Specification-Driven Development of an Executable Metamodel in Eiffel

Richard F. Paige
Department of Computer Science,
University of York, York, UK.
paige@cs.york.ac.uk

Phillip J. Brooke

School of Computing, Communications and Electronics
University of Plymouth, Plymouth, UK.

phil.brooke@plymouth.ac.uk

Jonathan S. Ostroff
Department of Computer Science,
York University, Toronto, Canada.

jonathan@cs.yorku.ca

Abstract

Metamodels precisely define the constructs and underly-
ing well-formedness rules for modelling languages. They
are vital for tool vendors, who aim to provide support so
that concrete models can be checked formally and auto-
matically against a metamodel for conformance. This pa-
per describes how an executable metamodel — which sup-
ports fully automated conformance checking — was devel-
oped using a model-driven extension of test-driven develop-
ment. The advantages and disadvantages of this approach
to building metamodels are discussed.

1. Introduction

A metamodel is a set of well-formedness constraints for
a graphical modelling language, such as UML [5] or BON
[12]. The constraints express when a model, written using
the language, is correctly constructed. A metamodel implic-
itly defines a notion of conformance. Given a metamodel
MM for a language L, and a model M written in the nota-
tion of L, we can define the model conformance relation as
follows.

conforms(M,MM) = VceMMeMsatc (1)

i.e., the model M conforms to the metamodel MM providing
that it satisfies all constraints in the metamodel; the meta-
model necessarily includes constraints defining the abstract
syntax and semantics of L. Ideally, we would like to check
the satisfaction relation in (1) automatically. To our knowl-
edge, there are no tools available that, given a metamodel
and model, check equation (1) completely and automati-
cally.

Metamodels underpin developers’ understanding of
models and diagrams, and are the foundation of CASE and
diagramming tools that are used to draw models; thus, they
can be considered critical systems, and it is important that
they are of high quality. Specific quality requirements for a
metamodel should include: reliability (the metamodel must
correctly capture the constraints that define well-formed
models [9]), understandability (the metamodel must be de-
signed to be read and understood by tool builders and lan-
guage users), and maintainability (metamodels, particularly
for large languages like UML, will undergo frequent revi-
sion [1]).

Test-driven development (TDD), due to Beck [3], is an
increasingly popular approach for building systems with
reliability, understandability, and maintainability require-
ments. TDD helps achieve high reliability by amortising
testing throughout the development process, and by focus-
ing on short code-and-test increments. TDD has three steps
in its micro-process: (1) write a test (without worrying if
it does not compile); (2) write enough code to make the
test pass; (3) refactor the code to eliminate redundancies
and other design flaws introduced by making the test pass —
thus, tests act as specifications that drive the design process.
Like all agile methods, TDD excels at dealing with require-
ments that change during development. It also emphasises
the production of simple designs, and generally can improve
the maintainability of systems, because of the emphasis on
simplicity in design.

There are two main limitations with TDD: it is a code-
based development method only; and, there are expressive-
ness limitations with using tests as specifications that drive
design. The former is of particular concern when develop-
ing systems where modelling is useful, e.g., high-integrity
systems, systems with substantial reliability requirements,
and projects where models are essential for explaining the

system to others. The latter is a fundamental limitation.

TDD provides several essential capabilities for building
metamodels: it has been proven useful in building systems
with high reliability requirements; it deals well with chang-
ing requirements, and due to its refactoring capabilities it
can be useful for building extensible systems; and because
it emphasises simple designs, it can promote more under-
standable systems. However, the limitations of TDD im-
ply that pure TDD is not sufficient for designing and imple-
menting metamodels.

We propose instead that a new integration of TDD and
model-driven techniques, called specification-driven design
(SDD) [6], is well-suited for building metamodels. SDD
has none of the limitations of TDD, and it works with mod-
els; models (with contracts) and tests can be used to drive
the design process.

In order to evaluate this proposal, we have recently
used SDD to develop a design and implementation of the
metamodel for the BON modelling language [12] (roughly
equivalent to a subset of UML, consisting of class and com-
munication diagrams) in Eiffel: metamodels are expressed
as Eiffel programs, where metamodel constraints are cap-
tured as Eiffel contracts (examples to follow). We report on
the utility of SDD for building metamodels in this paper;
full details of the metamodel itself can be found elsewhere
[8].

With this approach, the tests that can be written when us-
ing SDD are in fact Eiffel encodings of models. Thus, while
metamodel is an Eiffel program with contracts, a model is a
unit test written in Eiffel, and by executing the test success-
fully against the metamodel (which is part of the SDD pro-
cess), we obtain a fully automatic way of checking the rela-
tion in equation (1), i.e., that a model conforms to the meta-
model. Not only does this let us check the well-formedness
of models, but it gives us greater confidence that the meta-
model we are writing is in fact correct. We discuss this
further in the conclusions and [8]; our focus in this paper
is describing the application of the SDD process by which
the executable implementation of the metamodel was devel-
oped.

While we present the application of SDD in terms of
BON, and its models and views, the approach can equally
well be applied to metamodelling other languages, such as
UML. Where relevant, we point out key differences be-
tween using SDD to construct a metamodel for BON, versus
metamodels for other languages; however, we claim, based
on experience, that most of the differences will be minor.

2. Eiffel, SDD, and Related Work

Eiffel is an object-oriented programming language and
method [4] tailored for building reliable systems. It pro-
vides constructs typical of the object-oriented paradigm,

including classes, objects, inheritance, associations, com-
posite (“expanded”) types, generic (parameterised) types,
polymorphism and dynamic binding, and automatic mem-
ory management. Eiffel also supports contracts, which
have been posited as a substantial technique for improving
software reliability [4]. These contracts take the form of
pre- and postconditions of routines (which specify the con-
straints on callers and implementers of routines) and invari-
ants of classes (which specify well-formedness properties
that all instances of the classes must obey).

A short example of an Eiffel class is shown in Fig. 1.
The class CITIZEN inherits from PERSON (defining a sub-
typing relationship). It provides several attributes, e.g.,
spouse, children which are of reference type (in other words,
spouse refers to an object of type CITIZEN); these features
are publicly accessible (i.e., are exported to ANY client).
Attributes are by default of reference type; a reference at-
tribute either points at an object on the heap, or is Void.
The class provides one expanded attribute, blood_type. Ex-
panded attributes are not references; memory is allocated
for expanded attributes when memory is allocated for their
enclosing object.

The remaining features of the class are routines, i.e.,
functions (like single, which returns true iff the citizen has
no spouse) and procedures (like divorce, which changes the
state of the object). These routines may have precondi-
tions (requireclauses) and postconditions (ensur e clauses),
but no implementations. Finally, the class has an invariant,
specifying properties that must be true of all objects of the
class at stable points in time, i.e., before any valid client
call on the object. In writing the invariant of CITIZEN
we have used Eiffel’s agent notation. Agents are a way
to encapsulate operations in objects; the operation can then
be invoked on collections (e.g., a set or linked list) when
necessary. Two built-in agents in Eiffel are for _al |l and
there_exi sts, which can be used to implement quanti-
fiers over finite data structures. In this example, one agent
is used in the class invariant: for _al | iterates over all el-
ements of children and returns true if its body — applied to
each element — returns true. The body is a boolean expres-
sion which returns true iff the current citizen is a child of
one of its parents. In other words, the agent expression is
true iff all children have links to their parents.

The key element of Eiffel that makes it a useful lan-
guage for metamodelling is its agent construct. Agents
allow declarative specifications of well-formedness con-
straints to be written and automatically executed. This fea-
ture thus supports two of the key requirements for meta-
modelling mentioned earlier: reliability (agents are formal
specifications that can be checked automatically) and un-
derstandability (agents support declarative specification of
well-formedness constraints).

Other elements of Eiffel that are useful for metamod-

class CITIZEN i nherit PERSON
feature { ANY}

spouse: ClI Tl ZEN
children, parents: SET[CITIZEN
bl ood_t ype: expanded BLOOD TYPE

single: BOOLEAN is
do Result := (spouse=Void)
ensure Result = (spouse=Voi d)
end

feature {Bl G GOVERNVENT}

marry is ...
have _child is ...
divorce is
require not single
do ..
ensure single and (ol d spouse).single
end

i nvariant
single or spouse.spouse = Current
parents. count <= 2
children.for_all((c:Cl Tl ZEN) : BOOLEAN
do Result := c.parents.has(Current) end)
end -- CITIZEN

Figure 1. Eiffel class interface

elling include its integrated debugging facilities, static typ-
ing, and generic types. The former is particularly useful
when building systems, as the debugger can inform the de-
veloper as to which contract has failed. In metamodelling
terms, this allows developers to quickly discover which
well-formedness constraint is not satisfied by a model.

Clearly, any language that provides an agent/closure con-
struct, as well as standard object-oriented constructs like
static typing, generics, and integrated debugging, would
seem to be well-suited for metamodelling.

2.1. Specification- and Test-Driven Development

Test-driven development (TDD) is one of many agile de-
velopment methodologies that have been proposed over the
last few years. TDD is useful for producing reliable sys-
tems and for amortising the cost of testing across the devel-
opment process. The TDD process described by Beck [3] is
as follows.

1. Write a test which may not work initially (especially
if code hasn’t been written for a class). The test may
verify the functionality of a method, the behaviour of a
class, or a unit of functionality (i.e., it is an acceptance
test).

2. Make the test work quickly, focusing on doing the sim-
plest thing that allows the test to pass.

3. Refactor the design to eliminate duplication and im-
prove the style and architecture in terms of simplicity,
reusability and maintainability.

Reliability is emphasised in the process since changes to
code are always made against specifications written in the
form of tests, and the code can immediately checked against
those specifications using unit testing. In TDD, unit tests
are seen as (admittedly incomplete) formal specifications
that drive the design [2, p38 and p51]. A key point of
TDD is that testing is amortised across the development
process, and a test suite is one of the deliverables of the pro-
cess. There usually is no up-front design with TDD, though
clearly some problem analysis and rough sketch design will
be essential, e.g., for determining classes.

TDD can usefully be extended in a model-driven de-
velopment setting, particularly one where correctness is a
key concern. The extension is to use contracts (i.e., pre-
and postconditions along with class invariants). The vari-
ant to TDD that we used in building the metamodel, which
integrates elements of TDD, minimal model-driven devel-
opment, and contracts, is called specification-driven design
[6]. It is perhaps somewhat surprising that a model-driven
mechanism like design-by-contract, and an agile process
like test-driven development, are compatible, but the key
point to note is that both tests and contracts are specifica-
tions: some specifications are easier to write as unit tests,
others as contracts.

In this spirit, the statechart of Fig. 2 models the approach.
SDD is not complete methodology, but it does represent the
core practices of a balanced method. There are three states.
The large state labelled TDD represents the traditional TDD
process; the state on the right side of the diagram repre-
sents traditional design-by-contract. The left-most state in-
volves writing specifications of complex multi-object be-
haviour using collaboration diagrams. These can in turn
derive automatic test cases that can feed in to the TDD pro-
cess.

As described in Fig. 2, SDD does not dictate where to
start — it is the developer’s choice based on the context, i.e.,
whether to start by writing unit tests, lightweight modelling,
or writing contracts. System reliability can be improved
by the most appropriate means at the time, e.g., via writ-
ing contracts on routines or classes, or by writing unit tests.
However, whatever the starting point, the emphasis is on
translating customer requirements to compilable and exe-
cutable specifications. It might initially be possible to write
a high level acceptance test, or perhaps the developer wants
to sketch out some class diagrams and contractual specifi-
cations.

Do
Quality First
Design by Contract

Write test based
Collaborative Specifications

Write a unit test

Write simplest
code

Figure 2. SDD - Specification Driven Design

2.2. Related Work

Metamodels have been constructed in a number of differ-
ent languages and using a number of different development
processes. Perhaps the most widely known metamodel is
that for the Unified Modelling Language (UML). The UML
metamodel is expressed in a combination of UML and its
constraint language, OCL. The result captures the syntax
and some of the semantic constraints on the language, and is
an accepted standard. The metamodel for UML was devel-
oped over a number of years by a number of people using a
model-driven process, making use of syntax-checking tools
and peer review. The work of the 2UWorks partners has fo-
cused on improving the UML metamodel for extendability
and understandability, via use of templates and patterns [1],
again following a model-driven process. There has been
limited work on ensuring that the UML metamodel is reli-
able; much of this has focussed on implementing small parts
of the metamodel in a variety of tools (e.g., that allow syntax
and type checking of OCL constraints) in order to carry out
partial validation and verification. For example, substantial
parts of the UML metamodel have been implemented in the
XMF tool [13] from Xactium, which provides the means to
generate tools that conform to the MOF-compatible meta-
model.

Metamodels have been expressed in B [11], and in PVS
[10]. The latter, part of our earlier work, is noteworthy in
that it includes heavyweight semantic constraints that con-
sider pre- and postconditions, something which is not con-
sidered in other metamodel specifications. This work pro-
vided the means to improve reliability via theorem proving
technology, but this is in general difficult to apply and re-
quires substantial formal methods expertise.

The main difference between the work we present here
and previous work is that the metamodel in Eiffel supports
fully automatic conformance checking of models against
the metamodel (by running unit tests), as well as fully auto-

matic view consistency checking. Other approaches invari-
ably require a degree of user intervention.

3. Specification-Driven Development of the
Metamodel

We now outline the specification-driven development of
the BON metamodel, using Eiffel. We started with a brief
modelling phase, where we determined the classes that were
needed for representing the metamodel. Fortunately, a pre-
vious analysis of the metamodel had been carried out in [9],
and we had several class diagrams on which to base our
modelling. A rough sketch of parts of these class diagrams
is shown in Fig. 3.

From these class diagrams, we were able to determine a
preliminary set of Eiffel classes that we expected we would
need to represent the metamodel in Eiffel, as well as a set
of well-formedness rules, captured as class invariants in the
class diagrams (see [9] for details of such invariants). How-
ever, we did not place too much trust in the correctness of
class invariants captured in BON, as they had not been thor-
oughly validated due to lack of tool support. The validation
that had been carried out had been done using the PVS the-
orem prover [9], and as such the transliteration from class
invariants to PVS may have introduced errors. As well,
we viewed the classes suggested from the BON version of
the metamodel as a preliminary set of suggestions, and ex-
pected that parts of the design would need to be refactored,
particularly for introducing additional system views (this is
discussed further in Section 4).

If we were to develop a UML metamodel in Eiffel, we
would start by automatically generating Eiffel class skele-
tons from EMOF; this would then be built upon in the same
way as the BON metamodel constructed in Eiffel.

3.1. Initial design

From the class diagram previously written for the meta-
model [9], we automatically generated Eiffel class skele-
tons. The skeletons consisted merely of class interface de-
tails (including names and signatures of routines). These
formed the basis of the test-driven development. The con-
tracts that were included in the BON diagrams were not au-
tomatically translated into Eiffel; in part this is because of
the limited support for generating agent-based code in Eif-
fel, but it is also because we did not entirely trust the in-
variants included in the BON diagrams as they had not been
completely checked with proof tools or by testing.

It is possible to envision extending the code generators
for Eiffel to automatically produce the agent-based code;
work is proceeding along these lines. This code generation
process will have two steps: (a) map the BON contract syn-

Madel
abstractions
source,target
Relationship Abstraction
2
‘ contents
_ S— Istatic Abstraction| Dynamic Abstraction
Static Relationship Message
contents
| Inheritance | |Aggrngatim] |ﬁ.ssocialior!| Cluster || Class | | Object HObject Cluster

Figure 3. Partial metamodel for BON

tax into Eiffel agent code; and (b) extend the agent code
with handlers for dealing with Void references.

Once the class skeletons had been produced, we anno-
tated the routines with very simple preconditions, to ensure
that arguments to routines were non-Void. These contracts
would be strengthened, generalised, and refactored in later
stages, as tests were written and implemented. We also in-
tended to use strengthened contracts at a later stage for help-
ing to generate unit and integration tests.

Unlike pure TDD, no refactoring of classes occurred dur-
ing initial design as we had a preliminary, stable set of
classes to work with. Refactoring occurred in later stages
when the metamodel routines were implemented in Eiffel;
these would also occur in adding new system views.

3.2. Writing acceptance tests

We continued the SDD process with writing acceptance
tests, which would be used to validate individual metamodel
constraints. Our aim was to write a set of tests to validate
each constraint in the metamodel, e.g., that inheritance hier-
archies could not have cycles, that BON clusters could not
overlap, that there were no name clashes amongst features
of classes. These tests took the form of simple Eiffel pro-
grams that encoded BON models which either satisfied or
failed to satisfy the invariant constraints.

We found that some tests for certain metamodel con-
straints could not be easily expressed, because the class in-
terfaces we had to work with did not yet possess the features
that we need to capture the constraints. However, certain
constraints could be tested. For example, given the class
interfaces as automatically generated from BON, we could
write the acceptance test shown in Fig. 4 to check that BON
aggregation relationships do not define cycles. The test is
easy to explain: entities in the BON model are declared
and created (via Eiffel’s create statements), the model is
populated, and a call to the routine prepare initialises all
data structures and checks that the metamodel constraints
are satisfied. In this case, the test fails (since there is a cycle

cl ass ACCEPTANCE_TEST inherit UNI T_TEST
creation make
feature {ANY}
no_aggregation_cycl es: BOOLEAN i s
local a, b, c: E_CLASS;
c_to a, ato_b, b to c: AGGREGATIQN,
m MODEL
do
create a.make("A"); create b. make("B");
create c. mke("C');
create c_to_a; create a_to_b; create b_to_c;
create m make;

c_to_a.set_source(c); c_to_a.set_target(a);
b_to_c.set_source(b); b_to_c.set_target(c);
a_to_b.set_source(a); a_to_b.set_target(b);

m prepare
Resul't :=true
end

make is do
make_test;
add_viol ati on_test(agent no_aggregation_cycles);
to_htnl ("accept. htm ")
end
end

Figure 4. A model encoding and acceptance
test

in the metamodel from class A to B to C) and this is reported
in the feedback from ETester. In TDD terms, we have not
achieved a green bar.

The acceptance test was written using the ETester frame-
work for Eiffel [7] which provides functionality similar to
JUnit, but tailored for Eiffel; it provides specialised support
for testing contracts, which JUnit does not. To use ETester,
the unit tests must inherit from class UNIT_TEST. Each
unit test — whether verifying procedures or functions — is
then expressed as a routine. Eiffel’s agent technology is
used to add these unit tests to a test suite, which can then be
executed and the results aggregated (via the call to_htni,
which generates an HTML summary of the test results).

We initially wrote six acceptance tests (which were im-
plemented as routines in the unit testing class that inherited

from UNIT_TEST), and then commenced testing. Clearly,
the tests all failed since no code had been written for the
metamodel. The next stage was to start implementing the
metamodel, and the routines of the Eiffel class skeletons.

3.3. Declarative coding in Eiffel

It would have been possible to implement the metamodel
constraints algorithmically, using a standard graph library.
However, our aim was to — as much as possible — write a
declarative specification of the metamodel in Eiffel, so as
to preserve readability, promote understanding, and make it
more likely that a correct system has been produced. It is
indeed possible to use Eiffel as a declarative specification
language, using agents. Thus, the code that implemented
the functionality to be checked by the unit tests was written,
as much as possible, to make use of agents.

Fig. 5 contains an example of a metamodel constraint
written using an Eiffel agent. The constraint establishes that
there are no cycles in the inheritance graph in a class dia-
gram; the transitive closure is calculated by the call to the
routine prepare, mentioned earlier. This constraint is im-
plemented as a boolean-valued function which is invoked
in the class invariant of Model. We emphasise that this con-
straint is fully executable. More examples can be found in

[8].

no_i nheritance_cycles: BOOLEAN i s do
Result := closure.for_all ((il:1NHERI TANCE): BOOLEAN do
Result := closure.for_all((i2: | NHERI TANCE): BOOLEAN do
- return true iff il and i2 do not forma cycle
Result := not (il.source=i2.target and
i 1.target=i 2. source)
end) end) end

Figure 5. No cycles in the inheritance graph

Writing the Eiffel code for the metamodel consisted of
three tasks:

1. Adding infrastructure, i.e., data structures to imple-
ment the graph structure that underlies a set of BON
diagrams. This was carried out using a suite of set data
structures, many of which were private attributes of the
classes.

2. Adding routines to initialise and manage the data struc-
tures.

3. Adding agent-based implementations of the well-
formedness constraints.

Each task generates code that must be tested, via a unit test
that generally takes the form of a model. The first two tasks
are straightforward, but are influenced by the third. Direct
implementation of the well-formedness constraints as Eiffel

class invariants is the obvious approach, and it is how we
proceeded. The scheme for mapping well-formedness con-
straints to Eiffel agents is described in [8]. When we wrote
the agents, we found that we had to refactor the data struc-
tures and corresponding management routines from tasks 1
and 2. This was primarily because of reasons of simplicity
and understandability: with the infrastructure as originally
written, the agent specifications were very complex and dif-
ficult to understand. Additional infrastructure was added
and the agents refactored, e.g., by introducing intermediate
functions, thus achieving a simpler, more understandable
specification that in turn was easier to test.

Each metamodel constraint was implemented within the
typical SDD process: we implemented the constraint as an
agent, refactored the data structures and routines affected
by the constraint so as to simplify the agents, and then
added contracts to the routines that we had introduced dur-
ing implementation of the constraint. Implementing each
constraint was generally straightforward, because of the
declarative nature of agents, but often involved adding ad-
ditional routines to classes in order to simplify the code.
Adding such helper routines was really a part of the refac-
toring/simplification phase of TDD.

Occasionally, the gap between the unit test and the code
needed to implement it was substantial; a particular exam-
ple was in implementing the constraint to check that routine
calls were legal according to the information hiding prop-
erties of a class. For example, if, in a preconditions of a
routine bound to a message there is a call o.f(a), then the
class containing the routine must have access permission
to call the routine f of the class of object 0. It is easy to
write a unit test for this, but the code to implement the con-
straint in the metamodel is more complex. The complexity
arose because messages in BON can be sent to both ob-
jects and object clusters (i.e., messages can be sent to more
than one object simultaneously). Our original code for im-
plementing the unit test considered only the single-object
target case, which is straightforward to capture and test, but
as our unit test also contained an object cluster, the test-
ing process failed, and we had to add an additional case to
our implementation. This was a good example of where the
unit testing process provided feedback that led to an update
of the code (though it did not directly lead to a refactoring).

3.4. Infrastructure tests

It quickly became clear that additional unit tests would
be needed to verify the additional infrastructure that we
needed in Eiffel in order to implement the metamodel.
When specifying a metamodel in a language such as PVS or
even in BON, well-formedness constraints are expressed on
mathematical sets. However, in Eiffel, the constraints are
implemented on object sets. As with any object-oriented

program, objects must be created and memory allocated on
the heap; entities (variables) must be initialised to refer to
this memory. Acceptance tests would not directly check
such initialisation and memory allocation. This is clearly a
downside of implementing a metamodel directly in a pro-
gramming language. This should be contrasted with the
model-driven development of, e.g., the UML metamodel in
[1], for which no additional tests would be needed since
only mathematical types are used.

Our initial implementation of Model and Class in Eiffel
contained many functions with side-effects; Eiffel guide-
lines recommend that functions be side-effect free so that
they can be used in contracts and to improve overall sys-
tem reliability. When attempting to write contracts on our
infrastructure routines (i.e., accessors, mutators, and data
structure initialisation) we encountered these side-effects
and thereafter refactored each function with side-effects
into an attribute and procedure. The interfaces of Model
and Class were thereby made lengthier, but it then became
possible to write simple contracts on these routines, and
the routines themselves became simpler (and thus easier to
guarantee reliability). This is an example of where the de-
sign qualities of the Eiffel language lended themselves to
determining which practices to apply in SDD.

3.5. The remaining acceptance tests

With the infrastructure complete, it was possible to write
the additional acceptance tests that were impossible to com-
plete earlier. These included acceptance tests to verify that a
BON model made use of covariant redefinition of inherited
features, that the inheritance graph of a class diagram pos-
sessed no cycles, etc. The acceptance tests for these meta-
model constraints were generally more complex than those
written earlier. The reason for this was that the constraints
made use of the metamodel infrastructure, which consisted
of implementations of data structures, and this in turn made
the agent-based specifications lengthier.

The metamodel was then executed, fully automatically,
against the suite of acceptance and infrastructure tests that
had been generated. All tests passed, thus providing evi-
dence that the metamodel satisfied the key constraints of the
BON language. There is no guarantee that the metamodel is
free of bugs, but we have greater confidence in its correct-
ness and robustness because of this testing and because of
the inclusion of contracts in the implementation.

4. Observations, Conclusions, and Future

Work

SDD was a useful approach to take in building the meta-
model in Eiffel. We effectively oscillated between writing
unit tests and contracts during development. The decision

to switch from writing unit tests to contracts (or vice versa)
was made when the unit tests that we were writing became
too complex: our view was that it was necessary to keep the
unit tests and contracts as simple as possible in order to best
achieve high reliability. For example, our initial set of con-
tracts and agents for capturing covariant redefinition were
very complex (because we were directly translating the PVS
specification of covariance from [9]), so we instead wrote a
unit test that included a simple example of covariance. This
led us to refactor the contracts and agents for covariance
until we obtained a reasonably simple specification that ex-
ecuted correctly against the unit test, and which we thought
was more understandable than the PVS version. The im-
provement in simplicity and understandability in part came
because we were able to use sequential composition directly
in Eiffel; sequencing must be encoded in PVS. Our conclu-
sion from this refactoring is that, particularly for metamod-
elling, it is useful to be able to use sequential composition
in specifying the metamodel.

There were several key situations where contracts were
used to indicate correctness conditions on the meta-
model. Most of these contracts were used to capture
implementation-oriented correctness conditions, i.e., that
non-\oid references were passed as arguments.

We noted the following observations as we followed the
SDD process.

e Minimal refactoring at the class level was carried
out; in part, this was because the class model was
well-defined and understood before implementation
commenced. Refactoring did take place at the
method/routine level; this took the form of splitting
a single routine into two or three separate routines to
achieve a simpler design. The guidance in carrying out
this refactoring came from the design of Eiffel itself:
the language encourages separating functional meth-
ods from procedural methods. A refactoring during
the SDD process simplified the agent-based code sub-
stantially. Class-level refactoring would be carried out
if we were to add a new view (e.g., statecharts) to the
metamodel. This is discussed further below.

e The SDD process produced, as a deliverable, an auto-
mated test suite that could be used for validating the
metamodel, validating any future changes to the meta-
model, and as application evidence for arguing the cor-
rectness and robustness of the metamodel. Minimal
application evidence exists for other published meta-
models. Such evidence is essential for reliable critical
systems, even if their validity is to be checked via peer
review.

e Our use of contracts primarily focused on conditions
to check valid arguments to routines. Thus, the de-
sign process was more like pure TDD than SDD as

described earlier. We were not particularly surprised
by the minimal use of contracts as the metamodel was
primarily declarative, and most of the routines in the
classes were boolean-valued functions used in class in-
variants.

e Acceptance tests for the metamodel corresponded to
unit tests, since the metamodel was declarative and we
were primarily testing class invariants.

e The ability to test frequently led to bugs being caught
quickly - particularly in the infrastructure where we
initially ran in to problems with down-casts that arose
from the use of Eiffel’s generic/parameterised classes.

o A key difficulty with using Eiffel to write metamodels
is the need to deal with memory explicitly, e.g., Void
references, cloning of structures. This would be hidden
from the user in a true specification language.

In the end, we found that SDD was an ideal way to
build a metamodel quickly in Eiffel. The process was fast
and feedback was provided quickly and efficiently from the
compiler; the entire metamodel was implemented (in a dis-
tributed fashion) by two people within the span of two days,
and in the process a suite of unit tests for the metamodel was
constructed. This suite can be packaged with the metamodel
so that other developers can build atop it in extending it to
include additional views.

We mentioned earlier that the tests that were developed
during the SDD process were encodings of BON models,
and that running the tests had the side-effect of checking
that the models conformed to the BON metamodel. In
principle, this provides a fully automatic way of carrying
out metamodel conformance checking including contracts,
something that, to our knowledge, no CASE tool currently
supports. This can be accomplished in practice by (a) im-
plementing a code generator that transforms BON mod-
els into unit tests, and (b) providing a unit testing frame-
work for running the unit tests and documenting the results.
Tools, particularly ETester, support (b). Implementing the
code generator in (a) is not difficult and is underway.

Our current work on the metamodel itself is proceeding
along two lines. We have recently extended the metamodel
to include contracts on routines, so that we can fully check
the consistency of class and dynamic diagrams that include
preconditions and postconditions. It is essential to support
this level of consistency checking to make the metamodel
fully suitable for building reliable systems. However, the
extension is not easy to use from the perspective of the user.
We are thus exploring an alternative solution, via a mapping
to a theorem prover, and we expect to make use of .NET’s
reflection capabilities for this. A second line of work is
focusing on refactoring the metamodel at the class level

in order to introduce additional views, particularly state-
charts. The introduction of statecharts will require view
consistency constraints between objects (dynamic abstrac-
tions) and states, as well as constraints between states and
classes. Since such constraints will span two branches of
the class hierarchy in the metamodel, a refactoring will be
necessary. This refactoring will make use of Eiffel’s event-
handling libraries and mechanisms, in order to guarantee —
by construction — consistency between the statechart view
of a system, and the class view. Finally, we have recently
implemented parts of EMOF in Eiffel, and will continue
this work to further explore Eiffel’s suitability as a general
metamodelling language.

References

[1] 2UWorks-Consortium. Unambiguous UML revised
submission to UML 2 superstructure RFP, 2003.
www.2uworks.org.

[2] S. Ambler. Extreme testing. Software Development, 11(5),
June 2003.

[3] K.Beck. Test-Driven Development. Addison-Wesley, 2000.

[4] B. Meyer. Object Oriented Software Construction, Second
Edition. Prentice Hall, 1997.

[5] Object Modelling Group. UML Standard Guide 1.5, 2003.

[6] J. Ostroff, D. Makalsky, and R. Paige. Agile specification-
driven design. In Proc. Extreme Programming 2004. LNCS,
Springer-Verlag, June 2004.

[7] J. Ostroff, R. Paige, and D. Makalsky. ETester: a contract-
aware and agent-based testing framework for Eiffel, submit-
ted. June 2004.

[8] R. Paige, P. Brooke, and J. Ostroff. Executable metamod-
elling and consistency checking with Eiffel. July 2004. Sub-
mitted.

[9] R. Paige and J. Ostroff. Metamodelling and conformance
checking with PVS. In Proc. Fundamental Aspects of Soft-
ware Engineering 2001. LNCS, Springer-Verlag, 2001.

[10] R.Paige, J. Ostroff, and P. Brooke. Theorem proving support
for view consistency checking. L’ Objet, 9(4), 2003.

[11] J. Sourrouille and G. Caplat. A pragmatic view about con-
sistency checking of UML models. In Workshop on Con-
sistency Problems in UML-Based Software Development,
2002.

[12] K. Walden and J.-M. Nerson. Seamless Object Oriented
Software Architecture. Prentice Hall, 1995.

[13] Xactium. XMF user guide prerelease version 0.1, 2004.
www.xactium.com.

