
Vol. 4, No. 7, September–October 2005

E-Tester: a Contract-Aware and Agent-Based
Unit Testing Framework for Eiffel

Jonathan S. Ostroff, Department of Computer Science, York University,
Canada.
Richard F. Paige, Department of Computer Science, University of York, U.K.
David Makalsky, Department of Computer Science, York University, Canada.
Phillip J. Brooke, School of Computing, Communications, and Electronics,
University of Plymouth, U.K.

We describe a contract-aware unit testing framework, E-Tester, for the Eiffel pro-
gramming language. The framework differs from JUnit in its first-class support for
lightweight formal methods, through test support for contracts and assertions. As
well, it supports a form of negative test, called violation cases, which aim at vali-
dating contracts. It also differs based on its use of agents for expressing tests and
test cases. We compare E-Tester with JUnit and suggest several advantages it offers,
with the additional aim of making recommendations for improving JUnit’s support
for testing software with contracts. We also explain how it can be applied within a
test-driven process for building reliable systems.

1 INTRODUCTION AND MOTIVATION

Test-driven Development (TDD) [3] is one of the popular evolving agile methods
[9]. Like all agile methods, TDD stresses the development of working code over
documentation, models and plans. The suggestion of TDD is (paradoxically) that
developers test the program before it is fully written. A striking aspect of this
approach is the idea that the code that is implemented may not be behaviourally
correct: it just has to pass the test. The test is therefore the specification against
which the code is checked. Automated tools, which will make writing tests easy and
running them against the code automatic, are essential for supporting TDD. Such
tools now exist (e.g., JUnit for Java [7]), and have seen widespread adoption and
use.

The Eiffel language [12] differs substantially from Java. One key difference is
that Eiffel provides built-in support for lightweight formal methods for expressing
and checking contracts ; non-standard extensions and new languages have been pro-
posed to add these features to Java [8, 10]. Contracts – expressed as preconditions
and postconditions on methods, and invariants on classes – are used to document
functionality, for debugging, and to constrain maintenance and extensions that may
take place in the future. In practice, the use of contracts during development can

Cite this article as follows: Jonathan S. Ostroff, Richard F. Paige, David Makalsky, Phillip J.
Brooke: ”E-Tester: a Contract-Aware and Agent-Based Unit Testing Framework for Eiffel”,
in Journal of Object Technology, vol. 4, no. 7, September–October 2005, pp. 97–114,
http://www.jot.fm/issues/issues 2005 09/article4

http://www.jot.fm/issues/issue_2005_09/article4


E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

help improve the reliability and robustness of software, provided that suitable tool
support for monitoring, debugging, activating, and testing contracts is provided. It
is this last point that we focus on in this paper. JUnit, as we shall see, is limited
in its support for testing contracts, but by examining a unit testing framework for
Eiffel, we can obtain guidance on how to improve JUnit’s contract support.

We describe a unit testing framework for Eiffel, called E-Tester. E-Tester has a
number of similarities to JUnit but differs in its approach because of its treatment
of contracts as first-class citizens. As such, it offers a different design, and provides
somewhat different functionality, to JUnit. A key element in the design of E-Tester
is its distinction between boolean tests (which are used to check properties against
the system, as well as for checking correctness) and violation tests (which are used
to validate contracts, i.e., to ensure that contracts express the properties that are
desired of objects and methods). The latter in particular are used to exercise con-
tracts, in order to ensure that the contracts capture the right properties. E-Tester
is also distinguished by its use of Eiffel’s agent technology for expressing tests.

We emphasise that E-Tester is not a test generation framework; there is parallel
work at ETH Zurich on a test wizard for just this purpose [2]. E-Tester should thus
be viewed as complementary to this work.

We commence with a very brief overview of Design-by-Contract, the lightweight
formal method that E-Tester aims to support. We then give a short overview of
agents in Eiffel, which are used within E-Tester for managing and encoding unit
tests, and also for encoding quantifiers in formal specifications in Eiffel code. We
next discuss JUnit and its design goals, before considering E-Tester’s design goals
and its overall design, followed by a comparison with JUnit – this in turn leads to
suggestions on how to improve JUnit’s support for testing contracts. We sketch a
brief example, and then explain ongoing work on integrating E-Tester with an Eiffel
plug-in for Eclipse.

2 EIFFEL AND DESIGN-BY-CONTRACT

Eiffel is an object-oriented programming language and method [12]; it provides
constructs typical of the object-oriented paradigm, including classes, objects, inher-
itance, associations, composite (“expanded”) types, generic types, polymorphism
and dynamic binding, and automatic memory management.

The BON modelling language [18] is a language designed to work seamlessly and
reversibly with Eiffel. We use BON in a number of examples in later sections; it offers
features similar to UML’s class and collaboration diagrams, though its integrated
support for design-by-contract is superior to that of UML and OCL [15].

98 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



2 EIFFEL AND DESIGN-BY-CONTRACT

2.1 Design-by-Contract

Design-by-Contract (DbC) is a lightweight formal technique for engineering software
systems with significant requirements for reliability and robustness. It integrates
mathematical descriptions with code, ensuring consistency, and it is designed to be
supported by tools that are comfortable and familiar to developers, e.g., compilers,
debuggers, static checkers, and testing frameworks.

DbC suggests annotating classes with preconditions, postconditions, and class
invariants. These assertions infer contracts that bind callers of class services with
implementers of said services: callers guarantee to satisfy preconditions, while im-
plementers guarantee to satisfy postconditions. This convention guarantees that
conditions which may affect the correct operation of a class are checked only once.
In Eiffel, these assertions are built in to the programming language, and the assorted
Eiffel compilers and integrated development environments (e.g., ISE Eiffel and GNU
SmartEiffel) provide tools for managing assertions.

In Eiffel, contracts are code: they are executable, are integrated with program
constructs, and are evaluated at run-time. Because they are code, they need to be
tested. Contracts may be incorrectly or incompletely specified: an Eiffel program
with contracts can result in errors due to incorrectly implemented functionality, or
due to improperly stated contracts. Some omissions or errors will be caught simply
by executing the code and observing that there is an inconsistency between the code
and the contracts. But contracts that are too weak (i.e., do not completely capture
all constraints that are relevant to a method or class), or too strong (e.g., that
capture properties outside of the requirements for a method or class) need not be
caught simply by executing the code. As well, some conditions are difficult to express
using executable contracts – the paper [14] considers examples – and it may be more
convenient to use a variety of test case called a collaborative test (discussed in the
sequel). Thus, contracts must be tested: test cases must be written that invoke
methods with invalid preconditions, or generate objects such that class invariants
are not satisfied. These test cases can help programmers determine whether or not
their contracts are valid, i.e., whether they capture the properties that are required.

2.2 Agents

A key Eiffel technology used in E-Tester is that of agents. Agents are objects that
represent operations; they are effectively closures from functional programming.
Agents can be passed to different software elements, which can use the object to
execute the operation whenever they want. Agents thus provide a way of separating
the definition of a routine from its execution. Agents are also a way of combining
high-level functions (operations acting on other operations) with static typing in
Eiffel.

Here is a simple example of an agent, using Eiffel’s GUI library EiffelVision.
Suppose you want to add the routine eval state to the list of event handlers that

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 99



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

will be executed when a mouse click occurs on the widget my button. To carry this
out, the following Eiffel statement would be executed.

my button.click actions .extend(agent eval state)

The operation being added to the button is indicated by the agent keyword. The
keyword distinguishes an operation call to eval state from a binding of the operation
to the button. In general, the argument to extend can be any agent expression. An
agent expression will include an operation plus any context that the operation may
need (e.g., arguments).

Predicate agents are of significant use. These agents apply boolean-valued oper-
ations to collections. For example:

intlist .for all(agent is positive(?)) (1)

intlist .there exists(agent perfect cube(?)) (2)

The first example applies the boolean-valued function is positive to elements of the
integer list intlist , and conjoins together the result. The question mark ? indicates an
open argument that is provided by iterating through the range arguments provided,
i.e., it indicates an arbitrary element of intlist . Equation (2) applies the boolean-
valued function perfect cube to elements of the integer list intlist and disjoins the
result. The question mark indicates an open argument that is provided by the list
interator, i.e., it indicates some element of the integer list. Suppose, for example, we
have a class CITIZEN which has attributes representing the citizen’s set of parents
and the citizen’s set of children. To specify, using agents, that children and parents
are linked via references, we would use an invariant clause as shown in Fig. 1.

children.for_all((c:CITIZEN):BOOLEAN do Result := c.parents.has(Current) end)

Fig. 1: BON invariant clause expressed using Eiffel agents

The example in Fig. 1 illustrates anonymous agents, which are akin to inline
functions in other languages; the body of the iterator for_all is an anonymous
agent. c, the bound variable for the for_all agent, is an element taken from the
collection children, to which the body of the anonymous operation (contained within
the inner do..end block) is applied.

3 JUNIT

JUnit is an open source Java testing framework used to write and run repeatable
tests [7]. JUnit supports assertions for testing expected results, test fixtures for
sharing common test data, test suites for easily organizing and running tests, and
graphical and textual test execution engines. Goals of JUnit are:

100 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



3 JUNIT

1. To require minimal work to write new tests, using familiar tools, so as to
encourage developers to actually write tests.

2. To create tests that retain their value over time, by making tests usable by
developers other than their author.

3. To make it possible to build new tests by leveraging existing tests, i.e., to
enable reuse of fixtures.

The architecture of JUnit is shown in Fig. 2. The heart of JUnit is the class
TestCase. A concrete test case (i.e., a class in which a developer writes tests and
that extends TestCase) has methods that implement individual tests as well as
optional setUp and tearDown methods for fixtures.

Fig. 2: JUnit Architecture

JUnit distinguishes between failures and errors. The possibility of a failure is
anticipated and checked for with assertions, and is signalled with an assertion fail
message. Errors, on the other hand, are unanticipated problems such as array index
out of bound. Different catch clauses in the run method (see Fig. 3) distinguish
between failures and errors, and ensure that all tests run to completion. A variety
of assert methods are provided for failure cases, e.g., AssertTrue, AssertFalse.

Method runTest uses Java reflection to retrieve all methods in the subclass of
TestCase that start with test, and invokes each test method.

Java does not support contracts, although from Version 1.4 and onwards the
primitive assert mechanism has been used for basic contracting. This mechanism
is nowhere near as powerful as contracting techniques offered by Eiffel, iContract [8],
or JML [10], and it is not generally well integrated with debuggers and IDEs. There
are several strategies that can be used to test Java code that includes primitive
contracts with JUnit. One is as follows. Suppose we have

public class Account {

double balance;

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 101



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

public void run() {

setUp();

try {

runTest();

}

catch ... //assertion failures

catch ... //all other unanticipated exceptions

finally {

tearDown();

}

}

Fig. 3: The run method that implements the JUnit testing process

public void withdraw(double amount) {

assert (amount > 0);

balance = balance - amount

}

}

To test the precondition assert (amount > 0) we could use fail wrapped in
a try block, as follows.

public void testAccountWithdraw() {

Account a = new Account();

a.balance = 20;

try {

a.withdraw(-30);

fail("Should not get here");

}

catch(AssertException ex) {}

}

The call to withdraw will generate an assertion failure which will be caught
by the exception handler. This is not a convenient structure to use for testing
preconditions (and postconditions). In general, we claim that JUnit is awkward
for testing expected and legitimate contract failures; thus, a different design will
be required for testing a contract-aware language like Eiffel, or for a unit testing
framework that integrates with a Java contract package like iContract [8] (we point
out that JUnit as currently defined provides no special support for testing contracts).

A more detailed comparison of JUnit with E-Tester appears in Section 4.4.

102 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



4 E-TESTER

4 E-TESTER

E-Tester is a unit testing framework for Eiffel. It consists of three clusters (packages)
which, when added to an Eiffel system, will allow for straightforward development
of test suites. It has the same general design goals as JUnit (see Section 3) but is
tailored for Eiffel, thus providing better support for testing of systems that include
lightweight formal methods represented using contracts.

E-Tester has been designed to work with ISE EiffelStudio, and makes use of the
meta-referential facilities provided with this IDE. E-Tester provides its own GUI
front-end, but this is not required in order to use the testing framework. It has
many similarities to JUnit, and differs substantially from other existing unit testing
packages for Eiffel, such as getest [4] and EiffelUnit (see Section 5).

4.1 Design goals for E-Tester

As stated, the general design goals for E-Tester are identical to JUnit: to allow
developers to write tests using convenient and familiar tools (in this case, Eiffel
code); to encourage reuse of tests; and to make tests of lasting value. However, there
are additional goals for E-Tester because of its need to support testing of systems
that include contracts. Particularly, E-Tester supports two different general types of
test cases, which will appear when using any programming language that supports
design-by-contract; we give concrete examples in the next subsection.

1. In a boolean test case we check for the existence of some functionality by
invoking program features, and then check that the state of the computation
satisfies some conditions. The test passes iff the conditions are true and all
the contracts are satisfied (i.e., there are no unhandled assertion exceptions).
This last point is critical: if a boolean test case succeeds (terminates without
exceptions) then all contracts invoked during the test have also succeeded and
we have also partially checked the correctness of the system.

In TDD, it is anticipated that the test will initially fail, as the code for the
functionality does not exist or is incomplete. In addition, even if the code is
completed, it may not satisfy all the contracts, and there may be unanticipated
errors such as an array index out of bound.

Boolean test cases are partially supported by JUnit: unless Java and JUnit
are used in conjunction with a contract package like iContract, the benefits
and features offered by E-Tester surpass those of JUnit for running boolean
test cases, since partial correctness is not checked.

2. A violation test case is a test that is used to check the validity of contracts,
i.e., that the contract completely and correctly captures its requirements. For
example, consider a method that reads a field from a database; its precondition
is that the database is open for read access. A violation test case will invoke

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 103



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

this method with the database closed, thus checking that the precondition
is correctly and completely expressed. A violation test case is similar to a
negative test: in such a test, it is anticipated that the contract will fail (on
either the part of the caller or the supplier of the service) and will raise an
unhandled exception; thus, violation test cases typically call a routine in a
state where the routine’s precondition is false, or construct an object so that
a routine terminates with the class invariant false. This provides a means for
determining that the routine’s precondition is indeed necessary and adequate.

The reason for carrying out such a test is to validate that the contracts com-
pletely and correctly capture their requirements. Such a test passes iff there is
at least one contract violation which results in an unhandled exception. This
type of test is not easily supported by JUnit. The design of E-Tester, however,
supports it.

4.2 Design of E-Tester

The design of E-Tester is shown in Fig. 4 using a BON class diagram; classes are
represented as rounded rectangles, inheritance using single directed arrows, and
associations (reference relations) using thick arrows.

Fig. 4: Static structure of E-Tester

The design of E-Tester is somewhat different than that of JUnit, mainly be-
cause of the need to test expected contract violations, i.e., violation test cases. We
illustrate this with some examples, based on Fig. 5, below.

We want to distinguish between at least the two kinds of tests discussed earlier.

Fig. 5 demonstrates the two kinds of tests discussed in Section 4.1.

104 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



4 E-TESTER

class ACCOUNT_TEST inherit
UNIT_TEST

create
make -- name of constructor

feature{NONE}
make is -- constructor

do
make_test;
add_boolean_case (agent test_withdraw);
add_violation_case (agent test_negative_amount);
to_html("tests.htm")

end

feature -- cases
test_withdraw:BOOLEAN is -- function

local a: ACCOUNT
do

comment("test_withdraw");
create a.make(100);
a.withdrawal_payout(80);
Result := a.balance = 20 J

end

test_negative_amount is -- procedure
local a: ACCOUNT
do

comment("test_negative_amount");
create a.make(100);
a.withdrawal_payout(-10) J

end
end

Fig. 5: Boolean and Violation Test Cases

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 105



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

1. The boolean valued routine test withdraw in Fig. 5 is a boolean test case.
The condition to be checked (a.balance = 20) is on the right side of an
assignment to the Result entity (Eiffel’s predefined return variable).

2. The routine test negative amount – a violation test case – has an expected
contract violation when a negative amount is withdrawn from the account –
this is an expected violation of the precondition. If there was a typo in the
precondition (e.g. amount ≥ 0 ∨ amount ≤ balance) then the test would fail,
and we would be motivated to either change the test or the contracts (one of
them must be wrong).

The relationship between the tests in Fig. 5 and the E-Tester framework is illus-
trated in Fig. 6.

Fig. 6: Unit tests in ACCOUNT TEST in context with E-Tester

Running the tests of Fig. 5 can be done using either E-Tester’s command-line
interface, or through the E-Tester GUI. The test results are reported to a file declared
in the make creation feature (tests.htm) and a GUI interface runs the tests and
displays the results (see bottom of Fig. 5). If all tests pass, a green bar is shown with
test statistics. Boolean test successes and violation succeses are reported separately.
As well, each test passed is listed. If even one test fails, a red bar is displayed and
the failing tests are indicated. Any contract violations can be traced directly by
running the debugger.

This scheme has the benefit of making expected contract violations simple to test.
As well, there is no need for the multiplicity of assert statements (e.g., assertTrue)
used in JUnit. The condition to be tested for is written directly as a predicate (on
the right hand side of an assignment to Result) in the same way that one writes
regular contracts.

A concrete set of test cases are gathered together in an effective class that inherits
from deferred class UNIT TEST (e.g., see class ACCOUNT TEST in Fig. 5). As in JUnit,

106 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



4 E-TESTER

each test case (e.g. test withdraw) must be converted into an object to be stored
in a list of test cases, i.e.,

cases:LIST[TEST CASE]

as shown in Fig. 4. In contrast to JUnit, we cannot directly use the Command
pattern because each test case has a different name, and we want the concrete class
to contain all the cases. In E-Tester, we use Eiffel’s agent mechanism instead.

The agent mechanism allows us to create an object that represents a routine
such as the boolean case test withdraw. This object is stored in the list cases,
and the stored routine can executed at a later date when we are ready to execute
all the tests. Each concrete test in ACCOUNT TEST is added either as boolean case or
as a violation case in the make routine (Fig. 5). Boolean cases are function routines
(returning either true or false depending on the evaluation of Result). Violation
cases are procedural routines such as test negative amount in Fig. 5.

To distinguish between boolean and violation tests, the BON class diagrams in
Figs. 4 indicate two corresponding classes BOOLEAN CASE and VIOLATION CASE that
are both descendants of TEST CASE*. Class TEST CASE* has a deferred routine run

which may be used to run the actual test stored. The implementation for a violation
case is

run is
local error: BOOLEAN
do

if not error then
case.apply
passed := false

end
rescue

passed := true
error := true
retry

end

The deferred class UNIT TEST has an attribute cases which is a LIST of either
boolean or violation tests. A group of concrete test cases are written in a descendant
of UNIT TEST, in our case ACCOUNT TEST (Fig. 5).

A test method such as the violation test case test negative amount is made
into an object using the Eiffel’s agent mechanism (to achieve something similar to the
Command pattern in similar circumstances in JUnit). The routine add violation case

is used to add a boolean test, and the routine add boolean case is used for boolean
test cases (Fig. 4).

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 107



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

4.3 Using E-Tester in Test-Driven Development

E-Tester supports class-level testing and the expression of test suites. The framework
provides classes that must be inherited by tests. The class UNIT TEST represents
unit tests, along with services for running all tests, outputting results to HTML, and
adding and removing both boolean and violation tests. A TEST SUITE class is
also provided for representing sets of unit tests. The tests can either be run from the
command line, or from the GUI provided with E-Tester; this GUI is being integrated
with the Eiffel plug-in for Eclipse (see sequel).

When using E-Tester in a test-driven development process, there are three ap-
proaches that are usually taken.

1. Typical test-driven. The standard test-driven approach is followed, where unit
tests are written, functionality is implemented to satisfy these tests, and pe-
riodically refactoring is carried out to simplify the code and improve under-
standability and extensibility. In this approach, the use of E-Tester is identical
to test-driven approaches to using JUnit.

2. Synergistic use of contracts and unit tests. As discussed in [14], both contracts
and unit tests are specifications of properties that need to be checked against
working code. Sometimes it is preferable to write these specifications using
contracts, and other times using tests, because of ease of expressiveness, criti-
cality of the property being captured, and the availability of supporting tools
to check the specifications. Clearly, tests provide a weaker form of specifica-
tion (since a test will only capture a single scenario of use, whereas a contract
will capture all scenarios). In this style of use of E-Tester, contracts and tests
are both written to synergistically provide mutual feedback and relative con-
sistency; that is, tests are written to check contracts (e.g., calling a routine
with a false precondition), and contracts are written to improve confidence in
tests. This approach hinges significantly on the use of violation test cases, and
is a key difference between how we use E-Tester and we use JUnit.

3. Collaborative tests. Unit tests are normally used to validate and verify small
parts of a design; JUnit and E-Tester excel at supporting this. Both these tools
can also be used to write and execute tests that verify abstract behaviour, such
as system-level tests. In particular, such tests could verify parts of the collab-
orative behaviour of objects in a system. These tests are critically important
early in typical agile development processes, where units of functionality are
determined in collaboration with a customer. Each unit is then implemented
in a development increment. These units are typically described in terms of
real-world entities and phenomena; in order to refine units, we typically use
collaborations between objects1. Collaborative tests can be used to verify such
abstract behaviour.

1This approach is also used in plan-driven processes, such as the Rational Unified Process,
where use cases are refined by communication diagrams.

108 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



4 E-TESTER

Fig. 7 contains an example of a collaborative test for a teller withdrawal re-
quest in a banking system. This test involves verifying the behaviour in a
collaboration between an account and a teller transaction. If the code that
is being tested implements pre- and postconditions (e.g., checking that a re-
quest for a withdrawal provides an acceptable amount that does not exceed
the account balance), then the collaborative test can be used to exercise the
contracts in the code. In this sense, the test and contract work synergisti-
cally, and running the test demonstrates that the code, contracts, and test are
relatively consistent.

test_teller_withdrawal_request: BOOLEAN is
local

a: ACCOUNT; t: TELLER_TRANSACTION
do

-- setup, with initial balance 900
create a.make("John Doe", 900);
check a.balance = 900 end
create t;

-- test scenario
t.request(a,500);
t.withdrawal_request
Result := a.balance = 400 and t.succeeded

end

Fig. 7: Collaborative test

4.4 Comparison of E-Tester and JUnit

As demonstrated, the design of E-Tester differs from that of JUnit. Most of the
design modifications are due to handling of contracts, but also because Eiffel sup-
ports limited forms of meta-referencing and reflection, unlike Java. Some of the key
differences between E-Tester and JUnit are as follows. These differences suggest
extensions that might be made to JUnit to better support unit testing involving
contracts, e.g., as provided with iContract.

• When testing pre- and postconditions using JUnit, sequences of assert state-
ments are typically used. In E-Tester, we use Result := condition to express
tests2, because it is simpler and more flexible – operations can thereafter be
applied to the variable Result to express complex constraints on test results.

• Multiple tests can be supported in one test case in E-Tester. E-Tester’s feed-
back will take developers directly to the line in the source code where the

2Recall that Result is an automatically declared variable in any function.

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 109



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

contract fails, because the Eiffel infrastructure supports such smart debugging
of contracts. This would not be the case with JUnit unless substantial ef-
fort had been put into annotating code with assertions and documenting each
assertion with informative messages.

• E-Tester makes use of violation cases because this eliminates the need to have
catch clauses to deal with contract failures. This in turn simplifies the task of
debugging and allows developers to more quickly highlight the contract that
has failed. It also makes test cases generally simpler.

• JUnit uses reflection to extract test cases and add them to the test harness.
Test cases are added manually with E-Tester since Eiffel does not support the
flexible reflection mechanism of Java.

• E-Tester provides substantive support for adding comments to test cases; these
comments are displayed when tests are run. With JUnit the only comment
presented is the name of the test.

• JUnit is well integrated with Java IDEs, including Eclipse. Ongoing work is
integrating E-Tester with Eiffel IDEs (see Section 6).

In terms of improving JUnit’s support for contract testing, explicit support for
violation test cases in the framework would be useful, as would reflective support
for extracting contract labels from Java code in order to document which contracts
have failed (and where they can be found).

5 COMPARISON WITH OTHER EIFFEL TESTING FRAMEWORKS

The main testing framework for Eiffel other than E-Tester is getest , due to Bezault
[4]. getest is a command-line testing framework, and is compatible with a number of
Eiffel compilers. Using getest requires developers to write individual test case classes
that inherit from TS TEST CASE . This class will have argumentless procedures
that exercise test scenarios, typically by making calls to a variety of inherited assert
routines, e.g., assert equal . For example, suppose that a developer wanted to test
a class that provides a string concat function. A test case would look like the
following.

deferred class TEST_CONCAT1
inherit TS_TEST_CASE
feature

test_concat is
local c:CONCAT1
do

create c.make

110 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



6 EDT: THE EIFFEL DESIGN TOOL FOR ECLIPSE

assert_equal("a+a", "aa", c.string_concat("a","a"))
assert_equal("foo+bar", "foobar", c.concat("foo","bar"))

end
end

The first argument to assert equal documents the test case, while the second
provides expected output from a call. getest would be applied to the test case, and
a table of results (tests passed, failed, aborted) would be presented in text format.

Key differences between getest and E-Tester are as follows.

• getest does not distinguish explicitly between violation and boolean test cases;
developers may distinguish between the two via comments provided with the
test case. The distinction between the two types of tests seems suitably com-
plex that it is worthwhile to distinguish the two cases in the testing framework
directly.

• Assertion failures in the program (i.e., pre- or postcondition failures) will result
in test aborts unless explicit exception handlers are written.

• A configuration file must be written in order to run the test. This in effect
allows simulation of test suites, but it is not as convenient as the wrapper pro-
vided with E-Tester since getest requires an external document to be written
and managed.

• Results of testing are provided in text format rather than HTML or XML.
This is a key point in terms of integration with additional tools.

There are other testing frameworks in Eiffel, e.g., EiffelUnit, which emphasises
regression testing. EiffelUnit has been deprecated with the introduction of getest .
Work at ETH Zurich is focusing on a Test Wizard [2] which will automatically
generate test data from contracts. This should be seen as complementary to E-
Tester and getest which serve to automate the testing process.

A related piece of work in the Java community is JMLAutoTest [20], which auto-
matically generates tests from JML specifications. The results of applying JMLAu-
toTest can be used by JUnit to automate the testing process. JML’s specification
language is richer than that of Eiffel, and it is likely that the techniques used in JM-
LAutoTest can be applied to Eiffel; this will be directly relevant to the Test Wizard
work mentioned above.

6 EDT: THE EIFFEL DESIGN TOOL FOR ECLIPSE

EDT is an under-development Eiffel plug-in for Eclipse; its development is being
sponsored by IBM. The original design goals for EDT were to provide a full inte-
grated development environment (with compilation, execution, and debugging facil-
ities), as well as an Eiffel editor. This has recently changed based on discussions and

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 111



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

ongoing work on Test-Driven Development. In particular, the emphasis has changed
to providing a lightweight IDE (still providing the requisite compile/run/edit facil-
ities) that offers integrated testing support via E-Tester.

The current features of EDT include an Eiffel-aware editor, a content outliner,
command completion, wizards for project construction, and partial integration with
E-Tester. EDT currently supports an E-Tester view (which effectively presents the
testing view of a project) with E-Tester producing its output in XML. Work remains
on formatting the results of E-Tester so as to acquire the red/green bar deliverable
discussed earlier.

Release information about EDT can be found at SourceForge [11].

7 CONCLUSIONS

We have presented the E-Tester unit testing framework for Eiffel, which supports
testing of programs that make use of lightweight formal methods, i.e., contracts.
The key observation that we made is that it is useful to distinguish violation from
boolean test cases in such frameworks. This distinction may be useful in providing
better unit testing support for other languages, e.g., JML, Java, etc. We have used
E-Tester in numerous projects, e.g., implementing a metamodel directly in Eiffel
[17].

We have mentioned ongoing work on integrating E-Tester with EDT, the Eclipse
plug-in for Eiffel. Additional work is looking at test case derivation directly from
Eiffel contracts, via the Test Wizard mentioned earlier, and using these test cases
to improve the unit tests written by hand.

REFERENCES

[1] Ambler, S. Test-driven Development. www.agiledata.org/essays/tdd.html,
accessed August 28, 2003.

[2] Arnout, K., X. Rousselot, and B. Meyer. Test Wizard: Automatic test case
generation based on Design by Contract. se.inf.ethz.ch/people/arnout-

/arnout, accessed May 2004.

[3] Beck, K. Test-driven Development : by example. Addison-Wesley, Boston, 2003.

[4] Bezault, E. getest: Gobo Eiffel Test. www.gobosoft.com/eiffel/gobo/getest/,
accessed May 2004.

[5] Cohen, D., M. Lindvall, and P. Costa. Agile Software Development. Fraunhofer
Center for Experimental Software Engineering, University of Maryland. 2003.
http://citeseer.nj.nec.com/lindvall02empirical.html

112 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7



7 CONCLUSIONS

[6] Fowler, M. and K. Beck. Refactoring : improving the design of existing code,
Addison-Wesley, 1999.

[7] Gamma, E. and K. Beck. JUnit: A cook’s tour. Java Report, p27-38, 1999.

[8] Kramer, R. iContract - the Java Design by Contract Tool. In Proc. TOOLS
1998 , IEEE Press, 1998.

[9] Larman, C. and V. Basili. Iterative and Incremental Development: A Brief
History. Computer , 36(6): p47-56, 2003.

[10] Leavens, G.T., K.R.M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations
and tools supporting detailed design in Java. In OOPSLA 2000 Companion,
ACM, 2000. ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/.

[11] Makalsky, D. Eiffel Development Tool Plugin for Eclipse.
http://sourceforge.net/projects/edt, accessed May 2004.

[12] Meyer, B. Eiffel: the Language (Second Edition), Prentice Hall, 1992.

[13] Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1997.

[14] Ostroff, J.S., D. Makalsky, and R.F. Paige. Agile Specification-Driven Design.
In Proc. Extreme Programming 2004, LNCS, Springer-Verlag, 2004.

[15] Paige, R.F. and J.S. Ostroff. A Comparison of BON and UML. In Proc.
UML’99, LNCS, Springer-Verlag, 1999.

[16] Paige, R.F and J.S. Ostroff. The Single Model Principle. Journal of Object
Oriented Technology , 1(5): 2002.

[17] Paige, R.F, P.J. Brooke, and J.S. Ostroff. Test-Driven Development of a Reli-
able Executable Metamodel, submitted July 2004.

[18] Walden, K. and Nerson, J.-M. Seamless Object-Oriented Software Architecture,
Prentice-Hall, 1995.

[19] Wayne, R. Don’t let the Bugs Bite: Parasoft’s Jtest and Jcontract. Software
Development, p24-27, July 2003.

[20] Xu, G. and Z. Yang. JMLAutoTest: a Novel Automated Testing Framework
based on JML and JUnit. In Proc. FATES 2003, LNCS 2931, 2004.

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 113



E-TESTER: A CONTRACT-AWARE AND AGENT-BASED UNIT TESTING FRAMEWORK FOR EIFFEL

ABOUT THE AUTHORS

Jonathan S. Ostroff is an associate professor at York University,
Toronto, Canada, where he leads research on object-oriented de-
sign, formal methods, and real-time software development. Email:
jonathan@cs.yorku.ca

Richard F. Paige is a lecturer at the University of York, United
Kingdom, where he works with the High-Integrity Systems Group
and is a co-leader of the Software and Systems Modelling Team.
He completed his PhD in Computer Science at the University of
Toronto in 1997. paige@cs.york.ac.uk

David Makalsky is an M.Sc student at York University, Toronto, Canada, working
on the Eiffel Design Tool (EDT), a plug-in for Eclipse. dm@cs.yorku.ca

Phillip Brooke is a senior lecturer at the University of Plymouth,
United Kingdom, where he works with the Network Research Group.
He completed his DPhil in Computer Science at the University of
York in 1999. Email: philb@soc.plym.ac.uk

114 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

file:jonathan@cs.yorku.ca
file:paige@cs.york.ac.uk
file:dm@cs.yorku.ca
file:philb@soc.plym.ac.uk

