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Abstract. We present a formal, mechanically checked specification of the con-
sistency constraints between two views of object-oriented systems described in
BON: the static view provided by class diagrams annotated with contracts, and
the dynamic view provided by collaboration diagrams. The constraints are speci-
fied as an extension of the BON metamodel, and are implemented in PVS. They
ensure that the sequence of messages appearing in the dynamic view is legal,
given the pre- and postconditions of methods appearing in the static view. A
sketch of how the constraints might be implemented in the BON CASE tool is
also provided.

1 Introduction and Motivation

Consistency checking of documents has long been an important task in software de-
velopment. It has particularly been emphasized with recent work on viewpoint specifi-
cation [6] and combining specifications [18]. With the recent interest in UML [2], the
consistency checking of independently constructed models of a software system has
become of increasingly significant interest.

Consistency checking of software models involves the use of constraints, algo-
rithms, and tools to check that information described in one model is not contradicted
by information described in another model. In a setting where formal specifications of
models are available, this is essentially the problem of checking that a conjunction of
predicates – each a formal specification of a model – is satisfiable. In general, com-
plete formal specifications of models are usually unavailable, and thus the problem of
consistency checking is made more complex and challenging.

UML is a particularly interesting language for describing software systems and
maintaining consistency of description. It supports the use of up to four different views
of a single software system. These views may be constructed independently, may over-
lap, and thus may contradict each other. The intent of using multiple views is to describe
different aspects or elements of a system in the most appropriate way. The different de-
scriptions are to be combined to form a consistent, complete, checkable description
of the software system that can be used thereafter to generate executable code. This
problem is not unique to UML; any modelling language that supports disparate views



must be supplemented with techniques for checking consistency. In the case of UML,
specifying a complete set of consistency constraints is challenging. Many are specified
in the UML metamodel [7] and certain UML-compliant CASE tools implement these.
However, some of the complex constraints, e.g., involving the use of contracts [5] of
methods, are not implemented in any tool, and thus developers must rely on their own
expertise to identify and resolve inconsistencies. Some CASE tools in turn implement
the consistency constraints by requiring diagrams to be constructed in a specific order,
thus preventing inconsistencies from arising by construction. This may be too inflexible
in general.

UML supports two fundamental models: class diagrams and collaboration dia-
grams. These diagrams present, respectively, static structural information about a sys-
tem, as well as dynamic information about behaviour, the latter captured by describing
objects and the messages passed between them. So fundamental are these two types of
models in OO computing that they are supported in a number of object-oriented (OO)
modelling languages, including BON [17].

The aim of this paper is to formally specify (in a machine-checkable language)
and describe implementations of consistency constraints between the two BON views
– specifically, class diagrams and collaboration diagrams – that can be produced during
software development. Formulating the constraints is made more challenging by the
fact that BON class diagrams also include contracts, expressing conditions on when
methods of a class can be called, and the effect of these methods on the state of an
object.

The need for these constraints arose during the proposal of a methodology for build-
ing reliable systems [13]. This methodology is novel in that it integrates object-oriented
modelling and the practices of Extreme Programming (XP) [1], thus allowing develop-
ers to work with code, test drivers, and models, as needed. This motivates the need to
allow development products – e.g., code and models – to be consistent by construction,
and also to provide tools to check the consistency of products.

The consistency constraints between views are specified as an extension of the meta-
model of BON presented first in [11], and implemented in the BON CASE tool [9].
Since the metamodel has been implemented in a CASE tool, it cannot be arbitrarily
restructured to include additional view consistency constraints without requiring sub-
stantial changes to the tool as a whole; thus, we will have to extend the metamodel
carefully, making use of OO extension facilities. The constraints will also be speci-
fied in PVS [8], so that theorem proving technology can be exploited both in checking
the consistency of views, and in validating the specifications of the constraints; this is
particularly useful given that a formal translation from BON to PVS, and a proof of
its correctness, does not yet exist. The intent is thus to use these specifications, and
their implementations, in the construction of a CASE tool for BON that supports not
only consistency checking but also consistent views by construction, i.e., via reverse
engineering.

We shall use the BON language for describing the two different views applied by the
methodology, in part because of its simplicity and our familiarity with it. However, the
rules that we present in this paper are not BON-dependent; they can be applied equally
well to profiles of UML and other modelling languages that support these two views.



1.1 Overview

We commence with a brief overview of BON, and present an example of each type
of BON diagram. We also briefly outline the methodology of [13], as motivation for
constructing the consistency constraints. Two approaches to consistency checking of
views are identified: direct and indirect. We explain direct consistency checking of class
diagrams against collaboration diagrams, specify the constraints in PVS, and outline
an implementation. We sketch how indirect consistency checking via test drivers can
be done as well; this is the key link between modelling and XP test drivers, which
are interpreted as implementations or refinements of collaboration diagrams. We then
discuss related and ongoing work.

2 Background

We outline BON, focusing on the elements of their syntax used throughout the remain-
der of the paper. In particular, we will make use of the BON text-based notation for
writing classes and interfaces, and its graphical notation for writing collaborations. We
then briefly summarize the methodology that integrates OO modelling and XP from
[13], since the methodology provides the motivation for constructing the consistency
constraints.

2.1 BON

BON is an OO method possessing a recommended process as well as a graphical lan-
guage for specifying object-oriented systems. The language provides mechanisms for
specifying classes and objects, their relationships, and assertions (written in first-order
predicate logic) for specifying the behaviour of routines and invariants of classes.

The fundamental construct in BON is the class. A class has a name, an optional
class invariant, and zero or more features. A feature may be an attribute, a query –
which returns a value and does not change the system state – or a command, which
changes system state but returns nothing. Fig. 1 contains an example of a BON model
for the interface of a class

���������	��

. A graphical notation is also available for writing

class interfaces; it is summarized in [11].
BON models consist of one or more classes organized in clusters (drawn as dashed

rounded rectangles that may encapsulate classes and other clusters). Classes and clus-
ters interact via two general kinds of relationships.

– Inheritance: Inheritance defines a subtyping relationship between a child and one
or more parents.

– Client-supplier: there are two client-supplier relationships, association and aggre-
gation. Both relationships are directed from a client to a supplier. Association de-
picts reference relationships, while aggregation depicts subobject (or part-of) rela-
tionships. Client-supplier relationships can be drawn between classes and clusters;
recursive rules are given in [17] to explain the meaning of cluster relationships.
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Fig. 1. Class
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BON also provides notation for collaboration diagrams, showing the communica-
tion between objects. Fig. 2 shows an example. Numbers that annotate messages are
cross-referenced to a scenario box, detailing the purpose of the message. Messages in
dynamic diagrams correspond to feature calls.

SQUARE

CIRCLE

SET

ROOTGROUP
(outer)

1

2

4

3

PSfrag replacements

Fig. 2. BON collaboration diagram (without a scenario box)



2.2 A methodology integrating XP and object-oriented modelling

The motivation for being able to check the consistency of contract-annotated class di-
agrams and collaboration diagrams comes from the proposal of a methodology inte-
grating XP and OO modelling. A draft of this methodology was presented in [13]. The
methodology, as proposed, makes use of a selection of OO modelling diagrams, source
code (e.g., in Eiffel or Java or some other suitable OO programming language), and
test drivers. Test drivers provide a fundamental link between OO modelling and XP
practices.

A key difficulty in integrating XP and OO modelling is allowing code to be written
before modelling, and to allow modelling before writing code – i.e., to allow developers
to select the work product to use at the start of development. It is essential to allow
this level of flexibility, so that testing can be carried out when desired, and so that the
abstraction capabilities of modelling languages can be fully exploited.

Elements of the methodology are summarized in Fig. 3. The diagram uses UML’s
package and dependency notations to illustrate the work products delivered by the
methodology, and their relationships. The � ���������
	���� � and � �
����������� � stereotypes are stan-
dard UML. The � ����������������������� � stereotype is a refinement of � �
����������� � and indicates that
the two products must be consistent either by construction or developer intervention.

Source Code
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Fig. 3. Work products and their relationships

A key element of Fig. 3 is the relationship between test drivers and collaboration di-
agrams: a collaboration diagram is viewed as an abstraction of a test driver. Tool support
is to be provided so that, given a collaboration diagram, the outline of an executable test
driver can be produced; and, given a test driver, a collaboration diagram can automat-
ically be produced. The second key aspect of this diagram is the relationship between
class and collaboration diagrams: given one of each such diagrams, we desire to be able
to show the consistency of the information contained in both descriptions.

Descriptions of how the relationships between work products can be established are
outlined in [13]. In this paper, we focus on the relationships involving collaboration



diagrams and class diagrams. Specifically, we will describe how consistency between
these products can be established directly via use of a metamodel and tools such as PVS.
We also sketch how test drivers can be used as an intermediate product for checking the
consistency of the two different diagrams.

3 Foundations and Approaches

The eventual goal of our work is to be able to check any work product against any other
work product for consistency. A work product, in the context of the methodology of
[13], is defined as any one of:

– Machine-checkable Eiffel source code, where classes and routines are annotated
with pre/postconditions and invariant clauses.

– A class diagram, showing classes, assertions, and class relationships.
– A collaboration diagram, showing objects and message passing.
– A test driver, which is an Eiffel class that executes a sequence of routines on one or

more objects and checks that relevant conditions hold.

Informally, we desire to define a family of consistency relations on the work prod-
ucts of interest. We are specifically concerned, in this paper, with checking the con-
sistency of class diagrams with contracts and collaboration diagrams. There are two
general approaches to this. One approach is to define a set of rules that can be applied
to a given class diagram and a given collaboration diagram. Due to the inclusion of
contracts in the class diagram – which may make use of unexecutable constructs – this
process may need tool support and user intervention to check consistency.

An alternative approach is to do indirect consistency checking of the two work
products, via use of test drivers as an intermediate product. This works as follows. We
wish to show that a class diagram

���
is consistent with a collaboration diagram

���

for a system. First, show that
���

is consistent with the system’s source code (this is
easy, via forward or reverse engineering, as supported in any reasonable CASE tool).
Then, show that the source code is consistent with any test drivers for the system (again,
this is easy - we simply execute the test drivers and if the tests are accepted, the products
are consistent). Finally, check that the collaboration diagram

���
is consistent with the

test drivers. This process is more complex and is discussed in the sequel. But if we can
establish separate consistency of these three products, then the class diagram and the
collaboration diagram will be consistent.

Thus, one approach to consistency checking of collaboration diagrams and class di-
agrams is by defining work product consistency in a transitive fashion, and by making
use of test drivers as an intermediate product. But it is also desirable in the methodol-
ogy to be able to check collaboration diagrams against class diagrams directly. This is
important because developers may not want to have to create test drivers in order to do
consistency checking (and the methodology of Fig. 3 supports this). In the next section,
we specify consistency constraints between these diagrams, and then discuss how these
constraints can be implemented in a CASE tool.



4 Checking Collaboration Diagrams Against Class Diagrams

The goal is to check the consistency of one or more BON collaboration diagrams against
one or more BON class diagrams, and if the diagrams are not consistent, to report where
the inconsistencies arise. Inconsistencies can arise due to object declaration (e.g., an ob-
ject is unassociated with any class), or routine invocation (e.g., a routine is being called
by a client that does not have the ability to do so, based either on information hiding
rules, or on preconditions). It is critical to observe that class diagrams contain only
contracts, and not implementations, of routines. Further, the BON assertion language,
based on first-order predicate logic, contains constructs that are not executable (e.g.,
quantifiers over unbounded domains). Thus, in general, consistency checking will not
be possible by direct simulation of the collaboration diagram, and will likely require
user intervention.

There are several main steps to checking the consistency of class diagrams and
collaboration diagrams.

1. Ensure that the two diagrams are syntactically correct; there is a BON CASE tool
that will do this for us.

2. Ensure that the diagrams are semantically correct in the sense that they obey typing
and scoping rules (e.g., all classes arising in an interface appear in a class diagram).
We call these weak metamodel constraints.

3. Check that the sequence of messages being fired in the collaboration diagram is
allowable given the pre/postconditions of the routines in the class diagram. These
are strong metamodel constraints that will likely require use of external tools to
validate.

We consider these steps in order, skipping (1) since the BON CASE tool is described
elsewhere [9]. The remaining constraints will be specified as an extension of the meta-
model of BON first presented in [11]. Since the BON CASE tool implements the BON
metamodel, we thus have a way of ensuring that they are satisfied. At the same time,
it is important to extend the metamodel in such a way so that the additional constraints
can easily be introduced in to the existing CASE tool, without requiring substantial
changes to the existing system. Some of these constraints, e.g., those in (2), are easily
implemented in a CASE tool. Other constraints are more complex, and thus we will
express them using the PVS language, so that we can thereafter use the PVS system to
check the constraints, either interactively or in batch mode.

Before specifying the rules in (2) and (3), we briefly recount the key parts of the
BON metamodel from [11]. The BON metamodel consists of two clusters and one root
class, ��� � ��� ; every BON model is an instantiation of ��� � ��� . The general outline
of the metamodel is in Fig. 4.

Well-formedness constraints in the metamodel are specified as clauses in the invari-
ant of ��� � ��� , or in individual classes appearing in the clusters ���	� ��
 � � ��� � 
 �
or

 ��� � ��� � 
 ��
 ��� � . New constraints for the rules in (2) and (3) will also be inte-

grated into the metamodel as invariant clauses (as we discuss shortly).
We now present the consistency constraints, and in doing so apply the textual di-

alect of BON. These specifications will be used in formulating machine-checkable PVS
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Fig. 4. BON metamodel, abstract view

specifications which can then be applied in automatically proving that a collaboration
diagram is consistent with a class diagram.

First, we recap the concept of a routine of a class from [11]. A routine has a name, a
possibly empty sequence of parameters, a set of accessors, a pre- and postcondition, and
a specification, which corresponds to the semantics of the routine. (In [11], a routine is
specialized into queries, which return values, and commands, which change the state of
the system; this is a level of complexity that we can ignore in this paper.) Here is the
interface of
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� � ��� is the semantics of the routine; � is a global clock. According to the invariant of
 ��� � � 
 � , the specification of the routine is satisfied if any implementation starts
in a state satisfying the precondition and terminates in finite time in a state satisfying
the postcondition. The semantics of specifications is from [10], where a calculus for
refining BON specifications to Eiffel programs is provided.

Part of the PVS formulation of the BON class

 ��� � � 
 � is given below; missing

details may be found in [11]. A new non-empty type is introduced, and features of the
BON class are transformed to PVS functions. The precondition and postcondition are
formalized as functions mapping a routine and state (the latter represented as one or
two sets of entities) to a boolean value; the state is needed for composing specifications
sequentially.

FEATURE: TYPE+
ATTRIBUTE, ROUTINE: TYPE+ FROM FEATURE

routine_name: [ ROUTINE -> string ]
feature_pre: [ ROUTINE, set[ENTITY] -> bool ]
feature_post: [ ROUTINE, set[ENTITY], set[ENTITY] -> bool]

Expressing the concept of a routine’s specification in PVS is more complicated.
The complication does not arise in expressing a specification directly, but in combining



specifications. Thus, our formulation of specifications is aimed at being able to (sequen-
tially) compose them. The formalization of specifications of a routine requires a new
type, SPECTYPE, which is a record containing the initial and final state variables of
a specification, along with the value of the specification; initial and final state are sets
of entities. The functions oldstate and newstate produce the entities associated
with a routine (given the class in which the routine arises), specifically the parameters,
local variables, and accessible attributes. It is necessary to introduce a new type for
specifications so that the frame of a specification can be expressed.

SPECTYPE: TYPE+ =
[# old_state: set[ENTITY], new_state: set[ENTITY],

value: [ set[ENTITY], set[ENTITY] -> bool ] #]

oldstate, newstate: [ ROUTINE, CLASS -> set[ENTITY] ]

A specification can now be defined in terms of the new type.

spec: [ ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE ]

spec_ax: AXIOM
(FORALL (rou1:ROUTINE): (FORALL (c:CLASS):

(member(rou1,class_features(c)) IMPLIES
(spec(rou1,oldstate(rou1,c),newstate(rou1,c)) =

(# old_state := oldstate(rou1,c), new_state := newstate(rou1,c),
value := (LAMBDA (o:{p1:set[ENTITY] | p1=oldstate(rou1,c)}),

(n:{p2:set[ENTITY] | p2=newstate(rou1,c)}):
feature_pre(rou1,o) IMPLIES feature_post(rou1,o,n)) #)))))

The spec_ax axiom states that for a routine the prestate and poststate of a speci-
fication are that of the routine, and the value of the specification is a function from pre
and poststate to a boolean, where the boolean is � ��� � if and only if the precondition im-
plies the postcondition (we omit time variables from the PVS translation for simplicity,
but it is straightforward to add them).

The class � ��� � ��
 ���
is defined in [5]; it represents a packaged, indexable data

structure of arbitrary but finite length. Here is an excerpt of its interface. �
� � � returns
the specified item in the sequence, while

� ��� � and � ����� return the first element and
all but the first element in the sequence, respectively. �����������A.
�04 returns ����� � iff � is a
subsequence of the current object, while � ��������������.
	�� $
	���4 is ����� � iff element 	�� occurs
before 	�� in the sequence. In producing the PVS formalization of � ��� � � 
 � � , we
use the built-in notion of a finite sequence.
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Now we can specify the concept of a message that appears in a collaboration di-
agram. Messages were specified in [11], but we modify the definition slightly here.
Informally, a message corresponds to a routine call invoked on one or more target ob-
jects. More formally, a message in a collaboration diagram consists of a source and a
target, a routine (which is the implementation of the message) and a message number. In
general, the source and target may be sets of objects, but for simplicity we consider only
the case where a message is sent from and to a single object. Recursive rules are given
in [17] for unrolling messages applied to clusters; the extension of the PVS description
is straightforward.
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A partial specification of the PVS formulation of messages follows. A new type is
introduced, and the features of the � � � � � � � class are represented as functions on
the new type.

MESSAGE: TYPE+ FROM ABS
routine_message: [ MESSAGE -> ROUTINE ]
number_message: [ MESSAGE -> nat ]

Now we can specify the concept of a collaboration diagram. This requires us to
extend the specification of the metamodel from [11]. Specifically, we must extend the
class ��� � ��� . A model consists of a set of abstractions (which may be clusters, ob-
jects, classes, and object clusters) and a set of relationships. To this class, we add, via
inheritance, several private features that will be used to produce all abstractions and
relationships that make up collaboration diagrams1.

Aside. BON obeys the single model principle [12], in that a unique model
of a system exists, from which different views can be generated. In this way,
consistency of views is guaranteed. Thus, in the metamodel for BON, there
is a unique class, ��� � ��� , defining the well-formedness constraints on mod-
els. Features of this class can be used to generate views. New views can be
added by inheriting from ��� � ��� and adding new features. It is not within
the spirit of BON to add new views by adding new subclasses of ��� � ��� ,

1 The specification supports an arbitrary number of collaboration diagrams and class diagrams
in a model.



e.g.,
���	
 � � � � � � � ��� , etc., as this can easily introduce inconsistency be-

tween views.

The existing class ��� � ��� includes all features and constraints necessary to model
collaboration diagrams. However, it is inconvenient to use for validating the consis-
tency of class diagrams and collaboration diagrams directly. Thus, for convenience, we
restructure ��� � ��� slightly using inheritance, and introduce several new features for
checking the consistency of class diagrams and collaboration diagrams. In particular,
we add a feature representing the set of objects appearing in a model, the sequence
of messages and routine calls appearing in a collaboration diagram, a scenario box (a
free-form block of text describing what is represented by the messages), and queries for
producing the collaboration diagram view and the class diagram view from the single
model. As well, invariant clauses are added to the extension of � � � ��� ; further clauses
will be added shortly for checking the consistency of the views. Here is the interface
of

��� �	��
 � � � ��� � ��� . Note that all new features, with the exception of those for
generating new views, are private.
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The invariant clauses are as follows. The clause � � 	�� �
� ��� � � says that each mes-
sage in the ����� � ��� ��� is also a relationship in the model.

� ��� ���
� � ��� ����� ��� ��� � �
The clause ��� ��� � � �
������� � � � � 	 � states that each call appearing in sequence � � ��� � at
element � is the routine associated with the message appearing in ����� � ������� at element
� .
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� � ��� � ��� states that each object in the source or target of a message occurs in

the collaboration diagram.
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� � !�������� �
� � ��� is similar, and says that each object in the set � ��� � ��� is in the set of
abstractions belonging to the model.

� ��� � ��� � � ���
Finally, � � � � � ��� 	�� � � states that � � ��� � and ����� � ������� are the same length.

��� ��� ��� � ��� 	�� � , ����� � ��� ����� � ��� 	 � �

(Note that these constraints do not specify anything about consistency of views.)
The queries � � ����� ����� 	 ����� and ��� ��� � � ����� 	��0� � produce the two views of the model.

These are defined as follows.

� � ����� ����� 	 ����� � ��� ��� 
 � � � � � � ����A) �	��� � 
 ������� ��� � ���#,��A� � � ���	����� � � � ��� � ���	��

�

 ������� ��� ��� � �#,�� � � ��� � �	� � � � � � ��� � 
 ��� 


��� ��� � � � ��� 	��0��� � ��� �	��
 � � � ��� � ����A) �	��� � 
 ������� ��� � ���#,��A� � � ���	����� ����
 � � � � � � ��
��

 ������� ��� ��� � �#,�� � � ��� � �	� � � � � � � � � � 


To express
��� �	��
 � � � � � � ��� in PVS, we could introduce a new subtype

(representing the type of extended models), and then could map each new routine and
constraint in the BON class to a PVS function. However, a new PVS subtype is not
strictly needed, since PVS does not provide the object-oriented structuring facilities of
BON. Thus, adding new functions or attributes to the PVS specification is in fact eas-
ier than adding new features to classes in BON. The translation process is as follows.
We introduce new functions (that operate on variables of type MODEL) representing
the additional features that we require, i.e., representing class diagrams, collaboration
diagrams, etc.

objects_model: [ MODEL -> set[OBJECT] ]
sequence_model: [ MODEL -> finseq[MESSAGE] ]
calls_model: [ MODEL -> finseq[ROUTINE] ]

class_diagram collab_diagram: [ MODEL -> MODEL ]

The invariant clauses in
��� �	��
 � � � ��� � ��� will each be mapped to PVS ax-

ioms. Here is an example, stating that � � ��� � is a projection of ����� � ��� ��� (the other axioms
are straightforward translations of the BON constraints).

calls_linked_ax: AXIOM
(FORALL (mod1:MODEL):
(FORALL (i:{j:nat|j<length(sequence_model(mod1))}):
routine_message(sequence_model(mod1)(i))=calls_model(mod1)(i)))

To formalize the routines � � ����� � ��� 	��0��� and ��� ��� � � ����� 	��0� � , we introduce two
new functions. The specifications of each are similar, so we present only the PVS spec-
ification of ��� ��� � � � ��� 	��0��� here.



collab_diagram_ax: AXIOM
(FORALL (mod1:MODEL):

abst(collab_diagram(mod1)) = { da:DYN_ABS | member(da,abst(mod1))} AND
rels(collab_diagram(mod1)) = { m:MESSAGE | member(m,rels(mod1)) })

Let ��� be an extended model. Consistency between views will be specified as four
invariant clauses in

��� ��� 
 � � � � � � ��� . For each clause, a PVS formulation is
provided when it cannot be found in [11]. (In the following, we use ��� to stand for
��� ��� � � ����� 	 ����� and ��� for � � ����� ����� 	 �0� � , respectively.)

1. Each object appearing in the collaboration diagram has a corresponding class in the
class diagram.

� � � � � ������� � ��� � � � � ��� � � ���	��� � ��� � � � � � � � � � � �
� � ������, �

(Note that ��� � � ��� , defined in [11], is the set of abstractions appearing in the class
diagram.)

2. Each message in the collaboration diagram has a corresponding routine call, and
that call is permitted based on the list of accessors provided with each routine.

� � � 	 � ��� � ���
� � ��� ��� � � � � � � 	 � ��� � ������� � �
� � ����� � � � 	 � ��� � � �
� ��� �����������������
3. Each routine appearing in a message must actually belong to the target class of

the message (i.e., routines that are called must exist). This will be checked by the
compiler/CASE tool and as such we do not specify it here. However, it is captured
in the full specification of the BON metamodel referenced in [11]. The constraint
in [11] is more general in that it checks all features (including attributes) to ensure
that they exist. This ensures that if a message is sent from one object to another,
there is a link between the two objects.

4. The constraint in (2) establishes that each message in a collaboration diagram cor-
responds to a routine call. The routines that are called must be enabled (i.e., their
preconditions must be true). A precondition can only be true if the sequence of
previous calls to routines left the state of the system satisfying the precondition. To
check this, an initial state, �
� �
� , must be provided (by the developer). The following
condition must be true.

�
���
�76 ��� ��� � ��� ��� �
��� � . �	4�� � ���
i.e., the developer-supplied initial state (specified as a predicate) must imply the
precondition of the first element in the sequence of calls in the collaboration dia-
gram.
For a call ��: � to be enabled, the preceding sequence of calls ��$ � � $ � B � must
produce a state satisfying the precondition of call � . We can obtain this state by
first sequentially composing the specifications of calls ��$ � � $ � B � . This results in a
double-state predicate (i.e., in the user-supplied initial state and in the post-state of
call � B � ). We then project out the post-state and check that the result satisfies the



pre-state of call � . Formally:
� �;� ��$ � � $�� � �
��� ��� ��� � ��� 	�� � �
� ��� �
� ��� � �����
.�� � ��� � ��� ��� �
� � �C. �	4�� � � ��� � � � � � ��� ��� � ��� ��� �
��� � . � B �54 � � � ���	4 6
��� �
� � ��� ��� �
���%�C. �
4�� � ���

(Recall that the definition of sequential composition is:
� � � , � ����� �� �&� , ��� " 8 �  1 �*2 ��� , ��� "

where � � is an intermediate state, i.e., for every sequential composition, there is an
implicit existential quantification that needs to be instantiated and simplified.)

Expressing constraint (4) in PVS is challenging. The first part, enabling the first
message in the collaboration diagram, can be done as follows. �
���
� is translated to a
function mapping a model and a set of entities (the state) to a boolean.

init: [ MODEL, set[ENTITY] -> bool ]

init_ax: AXIOM
(FORALL (mod1:MODEL):

(FORALL (old_s:set[ENTITY]):
init(mod1,old_s) IMPLIES feature_pre(calls_model(mod1)(0),old_s)))

The second part is much more challenging. The complexity lies in formalizing the
definition of sequential composition: an explicit specification of the state of a routine
is required so as to capture the frame of each specification, and to be able to define an
intermediate state. Sequential composition

� � � can be formalized in PVS as follows,
using function seqspecs. It takes as argument two variables of type SPECTYPE and
returns a SPECTYPE result, representing the sequential composition of the arguments.

seqspecs: [ SPECTYPE, SPECTYPE -> SPECTYPE ]

seqspecs_ax: AXIOM
(FORALL (s1,s2: SPECTYPE):

seqspecs(s1,s2) =
(# old_state := old_state(s1), new_state := new_state(s2),

value := (LAMBDA (o:{p1:set[ENTITY] | p1=old_state(s1)}),
(n:{p2:set[ENTITY] | p2=new_state(s2)}):

(EXISTS (i: set[ENTITY]): value(s1)(o,i) AND value(s2)(i,n)))
#) )

seqspecs must be lifted to apply to a finite sequence of specifications in order to
formalize constraint (4). This is expressed as function seqspecsn.

seqspecsn: [ finseq[SPECTYPE] -> SPECTYPE ]

seqspecsn_ax1: AXIOM
(FORALL (seq1: finseq[SPECTYPE]):

length(seq1)=2 IMPLIES seqspecsn(seq1) = seqspecs(seq1(0),seq1(1)))

seqspecsn_ax2: AXIOM
(FORALL (seq1:finseq[SPECTYPE]):

length(seq1)>2 IMPLIES
seqspecsn(seq1) = seqspecs(seq1(0),seqspecsn(rest(seq1))))



To complete the PVS formalization of constraint (4), we define a function to convert
a sequence of messages into a finite sequence of SPECTYPEs. Effectively, this extracts
the routines from the messages and produces specifications from them.

convert: [ finseq[MESSAGE] -> finseq[SPECTYPE] ]

convert_ax: AXIOM
(FORALL (msgs1:finseq[MESSAGE]):

length(msgs1)=length(convert(msgs1)) AND
(FORALL (i:{j:nat|j<length(msgs1)}):

(EXISTS (c:CLASS):
member(routine_message(msgs1(i)),class_features(c)) IMPLIES
convert(msgs1)(i) =
spec(routine_message(msgs1(i)),

oldstate(routine_message(msgs1(i)),c),
newstate(routine_message(msgs1(i)),c)))))

Now the view consistency constraint can be formally expressed in PVS.

views_consistent: AXIOM
(FORALL (mod1:MODEL):

(FORALL (i:{j:nat|0<j AND j<length(calls_model(mod1))}):
LET loc_spec:SPECTYPE = (seqspecsn(convert(sequence_model(mod1)ˆ(0,i-1)))) IN
(EXISTS (new:set[ENTITY]):
value(loc_spec)(old_state(loc_spec),new_state(loc_spec)) IMPLIES
feature_pre(calls_model(mod1)(i),

oldstate(calls_model(mod1)(i),
object_class(msg_target(sequence_model(mod1)(i))))))))

This axiom first declares a local variable, loc_spec, which is the result of sequen-
tially composing the first � specifications in messages in the model. This specification
must then imply the precondition of the routine of message � � � in the model.

To use the axiom, we can specify a set of BON models as PVS conjectures, fol-
lowing the approach presented in [11]. These conjectures effectively posit that the set
of models can exist. They must therefore satisfy the consistency constraints. We can
then use PVS to import the view consistency axiom as above, and attempt to prove or
disprove that the axiom is satisfied by the models.

Aside. We have not proved the correctness of the translation from BON
constraints to PVS axioms and types. In general, proving the correctness of
translations for large, full-featured languages, is extremely difficult. We view
our PVS specification of the metamodel as a mechanism by which the trans-
lation can be tested. We can write conjectures about properties that we would
like the metamodel to have, and can use the PVS system to prove or disprove
the conjectures. This will give us greater confidence in the correctness of the
metamodel and the translation. End of Aside.

This is a specification of a consistency relation for collaboration diagrams and class
diagrams. We might prefer to have an algorithmic description of the consistency check-
ing process; however, we view an algorithmic description as an implementation of the
consistency relation above. The next subsection briefly suggests how the BON CASE
tool might support this consistency checking.



4.1 Implementation and algorithms

A sketch of an implementation for consistency checking of collaboration diagrams and
class diagrams is as follows. First, assume that rules (1), (2), and (3) above, have been
checked – this is straightforward and can easily be implemented in the CASE tool
framework of [9] (in fact, most of these rules have already been implemented). Rule
(4) is to be checked, informally, as follows: convert the collaboration diagram into an
annotated finite state machine (FSM), following this algorithm. Given a user-supplied
initial state (specified as an assignment of values to entities), simulate the finite state
machine. Each state in the machine represents the execution of a routine; a transition
represents the termination of one message and the commencement of the next. On en-
try to the state, the precondition of the routine is checked; if it is satisfied, simulation
continues, otherwise it halts and feedback is provided. On exiting the state, the speci-
fication of the routine (i.e., ��� � ���
����� � � ��� , as above) is added to a constraint store. This
constraint store might be a set of conjectures in PVS. One might envision PVS running
in the background, discharging obligations as they are generated by the simulation. An
alternative to using PVS would be to consider a constraint store akin to that used in con-
straint programming. A constraint solver could then be applied as each new condition
is added.

To complete the implementation, we must indicate how the “next state” in the state
machine is selected. This is done according to sequence number. So, after executing in
state � � � (representing the call � � � ) which has sequence number � , the next state will
be the one reachable with sequence number � � � . This, of course, assumes that the
sequence numbers are contiguous.

Producing a FSM from a collaboration diagram is straightforward and follows the
approach of [3]. We produce a FSM because it is a simple computational model and it
is easy to implement; it is also sufficient for simulating BON collaboration diagrams.
Much of the complexity of the translation in [3] arises from UML’s sequence diagrams
(including concepts such as return calls, exception handling, and nesting). These prob-
lems do not in general arise in BON collaboration diagrams. The above algorithm is
currently being implemented in the BON CASE tool of [9].

4.2 Checking Collaboration Diagrams against Test Drivers

We have shown how to directly check collaboration diagrams with class diagrams for
consistency. When developing software using the methodology of [13], it is possible
that developers will have constructed test drivers before models. These can be used
not only for the usual testing purposes but also in the consistency checking process, as
sketched in Section 3: consistency of class diagrams and collaboration diagrams can be
checked transitively via checking collaboration diagrams against test drivers. We briefly
sketch how this might be done.

Assume that we have written a test driver, e.g., in Eiffel. A test driver is a class with
a method that creates objects and generates a sequence of messages. An example might
be as follows.
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We want to determine if the sequence of calls appearing in the test driver is an
implementation of the calls appearing in the collaboration diagram. Unfortunately, we
cannot just take the FSM constructed in the algorithm of Section 4.1 and simulate it
directly. This is insufficient because the test driver may make calls to routines that do
not appear in the collaboration diagram (i.e., implementation details). Instead, we take a
metamodelling approach. We first specify the concept of a test driver, and then describe
the consistency constraints that test drivers and collaboration diagrams must obey. We
only sketch the approach here; details can be found in [14].

A test driver ��� consists of program text, a set of object creation statements, and a
sequence of routine calls. The driver must obey the following constraints.

1. For each entity used in a test driver, there is a suitable instantiation and creation
statement in the program text.

2. If a routine call � precedes a routine call ! in the sequence of test driver calls, then
the call corresponding to � in the program text precedes the call for ! in the program
text.

We can now define consistency for test drivers and collaboration diagrams as fol-
lows. Assume that we have a metamodel class

�	� � � � 
 ���	� 

. (Note that test drivers

are not part of the extended model). An additional routine is needed to check that the
test driver is consistent with collaboration diagrams. This routine, ��� �������������
	���� , is as
follows.

�	� �������������
	�����.
��� � �	� � � � 
 ���	� 
 4;� � � � � � � 

� ��
 � ( � � � � =, � ��� ��A) �	� � � 
 ������� � , � � �
����� � ����� �
� � � � ������.���� ��� � � � ��� 	��0��� �
� ��� � ���	4 8

��� ��� � � ����� 	��0� � �
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� � ��� �54
Thus a test driver ��� and an extended model ��� are consistent iff

� � �
�	� �������������
	�����.
����4
The first conjunct of the postcondition of the routine above states that the entities oc-
curring in the collaboration diagram must be included in the entities arising in the test



driver. The second conjunct states that the sequence of calls appearing in the collabo-
ration diagram must be a subsequence of the calls appearing in the test driver. We note
the similarity between this specification and CSP’s “hide” or “interface” construct.

The function ����������� is defined as follows. Informally, it returns ����� � if its argument
is a not necessarily contiguous subsequence of the target.

 ?4 �" "� �5LNA % �+� 
 �6�

)���)D;( E Q %5H �.�/I�����

� ��� � � � � A;>�4	�
� � �	��� �
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 �9��R��� ��U A�XG ?9��W��J ��� � �@ ?43: A
J
	!��:  "� �
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An implementation of ��� �������������
	���� , in terms of abstract syntax trees and direct
simulation of the collaboration diagram, is outlined in [14].

5 Related Work and Conclusions

The introduction of the UML has spurred much recent research on consistency check-
ing, but the topic has been of past interest and study. Zave and Jackson [18] presented
a framework for composing specifications via conjunction, with the aim of support-
ing multi-paradigm specification. In their approach, specifications are transformed in
to a common semantic domain (in [18], they use one-sorted first order logic, but dif-
ferent semantic domains can be chosen) and thereafter combined. They pay particular
attention to constructing translations to the common semantic domain so that specifica-
tions can be easily and usefully composed, e.g., so as to make consistency checking as
straightforward as possible to carry out. The authors’ goal is not specifically consistency
checking, but suggestions and recommendations as to how to use the approach to make
consistency checking easier to carry out are provided. They do not specifically focus on
the OO realm, and do not explicitly consider tool support. They recognize the problem
of semantic fragmentation, i.e., providing a non-standard semantics to commonly used
languages.

Finkelstein et al. [6] focus specifically on the problem of detecting inconsistency
when combining descriptions of systems from multiple viewpoints. Their work em-
phasizes that inconsistency is not always undesirable, and that in fact it may provide
important information to developers, e.g., related to misunderstandings or confusion
with respect to requirements. Thus, their logical framework aims to support developers
in identifying inconsistencies and specifying actions to carry out on their identifica-
tion. Consistency checking is carried out by producing a logical database of formulae



describing separate views, as well as further formulae specifying environmental infor-
mation, e.g., relationships between views. Consistency or inconsistency checking can
be carried out using automated theorem provers.

The ADORA project [4] presents an alternative to UML for OO modelling, wherein
all information related to a system is integrated into one coherent model. In this lat-
ter regard, it is similar to the single model principle described in [12]. The integrated
model allows consistency constraints to be defined between views. A language and tool
for supporting these constraints is discussed in [15]. Some of the constraints that are
checked by this tool are also captured in the UML metamodel, and as such are checked
by UML-compliant CASE tools.

Tsiolakis [16] focuses specifically on consistency checking with the UML, primar-
ily, consistency checks relating class diagrams, sequence diagrams, and state charts.
In their approach, diagrams are annotated with extra information relating the separate
views, and attributed graph grammars are used as a theoretical underpinning to carry
out the consistency checking.

Our current focus is on implementing the consistency checking described in this pa-
per. Many of the rules are currently built in to the metamodel implementation provided
with the tool. The architecture of the tool makes it straightforward to add new rules to
the metamodel, or to replace the metamodel entirely with a new set of rules. The basic
architecture is shown in Fig. 5.

The BON−CASE tool
<<framework>>

<<component>>
Diagram Editor

BON Parser
<<component>> <<component>>

Code Generator

<<component>>
BON Metamodel

PSfrag replacements

Fig. 5. Architecture of the BON CASE tool

Some of the consistency checking cannot be carried out automatically or imple-
mented in the metamodel, e.g., checking that the sequence of messages appearing in a
collaboration diagram is allowable, based on contracts. The checks will be sent to the
PVS theorem prover and discharged automatically where possible. The paper [11] de-
scribes how we have successfully used PVS for semi-automatically proving that models
satisfy the BON metamodel; the same approach can be used for consistency checking
between views. As well, we are currently exploring the use of automated verification
technology, particularly FDR, for carrying out the sequencing consistency checks. This
will also be very useful for consistency checking of test drivers against collaboration di-
agrams, since we can effectively represent this as a constraint to be checked on traces.



References

1. K. Beck. Extreme Programming Explained, AWL, 1999.
2. G. Booch, J. Rumbaugh, and I. Jacobson. The UML Reference Guide, Addison-Wesley, 1999.
3. L. Briand and Y. Labiche. A UML-Based Approach to System Testing, in Proc. UML 2001,

LNCS 2185, Springer-Verlag, 2001.
4. M. Glinz, S. Berner, S. Joos, J. Ryser, N. Schett, and Y. Xia. The ADORA Approach to

Object-Oriented Modeling of Software. In Proc. CAiSE’01, LNCS 2068, Springer, June
2001.

5. B. Meyer. Eiffel - The Language, Prentice-Hall, 1992.
6. A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency Handling

in Multi-Perspective Specification. IEEE Trans. Software Engineering 20(8), August 1994.
7. OMG Consortium, UML 1.4 Documentation, 2000. Available at www.omg.org.
8. S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. PVS System Guide 2.4, CSL, SRI

International, November 2001.
9. R.F. Paige and L. Kaminskaya. A Tool-Supported Integration of BON and JML, Technical

Report CS-TR-2001-04, York University, July 2001.
10. R.F. Paige and J.S. Ostroff. Developing BON as an industrial-strength formal method. In

Proc. World Congress on Formal Methods, LNCS 1709, Springer-Verlag, September 1999.
11. R.F. Paige and J.S. Ostroff. Metamodelling and conformance checking with PVS. In Proc.

Fundamental Aspects of Software Engineering 2001, LNCS 2029, Springer-Verlag, April
2001.

12. R.F. Paige and J.S. Ostroff. The Single Model Principle (Extended Abstract). In Proc. Re-
quirements Engineering 2001, IEEE Press, August 2001.

13. R.F Paige and J.S. Ostroff. A Proposal for a UML-Based Method for Developing Reliable
Systems, in Proc. Workshop on Precise UML-Based Methods, GI Series 7, German Society,
October 2001.

14. R.F. Paige, J.S. Ostroff, and P.J. Brooke. Checking the Consistency of Views in PVS. Tech-
nical Report TR-CS-2002-01, Department of Computer Science, York University, February
2002.

15. N. Schett. A Notation for Integrity Constraints in ADORA Models - Concept and Imple-
mentation (in German). Diplomathesis, University of Zurich, 1998.

16. A. Tsiolakis. Semantic Analysis and Consistency Checking of UML Sequence Diagrams.
Diplomarbeit, TU-Berlin, TR 2001-06, April 2001.

17. K. Walden and J.-M. Nerson. Seamless Object-Oriented Software Architecture, Prentice-
Hall, 1995.

18. P. Zave and M. Jackson. Conjunction as Composition, ACM Transactions on Software Engi-
neering and Methodology 2(4), October 1993.


