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Abstract. The emerging Unified Modelling Language has been touted as merg-
ing the best features of existing modelling languages, and has been adopted by
leading companies and vendors as a universal software modelling language. Some
researchers are also looking to UML as a basis for formal methods development.
A less known approach is BON (the Business Object Notation), which is based
on the principles of seamlessness, reversibility and design by contract, making
it an ideal basis for industrial-strength formal methods development of object-
oriented software. In this paper, we argue that BON is much more suited for
the application of formal methods than UML. We describe the properties that
an industrial-strength formal method must have, show how algorithm refinement
can be done in BON (as an example of using BON for formal development), and
contrast BON with other approaches, including UML, Z, B and VDM.

1 Introduction

“UML is in the middle of of a standardization process with the Object Management
Group, and I expect it will be the standard modeling language in the future.”Martin
Fowler,UML Distilled [5].

The emerging Unified Modelling Language has been touted as merging the best
features of existing software design notations, and has been adopted by leading com-
panies and vendors as a universal software modelling language. Some researchers are
also looking to UML as a basis for the application of formal methods in software de-
velopment [4]. A less known approach is the Business Object Notation (BON) [21].
BON addresses roughly the same problem space as UML. We argue in this paper that
BON is much more suited for the application of formal methods than UML and other
alternatives.

In the previous decade, many companies made a move from C to C++ in the hope of
developing more reliable software. This move may not have resulted in the the expected
gains — or worse, may actually have impeded software development and maintenance
[8]. We have to ask ourselves whether the move to UML may also be premature.

The UML notation summary of approximately sixty pages makes its syntax as dif-
ficult to master as any of the most opaque formal methods, even without any formal
semantics. A notation that supports every conceivable feature is not necessarily the
best notation for development. Rather, what is needed is an integrated set of features
that capture the essence of software abstractions, and which are directly mappable to



implementation (and the reverse, from implementation to abstractions) so that the de-
velopment can proceed seamlessly. Finally, a notion of software contracting in which
clients and suppliers have obligations and benefits is needed as a basis for formal spec-
ification and analysis of software products. BON is just such a method, and its focus on
seamlessness, reversibility and design by contract make it an ideal basis for industrial-
strength formal methods development of object-oriented software.

In this paper, we outline the BON method of Walden and Nerson [21]. We explain
how BON satisfies a number of criteria that have been suggested as being essential for
a mathematical method to be industrially applicable. Our thesis is that BON provides
a superior method for building large-scale, reliable, reusable software systems, and al-
lows emphasis of mathematical or informal development, as the software engineer sees
fit. Further, we attempt to suggest why the BON specification language has significant
advantages over widely used informal and formal approaches like UML (with its con-
straint language, OCL), Z, and B.

The paper is organized as follows. We commence by suggesting a number of criteria
for an industrial-strength formal method. BON is then presented, and an example is used
to illustrate how BON supports the design of large systems, and how it can be used as
a purely mathematical method. In presenting the use of BON as a formal method, we
demonstrate an example ofmethod reuse, and show that Z algorithm refinement rules
can be reused and applied with only minor syntactic changes to BON specifications. We
discuss which industrial-strength criteria BON does not currently support, and how we
plan to amend these limitations. Finally, we contrast BON with other approaches, and
consider future work.

2 Criteria for an Industrial-Strength Formal Method

An industrial-strength formal method is a mathematically based technique that is ap-
plicable to large-scale, complex software development problems. We suggest several
properties that such a method might possess, synthesized from the experience of others,
particularly [7, 22], and our own findings.

An industrial-strength formal method should satisfy at least the following.

1. Restrictability of formality, the ability to restrict the use of formal techniques –
e.g., specification and verification – to those aspects of the development that require
them [22].

2. Gradual introduction capabilities, the ability to introduce formality gradually, over
time, into a development setting [17, 22].

3. Tool support,for both standard software engineering tasks like compilation, debug-
ging, version control, and diagramming, as well as for formal manipulations.

4. Modularity, the ability of the formal method to produce modular designs [14].
5. Seamlessness.The method should apply to the full software life cycle, in a way that

minimizes the gaps between successive activities.
6. Education.The method must be founded on an appropriate educational programme.

We now consider each aspect in more detail, and suggest why it is important for any
industrial-strength formal method to satisfy all.



2.1 Restrictability of formality

Formality in software development is often expensive to use, and it is typically infea-
sible to apply in full. Software systems are usually too large and too complex to fully
develop via formal methods. Further, formal method use often depends on having clear,
precise requirements; for a system with vague requirements, formal methods may be of
only minimal help.

It should therefore be possible for engineers to use formality only when their expe-
rience and education suggests that it is appropriate. Specifications that are deemed to be
complex by engineers should be subject to formal techniques, and those requirements
that are either too vague, or are straightforward to specify and implement via informal
techniques, can be handled differently.

Some critical system components may need to be developed formally, in which case
restrictability is not an issue. However, we can view the development of such systems
as being at one end of the spectrum of use of formality: that part where only formal
methods are used. Thus, all industrial-strength formal methods need to be restrictable.

Because we require restrictability of formality, we should be able to use other in-
formal techniques for developing the remaining components of our system. It should
be possible to directly code some components, produce others by reuse, formally spec-
ify and informally develop others, and even abstract specifications from programs. An
implication of restrictability is that it will be useful for specification languages to be
wide-spectrum[9], encompassing both abstract, mathematical specifications, as well as
an executable programming language subset.

Restrictability is also useful for coping with complex specifications and their re-
finements. When refining significant specifications, invariably the engineer loses track
of the initial specification after only a small number of refinement steps: it is hard to
maintain a view of the context in which the refinement is taking place. Restrictability,
in cooperation with modularity (see Section 2.4, below) can help in ensuring that the
engineer does not lose track of the refinement context.

2.2 Gradual introduction of formality

Many software development projects do not currently use formal methods, and so if
it is desired to move towards the use of mathematical methods, they need to be in-
troduced into the existing engineering macro- and micro-processes. Ideally, the intro-
duction needs to be done so that the engineers and managers can adapt to the use of the
new methods, evaluate the use of formal techniques (primarily with respect to their own
processes), and decide the extent to which formality is usable in their context; this may
have to be done on a project-by-project basis.

Thus, it should be possible to produce a migration path for a formal method, so that
its use can be brought into practice gradually over time. With gradual introduction, it
is possible to assess the effectiveness of the formal method in the development setting,
and to determine the appropriate extent in which formality should be used. Gradual
introduction is important in helping to fit formal methods to the development context—
and in particular, to the macro-process in which formality is being used.



Gradual introduction goes hand-in-hand with restrictability: if one has a restrictable
formal method, then one can gradually introduce it over time. An ideal form of re-
strictability is one in which the developers can change the extent of use of formality
even while development is ongoing. In particular, if it is discovered that the current ex-
tent of use of formality is inappropriate, developers should be able to change the extent
of use without altering the rest of the specification, design, and development.

2.3 Tool support

Industrial-sized software engineering projects usually require industrial-strength tools
to support development. In projects that do not apply formality, tool support is typically
for diagramming, design, and animation (e.g., via CASE tools), configuration manage-
ment and version control, compilation and debugging. For industrial-strength formal
methods, tools should also exist to support the production, syntax, and type-checking of
specifications, as well as automatic or semi-automatic discharge of the proof obligations
that arise in refinements. Tools may also be provided to help manage any refinement or
verification process. Analysis tools should be as transparent to the engineer as possi-
ble, and, ideally, should be integrated or integrable with other standard development
tools, like the aforementioned CASE systems, compilers, and debuggers. In integrating
analysis tools with other development tools, anintegrated development environment, or
application frameworkmay have to be produced in order to simplify communication
between tools, and to hide the tool integration details from the software engineers.

2.4 Modularity

A modular software design is often a quality software design, in part, because it can
lead to maintainable software [14]. If a software system is designed and implemented
as a set of precisely specified interacting modules, then software maintenance can be
easier to carry out. A common form of a module in software design is aclass[14].

Modularity is an essential quality in an industrial-strength formal method. Modular-
ity lets developers focus their attentions on small parts of a system at a time. Small parts
of a system can be easier to understand and develop; therefore, usually, small parts of
a system are easier to formally analyze. Further, if developers are able to restrict their
attentions at one time to small parts of the system, they will be less likely to lose track of
the context in which the formal analysis is being carried out. A formal method that can
be applied to a class or a package, for example, will be applied strictly to the functions
and procedures of the class or package. A modular software development method thus
allows developers to focus their attentions on separate components of the system.

Simply having a modular software development method does not guarantee the pro-
duction of quality systems, nor does it guarantee maintainability. Design principles, e.g.,
for obtaining cohesive, low-coupled modules, must still be followed.

2.5 Seamlessness

A seamless method is one that can be applied to the entire software life cycle (analysis
through to implementation and maintenance). The method is devised in such a way so



as to minimize the gaps that exist between successive development activities. Seam-
lessness attempts to recognize the unity that exists in software development activities.
Whether we are analyzing a problem, designing a solution, or implementing code, the
same intellectual challenges arise and the same structuring mechanisms are needed.

A seamless method, such as BON, provides many benefits. For one, semantic gaps
(impedence mismatches) can be avoided when making transitions between develop-
ment steps. Mismatches between analysis and design, design and implementation, etc.,
have caused significant trouble in software development. Further, by using one form
of model from the start of development, a close correspondence between the problem
description and the solution description can be maintained. Finally, seamlessness facil-
itates reversibility, the inevitable backward adjustments that must occur during devel-
opment.

Reversing a process is inevitable in software development. Invariably, when im-
plementing a program, a developer learns that the software could accomplish its tasks
better. The method should support the developer in making backward adjustments when
they are discovered. Seamlessness is essential in facilitating this task.

2.6 Education

For a method or tool to be used and accepted within industry, it must be taught in an
educational programme. This is certainly the case with formal methods, which require a
solid mathematical and Computer Science background to understand and apply. Teach-
ing a formal method or using a software tool in a university programme can have a
significant effect on practice. The paper [16] raises the example of Spice in the domain
of electrical engineering. Electrical engineering programmes taught differential equa-
tions and used the Spice tool; now, Spice is part of the toolset of electrical engineers, and
is widely applied outside of the university environment. Methods and tools of similar
strength, soundness, and ease of use are needed for the practice of software engineer-
ing. And educational programmes founded on such methods and tools are essential for
software engineering to become a professional discipline.

3 BON: Towards an Industrial-Strength Formal Method

An ideal industrial-strength formal method satisfies the properties listed and outlined
in the previous section. We now suggest a method that satisfies some, but not all, of
these properties. In the next section, we explain changes or extensions to the method
that need to be made to support all of the properties given in Section 2.

The Business Object Notation (BON) [21] is a method possessing a recommended
process as well as a graphical and a separate textual notation for specifying and describ-
ing object-oriented systems. The notation provides mechanisms for specifying inheri-
tance and usage relationships between classes, and has a small collection of techniques
for expressing dynamic relationships (e.g., message passing). The notation also includes
anassertion languagefor specifying preconditions and postconditions of class features
as well as class properties. It is supported by the EiffelCase tool [14].



BON was designed to support three main techniques: seamlessness (discussed in
Section 2.5), reversibility (the ability to extract BON graphical specifications from pro-
grams automatically), and software contracting (discussed in Section 3.1). As a result,
BON provides only a small collection of powerful modeling features that guarantee
seamlessness and full reversibility on the static modeling notations.

The fundamental specification construct in BON is the class. A BON class has a
name, an optionalclass invariant, and a collection offeatures. A feature may be a
query—which returns a value and does not change the system state—or a command,
which does change system state. BON does not include a separate notion of attribute.
Conceptually, an attribute should be viewed as a query returning the value of some hid-
den state information. Thus, identical syntax is used for accessing and writing attributes
as for queries; this is the so-calleduniform accessprinciple [14].

Fig. 1 contains a short example of a BON graphical specification of a classCITIZEN.
Class features are in the middle section of the diagram, while the class invariant is at the
bottom. The invariant is a predicate (conjoined terms are separated by semicolons) that
must betruewhenever an instance of the class is used by another object (in the invariant
@refers to the current object). ClassCITIZENhas seven queries, and one command. In
particular the class has a querysingle(which results in aBOOLEAN) and a command
divorce, which changes the state of an object. ClassSET is a generic class with the
usual operators (e.g.,2; add).

Feature behaviour is written usingcontracts, in a pre- and postcondition form. Pre-
conditions of features are annotated with question marks in boxes, while postconditions
are annotated with exclamation marks in boxes. Visibility of features is expressed by
sectioning and use of the feature clause. By default, features are accessible to client
classes; this can be changed by writing a new section of the class interface and prefix-
ing the section with a list of client classes that may access the features.

name, sex, age : VALUE
spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN

Result <-> (spouse=Void)!

divorce

? not single

! single and (old spouse).single

single or spouse.spouse=@;

parents.count=2;

CITIZEN

invariant

children p=@∀c ∃ p c.parents22

Fig.1.Class Interface forCITIZEN



3.1 Design by contract

The pre- and postconditions of BON feature specifications are called contracts. The no-
tion of design by contract [14] is central to BON. Each feature of a class has a contract,
and interactions between the class andclientclasses must be via this contract. The con-
tract is part of the official documentation of the class; the class specification and the
contract are not separated. The feature contract places obligations on the client of the
feature (who must establish the precondition) and supplies benefits to the client of the
feature (who can rely that the feature will establish the postcondition).

Design by contract is tightly integrated into BON. The recommended BON process
suggests providing contracts for all features, written using the BON assertion language.
BON obeys all rules with respect to contracts that Eiffel does. In particular, BON obeys
the Eiffel rules with respect to redefinition of features that have contracts: a feature
that has its semantics redefined in a subclass can only weaken the precondition and
strengthen the postcondition of the feature in the parent class.

3.2 The BON assertion language

Contracts in BON are written in an assertion language, a dialect of predicate logic. As-
sertions are statements about object properties. These statements can be expressed di-
rectly, using predicate logic, or indirectly by combining boolean queries from individual
objects. The basic assertion language contains the usual elements, such as propositional
and arithmetic operators and constants. Expressions constructed from these elements
are easy to translate into executable code; effectively, this subset of the BON assertion
language is the Eiffel assertion language.

The BON predicate logic can be used when more expressive power is needed. The
predicate logic introduces set operations (e.g., membership, union), and universal and
existential quantifiers. The quantifier notation in BON is akin to that used in the Logic
E of Gries and Schneider [6] (with a few minor syntactic differences).

The BON assertion language can also be used to refer to the prestate in the postcon-
dition of a feature. Theold keyword, applied to an expressionexpr, refers to the value
of exprbefore the feature was called.old can be used to specify how values returned by
queries may change as a result of executing a command. Most frequently,old is used
to express changes in abstract attributes. For example,count= old count+ 1 specifies
thatcountis increased by one.

3.3 Seamlessness

BON was originally designed to work seamlessly with Eiffel; in particular, the syntax
of textual BON closely resembles Eiffel’s syntax for pre- and postconditions. Making
a transition from a BON specification to an Eiffel program is often easier than transi-
tioning to alternative languages (e.g., Java or C++), because Eiffel supports pre- and
postconditions (including theold keyword) as well as class invariants. The EiffelCase
tool supports the automatic generation of Eiffel code from BON specifications, as well
as the full reverse engineering of specifications from code.



In this paper, we view an Eiffel specification as a special case of a BON specifica-
tion: one that just happens to be immediately executable. We therefore view BON as a
wide-spectrum language, which supports easy refinement of (abstract) BON specifica-
tions into (concrete) Eiffel programs.

3.4 Architectural diagrams

A great deal of the value of BON comes from its assertion language, but also from
its ability to clearly and precisely specify architectural elements of an object-oriented
design. BON provides a small selection ofrelationshipsthat can be used to specify how
classes, in a design, interact. There are two ways in which classes can interact in BON.

– Inheritance:one class can inherit behavior from one or more parent classes.
– Client-supplier:one class uses a second class in some way. This is used to specify

the ‘has-a’ or ‘part-of’ relationships between classes.

Fig. 2 contains a non-trivial architectural diagram using BON, demonstrating examples
of both inheritance and client-supplier. Classes are drawn as ellipses. Thin vertical ar-
rows (e.g., betweenEXPandSD) represent inheritance. Double-line arrows with thick
heads (e.g., betweenFTSandTRANSITION) represent client-supplier. Dashed boxes
areclusters, which encapsulate subsystems; clusters are a purely syntactic notion. In-
heritance and client-supplier relationships are recursively extended to be applicable to
clusters, as the figure shows.

The EiffelCase drawing tool supports production and browsing of such diagrams,
as well as automatic code generation from the diagrams, and the reverse engineering
of such diagrams from Eiffel programs. The CASE tool works cooperatively with the
EiffelBench compiler and debugger, the latter of which can be used to syntax and type
check specifications (that do not use quantifiers).

3.5 Algorithm refinement in BON

With BON, the use of mathematics is restrictable; an engineer need not formally specify
the behavior of features or classes. But BON can also be used in a completely mathe-
matical manner. That is, BON specifications can be treated as mathematical expressions,
and formal analysis and reasoning can be applied to these expressions.

Let us consider an example, for implementation correctness, i.e., for showing that an
implementation of a class in Eiffel satisfies a specification of a class in BON. This is a
feature-by-feature process, carried out by showing that each Eiffel feature implementa-
tion satisfies its corresponding BON feature specification. Implementation correctness
can be a verification process or a refinement process; in the latter, implementation and
proof are developed hand-in-hand. We consider the refinement process here.

Suppose that we have a featureS in a class that also possesses attributesa. The
feature also introduces local variablesv. A specificationassociated with featureS is a
predicate with free variablesa or v, where a free variable may optionally be prefixed
with the keywordold.



TRANSITION

STRING

TYPE

EXP VAR

SD

CD

alpha: SET[...]

FTS
trans: SET[...]

CLOCKCHART EVENT

CHOOSE ASSIGN

START STOP

COUNT_UP

COUNT_DOWN

COUNT_UP_PARAMETER

COUNT_DOWN_PARAMETER

events: SET[...]

action: SET[...]

DESCRIPTIONS
FAIR_TRANSITION_SYSTEM

EFFECTIVE_CLOCK_COMMANDS

CLOCK_TRANSITION_SYSTEM

CLOCK_COMMAND
*

COMMAND
*

Fig.2.BON architectural diagram for fair transition systems



There is one particular specification associated with a feature that is of most interest
to us in refinement; this specification arises when a feature has a contract. This spec-
ification, specS, formally describes the meaning of the feature based on the contract.
Suppose we have featureSwith require clauseP andensureclauseQ (P andQ each
include the invariant). Therequire clause ofS is a predicate on the prestate of the ob-
ject, while theensureclause is a predicate on the pre- and poststate. The meaning of
this specification is given byspecS, defined below.

specS b= (old P)! Q

If the preconditionold P is false, then any behavior will satisfy the specification.
An algorithm refinement relationship can be defined for BON feature specifications,

allowing the stepwise refinement of a specification down to the level of an Eiffel pro-
gram. This is possible for two reasons: because BON is part of a seamless development
method that can result in Eiffel programs; and, because we will allow a specification to
appear wherever Eiffel allows a statement.

In BON, refinement is just implication. Suppose we have a featureT that we think
refinesS. S is refined byT (writtenSv T) if

8old �; � � (specS specT)

where� is the attributes of the class in which featureSoccurs. In a refinement, we need
only concern ourselves with the attributes of the class; this can reduce the complexity
of the proof obligations that we must discharge in refinement.

Refinement of a BON specification (or verification of a program against a BON
specification) can be applied to large software systems, because the refinement rela-
tionshipv is monotonic over class relationships. Suppose we have a classA, with a
number of feature specifications, which we want to refine to code. The process is as
follows. First, determineind A, the set of all classes thatA directly depends on (via in-
heritance or client-supplier). Then, determinespecA, the set of contracts for all features
in A (including inherited features). To refineA to an Eiffel program, we must refine each
contract ofA, i.e.,

8 s2 specA � sv body s

wherebody s is an implementation ofs in Eiffel. To carry out this process, weonly
needspecA and the contracts ofind A. We do not need any implementations ofind A,
nor do we (in most cases) need to consider the entire system. Thus, refinement can be
done compositionally, feature by feature.

The ultimate goal of algorithm refinement is to formally derive a program from a
specification. Because BON works seamlessly with Eiffel it is simplest to refine BON
specifications into Eiffel. This requires us to provide rules for refining BON specifica-
tions into Eiffel.

An interesting result associated with BON refinement rules is that we canreuseall
existing Z refinement rules — such as those from [23] — assuming that a consistent
notation for distinguishing pre- and poststate is used (we will use BON’sold notation
to distinguish prestate from poststate). In other words, a valid refinement rule for Z is a
valid refinement rule for BON features. This follows from Theorem 1.



Theorem 1. Let S and T be BON specifications as described above, and letvZ be the
Z definition of refinement (see [20], or the proof below). Then, under syntax,

SvZ T ! Sv T

Proof. Expand the definitions ofvZ andv. The PVS theorem prover discharges the
proof automatically, after applying the definitions, using one instance of(grind) .
The PVS specification of the conjecture used to discharge the proof is as follows (in
the theory,p andq are the pre- and postcondition ofS, while u andv are the pre- and
postcondition ofT). Equational proof details can be found in [18].

refmaps : THEORY
BEGIN

STATETYPE : TYPE
old_s, s : VAR STATETYPE
p(old_s:STATETYPE) : bool
q(old_s,s:STATETYPE) : bool
u(old_s:STATETYPE) : bool
v(old_s,s:STATETYPE) : bool

refmapping : CONJECTURE
(FORALL old_s, s :

(p(old_s) IMPLIES (u(old_s) AND
(v(old_s,s) IMPLIES q(old_s,s))))
IMPLIES
((u(old_s) IMPLIES v(old_s,s)) IMPLIES

(p(old_s) IMPLIES q(old_s,s))))
END refmaps

An implication of this theorem is that we do not have to formulate new refinement
rules for BON, and can make use of the extensive collection of Z refinement rules that
already exist, providing that we transform the Z syntax into BON’s syntax.

We can use the refinement rules in Wordsworth [23] with BON. Wordsworth treats
Z schemas as summarizing the operation of programs written in a simple guarded com-
mand language. Values of program variables before and after the execution of the cor-
responding program make up the declaration part of the schema, and the predicate part
expresses the relation between those values induced by the execution of the schema. We
can do the same, treating BON feature contracts as summarizing the operation of Eiffel
programs. Here are some examples, translated into BON syntax. In the following, let
S;A; andB be BON feature specifications. We extract the precondition of a feature with
thepre operator, and the postcondition with thepost operator. Assume that refinement
is being done within a single class, with attributesx andy (we use� to stand for bothx
andy). We usev to denote the refinement relation.

First, we consider how to introduce an assignment statement in a refinement.

Rule 2. Introducing assignment.Let e be an expression whose type is compatible
(based on the BON/Eiffel notion of compatibility [14]) withx. ThenSv x := e if

8old �; � � (pre S^ (x = old e) ^ (y = old y))! post S



The effect of the assignmentx := e is formally described by the BON specification

require true

ensurex = old e^ y = old y

The next rule is for introducing a selection. A selection has the following form.

if c1 then P1 elseifc2 then P2 : : : elsePk end

where theci are conditions and thePi specifications. In the refinement rule, we consider
the two-branch case, which generalizes in the obvious way to the multi-branch setting.

Rule 3. Introducing if. Let b be aBOOLEANexpression. Then

S v if b then A elseB end

providing that

8�; old � � (specS^ b) specA

8�; old � � (specS^ : b) specB

This rule is a formalization of the notion of refinement bycases[9].
The refinement rules become more complicated when we consider sequencing and

repetition, because of the need to introduce intermediate states. Before we consider the
rule for sequencing, we introduce some new notation, allowing us to talk about inter-
mediate states. We annotate specifications with primes (e.g.,A0) to indicate systematic
addition of primes tovariable namesused within the specification. This notation is bor-
rowed from [23]. However, we must make one slight adaptation in BON, because of
its use ofold to distinguish pre- and poststate: a prime applied to anold expression
removes theold keyword. Here is an example.

(x = old y^ y = old (x+ y))0

= x0 = y^ y0 = (x+ y)

Now we can provide a rule for introducing sequencing.

Rule 4. Introducing sequencing. Sv A; B providing that

pre S! pre A

(pre S^ specA)! (pre B)0

(pre S^ specA^ specB0)! (specS)[ 0= ]

where, in the last line, the notationX[ 0= ] reads “substitute primed versions of vari-
ables for unprimed versions of variables inX” (and don’t change theold variables).



Finally, we can give a rule for introducing a loop. We use Wordsworth’s initialized
loop rule. Loops in Eiffel have the following syntax.

Loop b= from Init until b loop P end

Init and P are specifications withrequire and ensure clauses, whileb is a boolean
expression.

Rule 5. Introducing an initialized loop.Let b be a boolean expression,I a loop invari-
ant, andLoopa loop as above. ThenSv Loopif

pre S! pre Init

pre S^ specInit ! I

pre S^ I ^ b! specS

pre S^ I ^ : b0 ! (pre P)0

pre S^ I ^ : b0 ^ (specP)0 ! I [ 0= ]

We have shown that Z refinement rules can be applied to BON. We intend to develop
a collection of refinement rules, written directly in BON, and expect the rules to be
simpler to write and use than the reused ones.

Refinement (and verification) in BON is industrial-strength; it is restrictable and can
be applied on a class-by-class and feature-by-feature manner. Further, with BON there
is no system-level validity check that has to be discharged to show system correctness.
To show that a system is correct, we must verify all classes (including the root class).
When the root class is finally verified, the system has been shown to be correct.

3.6 Example of refinement

This section illustrates a simple example of refinement in BON, demonstrating the use
of Z refinement rules with BON. The refinement will transform a BON specification
into an Eiffel program.

The problem we will solve is a simple one, taken from [23], to find the maximum
of a non-empty array (or sequence) of integers. We suppose that we have a class,FOO,
that includes a feature that will be used to determine the maximum of the array. This
class has the following BON specification.

The array for the computation is a features of the class. The functionmax array
calculates the maximum of the array. The function introduces a local variable,i, as a
loop index. A local variableresult, automatically declared for the function, will hold
the result of the computation. The introduction of these variables is formally defined
by existential quantification over the specification. The notations:item(j) is the Eiffel
syntax for the array index operation.s:capacityis the maximum size of the array, while
s:lower ands:upperare its lower and upper bounds.s:inrange(i) is true iff i is in range
of the subscripts ofs.



s.empty?

!

max_array : INTEGER

result = max{j:INTEGER | s.inrange(j) s.item(j)}

FOO

not

s : ARRAY[INTEGER]

Fig.3. ClassFOO for refinement example

We can now refine the specification to code. Clearly, the implementation will require
a loop. The first step of the refinement will introduction such a loop, with invariant

I b= result= maxfj : INTEGERj s:lower� j � i � s:item(j)g ^ i � s:upper^ s= old s

and guardb b= (i = s:upper). The first refinement step is

specmax array

v from specP

until i = s:upper

loop specQ end

where

specP = i = s:lower^ result= s:item(s:lower)

specQ = i = old i + 1 ^ result= maxfold result; s:item(i)g

and wheremax is extended to sets as in [20]. The proof obligations that must be dis-
charged are as follows.

not s:empty! true

i.e., that the precondition ofmax array establishes the precondition of the initialization.

not s:emptŷ i = s:lower^ result= s:item(s:lower)! I

i.e., that the initialization together with the precondition ofmax array establish the
invariant; this istrue, by one application of the one-point rule.

not s:emptŷ I ^ b! (not old s:empty!

result= maxfj : INTEGERj s:inrange(j) � s:item(j)g)

which is alsotrue, by simplification.

not s:emptŷ I ^ : b0 ! true



i.e., that the invariant and negated guarded together establish the precondition of the
loop body (which is clearlytrue).

not s:emptŷ I ^ : b0 ^ i0 = i + 1 ^ result0 = maxfresult; s:item(i0)g ! I [ 0= ]

i.e., that the body of the loop maintains the invariant. (We should also demonstrate
termination, but this is straightforward and omitted.)

The body of the loop,specQ, can be refined as follows

specQv i := i + 1; result := result:max(s:item(i))

(maxis a feature of the classINTEGER.) The initialization can be implemented as

i := s:lower; result := s:item(i)

This refinement follows similar steps to a refinement of the same problem in Z.

3.7 BON and the criteria

In Section 2, we suggested six criteria for an industrial-strength formal method. We
now very briefly discuss the criteria, and how BON supports – or fails to support them.
In Section 4, we discuss extensions to BON which can help eliminate these limitations.

1. Restrictability.The use of mathematics in BON specifications is under the control
of the software engineer, for both specification and for formal manipulations like
refinement. Each feature of each class may be given a contract written in predicate
logic, or in an executable subset. The contract may be written as comments. Or the
contract may be omitted entirely. Further, refinement need only be applied to those
features that the engineer wants. The engineer can therefore restrict use of formality
to those parts of the system they believe, in their judgment, require mathematics for
specification or refinement.

2. Gradual introduction.Because BON has restrictable use of formality, gradual in-
troduction can be obtained by a software engineer carefully managing the extent of
use of formality over time, in some process.

3. Tool support.BON has CASE tool support [14], and this tool is integrated with an
Eiffel compiler and debugger. It does not possess version control tool support (tools
like RCS or CVS can be used on the side), nor analysis tools, e.g., theorem provers,
simulators, and model checkers.

4. Modularity. BON is a pure object-oriented notation, and is therefore modular. It
also provides a clustering notation to support modularity at the system level.

5. Seamlessness.BON is part of a seamless method that produces Eiffel programs.
This method is reversible: BON specifications can be produced from Eiffel.

6. Education.BON is not as widely taught as other object-oriented approaches, e.g.,
UML. It is being taught in some universities throughout the world, and by consul-
tants. Our experience in teaching BON at all levels of an undergraduate programme
is that it is appropriate and superior to other methods for introducing and teaching
object-oriented concepts. We discuss this more in Section 6 and elsewhere [16].



Meyer [14] suggests that object-oriented software construction, with design by con-
tract – which BON supports – is a gentle progressive exposure to formal techniques
that doesn’t overwhelm the students and allows them to produce real software. Our
experience agrees with this, but we add that the teaching must be founded on an
appropriate course in logic and calculation, e.g., supplied by the text [6].

4 Making BON Industrial-Strength

BON does not satisfy all of the criteria listed in Section 3. In particular, it has no tool
support for refinement or formal analysis regarding classes and contracts, and it is not
yet appropriate for reactive and real-time systems. In this section we outline our plans
for extending BON so that it satisfies the properties listed in Section 3.

We see three clear areas for extension and development of BON.

1. Education:teaching the notation and method. We discuss this more in the conclu-
sions and elsewhere [16].

2. Analytic tools:providing support for proof, discussed in Section 4.1.
3. Extension to real-time and reactive systems,discussed in Section 4.2.

4.1 Analytic tools

The current toolset for BON consists of the EiffelCase tool, which is integrated with
a collection of base libraries, a compiler/debugger, a GUI builder, and a number of
smaller supporting tools. The CASE tool is capable of generating BON diagrams (akin
to those in Figs. 1 and 2), of generating Eiffel code automatically from diagrams, and
can reverse-engineer diagrams from Eiffel programs. Such tools are constantly under
further development. No tools currently exist for formal analysis of BON specifications,
e.g., for simulation or proof.

Our current research is focusing on providing analytic tools for BON. We are pro-
ceeding by providing links between BON and PVS. BON and PVS will be linked by
a general- purpose translator, based on the EiffelLex and EiffelParse libraries and au-
tomated tools, which will generate PVS theories from BON specifications. The PVS
theories can then be subjected to rigorous analytic manipulation, e.g., involving proof
of properties, consistency, and implementability.

The basic mapping from simple BON specifications to PVS is straightforward: a
single class is mapped into a PVS theory. Class features can be mapped into PVS vari-
ables, boolean functions, or functions on local state variables. An example is given
below, for a single classPASSWORDMANAGEMENTand a PVS theorypassword .

classPASSWORDMANAGEMENTfeature

alarm; operate: BOOLEAN

p1 : PASSWORD

i : INTEGER

�� initially : alarm^ : operatê (i = 0) ^ (p1 = : : :)



verify user(p : PASSWORD)

require : alarm^ : operate

ensure(g1 ! e1) ^ (g2 ! e2) ^ (g3 ! e3)

invariant i � 0

end

where

g1 = old i < 6 ^ old p1 = p

g2 = old i < 6 ^ old p1 6= p

g3 = old i � 6 ^ old p1 6= p

e1 = (i = 0) ^ operatê : alarm^ (p1 = old p1)

e2 = (i = old i + 1) ^ : operatê : alarm^ (p1 = old p1)

e3 = (i = 0) ^ : operatê alarm^ (p1 = old p1)

Our proposed tool will map this automatically into the following PVS theory, with the
conjectureimplementability added by the user.

password : THEORY begin
passwordtype: TYPE
alarm, old_alarm, operate, old_operate: VAR bool
i, old_i: VAR nat
p1,p2,old_p1: VAR passwordtype

verify_user(i,old_i,operate,alarm,p1,old_p1,p2):bool =
(NOT old_alarm AND NOT old_operate)
IMPLIES
((old_i<6 AND old_p1=p2 IMPLIES

(i=0) AND operate AND NOT alarm AND p1=old_p1)
AND
(old_i<6 AND old_p1 /= p2 IMPLIES

(i=old_i+1) AND NOT operate AND NOT alarm AND p1=old_p1)
AND
(old_i >= 6 AND old_p1 /= p2 IMPLIES

alarm AND NOT operate AND i=0 AND p1=old_p1))

implementability: CONJECTURE
(EXISTS i, operate, alarm, p1:

NOT old_alarm AND NOT old_operate
IMPLIES
verify_user(i,old_i,operate,alarm,p1,old_p1,p2))

end password

The PVS specification includes a boolean function,verify_user , as well as
a user-added conjecture. The conjectureimplementability is to ensure that the
verify userspecification is implementable.

In general, a BON specification will involve many classes interacting in client-
supplier and inheritance relationships. A simple class-to-theory mapping will not suf-
fice. Here, we intend to map BON classes to PVS types, and to treat objects as PVS
variables. Features of BON classes will be transformed into functions on objects. This
is akin to the work reported in [10] which maps Java to PVS. There may be advantages
to mapping select BON classes to PVS datatypes, but it is not yet clear if this can be



automated, nor if the datatype mechanism is sufficiently expressive. An advantage with
mapping BON to PVS is that we do not need to transform BON specifications (and
hence Eiffel programs) into an intermediate representation (as is done in [10]), because
BON and Eiffel specifications include contracts.

Work is underway, starting January 1999, on a translator from BON to PVS.

4.2 Real-time

Currently, BON does not provide support for reasoning about temporal properties of
systems. This makes it difficult to develop real-time, object-oriented programs with
BON. Eiffel currently provides support for concurrency [14], so it would be a useful
extension to be able to talk about concurrency and real-time properties at the level of
BON. We are proposing to extend the BON assertion language to real-time temporal
logic [15], and to extend the BON toolset to support writing such specifications.

We also are proposing to support the temporal logic dialect of BON with a combined
theorem prover and model checker, namely STeP, so as to provide automated analytic
tools for reasoning about such specifications. The integration of the extended BON
toolset with STeP will follow the work reported in [12], which considered integrating a
visual toolset with STeP for a different (non-object-oriented) notation.

5 Related Work

The development of so-called ‘industrial-strength’ software engineering methods that
have a sound yet practical mathematical basis is of current interest. Powerful general-
purpose methods, such as B [1], VDM [11], and those based upon Z have seen success,
as have more specialized methods. We now briefly contrast some of these alternatives
— particularly Z, UML combined with the Object Constraint Language, VDM and B
— with BON. A detailed comparison of BON and UML can be found in [19].

5.1 BON compared with Z and UML

Two widely used approaches are Z and UML; a great deal of past and current research
has focused on these notations.

The Z notation is mathematical and, as we have discussed, can be used for refine-
ment. However, Z is not modular (except at the level of an operation) – hence the devel-
opment of object-oriented and modular dialects of the notation – and therefore provides
only minimal support for producing modular – and hence reusable, and maintainable
systems. It is left to the discipline of the software engineer to use Z so that maintain-
able, reusable designs are produced.

UML is the current focus of much activity; it is quickly becoming a ‘standard’
notation for object-oriented modeling. It has recently been combined with the Object
Constraint Language (OCL), to provide better support for formal modeling and design
by contract. The Precise UML group has studied formalizing parts of the notation [4]. In
terms of the criteria discussed in Section 2, UML (including the OCL) satisfies most of
the criteria: restrictability, gradual introduction, tool support, and modularity are clearly



satisfied, although tools for supporting the UML and OCL are needed. In terms of ed-
ucation, suitable textbooks for the UML are beginning to appear, but more are needed.
Where UML falls short is with seamlessness: it is difficult to have seamless develop-
ment with UML and the OCL, because of the auxiliary use of finite state machines for
object semantics, data modelling, and stereotypes [19]. Seamlessness for UML is usu-
ally supported only for a subset of the language. Further, even though design by contract
can be used with UML and OCL, it is not well-supported, as a number of examples in
[19] demonstrate.

5.2 BON contrasted with VDM and B

The Vienna Development Method [11] has seen industrial success, primarily in Europe.
The method supports specification in a pre- and postcondition style, not unlike BON,
using the logic of partial functions. It is supported by tools for proof and refinement. Its
fundamental specification component is the operation.

The B method [1] was developed by Abrial and has been applied successfully to
substantial software engineering problems. The method uses the modular abstract ma-
chine notation for specification. Refinement relationships between machines are used to
produce executable programs from specifications. The B Method has tools (the B-Tool
and Atelier B) that support semi-automatic generation of code from specifications.

The SPECTRUM project [3, 13] has focused on combining VDM and B. In this
method, VDM is to be used for specification and validation, while B is to be used for
development of the specification, via refinement and code generation. The integration
provides techniques for synthesizing B designs from flat VDM specifications. The inte-
gration provides the benefits of both VDM and B: expressive specification, tool support,
and modularity. It also provides restrictability of both B and VDM, and therefore the
means to gradually introduce one or the other method into practice.

With BON, no integration is necessary to provide expressive specification capabil-
ities or modularity; the method supports these features by default. Further, BON also
provides restrictability of the use of mathematics, unlike VDM integrated with B. Fi-
nally, BON is object-oriented, whereas B combined with VDM is a modular notation.
For the purposes of building reusable, maintainable systems, object-oriented methods
can provide significant advantages over methods that are not object-oriented [14].

An advantage that VDM+B has over BON is in tool support; the B-Tool and IFAD
VDM are powerful toolsets that support proof and refinement. Similar tools are required
for BON, and are currently under development.

6 Conclusions

BON provides a solid foundation for a software engineering method that is practical
and has a sound theoretical basis. It provides fundamental techniques, like object-
orientation, restrictability of formalism, and tool support, that can be further supple-
mented by a suitable educational programme and analytic tools.

BON, and other object-oriented methods, are not always appropriate for software
development, e.g., systems with complicated real-time constraints, information pro-
cessing systems, concurrent systems, and operating system kernels. Tool support for



BON, especially with regards to formal analysis, needs to be improved. However, the
basic techniques that BON supports — restrictability, object-orientation, and design-
by-contract — provide a method for immediate practical use, as well as a foundation
for further research and development.

Our experience is that BON is also a suitable method for introducing object-oriented
methods to students. We use BON in our third year software design and OO program-
ming courses, and introduce its basic concepts to our first-year students. The notation
has proven to be teachable, and the students find that it is easy to quickly apply in non-
trivial projects. More details on our experiences and plans for teaching using BON can
be found in [16].
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