] point out that most TPAs implicitly adopt the following view concern-
ing their operation:

� A timed system is the composition of cooperating sequential compo-
nents or processes. Each component has (semantically) a time vari-
able as part of its state de�ned on an appropriate domain D with bi-
nary operation + (addition on nonnegative numbers). A component
modi�es its state either by executing some atomic action (atomic ac-
tions take no time) or by increasing its time variable (letting time
progress).

� The time variable increases synchronously in all processes only if all
components accept to do so. (In some TPAs this results in the coun-
terintuitive notion that time stops).

� An execution sequence takes place in two phases. In phase 1, compo-
nents may execute a �nite though arbitrarily long sequence of actions
either independently or in cooperation with each other. In phase 2,
components coordinate to let time progress by some �nite (or in�nite)
amount.

An untimed process algebra is a quadruple UPA = (O;A;R;�) where
O is a set of operators de�ning the syntax of the language. L is a set

5 LOGICS AND ALGEBRAS 46

of transition labels (actions). R is a set of rules de�ning the operational
semantics or models, associating with each term of the language a transition
system. The relation � is a behavioural equivalence (e.g. bisimulation)
de�ned over the models.

A labelled transition system (whose states are process expressions) is
the main computational model considered for the sake of comparing the
various algebras. P

a
! Q means the process P may perform the atomic

and timeless action a and then it behaves like Q. The transition P
d
! Q

means that the process P may idle for d time units after which it behaves
like Q. A time domain is a commutative monoid (D;+; 0). As D is usually
in�nite, models of processes are generally in�nitely branching transition
systems.

A timed process algebra is obtained from the untimed algebra (O;A;R;�
) by adding a set O0 of time constraining operations. The timed process al-
gebra is then de�ned as TPA = (O

S
O0; A;R0;�0). It must then be decided

how to obtain the operational semantic rules R0 and the strong equivalence
�0 with respect to the labelled transition system.

The two main constraints that must be satis�ed are:

Semantics Conservation. The untimed process and its timed equivalent
should have the same behaviour as long as we observe execution ac-
tions only. This means that the untimed rules R remain valid in the
corresponding TPA, as far as they are applied on terms of the UPA.

Isomorphism. For any terms P;Q of UPA, the equivalence P � Q holds
i� P �0 Q. This requirement guarantees that any theoretical devel-
opment in UPA remains valid in TPA and conversely.

See [98] for a further discussion of how and to what extent these con-
straints are satis�ed in the various timed process algebras.

An important issue that arises is the �nite variability property (or
non-Zeno behaviour) of the algebras. TCSP is the only algebra for which
all processes satisfy the �nite variability property, namely, that a process
can only perform a �nite number of actions in a �nite time interval. A
process that has Zeno behaviours may be unrealizable. In TCSP, non-Zeno
behaviour is achieved by enforcing a system delay between two actions of a
sequential process. Thus the isomorphism requirement is not satis�ed, and
hence not all laws of CSP are valid in TCSP. The assumption of a system

5 LOGICS AND ALGEBRAS 47

delay seems to be the only solution that ensures �nite variability, but yields
instead a complicated theory which also destroys the abstractness of time
[98].

In algebras such as TCCS, U-LOTOS and ACP� there exist processes
whose models can block the progress of time. For timed systems it is natural
to demand that a terminated process does not block time; but then a
distinction must be made between termination and deadlock. The designers
of algebras that block time admit that such time-locks are counterintuitive.
However, they claim that time-locks can detect certain types of timing
inconsistencies and unrealizable speci�cations.

In summary, verifying that a timed process P satis�es a speci�cation S
depends on whether a dual language framework is used or a single language
framework.

� In a dual language framework the speci�cation S is a formula in a
high level logical language (e.g. S is a predicate over behaviours or
a temporal logic formula). The process P is an expression of an al-
gebraic process construction language. A proof system is provided in
which there is a rule relating each operator of the algebra to a predi-
cate representing its satisfying behaviours. A formal derivation that
P satis�es S can then be constructed. This is the main method used
for veri�cation in TCSP. The TCSP proof system has been used to
prove the correctness of control software for aircraft engines, of realis-
tic telephone switching networks and of a local area network protocol
[128]. In TCSP there is also a method of veri�cation called timewise
re�nement . There is a hierarchy of theories from the most abstract
untimed theories to the most detailed timed theories. Some speci�-
cations may be decomposed into a functional part and a timed part.
The functional part of the speci�cation is checked more simply in the
untimed model, by using correctness-preserving migration between
models in the hierarchy. Only the timing part of the speci�cation
need be checked in the more complex timed model.

� In a dual language system it is possible to consider automated model
checking of �nite state systems. Such model checking has been in-
vestigated for the algebra TPCCS [37]. For ATP [99] processes are
translated into timed transition systems [3] which has already avail-
able model checking algorithms (see section on temporal logics).

5 LOGICS AND ALGEBRAS 48

� In a single language framework both the detailed implementation P
of the system and its abstract speci�cation S are terms of the process
algebra. A bisimulation is then used to show that the implementation
is equivalent to its abstract speci�cation, i.e. P � S.

Often, the requirement that two speci�cations be equivalent is too strong.
For example, it may not be necessary to prove two processes equally fast,
as perhaps \faster" would be su�cient. On the other hand equivalences are
interesting tools for abstractions as a larger concrete implementation can
be replaced by its smaller high level speci�cation, and vice versa [37]. The
approach of using a bisimulation has been successful in the untimed case.
However, some researchers claim that it will not be useful in the timed case
owing to the complexity introduced by the timed constructs [21].

The dual language approach of using a speci�cation language such as
temporal logic, has the advantage of separation of concerns. Each relevant
requirement can be expressed as a separate formula, and each formula can
be veri�ed separately [37].

5.3 RTL | Real Time Logic and Event Action Mod-

els

Real-Time Logic (RTL) is a formal language for reasoning about events and
their times of occurrence [56,57,92]. An external event, such as an operator
pushing a button, is denoted
BUTTON . The start and stop phase of a
compound sampling event is denoted " SAMPLE (denoting the beginning
the action), and # SAMPLE (its completion). The time domain is the set
of nonnegative integers. Time is captured by the occurrence function @
which assigns time values to event occurrences. This function is de�ned as

@(EV ENT; i) = time of the i-th occurrence of EVENT

The speci�cation which asserts that upon pressing the button the action
SAMPLE is executed within 30 seconds, is written as follows:

8x[@(
BUTTON;x) � @(" SAMPLE; x)

^@(# SAMPLE; x) � @(
BUTTON;x) + 30]

5 LOGICS AND ALGEBRAS 49

Let the system under development SUD be represented by the conjunc-
tion of a set of RTL formulas. Let the speci�cation of legal behaviour be
another RTL formula S (e.g. specifying a safety property that one plant
event must occur 20 seconds after some other event). Then the objective
is to prove that SUD) S.

Once the syntax of the logic is �xed as above, an underlying compu-
tational semantic model is needed. This is provided by the event-action
speci�cations, which is a textual language for specifying event ordering
that is easier to use (and more readily understandable than RTL). The
event action model can be used to generate sequences of event sets indexed
by times of occurrences, thus providing an operational semantics for inter-
preting RTL formulas. SUD) S is valid precisely when the formula F ,
given by SUD ^ :S, is unsatis�able (has no satisfying sequence of event
sets).

Various techniques are provided for showing F to be unsatis�able. One
possibility is to translate F into a corresponding formula F 0 in quanti�er
free Pressburger arithmetic extended with uninterpreted integer functions.
Pressburger arithmetic is doubly exponential in complexity, and undecid-
able with even a single uninterpreted function. Therefore, only a semi-
decision procedure can be given. The veri�cation is also impractical for
large systems. A resolution based inequality prover (the Bledsoe-Hines al-
gorithm) has been used with slightly better results than the Pressburger
procedures.

To improve the decision procedures, two approaches have been used.
First, the RTL formulas are limited to safety assertions. Second, the RTL
formulas can be better structured, using domain knowledge, into a com-
putation graph. With this improved structuring (and hence better choice
of clauses in the resolution theorem prover), an exponential time decision
procedure (in the worst case) is obtained. The decision procedure involves
checking for positive cycles in the computation graph, and checking for
unsatis�ability based on the positive cycles detected.

In [58], a visual formalism called Modecharts is introduced. Modecharts
have some similarities to Statecharts. Modecharts specify a decidable frag-
ment of RTL, in a \natural", state-based, visual fashion preferred by design
engineers. A method is provided for translating Modecharts into computa-
tional graphs, from which the veri�cation can be performed. For modular
extensions to RTL and the use of the HOL theorem prover see [78].

5 LOGICS AND ALGEBRAS 50

RTL's event occurrence function allows for a rich expression of periodic
and non-periodic real-time properties. However, unrestricted RTL is unde-
cidable. It does not treat data structures or in�nite state systems. RTL
formulas impose a partial order on computational actions which is useful
for representing high level timing requirements.

5.4 Assertional and other formal methods

5.4.1 Real-Time Hoare Logic

In [51,50], an assertional style of reasoning about real-time systems is intro-
duced, based on classical Hoare triples fqgPfrg. P is a program, and q and
r are �rst order predicates [49]. Hoare triples can only express partial cor-
rectness (properties that hold if the program terminates). This however is
not suitable for real-time programs which must deal with non-terminating
processes and intensive interaction with the environment.

Therefore Hoare triples are extended with a third assertion C called a
commitment . This leads to formulas of the form C: fqgPfrg. The commit-
ment expresses the communication interface of the program P (part of the
controller) with the environment (the plant or other parts of the controller).
The commitment must be satis�ed by terminating and non-terminating
computations. Communication between processes is by message passing
only (there are no shared variables), so C contains no program variables.
The special time variable time is allowed in the commitment.

The speci�cation asserting that P does not perform any communication
on channel c is written

(8t::comm via c at t) : ftime = 0gPftrueg

The speci�cation asserting that P terminates after 12 time units, incre-
menting x by 5, is written

time < 12 : fx = v ^ time = 0gPfx = v + 5g

A sound and relatively complete compositional proof system is provided
for Occam style programs. The �rst extension of Hoare style reasoning from
sequential to qualitative (non real-time) concurrent reasoning is provided in
[113], but the proof system required the presence of all the code and hence

5 LOGICS AND ALGEBRAS 51

was not compositional. To aid in the development of the proof system, a
denotational semantics for Occam is developed. The execution model is
based on maximal parallelism and synchronous message passing.

[50] compares MTL (metric temporal logic) and the assertional Hoare
style proof systems. In general MTL allows for more concise real-time spec-
i�cations than the more verbose assertional style. The assertional style of
reasoning is more suitable for detailed reasoning about sequential program
fragments. A combination of both styles of reasoning is recommended. Use
concise MTL formulas for top level speci�cations and the initial design out-
line. Use the assertional style to perform detailed veri�cation of sequential
components. In both cases, compositional proofs of correctness are complex
even for simple examples.

5.4.2 Putting Time into Proof Outlines

In [131] a proof outline logic is provided for concurrent programming with
additional rules to perform real-time veri�cation. The logic is de�ned using
the maximal parallelism computational model.

Safety properties assert that something bad does not occur during a run
of the system. For example, assume that we wish to prove that :Q never
occurs during any run of the system. To prove this, the designer typically
searches for an invariant I, that characterizes current and possibly past
program states, and is not invalidated by system actions. If the invariant I
holds in all initial states of the system, and I) Q is valid, then :Q never
becomes true.

Timing properties can often be formulated as safety properties. For
example, in a process control system the elapsed time between stimulus
and response must be bounded by some time d. The \bad thing" (reaching
time d before seeing the response) can be speci�ed in terms of times at
which various control points in the real-time program are reached.

A logic L to verify untimed safety properties can form the basis of a
logic L0 to verify timing properties. To do this, constructs must be added
so that in L0 the designer can specify in the predicates I and Q information
about the times at which events of interest occur. It must also be possible
to establish that the actions of the system do not invalidate the invariant I.
This means that the rules of L have to be re�ned with information about
execution times. In [131] such a proof outline logic (POL) is developed.

5 LOGICS AND ALGEBRAS 52

Knowledge of the execution times of individual actions is needed to reason
about timing properties.

POL is similar to the Hoare-style logic in [135], which augments each
action with an assignment to a clock variable to keep track of elapsed time.
In contrast, POL augments the assertion language with additional terms.
This results in a more expressive language.

The assertional logic of Hooman in [51] (discussed above) deals with
synchronous message passing and has no shared variables (which makes
compositional reasoning easier). Only certain times can be recorded, e.g.
times at which externally visible events (such as communication) can occur,
and the times at which program execution starts and terminates. Informa-
tion about control points cannot be speci�ed because internal activities
betray the internal structure of a component, which would destroy com-
positionality. Certain liveness proofs can also be made. In contrast, POL
deals with shared variables, but then relaxes the compositionality require-
ment. Liveness proofs cannot be given. POL can also be used to represent
synchronous communication. The two logics are therefore incomparable
although both are assertional in style.

Another assertional logic which is being extended to deal with real-time
is the temporal logic of actions discussed in [68]. A report on this work was
not available at the time this survey article was written.

5.5 Hybrid Models

Many of the computational models discussed previously assume that the
plant or environment can be modelled as a discrete event dynamic system.
This assumption is useful as it allows a symmetrical treatment of controllers
(software implemented on a digital computer) and plants. It also encour-
ages structured modular analysis. Many simplifying assumptions can be
made that make the analysis much easier. The discrete description of dig-
ital logic circuits via boolean functions is an example of where a discrete
model simpli�es analysis. If the digital circuit was viewed as a continu-
ously changing numerical vector that is a solution to a set of di�erential
equations, analyzing its behaviour would be much more di�cult compared
to treating it as a boolean system.

While the discrete event approach is justi�ed in many situations, there
are other contexts in which the assumption of discreteness may lead to un-

5 LOGICS AND ALGEBRAS 53

reliable conclusions. A control program driving a robot through a maze
is an example where it may be necessary to introduce a continuous vari-
ables analysis. Continuous variable dynamic systems have been extensively
studied by control theorists [143].

Recently researchers have turned their attention to hybrid systems the-
ory, i.e. systems consisting of a non-trivial mixture of discrete and con-
tinuous components. For such systems it is hoped to obtain just the right
kind of computational model in which each kind of analysis (discrete and
continuous) can be carried out in its relevant domain but in an integrated
fashion.

In [101], a hybrid formalism based on Statecharts and real-time tem-
poral logic is proposed. The underlying semantic model is that of hybrid
traces which are mappings from continuous time to system states. A phase
transition system is used as the computational model to represent the be-
haviour of the system. A behaviour is a sequence of phases alternating
between continuous and discrete changes. A continuous phase takes some
amount of time and allows changes over this time that are governed by
di�erential equations. A continuous phase is followed by a discrete phase.
The discrete phase consists of a �nite number of discrete transitions, each of
which causes a possibly discontinuous change in the value of the variables.

Two speci�cation formalisms are allowed: Statecharts and temporal
logic. Statecharts are used to describe the detailed behaviour of the sys-
tem. An unstructured state (of the Statechart) may be labelled with the
appropriate di�erential equations that describe the system behaviour while
in that state. When a discrete event occurs (e.g. the pilot requests a new
mode of
ight to a higher altitude) then there is a discontinuous change in
the variables (e.g. in the setpoints), and an instantaneous change to a new
state in which some other continuous behaviour is observed.

A modest extension to real-time temporal logic is made enabling it to
refer to continuous change and time. A proof system for safety proper-
ties is provided, leaving a more thorough investigation of the subject to
subsequent research.

In [85], weakest precondition predicate transformers are used to derive
sequential process control programs. Only one extension to Dijkstra's calcu-
lus had to be made, involving the use of function-valued auxiliary variables,
for reasoning about physical processes during program transitions. A proof
system for hybrid systems can thus be obtained with only some modest

6 FUTURE TRENDS 54

additions to Dijkstra's calculus. The proof system is limited to sequential
real-time programs.

In [99], a generalization to Action Timed Graphs is proposed which al-
lows for the modelling of hybrid systems. A set of timers, and a set of state
variables is added to the model. The state variables to do not change lin-
early with respect to time, but according to a continuous evolution function
(e.g. di�erential equations). No proof system is provided.

6 Future trends

This survey has shown that formal methods for real-time systems are be-
ing energetically explored. The proliferation of formalisms indicates that
the �eld is still in its \adolescence". It would therefore be hazardous to
speculate on new developments and trends and their range of applicability.
Nevertheless, we summarize below some of the main ideas mentioned in this
survey, and also mention further areas of future development as expressed
in [40,22]:

� Real-time software is part of a greater system. Computational models
must be
exible enough to represent both controllers (software) as
well as the plant (the environment). Software harms no one. It is the
plant (that the software must control) that does the damage. The
total system, consisting of controllers and plant, must be modelled
and validated.

� Two possible strategies for improving reliability of complex real-time
systems have been developed. Industrial institutions have promoted
structured, visual design methods and the use of real-time program-
ming languages. In academic institutions, formal analysis and ver-
i�cation methods have been provided. Both strategies need to be
further explored and integrated with each other.

� Structured development tools need to be improved to allow for pow-
erful execution and compilation facilities (e.g. into Ada or Occam).
Such tools are indispensable in the design of large scale systems. Im-
proved visual methods for structuring systems should be explored.
This will make the tools accessible to design engineers. Veri�cation

6 FUTURE TRENDS 55

methodologies should be incorporated into these tools. Research into
fast algorithms for automatic veri�cation of �nite state systems is
already showing some promising results. The problems of state ex-
plosion must be dealt with by symbolic techniques and the analysis
of reduced order systems.

� Di�erent formal methods have evolved independently of each other.
The best features of each method should be synthesized and incor-
porated into a more powerful and hierarchical uni�ed theory. The
expressiveness of speci�cation methods should be improved without
resulting in intractability. It is important to combine existing meth-
ods, broaden their scope and investigate their limits of applicability.
New formalisms such as hybrid systems theory should be explored.
This, and more, will be required to deal with realistic large scale
systems.

� Scheduling of processes and the veri�cation of timing properties must
be integrated into a comprehensive theory. To do this, it may be nec-
essary to develop new methods for e�cient and concise expression of
timing constraints. This will result in complex runtime environments
that must be dealt with in the new formalisms.

� Totally automated synthesis of controllers that will satisfy arbitrary
properties is probably not obtainable. That does not prevent theo-
rists from exploring semi-automated methods and heuristics for dis-
ciplined development of controllers from their speci�cations. In addi-
tion, partial veri�cation methods can be explored either by applying
the methods to a small core part of the system (the most critical one),
or by applying the method to an abstraction (simpli�ed representa-
tion) of the system. In either case, partial veri�cation methods must
be accompanied with a clear explanation of the validity of these par-
tial results to total behaviour, and how these methods can be safely
applied to real world systems.

� Collaboration between industry and researchers on real problems is
needed to ensure the right balance of practice and theory. Practical
methods often lack a theoretical basis, thereby limiting their analysis

REFERENCES 56

capabilities. Theoretical work can be stimulated by the need to deal
with practical applications.

There is a need to start using real systems as examples. These exam-
ples should be documented and published by industries interested in
looking for solutions. Current models and procedures work on tiny
examples in research papers. But these methods often carefully leave
out anything the model cannot handle, which usually includes most
things needed in a real speci�cation. There is nevertheless cause for
cautious optimism. Recent collaboration has shown some signs of
closing the gap between theory and practice [39,22].

Acknowledgements: I gratefully acknowledge help received from Nancy
Leveson, Willem-Paul de Roever, Al Mok, Dave Parnas, Murray Wonham,
Jozef Hooman, Ron Koymans, Ben Moszkowski, Mike Gordon, Farnam
Jahanian, Insup Lee, Rajeev Alur and Roger Hale. Of course, any errors
or misinterpretation of concepts is my sole responsibility.

References

[1] B. Alpern and F.B. Schneider. Verifying temporal properties with-
out temporal logic. ACM Transactions on Programming Language
Systems, 11(1), 1989.

[2] R. Alur. Techniques for Automatic Veri�cation of Real-Time Sys-
tems. PhD thesis, Stanford University, Dept. of Computer Science,
Stanford, CA 94305 USA, 1991.

[3] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking for real-
time systems. In Proceedings 5th Conference on Logic in Computer
Science. IEEE, 1990.

[4] R. Alur and D.L. Dill. Automata for modeling real-time systems. In
M.S. Paterson, editor, ICALP 90: Automata, Languages and Pro-
gramming, LNCS 443, pages 322{335. Springer-Verlag, 1990.

REFERENCES 57

[5] R. Alur, T. Feder, and T.A. Henzinger. The bene�ts of relaxing
punctuality. In Proceedings of the 10th Annual ACM Symposium on
Principles of Distributed Computing, 1991.

[6] R. Alur and T.A. Henzinger. Logics and models of real-time: A
survey. In REX Workshop | Real-Time: Theory in Practice, LNCS.
Springer-Verlag, 1992.

[7] Rajeev Alur and Thomas Henzinger. Real-time logics: Complexity
and expressiveness. In Proceedings of the 5th Anual IEEE Symposium
on Logic in Computer Science, pages 390{401, June 1990.

[8] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Techni-
cal Report CS-R9053, Center for Mathematics and Computer Science,
Amsterdam, 1990.

[9] A. Benveniste and P. LeGuernic. Hybrid dynamical systems the-
ory and the SIGNAL language. IEEE Trans. on Automatic Control,
35(5):535{546, May 1990.

[10] A. Bernstein and P.K. Harter. Proving real-time properties of pro-
grams with temporal logic. In Proceedings of ACM SIGOPS 8th an-
nual ACM Symposium on Operating Systems Principles, pages 1{11,
December 1981.

[11] G. Berry and G. Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation. Technical report, Ecole
Nationale Superieure des Mines de Paris, 1988.

[12] B. Berthomieu and Michael Diaz. Modeling and veri�cation of time
dependent systems using time petri nets. IEEE Transactions on Soft-
ware Engineering, 17(3):259|273, March 1991.

[13] J. Billington, G.R. Wheeler, and M.C. Wilbur-Ham. PROTEAN: a
high-level Petri net tool for the speci�cation and veri�cation of com-
munication protocols. IEEE Transactions on Software Engineering,
14(3):301{316, March 1988.

REFERENCES 58

[14] T. Bolognesi and F. Lucidi. LOTOS- like process algebra with urgent
or timed interactions. In REX Workshop | Real-Time: Theory in
Practice, LNCS. Springer-Verlag, 1992.

[15] K.P. Brand and J. Kopainsky. Principles and engineering of process
control with Petri nets. IEEE Transactions on Automatic Control,
33(2):138{149, February 1988.

[16] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE : a declar-
ative language for programming synchronous systems. In Proc. 14th
ACM Symposium on Programming Languages, Jan. 1987.

[17] J.F. Cassidy, T.Z. Chu, M. Kutcher, S.B. Gershwin, and Y. Ho. Re-
search needs in manufacturing systems. IEEE Control Systems Mag-
azine, 5(3):11{13, August 1985.

[18] CCIT. CCIT high level language CHILL recommendation z.200,
CCIT, Geneva, 1980.

[19] K.M. Chandy and J. Misra. Parallel program design. Addison-Wesley,
1988.

[20] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation
of �nite state concurrent systems using temporal logic. ACM Trans-
actions on Programming Languages and Systems, 8(2):244{263, April
1986.

[21] J. Davis. Speci�cation and Proof in Real-Time Systems. PhD thesis,
Oxford University Computing Laboratory, 1991.

[22] W.-P. de Roever. Foundations of computer science: Leaving the ivory
tower. In EATCS Bulletin. EATCS, June 1991.

[23] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cli�s, 1976.

[24] E.A. Emerson and E.C. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Pro-
gramming, 2:241{266, 1982.

REFERENCES 59

[25] E.A. Emerson and J.Y. Halpern. `Sometimes' and `not never' revis-
ited: on branching versus linear time temporal logic. Journal of the
Association for Computing Machinery, 33(1):151{178, January 1986.

[26] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinisvan. Quantitative
temporal reasoning. In E.M. Clarke, A. Pnueli, and J. Sifakis, editors,
Proceedings of the Workshop on Automatic Veri�cation Methods for
Finite State Systems. Springer-Verlag, Lecture Notes in Computer
Science, 1989.

[27] F.S. Etessami and G.S. Hura. Rule based design methodology for
solving control problems. IEEE Transactions on Software Engineer-
ing, 17(3):274{282, March 1991.

[28] N. Francez. Fairness. Springer-Verlag, 1986.

[29] A. Gabrielian and M.K. Franklin. State-based speci�cation of com-
plex real-time systems. In Proceedings of the 9th Real-Time Systems
Symposium, pages 2{11, December 1988.

[30] A. Galton, editor. Temporal logics and their applications. Academic
Press, 1987.

[31] J.R. Garman. The bug heard round the world. ACM SIGSOFT
Software Engineering Notes, 6(5), 1981.

[32] R. Gerber and I. Lee. Ccsr: A calculus for communicating shared re-
sources. In CONCUR'90, LNCS 458, pages 263{277. Springer-Verlag,
August 1990.

[33] R. Gerber and I. Lee. A proof system for communicating shared
resources. In Proceedings of the Real-Time Systems Symposium, 1990.

[34] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO, a logic language
for executable speci�cations of real-time systems. Journal of Systems
and Software, 12(2):107{123, May 1990.

[35] D. Gries. The Science of Programming. Springer-Verlag, 1985.

REFERENCES 60

[36] R. W. S. Hale. Using temporal logic for prototyping: The design of a
lift controller. In B. Banieqbal, H. Barringer, and A. Pnueli, editors,
Temporal Logic in Speci�cation, LNCS 398. Springer-Verlag, 1989.

[37] Hans A. Hansson. Time and Probability in Formal Design and Dis-
tributed Systems. PhD thesis, Uppsala University, Dept. of Computer
Science, S-751 20 Uppsala, Sweden, 1991.

[38] D. Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8:231{274, 1987.

[39] D. Harel. Biting the silver bullet: Towards a brighter future for sys-
tems development. Technical Report CS90-08, Weizmann Institute,
1990.

[40] D. Harel. Biting the silver bullet: Towards a brighter future for
system development. Computer, 25(1):8{20, January 1992.

[41] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
and M. Trachtenbrot. Statemate: a working environment for the
development of complex reactive systems. IEEE Transactions on
Software Engineering, 16:403{414, 1990.

[42] D. Harel and A. Pnueli. On the development of reactive systems. In
K.R Apt, editor, Logics and Models of Concurrent Systems, volume 13
of NATO ASI, pages 477{498. Springer-Verlag, 1985.

[43] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal
logic. In Proceedings of the 5th Annual Symposium on Logic in Com-
puter Science, pages 402{413, June 1990.

[44] Derek J. Hatley and Imitai A. Pirbhai. Strategies for Real-Time Sys-
tem Speci�cation. Dorset House Publishing Co., New York, 1988.

[45] M. Hennessy and T. Regan. A process algebra for timed systems.
Technical Report 5/91, Dept. of Computer Science, University of Sus-
sex, UK, 1991.

[46] T. A. Henzinger. The Temporal Speci�cation and Veri�cation of Real-
Time Systems. PhD thesis, Dept. of Computer Science, Stanford
Univ., 1991.

REFERENCES 61

[47] T.A. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodol-
gies for real-time systems. In Proceedings of the 18th ACM Symposium
on Principles of Programming Languages, pages 353{366, January
1991.

[48] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[49] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10), October 1969.

[50] J. Hooman. Speci�cation and Compositional Veri�cation of Real-
Time Systems. PhD thesis, Eindhoven University of Technology, Dep.
of Maths and Comp. Sc., Eindhoven, The Netherlands, 1991.

[51] J. Hooman and W.-P. de Roever. Design and veri�cation in real-time
distributed computing: an introduction to compositional methods.
In Proceedings of of the 9th International Symposium on Protocol
Speci�cation, Testing and Veri�cation. North-Holland, 1989.

[52] J. Hooman and J. Widom. A temporal logic based compositional
proof system for real-time message passing. In Proceedings of
PARLE89 vol. II, LNCS 366. Springer-Verlag, 1989.

[53] C. Huizing. Semantics of Reactive Systems: Comparison and Full
Abstraction. PhD thesis, Technische Universiteit Eindhoven, March
1991.

[54] K. Inan and P.P Varaiya. Finitely recursive process models for
discrete event systems. IEEE Transactions on Automatic Control,
33(7):626{639, July 1988.

[55] M.S. Ja�e, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart. Soft-
ware requirements analysis for real-time process control systems.
IEEE Transactions on Software Engineering, 17(3):241{258, 241
1991.

[56] F. Jahanian and A.K. Mok. Safety analysis of timing properties in
real-time systems. IEEE Transactions on Software Engineering, SE-
12(9):890{904, September 1986.

REFERENCES 62

[57] F. Jahanian and A.K. Mok. A graph-theoretic approach for timing
analysis and its implementation. IEEE Transactions on Computers,
C36(8), 1987.

[58] F. Jahanian and D. Stuart. A method for verifying properties of
modechart speci�cations. In Proceedings 9th Real-time Systems Sym-
posium, pages 12{21. IEEE Computer Society, December 1988.

[59] C.B. Jones. Systematic Software Development using VDM. Interna-
tional Series in Computer Science. Prentice-Hall, 1986.

[60] M. Joseph and A. Goswami. Formal description of real-time systems:
a review. Technical Report RR129, Dep. of Computer Science, Uni-
versity of Warwick, U.K., August 1988.

[61] R. Koymans. (real) time: A philosphical perspective. In REX Work-
shop | Real-Time: Theory in Practice, LNCS. Springer-Verlag, 1992.

[62] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and
S. Arun-Kumar. Compositional semantics for real-time distributed
computing. In Proceedings of Logics of Programs (Brooklyn), LNCS
193, pages 167{190. Springer-Verlag, 1985.

[63] R. Koymans, J. Vytopil, and W.P. de Roever. Real-time program-
ming and asynchronous message passing. In Proc. 2nd Annual Sym-
posium on Principles of Distributed Computing, pages 187{197, Mon-
treal, August 1983. (An extended version appeared in Information
and Computation, Volume 79, Number3, December 1988).

[64] Ron Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255{299, November 1990.

[65] J. Kramer and J. Magee. Dynamic con�guration for distributed sys-
tems. IEEE Transactions on Software Engineering, SE-11(4):424{
436, April 1985.

[66] F. Kroger. Temporal Logics of Programs, volume 8 of EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, 1987.

REFERENCES 63

[67] L. Lamport. What good is temporal logic? In R.E. Mason, editor, In-
formation Processing 83, pages 657{668. Elsevier Science Publishers,
North Holland, 1983.

[68] L. Lamport. The temporal logic of actions. Technical report, DEC
Systems Research Center, Palo Alto, CA, 1991.

[69] L. Lamport. Specifying concurrent program modules. ACM Transac-
tions on Programming Languages and Systems, 5(2):190{222, April
83.

[70] L. Lamport. `Sometime' is sometimes `not never'. Proceedings of
the 7th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 174{185, Jan 1980.

[71] M.S. Lawford. Transformational equivalence of timed transition mod-
els. Master's thesis, Dept. of Electl. Engrg., Univ. of Toronto, 1992.
(available as Systems Control Group Report No. 9202, January 1992).

[72] N.G. Leveson and J.L Stolzy. Safety analysis using Petri nets. IEEE
Transactions on Software Engineering, SE-13(3):386{397, March
1987.

[73] S.-T Levi and A.K. Agrawala. Real Time System Design. McGraw-
Hill Publishing Company, 1990.

[74] A.H. Levis. Challenges to control: a collective view. IEEE Transac-
tions on Automatic Control, AC-32(4), April 1987.

[75] Y. Li. Control of Vector Discrete-Event Systems. PhD thesis, Dept. of
Electl. Engrg., Univ. of Toronto, 1991. (available as Systems Control
Group Report No 9106, July 1991).

[76] INMOS Limited. Occam programming manual. International Series
in Computer Science. Prentice-Hall, Englewood Cli�s, New Jersey,
1984.

[77] N. Lynch and F. Vaandrager. Forward and backward simulations for
timing-based systems. In REX Workshop | Real-Time: Theory in
Practice, LNCS. Springer-Verlag, 1992. (In Press).

REFERENCES 64

[78] G. H. MacEwen and D. B. Skillicorn. Using higher-order logic for
modular speci�cation of real-time distributed systems. In M. Joseph,
editor, Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems, LNCS 331, pages 36{66. Springer-Verlag, 1988.

[79] J. Magee, J. Kramer, and M. Sloman. Constructing distributed
systems in Conic. IEEE Transactions on Software Engineering,
15(6):663{675, June 1989.

[80] Z. Manna and A. Pnueli. Speci�cation and veri�cation of concurrent
programs by 8-automata. In Proceedings of the 14th ACM Symposium
of Principles of Programming Languages, pages 1{12, 1987.

[81] Z. Manna and A. Pnueli. The anchored version of the temporal frame-
work. In J.W. de Bakker, W.P. de Roever, and G. Rozenburg, editors,
Models of concurrency: linear, branching and partial orders, LNCS.
Springer-Verlag, 1989.

[82] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Springer-Verlag, 1992.

[83] Z. Manna and A. Pnueli. Veri�cation of concurrent programs: a
temporal proof system. Technical report, Dept. of Computer Science,
Stanford University, June 1983. See also Foundations of Computer
Science IV, Amsterdam, Mathematical Center Tracts, pages 163-225,
1983.

[84] Z. Manna and P. Wolper. Synthesis of communicating processes from
temporal logic speci�cations. ACM Transactions on Programming
Languages and Systems, 6(1):68{93, January 1984.

[85] K. Marzullo, F.B. Schneider, and N. Budhiraja. Derivation of sequen-
tial, real-time , process-control programs. Technical Report 91-1217,
Dept. of Computer Science, Cornell University, Ithaca, New York
14853, 1991.

[86] B.E. Melhart, N.G. Leveson, and M.S. Ja�e. Analysis capabilities
for requirements speci�ed in statecharts. Technical report, Dep. of
Information and Computer Science, University of California, Irvine,
September 1988.

REFERENCES 65

[87] M. Menasche. PAREDE: An automated tool for the analysis of
time(d) Petri nets. In International workshop on timed Petri nets,
pages 162{169. IEEE Computer Society, June 1985.

[88] P.M. Merlin and A. Segall. Recoverability of communication pro-
tocols - implications of a theoretical study. IEEE Transactions on
Communications, pages 1036{1043, September 1976.

[89] G.J. Milne. CIRCAL and the representation of communication, con-
currency and time. ACM Transactions on Programming Languages
and Systems, 7(2):270{298, April 1985.

[90] R. Milner. A Calculus of Communicating Systems. LNCS 92.
Springer-Verlag, 1980.

[91] R. Milner. Some directions in concurrency theory (panel statement).
In Proceedings of the International Conference on Fifth Generation
Computer Systems. ICOT, 1988.

[92] A.K. Mok. Towards mechanization of real-time system design. In
Foundations of Real-Time Computing: Formal Speci�cations and
Methods. Kluwer Press, 1991.

[93] F. Moller and C. Tofts. A temporal calculus of communicating sys-
tems. In CONCUR 90, LNCS 458, pages 401{415. Springer-Verlag,
1990.

[94] E.T. Morgan and R.R. Razouk. Interactive state-space analysis of
concurrent systems. IEEE Transactions on Software Engineering,
SE-13(10):1080{1091, October 1987.

[95] B. Moszkowski. A temporal logic for multilevel reasoning about hard-
ware. Computer, 18(2):10{19, February 1985.

[96] K.T. Narayana and A.A. Aaby. Speci�cation of real-time systems in
real-time temporal interval logic. In Proceedings Real-time Systems
Symposium, pages 86{95. IEEE Computer Society, December 1988.

[97] X. Nicollin, J. L. Richier, J. Sifakis, and J. Voiron. ATP: an algebra
for timed processes. In Proceedings IFIP Working Group Conference
on Programming Concepts and Methods, pages 402{429, 1990.

REFERENCES 66

[98] X. Nicollin and J. Sifakis. An overview and synthesis of timed pro-
cess algebras. In REX Workshop | Real-Time: Theory in Practice,
LNCS. Springer-Verlag, 1992.

[99] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs
and hybrid semantics. In REX Workshop | Real-Time: Theory in
Practice, LNCS. Springer-Verlag, 1992.

[100] E.R. Olderog and C.A.R Hoare. Speci�cation oriented semantics.
ACTA Informatica, 23:9{66, 1986.

[101] O.Maler, Z. Manna, and A. Pnuelli. From timed to hybrid systems. In
REX Workshop | Real-Time: Theory in Practice, LNCS. Springer-
Verlag, 1992.

[102] J.S. Ostro�. Real-time computer control of discrete event systems
modelled by extended state machines: a temporal logic approach.
Technical Report 8618, Systems Control Group, Dept. of Electrical
Engineering, University of Toronto, September 1986. revised January
1987.

[103] J.S. Ostro�. Synthesis of controllers for real-time discrete event sys-
tems. In Proceedings of the 28th IEEE Conference on Decision and
Control, December 1989.

[104] J.S. Ostro�. Temporal Logic for Real-Time Systems. Advanced
Software Development Series. Research Studies Press Limited (dis-
tributed by John Wiley and Sons), England, 1989.

[105] J.S. Ostro�. Deciding properties of timed transition models. IEEE
Transactions on Parallel and Distributed Systems, 1(2):170{183,
April 1990.

[106] J.S. Ostro�. Constraint logic programming for reasoning about dis-
crete event processes. The Journal of Logic Programming, 1991. (In
Press).

[107] J.S. Ostro�. Systematic development of real-time discrete event sys-
tems. In Proceedings of the ECC91 European Control Conference,
pages 522{533, Paris, France, July 1991. Hermes Press.

REFERENCES 67

[108] J.S. Ostro�. Veri�cation of safety critical systems using TTM/RTTL.
In REX Workshop | Real-Time: Theory in Practice, LNCS.
Springer-Verlag, 1992. (In Press).

[109] J.S. Ostro�. A veri�er for real-time properties. Real-Time Journal,
4:5{35, 1992. (In press).

[110] J.S. Ostro� and W.M. Wonham. A framework for real-time discrete
event control. IEEE Transactions on Automatic Control, April 1990.

[111] J.S. Ostro� and W.M. Wonham. A temporal logic approach to real
time control. In Proceedings of the 24th IEEE Conference on Decision
and Control, pages 656{657, Florida, December 1985.

[112] S. Owicki and L. Lamport. Proving liveness properties of concur-
rent programs. ACM Transactions on Programming Languages and
Systems, 4(3):455{495, Jul 1982.

[113] S.S. Owicki and D. Gries. Verifying properties of parallel programs:
an axiomatic approach. Communications of the ACM, 19(5), May
1976.

[114] D.L. Parnas and J. Madey. Functional documentation for computer
systems engineering. Technical Report TR 90-287, TRIO, Queen's
University, Kingston, Ont., Canada K7L3N6, 1990.

[115] D.L. Parnas, A. J. van Schouwen, and S.P. Kwan. Evaluation stan-
dards for safety-critical software. Technical Report TR 88-220, De-
partment of Computer Science, Queen's University, May 1988.

[116] J.L. Peterson. Petri Net Theory and the Modelling of Systems.
Prentice-Hall, Englewood Cli�s, N.J., 1981.

[117] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th
IEEE Annual Symposium on the Foundations of Computer Science,
pages 46{57, Providence, R.I., November 1977.

[118] A. Pnueli and E. Harel. Applications of temporal logic to the speci-
�cation of real-time systems. In Formal Tehniques in Real-Time and
Fault Tolerant Systems, LNCS 331. Springer-Verlag, 1988.

REFERENCES 68

[119] A. Pnueli and M. Shalev. What is in a step? In T. Ito and A.R.
Meyer, editors, Theoretical Aspects of Computer Software, LNCS 298,
pages 244{264. Springer-Verlag, 1991.

[120] Amir Pnueli. Applications of temporal logic to the speci�cation
and veri�cation of reactive systems: a survey of current trends. In
J. de Bakker, W.P de Roever, and G. Rozenburg, editors, Current
trends in concurrency, LNCS 244. Springer-Verlag, 1986.

[121] W.J. Quirk. Veri�cation and Validation of Real-Time Software.
Springer-Verlag, Berlin, 1985.

[122] P.J. Ramadge and W.M. Wonham. Modular feedback logic for dis-
crete event systems. SIAM Journal of Control and Optimization,
25(5):1202{1218, September 1987.

[123] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of
discrete-event processes. SIAM Journal of Control and Optimization,
25(1):206{230, January 1987.

[124] C. Ramchandani. Analysis of asynchronous concurrent systems by
timed Petri nets. Technical Report MAC TR 120, MIT, February
1974.

[125] R.R. Razouk and C.V. Phelps. Performance analysis of timed Petri
nets. In Proceedings of 4th International Workshop on Protocol Ver-
i�cation and Testing, June 1984.

[126] G.M. Reed and A.W. Roscoe. A timed model for communicating se-
quential processes. In Proceedings ICALP 86. Springer-Verlag, LNCS
226, 1986.

[127] G.M Reed and A.W. Roscoe. A timed model for communicating
sequential processes. Theoretical Computer Science, 58:249{261, June
1988.

[128] G.M. Reed, A.W. Roscoe, et al. Timed CSP: Theory and practice. In
REX Workshop | Real-Time: Theory in Practice, LNCS. Springer-
Verlag, 1992.

REFERENCES 69

[129] W. Reisig. Petri nets: an introduction. Springer-Verlag, Berlin, 1985.

[130] N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, Li-
brary of Exact Philosophy, 1971.

[131] F.B. Schneider, B. Bloom, and K. Marzello. Putting time into proof
outlines. In REX Workshop | Real-Time: Theory in Practice,
LNCS. Springer-Verlag, 1992.

[132] S. Schneider. Correctness and Communication in Real-Time Systems.
PhD thesis, Oxford University, 1990.

[133] D. J. Schole�eld. The formal development of real-time systems. Tech-
nical report, Dept. of Computer Science, University of York, England,
1990.

[134] R.L. Schwartz and P.M. Melliar-Smith. From state machines to tem-
poral logic: Speci�cation methods for protocol standards. IEEE
Transactions on Communications, Com-30(12), Dec 1982.

[135] A. Shaw. Reasoning about time in higher-level language software.
IEEE Transactions on Software Engineering, SE-15(7):875{899, July
1989.

[136] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall,
Englewood Cillfs, N.J., 1989.

[137] J.A. Stankovic. Misconceptions about real-time computing: a seri-
ous problem for next generation systems. Computer, 21(10):10{19,
October 1988.

[138] W.M. Turski. Time considered irrelevant for real-time systems. BIT,
28:473{486, 1988.

[139] USDOD. Reference Manual for the Ada Programming Language.
Spinger-Verlag, New-York, 1983.

[140] W.M.P van der Aalst. Timed Coloured Petri Nets and their Appli-
cation to Logistics. PhD thesis, Eindhoven University of Technology,
1992. (to appear).

REFERENCES 70

[141] P. Ward and S. Mellor. Structured Development for Real-Time Sys-
tems. Yourdon Press, New York, 1985.

[142] N. Wirth. Towards a discipline of real-time programming. Commu-
nications of the ACM, 20(8), August 1977.

[143] W. M. Wonham. Linear Multivariable Control: A Geometric Ap-
proach. Springer-Verlag, 3rd edition, 1985.

[144] Wang Yi. CCS + time = an interleaving model for real time systems.
In Proceedings of ICALP'91, 1991. (Madrid, Spain).

[145] W.M. Zubrek. Timed Petri nets and preliminary performance evalu-
ation. In Proceedings 7th Annual Symposium on Computer Architec-
ture, La Baule, France, 1980.

