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Abstract 

Multi-View Consistency is an important aspect of current Model Driven Develop-

ment (MDD) methods for software construction. A model may consist of many views. 

We need some assurance that these views are consistent. Yet, none of the current MDD 

tools provide any justification that the generated code is consistent. The current genera-

tion of MDD tools also do not support code generation based on dynamic diagrams and 

contracts, so that consistency of static and dynamic diagrams is an unexplored territory. 

In this thesis we describe a first (to our knowledge) prototype multi-view consistency 

checking tool. We first formalize the notion consistency(v1,v2) of two views v1 (a static 

view with contracts) and v2 (a dynamic view) of a model, based on prior work by Paige 

and Ostroff in [ 1; 14]. The definition of consistency (which is more comprehensive than 

the earlier work) is divided into syntactic and contractual consistency. We then develop 

algorithms to check syntactic consistency, and incorporate these algorithms in a new tool 

called the BON Consistency Checking Tool (BCCT).  

The tool can be used to construct graphical models, features, contracts and detailed 

body code and automatically run the syntactic consistency tests. The model can be auto-

matically translated to executable Eiffel code, and a testdriver is used to check 

contractual consistency. The tool can be used to interactively and repeatedly construct 

models, automatically test for consistency and refactor the models as required. This leads 

to a design method that we call Consistency Driven Development (CDD). 
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Chapter 1  Introduction 

Imagine that you are building your dream home. You hire an architect to draw up the 

blueprints (Figure  1-1). In the elevation view you specify a window facing west with 

a beautiful sea view. In the plan view the architect omits the window. These two 

views are now inconsistent with each other. If the builder uses the plan view to con-

struct the floors, walls, windows and doors, then the window may actually be omitted 

in the actual construction.  Fixing it at a later date may also prove much costlier than 

getting it right the first time. 

Office

13 sq. m.

                          Missing window

Plan View

Elevation View

 

Figure  1-1 Plan and Elevation views of a house 
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Modern software products involve some of the most complex artefacts in exis-

tence. Software engineers have suggested that constructing models of software 

artefacts is as necessary as constructing models of buildings before they are built and 

aeroplanes before they are constructed and flown. Models help us understand and 

analyze complex problems and potential solutions through abstraction. By removing 

or hiding detail that is irrelevant in a given viewpoint, we may understand the essence 

of the problem more easily.  

Models must also be understandable, accurate, predictive and inexpensive [ 37]. 

The last property (“inexpensive”) is obvious – the model must be significantly 

cheaper to construct and analyze than the modelled system itself. But here is the rub. 

The cost of building a bridge is immense (steel girders, concrete etc.). A paper blue-

print of the bridge is cheap. By contrast however, software is by definition “soft”. 

There is no real cost difference between code and models of code – they are both just 

bits in a file on the hard disk. This has suggested to some software professionals to 

stress code over models and documentation [ 48]. 

But, many software developers do not want to give up on the many benefits that 

come from models. This is especially the case given that only one third of commer-

cial software development products complete and are successful [ 49]. The remaining 

products either fail altogether, or are late and over budget. Modelling will clearly aid 

us in developing better quality code. But, if we must develop the artefact twice, once 
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as a model and again as code that implements the model, then the process is not inex-

pensive. 

A solution to this conundrum has been suggested – it is called Model Driven De-

velopment (MDD). MDD’s defining characteristic is that software development’s 

primary focus and products are models rather than code [ 37,  50]. A key idea is that 

executable code (the final software product) is automatically generated from their 

corresponding models. To obtain the full benefit of MDD we must have the following: 

• Complete code must be automatically generated from models, as opposed 

to just skeletons and fragments; 

• Changes are always made to the model, and not to the generated code, oth-

erwise the code and model may become inconsistent; 

• Models must at the very least be executable. David Harel compares mod-

els that cannot be executed to cars that do not have engines. There must be 

some way to test or check the behaviour of the model. 

Thus abstraction and automation are the two key elements of MDD. 

There are now emerging industrial standards to support MDD [ 37]. The Object 

Management Group is a consortium of software vendors, users, governments and 

academia that has recently announced its Model Driven Architecture (MDA) initia-

tive that will support MDD. A key part of the standard is an enhancement to the 

Unified Modelling Language (UML). The MDA/MDD approach works as follows: 
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• The designer develops a platform independent model (PIM) in UML to 

represent the desired business functionality; 

• An MDA-compliant tool applies standard mappings to generate a Platform 

Specific Model (PSM) e.g. based on J2EE, .NET or XML/SOAP; 

• The MDA tool generates all (or most of) the implementation code from 

the PSM for deployment. 

Not all MDD tools follow the strict MDA route. For example, the IBM Real-Time 

Rational Rose tool follows a two-stage process. In the first stage, a composite 

PIM/PSM model is constructed and tested, e.g. Java might be used to provide behav-

ioural detail in a UML statechart. In the second stage, the model is automatically 

translated to code. 

UML is a software description language that allows the designer to specify, visu-

alize, and document models of software systems. However, there are problems 

associated with the use of UML. 

The UML standard (v1.3) states: “Every complex system is best approached 

through a small set of nearly independent views of a model; no single view is suffi-

cient. These diagrams provide multiple perspectives of the system under analysis or 

development. The underlying model integrates these perspectives so that a self-

consistent system can be analyzed and built. These diagrams, along with supporting 

documentation, are the primary artefacts that a modeller sees, although UML and its 

support tools will provide for a number of derivative views.”  
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As explained in [11], the phrase “self-consistent” in the above quote is prob-

lematic. UML allows for multiple views of the system. This alone is not problematic; 

indeed, experienced practitioners know that no single view of the system will suffice. 

What is problematic is the claim that these views will be consistent with each other. 

No such guarantee exists, and very little guidance has been provided with UML for 

how one would achieve such consistency.  

Model inconsistency may arise for various reasons, e.g. due to misunderstandings 

of requirements, mistakes in constructing designs, and syntactical or semantic errors 

in writing the models themselves. It is desirable to be able to detect model inconsis-

tency at an early stage, so that the problems will not be propagated to code or 

customer deliverables such as documentation [ 14]. 

1.1 Model Consistency 

A UML model for a software artefact may involve many views, e.g. use case dia-

grams, class diagrams, statecharts, collaboration diagrams and deployment diagrams. 

The whole notion of view consistency does not have an accepted formal definition in 

the literature. Rather, different researchers have developed their own notions, and this 

makes the literature on the topic hard to summarize. 

We may categorize the subject matter of consistency into single-view consistency, 

and multi-view consistency. 
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1.1.1 Single-view consistency 

Single-view consistency describes the constraints that must exist in a single view 

to make that view legal. For example, not every UML class diagram is legal, e.g. 

• If class A inherits from class B, then class B cannot inherit from class A; 

• If class A has an attribute named d, then no other attribute may have the 

name d. 

A modelling language such as UML therefore consists of two parts: a notation which 

is used to describe models, and a metamodel which expresses the well-formedness 

constraints that all legitimate models written in the notation must obey. Without a 

precise metamodel it is difficult to explain the notation and build tools that support 

the notation. 

As an example, consider a brief overview of the UML metamodel as described in 

the UML 2.0 Infrastructure Specification [ 52]. The Specification states that a model 

typically contains model elements. These are created by instantiating model elements 

from a metamodel, i.e., metamodel elements. The typical role of a metamodel is to 

define the semantics for how model elements in a model get instantiated.  

The UML Specification illustrates the notion of a metamodel with Figure  1-2. The 

metaclasses Association and Class are both defined as part of the UML metamodel. 

These are instantiated in a user model in such a way that classes Person and Car are 

both instances of the metaclass Class, and the association Person.car between the 

classes is an instance of the metaclass Association.  



 

7 

 

Class

Person Car

Association
Metamodel

Model

<<instanceOf>> <<instanceOf>>

car

*

 

Figure  1-2 UML models and metamodels 

 

We have therefore used UML to provide a metamodel of itself. While this ap-

proach lacks some of the rigour of a formal specification method, it offers the 

advantage of being more intuitive and pragmatic for tool implementers and praction-

ers. Constraints can now be written on the metamodel to specify legitimate elements. 

Some researchers [ 18, 19, 20] have used the UML logic called OCL to write 

metamodel constraints. These constraints are applied to single-view consistency. 

Various calculi have also been developed for providing metamodels with an appro-

priate semantics [ 51]. 

1.1.2 Multi-view consistency 

Multi-view consistency for UML has been treated in [ 10, 17, 18, 21, 24, 25, 33]. In multi-

view consistency, we would like to know if two totally different views are “consis-

tent” with each other. For example, we would like to know if a UML class diagram is 

consistent with a collaboration diagram. 
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There is no standard definition of “consistency” and each research group adopts 

its own different approach, usually informal. To the best of our knowledge, even 

where more formal approaches are suggested, no tool has yet been developed that im-

plements the approach. 

As an example, consider the lightweight approach to multi-view consistency de-

veloped in [17] which presents an approach to determine the consistency between a 

class model and a scenario model. The work assumes semi-formal, loosely coupled 

models that are complementary. Scenarios model the external system behaviour and 

class models specify the internal state dependent functionality. Consistency is 

achieved by: 

• minimizing overlap between the two models; and 

• systematically cross-referencing corresponding information.  

An example of a “formally checkable” rule in [17] is the Conformance of References 

Rule: “every reference from a scenario to an item in the class model must have a cor-

responding reference in the class model”. While [17] calls this rule formally 

checkable, a lot of infrastructure, including the proper definition and elaboration of 

the underlying metamodel, would be needed. 

The work in [ 53] is interesting because it proposes a formal notion of consistency 

between a basic state-machine model and a message sequence chart by defining the 

notion of a system trace. Views can then be transformed to labeled transition systems, 
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and consistency checked by the intersection of the transition systems. It is not clear 

how this approach would scale up to complete and fully specified UML diagrams. 

As mentioned earlier, MDA/MDD are now making quite an impact in industry. 

There are currently over 40 MDA style tools listed at the OMG website1. Surprisingly, 

none of these tools really support multi-view consistency in the sense that we have 

been discussing it. 

In order to see this, we must understand how MDD is currently being pursued. As 

pointed out in [ 55], there are currently two approaches. Both approaches allow the 

full range of UML diagrams (or views) in their tools including structural class dia-

grams and behavioural collaboration diagrams. However, both approaches do not 

incorporate the collaboration diagram into model consistency (and hence model exe-

cution) and the final generated code. Thus neither approach truly address multi-view 

consistency. 

In the translationist approach [ 50] the PIM is automatically translated directly 

into the final code of the system using generation rules. The downstream artefacts 

(PSM and code) are not further elaborated or amended by hand. The PIM is the full 

source of the generated system. 

The generation rules are used to convert the class diagram into the final code. 

How is the complete behaviour of a class defined? In the translationist approach the 

                                                 

1 http://www.omg.org/mda/committed-products.htm 
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“behaviour of the system is driven by objects moving from one stage in their lifecycle 

to another in response to events” [ 50, page 6]. In this approach, UML statecharts and 

a device independent Action Language are used to elaborate the behaviour of a class 

in the PIM.  

In the elaborationist approach, the definition of the application is built up gradu-

ally as you progress from PIM, to PSM and finally to code. Thus, it is possible for the 

lower level models to get out of step with the higher ones. Thus, “round trip engineer-

ing” support is provided to help the designer get the code in synch with the model. 

Most of the current MDA tools appear to fall into this category. 

A recent text [ 54] on the elaborationist approach also uses class diagrams for 

structure. However, instead of using statecharts for behaviour, [ 54] recommends that 

the “dynamics of the system are represented by pre and post conditions on opera-

tions” [ 54, page 36]. OCL is the recommended language for expressing these 

contracts. A major advantage of this approach is that later code can be tested against 

the contracts, a feature missing from the translationist approach. To our knowledge, 

none of the current MDA tools support OCL in this way. So this approach is still at 

the conceptual stage.  

What do translationists say about elaborationist? Don’t’ use it “because elabora-

tion is stupid” [ 50, page 303] as the benefits of MDD automation are lost. 

Elaborationists write that “Executable UML [= translationists] is suitable within spe-

cialized domains [e.g. real-time systems], but even there the benefits are less than you 
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would expect” [ 54, Page 36]. In commercial applications statecharts are not the pre-

ferred modelling view; rather, collaboration diagrams are preferred [ 55]. 

In both approaches, basic system structure is defined in a class diagram. In order 

to define behaviour and details of the class methods, either statecharts [50], or 

pre/post conditions [54] are used. Roughly speaking, statecharts and contracts provide 

complementary elaborations of class behaviour. BON class diagrams (see sequel) 

contain the ability to display the classes and their contracts in a single-view. Thus 

both current translationist and elaborationist approaches are, in effect, dealing with 

what is a single view in BON. What is missing? – Collaboration diagrams for show-

ing the run-time interactions and scenarios between objects (called dynamic diagrams 

in BON). The challenge taken up in this thesis is to develop a tool for checking the 

consistency of structural class diagrams and behavioural dynamic diagrams. 

1.2 Other consistency approaches 

The work in [ 21] provides a framework for managing multi-view consistency 

called xlinkit that is a generic tool for managing the consistency of distributed docu-

ments. It consists of a language based on first order logic for expressing constraints 

between documents, a document management system and an engine that checks 

documents against constraints.  

In [42, 43, 38] a framework is developed in which software development knowl-

edge is portioned into multiple views called “ViewPoints”. Inconsistencies between 
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ViewPoints are managed by explicitly representing relationships between them, and 

recording both resolved and unresolved inconsistencies. In this approach inconsisten-

cies are not always considered “bad” as it might prove premature to remove them too 

early in the design. Inconsistency management can in fact be used as a tool for re-

quirements elicitation. 

1.3 The contribution of this thesis 

In this thesis, we develop the first tool, to our knowledge that does multi-view 

consistency checking between structural class diagrams and behavioural collaboration 

diagrams. For reasons explained in the next chapter, we use the description language 

BON rather than UML. 

We formalize the notion consistency(v1,v2) of two views v1 (a static view with 

contracts) and v2 (a dynamic view) of a model, based on prior work by Paige and Os-

troff  in [ 1; 14]. The definition of consistency (which is more comprehensive than the 

earlier work) is divided into syntactic and contractual (or behavioural) consistency. 

We develop algorithms to check syntactic consistency, and incorporate these algo-

rithms in a new tool called the BON Consistency Checking Tool (BCCT).  

The tool can be used to construct graphical models, features, contracts and de-

tailed body code and automatically run the syntactic consistency tests. The model can 

be automatically translated to executable Eiffel code, and a testdriver is used to check 

contractual consistency. The tool can be used to interactively and repeatedly construct 
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models, automatically test for consistency and refactor the models as required. This 

leads to a design method that we call Consistency Driven Development (CDD), by 

analogy with Test Driven Development (TDD). 

1.4 Thesis outline 

The rest of this thesis proceeds as follows: 

• In  Chapter 2, we describe BON and explain why we choose BON over UML. 

We describe BON static and dynamic diagrams. 

• In Chapter 3 we describe prior work on the BON metamodel. The metamodel 

is important in the definition of consistency between static and dynamic dia-

grams.  

• In Chapter 4 we describe extensions to the metamodel needed for our tool, and 

we also define the notion of multi-view consistency using the metamodel. We 

also provide some of the algorithms involved in doing the consistency checks. 

• In Chapter 5 we describe the remaining algorithm needed for consistency 

checking called the Specified Depth algorithm, which is needed for checking 

that a message in a dynamic diagram has an associated link in a static dia-

gram. 

• In Chapter 6 we describe our BCCT tool that implements the algorithms to 

check consistency. We also define the notion of Consistency Driven Devel-

opment. 
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• Chapter 7 is our concluding chapter.  
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Chapter 2  Business Object Notation (BON)  

In this chapter, we describe the graphical BON design language, including its facility 

for Design by Contract (DbC), and we also justify the choice of BON/Eiffel instead 

of UML/Java for our work on consistency checking. 

2.1 Overview of BON 

BON (Business Object Notation), developed by Jean-Marc Nerson and Kim 

Waldén [ 8], is an object-oriented method possessing a recommended development 

process as well as graphical and textual notations for specifying OO systems2.  

BON builds on three principles, fundamental to the construction of industrial 

strength quality software:  seamlessness, reversibility and software contracts. It was 

developed as a means of extending the higher-level concepts of the Eiffel program-

ming language into the realm of analysis and design, aided by a graphical and textual 

notation, and can be integrated into Eiffel seamlessly [ 30]. In this section, we intro-

duce some BON notation and definitions. The references [ 8,  9] provide more detailed 

information on BON/Eiffel.   

                                                 

2 For the BON method and tool see http://www.bon-method.com 
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Static and dynamic diagrams  

Graphical BON supports two kinds of diagrams: static diagrams, similar to class 

diagrams in UML and dynamic diagrams similar to UML collaboration diagrams. A 

sample static diagram and dynamic diagram representing part of a banking system  is 

shown in Figure  2-1 and Figure  2-2 respectively.  

ROOT_CLASS CUSTOMER

TRANSACTION ACCOUNT

DEPOSIT_TRANSACTION

t a1

c1

account customer

transactions:LIST[..]

 

Figure  2-1 BON Static diagram of bank example 

Static diagrams describe the structure of a system, i.e. the components and the re-

lationships between these components.  In BON static diagrams, classes are grouped 

into clusters. Likewise, in dynamic diagrams objects may be grouped [ 8]. Consistency 

checking does not depend on clusters and groups; hence we do not show clusters and 

groups in this thesis.  
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ROOT_CLASS
(root)

CUSTOMER
(c1)

ACCOUNT
(a1)

DEPOSIT_TRANSACTION
(t)

LIST[TRANSACTION]
(transactions)

1

2, 4

3

2.1

2.2

Scenario: deposit
1 create customer c1
2 create account a1 with c1
2.1 create transaction list transactions
2.2 set customer’s account to a1
3 create a deposit transaction t for account a1 of  $100
3.1 add transaction t to transactions
4 check balance

3.1

 

Figure  2-2 BON dynamic diagrams of bank example – Deposit  

Dynamic diagrams document how the system will behave over time. A dynamic 

diagram consists of a set of communicating objects. The diagram will therefore con-

tain one or more objects, messages sent between these objects and a scenario box to 

describe messages in free text.   

A full execution of the system is simply the invocation of one routine (a construc-

tor such as make) on the root object. The make routine in turn calls other routines and 

so on until termination. A system scenario is just a possible partial system execution. 

Classes 

The main construct in a BON diagram is a class. In a BON static diagram, there 

are one or more classes, which have a name, an optional class invariant, and zero or 
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more features (attributes, functional routines and procedural routines). A class may be 

in one of two relationships with other classes: the inheritance relationship and the cli-

ent-supplier relationship.  

In BON, a class has two views: an expanded form and a compressed form. In the 

compressed form, a class header is represented graphically by an ellipse with the class 

name in the centre of the ellipse using upper case letters like this: CUSTOMER . The 

class name is an alphanumeric string with possible underscores. In Figure  2-1, there 

are five classes: ROOT_CLASS, CUSTOMER, TRANSACTION, ACCOUNT, and 

DEPOSIT_TRANSACTION.   Graphical BON uses different class headers to represent 

different kind of classes: root, deferred, effective, etc. ROOT_CLASS in Figure  2-1 is 

a root class and it is shown with a double ellipse as: ROOT_CLASS .  A root class is a 

class of which one instance will be created when an object-oriented process is started, 

and whose initialization routine (often called make) drives the execution.  

An expanded form of the class with features and their contracts is shown in Figure 

 2-3.The expanded form of a class shows more detailed information of a class than the 

condensed form. It shows the class invariant, and a precondition and postcondition for 

each feature (e.g. set_account). 

Class TRANSACTION* is deferred as indicated by the asterisk (*) after the name. 

This is because this class has at least one deferred routine make* (i.e. a routine lack-

ing implementation). DEPOSIT_TRANSACTION+ is an effective class as all its 

routines are implemented (as indicated by the plus sign after the class name). 
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Figure  2-3 Expanded form of CUSTOMER 

Features 

In BON, a feature is either a query or a command (a procedural routine). A query 

returns a value but does not change the system state. A command does not return a 

value, but may change the state of the system. A query is either an attribute or a func-

tion routine. 

A static diagram supports two kinds of relationships: inheritance and client-

supplier.  

Inheritance Relationship 

Inheritance defines a sub-type (is-a) relation. It can be defined as the inclusion in 

a class, called CHILD, of operations and contract elements defined in another class 

PARENT. A class that is either a parent or grandparent (recursively) of a class is 
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called an ancestor of the class and a class that is either child or grandchild (recur-

sively) of a class is called a descendant of the class. An instance of a child class can 

always be used instead of an instance of the parent class. 

A single arrow pointing from the child to its parent, called an inheritance link, 

represents an inheritance relation. In Figure  2-1, class DEPOSIT_TRANSACTION in-

herits from class TRANSACTION. Class DEPOSIT_TRANSACTION is the child and 

class TRANSACTION is the parent.  

Client-supplier Relationship 

A client-supplier relationship or client relation for short, between a client class A 

and a supplier class B means A uses services supplied by B. In Figure  2-1, there is a 

client-supplier relationship between class TRANSACTION and class ACOUNT. 

ACCOUNT is the client and TRANSANCTION is the supplier. In a static diagram, a 

double line extending from the client to the supplier – called a client link, represents a 

client-supplier relationship. There are two possible client-supplier relationships: asso-

ciation (represented by a simple arrow) and aggregation (represented by an 

arrowhead with a perpendicular line). Both kinds of association relationships provide 

the same information with respect to consistency. As a result, we will not treat them 

separately.   

A client link can be labelled with one or several names, which represent names of 

references to the supplier classes. For example, there is a client link in Figure  2-1 be-
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tween ROOT_CLASS and CUSTOMER labelled c1, which means that in 

ROOT_CLASS there is an attribute with name c1 of type CUSTOMER. 

Objects 

Objects are represented graphically in dynamic diagrams by rectangles to differ-

entiate them from ellipses (for classes) in static diagrams. The name of the 

corresponding class is in upper case in the centre and the name of the object in lower 

case.   

Messages 

A message that is sent from one object to another is represented by a dashed ar-

row extending from the source object to the target object – this arrow is called a 

message link. The source and target objects should have corresponding classes in the 

static diagram. The message link is labelled with sequence numbers which represent 

time in the scenario and correspond to entries in the scenario box where the role of 

each call is described using free text.  Messages in dynamic diagrams are visual rep-

resentations of feature calls.  

BON Textual Notation 

BON also supports a textual notation, which does not contain any description of 

spatial layout. The following is the specification of the class CUSTOMER using tex-

tual BON.  
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indexing 

 description: "Information about bank customer" 

class interface 

 CUSTOMER 

create  

 make 

feature  

 account: ACCOUNT 

 make (a_name: STRING) 

  require 

   a_name_not_void: a_name /= void 

  ensure 

   name_assigned: name = a_name 

 name: STRING 

 set_account (a_account: ACCOUNT) 

  ensure 

   account_assigned: account = a_account 

end -- class CUSTOMER 

Figure  2-4 BON textual view of class CUSTOMER   

The above view has no implementation detail. It is, in fact, the same as the Eiffel con-

tract view, which the EiffelStudio IDE (of Eiffel Software) can automatically extract 

from the complete implemented text of the class. This is what makes the high-level 

Eiffel views interchangeable with BON. 

Both BON and UML can be used to describe a design irrespective of the imple-

mentation language (C, Java, Eiffel etc.). However, UML is not well-integrated with 

any language. As an example, UML supports multiple inheritance, but Java does not. 

It is not in general possible to seamlessly move from a UML design to Java code, nor 
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is it possible to automatically reverse engineer the UML diagram from the Java code. 

By contrast, BON and Eiffel are seamless and reversible at least for static diagrams. 

The BCCT tool (to be presented in this thesis), will aid in maintaining consistency 

between static and dynamic diagrams, a property not supported in any current tool. 

Obviously, BON/Eiffel is a better framework for such a tool than UML/Java, given 

that at least static diagrams are consistent with Eiffel code by construction. 

2.2 Design by contract 

The aim of software engineering is to build reliable software. Design by Contract 

(DbC) can be seen as an advanced software engineering technique for building qual-

ity software [ 9]. DbC is a principle that states interfaces of modules of a software 

system (especially mission-critical ones) should be governed by precise specifica-

tions, similar to contracts between people or companies. The contracts cover mutual 

obligations, benefits and consistency constraints (invariants). Together these proper-

ties are known as assertions, and are directly supported in BON and Eiffel [ 9].  

In BON static diagrams,  and indicate pre and postconditions respectively. 

Invariants are specified in special invariant sections as shown in Figure  2-3.  

In Eiffel, the precondition is the require part; the postcondition is the ensure part 

and the invariant is the invariant part (Figure  2-4).  
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Java does not support contracts directly, although several tools are available for 

monitoring behavioural contracts in Java. This is another reason why we choose 

BON/Eiffel instead of UML/Java for the investigation of consistency. 

2.3 Single model principle 

UML, a de facto standard for modelling languages, is a major step towards standard-

izing notations for the visual specification and design of object-oriented systems [ 13]. 

UML allows the construction of many views of the system under description. In terms 

of the views of a model, UML defines the following graphical diagrams: 

• use case diagram 

• class diagram 

•  behaviour diagrams: 

•  statechart diagram 

•  activity diagram 

•  interaction diagrams: 

•  sequence diagram 

•  collaboration diagram 

•  implementation diagrams: 

•  component diagram 

•  deployment diagram 
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UML allows for multiple views of the system because no single view of the sys-

tem will suffice. The problem is how to keep consistency between these various 

views. This is where the single model principle plays an important role. 

The single model principle is defined in [ 11] as follows: “A software development 

follows the single model principle if it requires the use of a seamless and reversible 

wide-spectrum language for software description, possessing conceptual integrity at 

both the module and system levels, while maintaining view consistency at different 

level of abstraction.”  Following this principle can make consistency checking sim-

pler. 

 In [ 11], UML/Java and BON/Eiffel are compared with respect to the single 

model principle as shown in Figure  2-5. It is the lack of methods to ensure the consis-

tency of static and dynamic diagrams that prevents BON/Eiffel models from 

completely satisfying the single model principle (see cell in the table of Figure 

 2-5with a Qualified Yes). Better consistency checking methods between static and 

dynamic diagrams will be treated in this thesis based on prior work in [ 1; 14]. 
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Criterion UML/Java BON/Eiffel 

Seamless and reversible 
wide-spectrum descrip-
tions 

No 
(e.g., impedance mismatch 
between OCL and iCon-
tract, or between 
statecharts and classes) 

Yes 
(by construction) 

Conceptual integrity 

No 
(e.g. constraints can be 
expressed on dependency 
arrows, in notes, via OCL 
and in statecharts; collabo-
ration and sequence 
diagrams are identical se-
mantically) 

Yes 
(by construction) 

View consistency 

No 
(in general, no algorithms 
or methods available to 
check the constructive part 
– classes and statecharts – 
against the other views, 
e.g., OCL) 

Qualified Yes 
(Static diagrams and code 
can each be automatically 
derived from each other. 
Consistency of static and 
dynamic diagrams is 
treated in [ 1; 14] and in this 
thesis). 

 

Figure  2-5 Single model principle - comparison 

Figure  2-6 describes the relationship between the various BON/Eiffel deliverables 

before the work reported in [ 1; 14] and in this thesis. As described above, fully im-

plemented Eiffel source code and BON static diagrams can be automatically derived 

from each other as indicated by the <<auto-derive>> stereotype. However, there is no 

guarantee of consistency between the dynamic and static diagrams as indicated by the 

question mark in the stereotype (<<?>>). What we would really like to achieve is the 

situation described in Figure  2-7. 
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Figure  2-6 Eiffel deliverable dependencies before this thesis  
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Eiffel Source Code
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Figure  2-7 Eiffel deliverable dependencies in this thesis 

It may not be possible to have an <<auto-derive>> relationship for static and dy-

namic diagrams (static class diagrams can be automatically computed from code and 

vice versa). However, at the very least, we can aim for an automatic consistency 



 

28 

 

check, as described by the <<check-consistency>> stereotype in Figure  2-7, i.e. given 

a pair of diagrams, static and dynamic, press a button in some tool and automatically 

confirm (yes or no) if the two are consistent. Also, given a dynamic diagram and Eif-

fel code, we would also at the same time like to confirm that they are consistent with 

each other. Given any two views v1 and v2 (e.g. code and a diagram, or a static and 

dynamic diagram) we thus have two possibilities: 

• <<auto-derive>>: v1 can automatically be derived from v2 and vice versa; 

• <<check-consistency>>: given both v1 and v2, we can automatically check 

that the views are consistent. 

A relatively easy way to implement check-consistency would be to allow the software 

developer to develop the static and dynamic diagrams together (hand-in-hand). We 

could then ensure that the two views are consistent by construction. However, this 

would remove flexibility for the developer. Many developers might prefer to develop 

the diagrams independently. We thus define check-consistency by stating that two 

views (perhaps developed independently) are provided and we must automatically 

check the consistency of these two views. This is a more difficult problem than the 

hand-in-hand approach. 

2.4 Why BON over UML? 

From the discussion in the previous sections, BON has the following advantages over 

UML: 



 

29 

 

1. It is simple. Instead of a variety of behavioural diagrams (collaboration dia-

grams, sequence diagrams and statecharts) with impedance mismatch between 

them, BON uses the matching notions of  Dynamic Diagrams and Contracts.  

2. It uses a rich assertion language for pre-conditions, post-conditions and in-

variants. This allows the user to express constraints on class properties in the 

text of the program itself, whereas in UML, the OCL is written separately 

from the Class Diagram or code text. Without rich contract support (including 

run-time assertion checking) in the program text, consistency checking of 

OCL with the code is difficult. 

3. It more closely follows the Single Model Principle [ 11], which makes it more 

amenable to consistency checking. 

4. It can be seamlessly integrated with Eiffel [ 9].  

Because of these advantages, we have decided to use BON/Eiffel for presenting 

our work on consistency checking. A detailed comparison between BON and UML 

can be found in [ 12]. 



 

30 

 

Chapter 3  The BON Metamodel 

A modelling language consists of two parts: a notation used to write models; and a 

metamodel which expresses the well-formedness constraints that all legitimate mod-

els written in the notation must obey. Without a precise metamodel it is difficult to 

explain the notation and build tools that support the notation.  

The construction of the BCCT tool developed in this thesis will use a modified 

version of the BON metamodel. In this chapter we discuss the BON metamodel as it 

currently stands, and describe the modifications in the next chapter. 

The BON metamodel has been specified precisely using BON itself (informally) 

and also formally in the higher order logic PVS [ 31].  The details of the BON meta-

model are described in [ 3] and [ 44].  

MODEL

ABSTRACTIONS RELATIONSHIPS

abs:SET[..]

 

Figure  3-1 The BON metamodel, abstract architecture 

A high-level view of the BON metamodel is shown in Figure  3-1. BON models 

are instances of the class MODEL. Each model has a set of abstractions. The abstrac-

tions cluster in Figure  3-1 describes either static views (BON static diagrams) or 

dynamic views (dynamic diagrams). For example, CLASS is an example of a static 

abstraction. A class will have properties such as a name, features, and parents. A class 

will also have a set of relationships with other classes, e.g. a class may inherit from 
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another class. These relationships are described in the relationship cluster, and 

INHERITANCE is an example of a static relationship. The BON textual view of 

INHERITANCE is shown below: 

class interface INHERITANCE feature    

 source: ABSTRACTION 
 target: ABSTRACTION 
 
 set_source (s: STATIC_ABSTRACTION) is  
  require  
   s /= void 
  ensure  
   source = s 
  end  
 
 set_target (s: STATIC_ABSTRACTION) is  
  require  
   s /= void 
  ensure  
   target = s 
  end  
  
invariant  
 source /= target 
 
end  -- class INHERITANCE 

 

An example of a metamodel well-formedness constraint is that there should be no 

cycles in the inheritance graph (an ancestor cannot inherit from their descendant). In 

the BON metamodel such constraints are expressed via assertions (in this case an in-

variant). This constraint is formulated as an invariant no_inheritance_cycles in 

MODEL as shown in Figure  3-2. 
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class  MODEL feature 
 

 rel: LIST[RELATIONSHIP]  -- list of all relationships including inheritance relationships 
 
closure: LIST [INHERITANCE] 

-- list of all direct inheritances as well as inheritances due to transitivity 
 

no_inheritance_cycles ≅  
1 1 1 1| : ( . . . . )r closure r rel r INHERITANCE r source r target r target r source∀ ∈ •¬∃ ∈ • = ∧ =

  
… 

  
invariant  
 disjoint_clusters 
 no_inheritance_cycles 
 unique_abstraction_names 
 no_bidirectional_aggregations 
 unique_root_class 
 at_least_one_instance_of_root 
 model_covariance 
 enable_dynamic_diagram 

… 
end 

Figure  3-2 Class MODEL with an invariant no_inheritance_cycles 

 

There are two categories of metamodel well-formedness constraints. The no-

inheritance-cycles constraint applies to a single diagram (or view), in this case a BON 

static diagram. The first category of constraints is of this kind, and we call it single 

view consistency. The original metamodel was limited to this kind of consistency, and 

a BON case tool was developed to automatically perform these kinds of checks in 

[ 16]. 
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MODEL

ABSTRACTIONS

ABSTRACTION

STATIC_ABSTRACTION DYNAMIC_ABSTRACTION

CLASS CLUSTER OBJECT OBJECT_CLUSTER

RELATIONSHIPS

RELATIONSHIP

STATIC_
RELASTIONSHIP

MESSAGE

INHERITANCE ASSOCIATION AGGREGATION

abs:SET[..]

 

Figure  3-3 Details of the BON metamodel 

 

In [ 1; 14], a second category of well-formedness constraints was developed which 

we shall call multiple-view consistency, in which we are presented with two views of 

the system (a BON static and a dynamic diagram). We would like to confirm that 

these two views are consistent with each other. This is more challenging than single-
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view consistency3. However, to the best of our knowledge, no such tool currently ex-

ists for mechanized (or fully automatic) checking of view consistency. 

 The work in [ 1; 14] introduces four constraints for consistency checking between 

static diagrams and dynamic diagrams using an extended version of the BON meta-

model of [ 3], and describes procedures for consistency checking using the logic PVS. 

We discuss these consistency constraints using the bank example of the previous 

chapter. 

The dynamic diagram of the bank shown in Figure  2-2 is consistent with the static 

diagram of Figure  2-1. So, we first provide an example of two views that are incon-

sistent with each other, as that will more clearly illustrate the concepts. 

Consider the new withdrawal scenario in the BON Dynamic Diagram (BDD) of 

Figure  3-4, which we wish to compare with the BON Static Diagram (BSD) of Figure 

 2-1. 

The BDD of Figure  3-4 has an object w of type WITHDRAW_TRANSACTION. 

However, there is no corresponding class WITHDRAW_TRANSACTION in the BSD 

of Figure  2-1. There is thus an inconsistency between these two views, which leads to 

the first consistency constraint:  

                                                 

3 In [17], these two categories are called intra-model and inter-model consistency. The rules developed 
in [17] are informal. In [ 21] a framework for such tools called XLinkit Is developed, but the user 
must define their own constraints. 
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CC1 – Consistency Constraint 1: Each object o of type C in the BDD has a corre-

sponding type (i.e. class) C in the BSD.  

 

ROOT_CLASS
(root)

WITHDRAW_TRANSACTION
(w)

LIST[TRANSACTION]
(transactions)

Scenario: withdraw

1 create a withdraw transaction w for account a1 of  $100
1.1 add transaction w to transactions

1

1.1

 

Figure  3-4 BON dynamic diagrams of bank example – Withdraw 

 

Suppose we now insert an empty class WITHDRAW_TRANSACTION into the 

BSD. Now, CC1 is satisfied. 

Now consider message-1 in the BDD (Figure  3-4). This message is invoked by 

some routine in ROOT_CLASS. Of course, if this class has no routines, then no mes-

sage can be sent. Thus some routine (say withdrawal_scenario) must exist, and this 

routine must invoke some routine (e.g. make) in the target of the message which in 

our case is the class WITHDRAWAL_TRANSACTION, as shown in the sample 

code below. 
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withdrawal_scenario: BOOLEAN is  
  local  
   a: ACCOUNT 
   c1: CUSTOMER 
   w: WITHDRAW_TRANSACTION 
   balance:REAL 

  do  
   create  c1.make ("joe") 
   create  a.make (c1)  
   balance:=a.balance 
   create  w.make (-100, a) 
   Result := c1.account.balance = (balance-100) 
  end  
 

CC2 – Consistency Constraint 2: Consider a message m with source object src 

and target object tgt. Let src have type SRC and tgt have type TGT (by CC1, TGT 

and SRC are guaranteed to exist in the corresponding BSD). Then message m 

must have at least one corresponding feature r in class SRC of the BSD, where the 

body of r makes a call tgt.f.  

 

Now assume that ROOT_CLASS indeed contains withdrawal_scenario. Thus, 

CC2 now holds. 

 However, now there is another problem. There is no guarantee that the feature 

make actually exists in WITHDRAW_TRANSACTION (e.g. this class may be empty). 

What we need is something like the sample code below:  
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make (an_amount: REAL; a: ACCOUNT) is  
  require  else  
   an_amount < 0 and a.balance >= - an_amount 
  do  
   amount := an_amount 
   a.transactions.extend (Current) 
  ensure  then  
   amount = an_amount 
   a.balance = old  a.balance + an_amount 

a.transactions.has(Current) 
a.transactions.count = old a.transactions.count + 1 

end 
  

Suppose we add make as above, but export it to NONE (i.e. we make it private). Then 

the source of the message (object root in the BDD) still cannot invoke the routine. 

Thus, make must be exported to class ROOT_CLASS. Of course, ROOT_CLASS is 

guaranteed to exist by CC1.  

CC3 – Consistency Constraint 3: Consider a message m with source object src 

and target object tgt. Let src have type SRC and tgt have type TGT, and let SRC 

have routine r that makes a call tgt.f (as in CC2). Then f must be a feature of TGT 

that is exported to SRC4. 

 

Suppose we now add the feature make and export it to ROOT_CLASS. Now, CC2 

and CC3 are satisfied. What else could go wrong in the BDD? 

                                                 

4 In [ 1], the rules CC2 and CC3 are expressed differently, but the presentation here is clearer from the 
point of view of understanding the sequel. 
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ROOT_CLASS
(root)

WITHDRAW_TRANSACTION
(w)

LIST[TRANSACTION]
(transactions)

Scenario: withdraw

1 create a withdraw transaction w for account a of  $100
1.1 add transaction w to transactions
2 check balance

1

1.1

ACCOUNT
(a)

2

 

Figure  3-5 BON dynamic diagram of bank example – Withdraw 2 

Consider the withdraw scenario in the BDD of Figure  3-5 in which message m1.1 

has been greyed out (it is a submessage of message m1), and an extra message m2 has 

been added, which is a call to the query balance of account a. The type of a is 

ACCOUNT which has the contract view shown in Figure  3-6. For now, we ignore 

submessages and focus on the main scenario which is: 

m1; m2 

The main idea is that the postcondition of m1 should be strong enough to entail the 

precondition of m2. We need to assume the existence of a predicate init (the system 

context), which holds initially before m1 executes, such that 

)_.0_(.
.1

where
.1

amountanbalanceaamountanpremake
premake.prem

preminit

−≥∧<≅
≅

→

 (1) 
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where make is a feature of the target WITHDRAWAL_TRANSACTION of the mes-

sage. For example, suppose we select our system context init as 

250.100_ =∧−=≅ balanceaamountaninit  (2) 

then (1) trivially holds. If (1) does not hold, then this is called a failed execution, and 

init must be strengthened for the procedure to continue. 

 

class  ACCOUNT feature  

…  
 make (a_customer: CUSTOMER)  

 
 customer: CUSTOMER 
 
 transactions: LIST [TRANSACTION] 
 
 balance: REAL is  

 require balance >= 0 

 ensure )`()).(( alancebbalanceamounttnstransactiotResult =∧•∈∑=  

end 

 

Note: b̀alance is an abbreviation for balanceold  

Figure  3-6 Class Account 

 

We must first symbolically “execute” m1 to obtain its postcondition within the 

system context, which is 

)150.(
i.e.

).1]`:[`(

=≡′

∧=•∃≅′

balanceatini

postmvvinitvtini
  (3) 
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using the one point rule to eliminate the existential operator [ 45]. The single state 

predicate init′  is the new system context after message m1 has been executed. To 

“execute” message m2, we can now repeat the above procedure of (1) and (3), except 

that instead of init  in (1) we use the new context init′ .This procedure can be fol-

lowed recursively for any sequence of messages  

m1; m2;m3;..;mn. 

CC4 —  Consistency Constraint 4: Given a message sequence m1; m2; m3; ..; mn, 

select an initial context init and apply the procedure outlined in (1) and (3) recur-

sively, and check that there are no failed executions. 

 

The four consistency constraints can be divided into two categories as follows: 

• Syntactic-consistency: CC1, CC2 and CC3; 

• Contractual-consistency: CC4 

Syntactic-consistency is something that can in essence be automatically checked by a 

suitably complex compiler based on the metamodel for static and dynamic views, and 

it ensures that the appropriate objects and messages (in the BDD) and classes and re-

lationships (in the BSD) exist and appropriately correlate with each other. 

By contrast, contract-consistency cannot be fully automated, because we must 

prove theorems as shown at steps (1), and (3) above. Proving these theorems, in effect 
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shows the model (consisting of the BDD and BDS) has at least one successful sym-

bolic execution (assuming init). 

However, we would like to provide the software developer with some mechanized 

assistance in proving the theorems. The approach followed in [ 1] is to translate the 

metamodel and model into predicate logic and to use the PVS theorem prover to 

semi-automate the proofs. At this point the translation of the model must be done by 

hand, but a tool could be envisaged that would do the job. The developer will have to 

interact with the theorem prover during the proof process. 

Another semi-automatic approach was outlined in [ 14]. In this approach, a test 

driver is constructed from the BDD, using some interaction with the software devel-

oper. The test driver and code are compiled together and executed, with the test driver 

making the calls in the order shown in the scenario box. If during the execution, a 

contract violation is detected (automatically detected by the runtime), then that con-

tract violation indicates that CC4 is violated. 

However, we believe that there is a flaw in the basic algorithm (see Appendix B). 

Applying this algorithm for the withdrawal scenario of Figure  3-4, we obtain the test 

driver in Figure  3-7. The user had to manually enter the code to set up the system 

context init. Since $150 is deposited, a withdrawal of $100 should not trigger a failed 

execution (and hence a contract violation). 

However, if we run the test driver, we get a contract violation. What went wrong? 

The problem is that m1.1 is a submessage of m1. In m1’s target feature (make of class 
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WIHTDRAW_TRANSACTION) was already included the call to m1.1’s target feature 

(transactions.extend). In effect, the withdraw transaction has been invoked twice and 

this leads to a contract violation. We refer to this problem with the algorithm as the 

submessaging problem. 

class TEST_DRIVER 

creation 

 make 

feature 

 w: WITHDRAW_TRANSACTION 

 d: DEPOSIT_TRANSACTION 

 a: ACCOUNT 

 c: CUSTOMER 

feature  

 make is 

   do 

  -- manually entered by developer 

  -- creates `init’ 

  create c.make("Joe") 

  create a.make(c) 

  create d.make (150, a)--initial state 

 

  -- automatically generated by  

  -- algorithm in Appendix B 

  w.make(-100,a)------------------------------1 

  a.transactions.extend (w)-------------------1.1 

  check 

   a.balance = 50 

  end 

  end 

end -- class TEST_DRIVER 

Figure  3-7 Test driver generated from Figure  3-4 using the algorithm in Appendix B 
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Chapter 4  The extended BON Metamodel 

In previous chapters we discussed BON and the BON metamodel. In this chapter, 

we introduce and justify extensions to the BON metamodel which will be needed for 

the BCCT constraint checking tool.  

4.1 BON metamodel used in this thesis 

In  Chapter 3, we introduced the BON metamodel from [ 1; 3]. In this section, we ex-

tend the metamodel so as to better describe multi-view consistency. We present the 

new metamodel in BON itself as in [ 3], with consistency constraints written as invari-

ants of the model classes. Algorithms to check these constraints will then be 

described. These algorithms will be at the heart of the BCCT tool. In the sequel, 

“metamodel” refers to this new extended model, and “old metamodel” refers to the 

original one described in the previous chapter. 

The authors of reference [ 1] write “it is not within the spirit of BON to add new 

views by adding new subclasses of MODEL, e.g., DYNAMIC_MODEL, etc., as this 

can easily introduce inconsistency between views”. So, they use a class 

EXTENDED_MODEL (Appendix C) that inherits from MODEL to describe multiple 

view consistency and check for consistency by translating all the views to a common 

model. This approach makes it difficult to introduce inconsistency between views and 

has traceability problem [25, p34]. For example, if we find an object (in a BDD) that 
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has no corresponding class (in a BSD) as in constraint CC1, using only a model, it is 

difficult to know which view this object belongs to. 

 

 

MODEL VIEW

VIEWS

STATIC_DIAGRAM DYNAMIC_DIAGRAM

ABSTRACTIONS RELATIONSHIPS

abs:SET[..] rel:SET[..]

OTHERS

views:SET[..] CODE

 

 

Figure  4-1 New BON metamodel architecture 

In the new metamodel we introduce the following: 

• A new cluster VIEWS to describe the various views of the model. Static 

and dynamic diagrams now inherit from a class VIEW in this cluster. 

• Invariant clauses of class VIEW are used to capture single-view consis-

tency, such as the constraint no_inheritance_cycles described in the 

previous chapter. 
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• Class MODEL contains a set of VIEW. Invariant clauses in MODEL are 

used to capture constraints (CC1-CC4) and the new constraints introduced 

in this chapter for multiple view consistency checking.  

• In the old metamodel (Figure  3-1;Figure  3-3), the ABSTRACTIONS cluster 

used the RELATIONSHIPS cluster. In the new metamodel, the VIEWS 

cluster uses both ABSTRACTIONS and RELATIONSHIPS (Figure  4-1), to 

allow simpler capture of multi-view consistency constraints. 

In the views cluster, STATIC_DIAGRAM, DYNAMIC_DIAGRAM and CODE are 

views. But we can now add new views in future work, such as use cases and state 

charts. 

 In the sequel, we focus on static diagrams and dynamic diagrams. A static dia-

gram is an instance of the class STATIC_DIAGRAM and a dynamic diagram is an 

instance of the class DYNAMIC_DIAGRAM. MODEL has the following property  

views: SET[VIEW] 

For simplicity, but without loss of generality5, we will assume that there is a single 

static diagram (view v1) and a single dynamic diagram (view v2) in views. We would 

like to more formally define the notion of ( 1, 2)consistency v v , i.e. v1 and v2 are con-

                                                 

5 The BCCT tool has the ability to store projects; each project can have many static and dynamic dia-
grams. 
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sistent precisely when they satisfy consistency constraints such as CC1, CC2, CC3 

and CC4. 

In the old metamodel, messages are between dynamic abstractions as shown be-

low [ 3]: 

class MESSAGE feature 

 source, target: OBJECT 

 routine: ROUTINE 

 number:INTEGER 

invariant   

 number >=1 

end  

The target routine (referred to in constraints CC2 and CC3 of the previous chapter) 

must be constructed from the source routine, where routine has a property  

calls: SET[CALL] 

representing the calls made in the source routine body. 

In the new metamodel, we follow the simpler approach of directly including both 

the   source and target features of MESSAGE as shown in Figure  4-2. The source rou-

tine is source_feature and the target feature called by the message is target_feature. 

The source_feature is a feature in the source_object that invokes this message (i.e. 

calls the target_feature) and the target_feature is the feature  in the target_object that 

executes this message (i.e. the feature called by the source_feature).  
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class MESSAGE feature 

 number  : STRING 

 message  : STRING 

 source_object : OBJECT 

 target_object : OBJECT 

 source_feature : FEATURE 

 target_feature : FEATURE 

invariant  

 source_object_exists 

 target_object_exists 

 source_feature_assigned 

 target_feature_assigned 

end –- MESSAGE 

Figure  4-2 Interface of class MESSAGE in the new metamodel 

 

In order to support submessages (see previous chapter), the property number of 

MESSAGE is now a string from which message and submessage numbers can be ex-

tracted. Thus, a message “1” may have submessages “1.1” and “1.2”. The message’s 

number and message represent the message information in the scenario box. The in-

variants in MESSAGE are to ensure the source object and the target object exist and 

the source feature and the target feature have been assigned.  

For consistency checking we will also need the ability to refer to the suppliers of a 

class in a BSD. We therefore add a property suppliers in the metamodel construct 

CLASS of Figure  3-3 as follows:  

 suppliers: SET[CLASS]  
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4.2 Mapping the consistency constraints to the new meta-

model 

In the previous chapter, we indicated that the old metamodel suffers from the submes-

saging problem. Consistency constraint CC4 requires that the postcondition of a 

message (within the system context) must entail the precondition of the next message 

in the BDD as shown in equations (1) and (3) of Chapter 4. To check CC4, the pro-

posal was made in [ 14] that a testdriver corresponding to the BDD could be derived; 

the execution of the testdriver without contract failure would indicate that CC4 holds. 

As we pointed out, the procedure to semi-automatically deriving the testdriver is 

flawed. 

In this chapter we will provide an algorithm (Algorithm  4-3) that automatically 

translates the model (BDD and BSD views) into Eiffel code (the complete code or 

text-view). We will also suggest how the testdriver can be semi-automatically derived 

from the generated code. 

Also, the consistency constraints CC1-CC4 are not complete. What we are lack-

ing is to check that an extended client-supplier path exists between the target class 

and the source class. A new consistency constraint messages-invokable captures this 

new constraint, and will be described in section  4.3. 

Table  4-1 lists the old constraints and how they map to the constraints in the new 

metamodel. For each constraint, we provide the formal predicate logic description of 

the constraint, followed by an algorithm to check that the constraint holds. 
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Constraints 

Old  New 
Algorithm  

CC1 object-class Algorithm  4-1 

CC2 

CC3 
message-feature Algorithm  4-2 

CC4 contractual-consistency Algorithm  4-3 
(generate code) 

 messages-invokable Algorithm  5-4 
(specified depth) 

Table  4-1 Constraints and algorithms 

 

The metamodel constructs STATIC_DIAGRAM, DYNAMIC_DIAGRAM, 

CLASS, OBJECT, and FEATURE are shown in Figure  4-3 to Figure  4-7. 

 
class STATIC_DIAGRAM feature 

 name  : STRING 

 classes : SET[CLASS] 

 rel   : SET[STATIC_RELATIONSHIP] 

 csrels : SET[CLIENT_SUPPLIER_REL] 

 irels : SET[INHERITANCE_REL] 

 closure_cs : SET[CLIENT_SUPPLIER_REL]  

   -- set of all client-supplier closures 

end 

Figure  4-3 Interface of STATIC_DIAGRAM 
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class DYNAMIC_DIAGRAM feature 

 name  : STRING 

 objects : SET[OBJECT] 

 messages : SET[MESSAGES] 

 message_seq: LIST[MESSAGES] 

 scenario : SCENARIO 

end –- DYNAMIC_DIAGRAM 

Figure  4-4 Interface of DYNAMIC_DIAGRAM  

 
 

class CLASS feature 

 name  : STRING 

 features : SET[FEATURE] 

 invariant : BOOLEAN 

 suppliers : SET[CLASS]  

end –- CLASS  

Figure  4-5 Interface of CLASS 

 
 

class OBJECT feature 

 name  : STRING 

 class : CLASS 

end –- OBJECT  

Figure  4-6 Interface of OBJECT 
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class FEATURE feature 

 name   : STRING 

 type   : [ATTRIBUTE,QUERY,COMMAND] 

 accessors  : SET[CLASS] 

 exported_type : [NONE, ANY, SELECTED] 

 pre_condition : BOOLEAN 

 post_condition : BOOLEAN 

 calls  : SET[CALL] 

end – FEATURE 

Figure  4-7 Interface of FEATURE 

Constraint CC1 asserts that each object in view v2 in the BDD must have a corre-

sponding class in the BSD (in view v1). This constraint can be described as follows: 

 
1 _
2 _

_ ( 1, 2) 2. 1. .

Constraint object-class:
v STATIC DIAGRAM
v DYNAMIC DIAGRAM
object class v v o v objects c v classes o class c

∈
∈

≅ ∀ ∈ •∃ ∈ • =

  

where STATIC_DIAGRAM and DYNAMIC_DIAGRAM are shown in Figure  4-3 

and Figure  4-4 respectively. 

The constraints CC2 and CC3 in the old metamodel (Chapter 4) are both related 

to messages and features. In [ 1], CC2 is formalized as a PVS logical description, 

while CC3 is left an informal part of the BON metamodel. There was no need to for-

malize CC3 as this is in essence checked by any Eiffel compiler. 

Since we want our BCCT tool to do this check we must formalize CC3 as well. In 

the new metamodel it is convenient to treat CC2 and CC3 as a single constraint called  

message-feature(v1, v2): 
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1 _
2 _

_ ( 1, 2)
_ ( 1, 2)

2.
. _ . .

( . .

Constraint message-feature:

   
   
      (
           

v STATIC DIAGRAM
v DYNAMIC DIAGRAM
message feature v v

object class v v
m v messages
sf m source object class features

tf m target_object

∈
∈

≅

∧∀ ∈ •
∃ ∈ •

∃ ∈ .
. _ . . )))

_ ( 1, 2) . . 1.
_ ( 1, 2) . _ . 1.

                  (

where

class features
m source feature sf m target_feature tf tf sf calls

object class v v m target_object class v classes
object class v v m source object class v classes

•
= ∧ = ∧ ∈

→ ∈
→ ∈

 

 

Constraint message-feature omits one aspect of CC3 – it does not check that tf is ex-

ported to source_object.class. This check is now done in the messages-invokable 

constraint which we describe in the next subsection. The inner predicate of message-

feature could in fact be written in class MESSAGE. 

4.3 Path closure problem 

Consider the two views of a model (a BSD and a BDD) in Figure  4-8 in which 

object a sends message m1 to object c. The sending routine r has a call b.z.c.f , where 

( . ) *z a b= , i.e. there may be zero or more double dotted calls a.b. The call b.z.c.f  is 

an element of property calls in the metamodel construct FEATURE in Figure  4-7. 

The constraint message_feature indeed checks that appropriate routines r and c.f exist. 
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But, there is still no guarantee that there is a path in the class diagram (i.e. in the BSD) 

between A and C that corresponds to a call such as b.z.c.f. We call this the path-

closure problem.  

A

r is
do

      b.a.b.a.b.c.f
 end

C

f

B

b

a
c

A
(a)

C
(c)

1 Scenario
1: a sends message m to c

 

Figure  4-8 Recursive message check 

 

Obviously, we must add an additional consistency constraint to check that there is 

an appropriate path in the class diagram corresponding to a call such as b.z.c.f. We  

define a new consistency constraint in addition to the already enumerated constraints 

(see Table  4-1). This new constraint is called the messages-invokable consistency 

constraint. 
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1 _
2 _

_ ( 1, 2)
_ ( 1, 2) 2. )

1. _ .

Constraint messages-invokable

   
   
where

   (

v STATIC DIAGRAM
v DYNAMIC DIAGRAM

messages invokable v v
object class v v m v messages client_supplier export

client_supplier
r v closures cs r s

∈
∈

≅
∧∀ ∈ • ∧

≅
∃ ∈ • . _ . )

( . _ . )

_ : [ _ _ ]
{ | : _ _ }   ensure 

 

ource m source object class r.target m.target_object.class

export m source object class m.target_feature.accessors

closures cs SET CLIENT SUPPLIER REL
Result r rel r CLIENT SUPPLIER REL

= ∧ =

≅ ∈

= ∈ ∪
{ : _ _ |

( 1, 2 | 1, 2 : _ _ 1. 2. )
( )}

          
                
             

r CLIENT SUPPLIER REL
r r rel r r CLIENT SUPPLIER REL r source r target

    r.source r2.source r.target r1.target
∃ ∈ ∧ = •

= ∧ =
 

In the previous chapter we defined the contractual consistency of a message se-

quence m1; m2; … mn in a BDD via the recursive application of the 

precondition/postcondition constraints (1) and (3) in Chapter 3. In these constraints, 

the messages are elements of view v2 (the BDD), and the preconditions and postcon-

ditions of the source and target features of the messages are elements of view v1 (the 

BSD). Thus contractual_consistency(v1, v2) is defined by the recursive application of 

(1) and (3), and we thus have: 

( 
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( 1, 2)
_ ( 1, 2) _ ( 1, 2)

_ ( 1, 2)
_ ( 1, 2)

_ ( 1, 2)
_

         
 
where

         
     
     

consistency v v
syntactic consistency v v contractual consistency v v

contractual consistency v v
object class v v
message feature v v
messages invok

≅
∧

≅

∧
∧ ( 1, 2)able v v

 

4.4 Proposed BCCT tool 

In the next section we provide the algorithms for checking ( 1, 2)consistency v v . These 

algorithms will be part of the BCCT tool. To use the proposed BCCT tool, a software 

developer proceeds as follows: 

• Construct a model consisting of a BSD and BDD. 

• Add detailed code to the bodies of routines in the model until the syntactic 

consistency checks pass. 

• Use Algorithm  4-3 to automatically translate from the model to Eiffel code, 

and use a testdriver (developed in part by hand as described in the with-

drawal-scenario in  Chapter 3) to execute the code. A successful run of the 

testdriver without contract violations confirms that there is at least one execu-

tion of the system that conforms to the message sequence in the BDD. 
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4.5 Consistency checking algorithms 

In the previous sections we defined the constraints needed to check syntactic and con-

tractual consistency between dynamic and static diagrams. We now supply algorithms 

for syntactic consistency as well as code generation for contractual consistency 

checking via testdrivers. 

The algorithm for the object_class constraint is provided in Algorithm  4-1. We 

need only traverse the dynamic diagram, object by object, and check if each object 

has a corresponding class. The set of objects that have no corresponding class is 

stored in entity object_no_class. 

The algorithm for the message-feature constraint is provided in Algorithm  4-2. 

We simply traverse the dynamic diagram, message by message, and check for appro-

priate source and target features. The entity message_no_feature is used to store 

messages that do not have the appropriate source and target feature match. 
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class MODEL feature 

 … 

 object_no_class:SET[OBJECT] 

 

 object_class (v1,v2): BOOLEAN is 

  --where v1:STATIC_DIAGRAM, V2:DYNAMIC_DIAGRAM 

 local  

  j:INTEGER 

 do 

  from 

   j:=v2.objects.lower 

  Result := true 

  until j = v2.objects.upper 

  loop 

   if (v1.classes.not_occur(v2.objects@j.class))  

    Result := false 

    object_no_class.add(v2.objects@j) 

   end 

    j:=j+1 

  end 

 end 

 … 

end  

Algorithm  4-1 Algorithm object-class for checking if each object has a corresponding class 
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class MODEL feature 

 … 

 message_no_feature: SET[MESSAGE] 

 

 message_feature(v1,v2):BOOLEAN is 

   --v1:STATIC_DIAGRAM,v2:DYNAMIC_DIAGRAM 

 local  

  j:INTEGER 

  m:MESSAGE 

 do 

  from  

   Result := true 

   j:=v2.messages.lower 

  until j = v2.messages.upper 

  loop 

   m := v2.messages@j 

   if(m.source_object.class.features.not_occur(m.source_feature)  

    Result := false 

    message_no_feature.add(m) 

   elseif(m.target_object.class.features.not_occur(m.target_feature) 

    Result := false 

    message_no_feature.add(m) 

   elseif(m.source_feature.calls.not_occur(m.target_feature))  

    Result := false 

    message_no_feature.add(m) 

   end 

   j:=j+1 

  end 

 end 

 … 

end -- MODEL 

Algorithm  4-2 Algorithm message-feature for checking source and target feature match 
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The algorithm for messages_invokable is described in  Chapter 5, where we also 

discuss the possibility of supplying the software developer with all calls from the 

source routine to a target routine to a specified depth. 

Algorithm  4-3 describes how we generate code for each class in the model. On 

the basis of this code we can develop a testdriver to check contractual consistency. 

Etester [ 15] provides a unit testing framework for developing testdrivers. For example, 

the deposit scenario in Figure  2-2 is easily converted to an Etester test. The report for 

such a test is shown in Figure  4-9. 

PASSED (1 out of 1) 
  
Case Type Passed Total 
Violation 0 0 
Boolean 1 1 

All Cases 1 1 
State Contract Violation Test Name 
Test1 ROOT_CLASS 

PASSED NONE deposit_scenario 
  

Figure  4-9 Report of unit test 

If there is no object’s corresponding class is a root class in the static diagram, us-

ers then have to use Etester to generate a test driver to test the generated code.  
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class MODEL feature 

 … 

 generate_code (v1:STATIC_DIAGRAM) is 

 local 

  code   : CODE 

  classes : SET[CLASS] 

  j    : INTEGER  

  class  : CLASS 

 do 

  generate_system_code --generate .ace file 

  from j:=v1.classes.lower 

  until j = v1.classes.upper 

  loop  

   class := v1.classes@j  

   code := creat_new_class_code (class.name) 

   class.generate_descriptions(code) 

   code.add (“CLASS”,class.name) 

   code.generate_create_procedure(class.create) 

   class.generate_inherit_code(code) 

   class.generate_suppliers_code(code) 

   class.generate_features(code) 

   class.generate_invariant(code) 

   code.write_to_file 

   j:=j+1 

  end 

 end 

 … 

end -– class MODEL 

 Algorithm  4-3 Algorithm for code generating 

In this chapter, we have discussed algorithms for consistency checking. The im-

plementation of these algorithms described will be introduced in Appendix D. 
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Chapter 5  Specified Depth Algorithm   

In the previous chapter (section  4.3) we illustrated and discussed the path-closure 

problem. As part of consistency checking we must check that if (in a BDD view v2) 

an object a (of type A) sends a message to object c (of type C), then in the BSD view 

v1, a client-supplier path must exist from A to C.  

A consistency constraint _ ( 1, 2)messages invokable v v was developed in the pre-

vious chapter to describe the appropriate constraint. In this chapter we develop 

Algorithm  5-4 to check this constraint. The constraint is given by 

)_.2()2,1(_   
)2,1(_

exportsupplierclientmessagesvmvvclassobject
vvinvokablemessages

∧•∈∀∧
≅

 

We first illustrate checking the export predicate in the constraint. Figure  5-1 

shows a static diagram with six classes, and Figure  5-2 shows a dynamic diagram 

with two objects. In the dynamic diagram, object a is of type A and b is of type B. A 

and B are specified in the static diagram. There are two checks that must be done for 

messages_invokable. Object a sends message m1 to b. Message m1’s source feature is 

sf and target feature is tf.  If A is in the accessors’ list of tf (i.e. feature tf is exported to 

A) then export is satisfied.  
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We noticed towards the end of this thesis that export needs a more detailed check. 

For example, if the call is a.b.c.tf, then tf must be exported to C, c to B, and b to A. 

However, this additional constraints has not been implemented in BCCT. 

We must now check client_supplier – is there a client-supplier relationship be-

tween A and B? There are many client-supplier links (directly and indirectly) between 

A and B. Because there are cycles such as E can call F and F can call E, many possi-

ble calls in the source routine are possible. Here are some of them: 

b.tf 

e.f.b.tf 

e.f.e.f.b.tf 

e.f.e.f.e.f.b.tf 

e.f.e.f.e.f………b.tf 

… 

There are an infinite number of legal multi-dot calls. With inheritance the problem is 

more complex.  

A C D

E F B  

Figure  5-1 Static Diagram with six classes 

A(a) B(b)
1

 

Figure  5-2 Dynamic Diagram with two objects 
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5.1 Links 

Figure  5-3 shows three different kinds of client-supplier links between a class A 

and a class C: a direct link, an indirect-link and an ancestor-link. 

A C

Direct Link

Indirect Link

Ancestor Link

A B C

A

B C

 

Figure  5-3 Kind of links 

 

We will provide algorithms for checking each of these links separately, which 

then makes it easier to describe the final procedure in Algorithm  5-4. These algo-

rithms refer to properties of the metamodel constructs developed in the previous 

chapter. 

5.1.1 Direct links 

Figure  5-4 shows a direct link. In the static diagram, the source class (ROOT_CLASS) 

is a direct client of the target class (CUSTOMER) and the source class will call a fea-

ture of the target class directly to execute message m1 (which is c1.make).  
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This is the simplest kind of link. It is only necessary to check that ROOT_CLASS 

is one of CUSTOMER’s client classes.  The procedure for this kind of link is shown 

in Algorithm  5-1. The complexity of Algorithm  5-1 is O(V) with V classes in the 

static diagram.   

 

c1

ROOT_CLASS
(root)

CUSTOMER
(c1)

1

Scenario: deposit
1 create customer c1
...

make
make

ROOT_CLASS CUSTOMER

make(a_name:STRING)
 ? a_name /=void
! name = a_name...

make

...

 

Figure  5-4 An example of directly linked 

direct_link_check(a,b:CLASS):BOOLEAN is 

 do 

  if a.suppliers.occurrences(b) > 0 

   Result :=  true 

  else 

   Result := false 

  end 

 end 

Algorithm  5-1 Algorithm for direct linked checking 
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5.1.2 Indirect links 

Figure  5-5 shows two classes (ROOT_CLASS and ACCOUNT) that have a direct cli-

ent-supplier relationship and an indirect one (through a third class CUSTOMER). 

There are thus two paths between ROOT_CLASS and ACCOUNT. In addition, there is 

also a cycle between CUSTOMER and ACCOUNT.  

In the dynamic diagram, the source feature make of object root sends messages 

m2 and m4 to object a1. Message m2 refers to the creation command 

create a1.make(c1) 

which calls the feature make of ACCOUNT . Message m4 refers to the assignment 

c1_balance := c1.account.balance 

which includes a call to the query balance of ACCOUNT. Message m4 is executed 

through an indirect link. 

In standard BON dynamic diagrams, source and target features are never de-

scribed. However, our consistency checking does require these features to be 

identified. We therefore extend the BON diagram with this information (which is 

managed by the BCCT tool based on user input). In the dynamic diagram of Figure 

 5-5, the source feature for message m2 (respectively m4) is make and the target fea-

ture for m2 (respectively m4) is make (respectively balance). 



 

66 

 

a1

c1

account customer

ROOT_CLASS
(root)

ACCOUNT
(a1)

2, 4

Scenario: deposit
...
2 create account a1 with c1
...
4 check balance

make,make

make,balance

ROOT_CLASS

make
...

CUSTOMER

account: ACCOUNT
...

ACCOUNT

balance: REAL
make(a_customer:CUSTOMER)

? a_customer ≠ void
...

  

Figure  5-5 An example of an indirect link 

 

We can modify Algorithm  5-1 to get Algorithm  5-2 to check if there is a (possibly 

indirect) path between two classes A and B. In order to ensure termination within a 

reasonable time frame, we conduct a search only to a pre-specified depth M. In prac-

tice, we can get an upper bound on M by examining the feature body for multi-dot 

calls. We first check if B is the direct supplier of A; if not, we will check if B is A’s 

supplier’s supplier class and so on recursively. The complexity of Algorithm  5-2 is 

).( 3VMO because the union of two sets of size O(V) is cubed.   
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indirect_link_check(a,b: CLASS):BOOLEAN is 

 local 

  classes: SET[CLASS] 

  i: INTEGER 

  j: INTEGER 

 do 

  classes := a.suppliers 

  from  

   i:=1 

   Result := false 

  until i > M   

   if classes.occurrences(b) > 0 

   then  

    Result := true 

    i := M+1 

   else 

    classes := ( . | )s suppliers s classes∈U   

     i := i+1 

  end 

end 

Algorithm  5-2 Algorithm for indirectly linked checking 
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5.1.3 Ancestor links 

 

Figure  5-6 An example of an ancestor link 

In Figure  5-6, we show message m3, taken from Figure  2-1 and Figure  2-2. The 

source feature is make in ROOT_CLASS and the target feature is (apparently) the de-

ferred feature make in TRANSACTION. However, the actual target feature is the 

routine make in the descendant DEPOSIT_TRANSACTION, i.e. the message corre-

sponds to a feature call 

create {DEPOSIT_TRANSACTION} t.make (100,a1) 

Thus, in the dynamic diagram, message m3 is sent from object root (correspond-

ing to class ROOT_CLASS) to object t (an instance of DEPOSIT_TRANSACTION). 

Although object root’s corresponding class is not a client of object t’s corresponding 

class, the static and dynamic diagrams are nevertheless consistent. This is because of 

the feature call rule in [ 9, P473] – “if a feature call x.f, where the type of x is based 

on a class C, feature f must be defined in one of the ancestors of C”. Ancestors of C, 

ROOT_CLASS
(root)

DEPOSIT_TRANSACTION
(t)

3

t

Scenario: deposit
...
3 create a deposit transaction t for account a1 of  $100
...

make

make

ROOT_CLASS

make

...

TRANSACTION
*

make *

...

DEPOSIT_TRANSACTION
+

...
make +
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in this rule, include C itself.  Thus, create {DEPOSIT_TRANSACTION} t.make 

(100,a1) is a valid call.  

Thus, when checking if two classes are linked or not, we must take their ancestors 

into account. Algorithm  5-3 shows an algorithm, based on Algorithm  5-1 (direct 

links), which considers the case in which two classes are linked by their ancestors. 

This algorithm uses two loops to check if the source class’s ancestor is the target 

class’s ancestors’ client class. The complexity of Algorithm  5-3 is O(V3).  This is be-

cause there is an inner loop within the outer loop (over classes in the BSD); the inner 

loop uses the feature occurrences which itself enumerates over classes in the BSD. 

When we take the indirectly linked cases into account, the algorithm will be more 

complicated.  

Algorithm  5-1 to Algorithm  5-3 returns a true if there is at least one path that links 

the source class to the target class. However, we would like a procedure that will ac-

tually return a list of all possible paths. In the next section, we describe the  specified 

depth algorithm . 

 



 

70 

 

directly_linked_ancestor_check(a,b:CLASS):BOOLEAN is 

 local 

  i,j:INTEGER 

 do 

  from  

   i:= a.ancestors.lower 

   Result := false 

  until i = a.ancestors.upper 

  loop 

   from j := b.ancestors.lower 

   until j > b.ancestors.upper 

   loop 

    if (a.ancestor)@i.suppliers.occurrences((b.ancestors)@j)>0 

    then  

      Result :=  true 

      j := b.ancestors.upper 

    else j:=j+1 

    end 

   end 

   if Result then i:=a.ancestors.upper 

   else i:=i+1 

   end 

  end 

 end 

Algorithm  5-3 Algorithm for direct and ancestor links 

  

5.2 Specified depth algorithm 

In the previous sections of this chapter we described the various kinds of links be-

tween two classes in a BON static diagram, i.e. direct, indirect and ancestor links. We 
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now need an algorithm to generate all the links between A and B to a specified depth 

M for the messages-invokable constraint. 

Consider the BON static diagram in Figure  5-7 which allows for many links be-

tween two classes A and B. A inherits from O and B inherits from S. There are 

actually 7 links in this example to depth of M = 4, i.e. 

A.B 

O.S 

A.C.F.B 

A.E.F.B 

A.C.D.B 

A.B.D.B 

A.C.E.F.B 

The largest multi-dot is A.C.E.F.B which has four levels of “dots” corresponding to 

M = 4. Normally the dot notation is used with entities. For the purposes of this algo-

rithm we use the dot notation to indicate links between classes. Thus A.B means that 

A has some attribute (say b) that is of type B.  

 

A C D

E F B

O

S  

Figure  5-7 A BON class diagram 
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Because we want to record all the links from A to B, we introduce a data structure 

ITEM shown in Figure  5-8 to record the classes on the path. The value of the attribute 

class is a class in the static diagram, like A, B or other classes. This class has two que-

ries: linked which is a SET[ITEM] corresponding to the direct links of the target class.  

For example, consider the target class C in Figure  5-7. An instance of ITEM corre-

sponding to C would have class = C and linked = {item corresponding to D, item 

corresponding to E, item corresponding to F}, as classes D, E and F are the direct 

links. A SET of ITEM is sufficient as we are merely generating all links such as C.D, 

C.E and C.F, the order in which these links are enumerated not being relevant. 
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class ITEM feature 

 class: CLASS 

  -- a CLASS in a static diagram 

 linked: SET[ITEM] 

  -- items whose `class’ are direct client classes  

  

 make(c: CLASS, i: ITEM)is 

  require 

   c /= Void and i /= Void 

  ensure 

   class = c 

   linked.has(i) 

   linked.count = 1 

 

 add(a_linked like linked)is 

  require 

   a_linked /= Void 

  ensure 

   linked = old linked + a_linked 

    -- extend `linked’ with items in `a_linked’ 

 end  

Figure  5-8 The interface of data structure ITEM 

 

In the section dealing with ancestor-links, we indicated that if ancestors of the 

source class and target class of a message have a client-supplier relationship, then this 

is also a link that may have a corresponding message in the dynamic diagram.  
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class LINKS feature 

 a,b: CLASS 

  -- source and target class 

 

 sources: LIST[ITEM] 

  -- includes `a’ and all its ancestors 

 

 target: LIST[ITEM] 

  -- includes `b’ and all its ancestors 

 

 m: INTEGER 

  -- depth of client-supplier links 

 

 links: LIST[ITEM] is 

  require 

   a /= Void and b /= Void 

  ensure 

   Result = all links between `a’ and ‘b’ 

   -- see Algorithm 6-4 

 ancestors(l:LIST[ITEM]):LIST[ITEM] is 

  require 

   l /= Void 

  ensure 

   Result = all ancestors of ‘l’ 

invariant 

 a /= Void and b /= Void 

 m > 0 

end  

Figure  5-9 Data for the calculation of all possible links to depth M 

The specified depth algorithm is described as a function links in Figure  5-9 in 

which a refers to the source class A and b to the target class B. The function links re-

turns all the links between a and b. The function sources includes a and all its 
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ancestors, and targets includes b and all its ancestors as discussed in the section deal-

ing with ancestor-links. 

We illustrate the algorithm for links by using the class diagram in Figure  5-7 as an 

example. Figure  5-10 and Figure  5-11 illustrate how all the links between A and B are 

calculated to a depth of m = 4. Figure  5-10 has 7 columns each column being a list of 

ITEM: 

• The first column is sources (i.e. a and all its ancestors) 

• The next 4 columns are mid [1], mid [2], mid [3] and mid [4]. The column 

mid [1] is a list of all classes one-step away from sources. The column mid 

[2] is a list of all classes that are two steps away from sources, as well as 

information that allows us to re-trace the path back to sources (see linked 

in Figure  5-8). There are 4 such columns because M = 4. 

• The 6th column is targets (i.e. b and all its ancestors). 

• The last column is the result of routine links, from which the set of all 

links can be reconstructed as shown in Figure  5-11.  

The algorithm proceeds as follows. The first item in sources is class A. The direct 

suppliers of A are C, E and B (see Figure  5-7). Thus in mid [1] we must store 

A.C 

A.E 

A.B 

The other item in sources is O from which we obtain 
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O.S 

Since B and S (the end of the path) are in targets, we copy over A.B and O.S to the 

column result, and we have our first two (of seven) links.  

We must now construct all paths two steps away from the source, i.e. mid [2]. The 

first item in mid [1] is A.C (i.e. the class of the item is C, and the linked of the item 

contains just A). The two-step path is  

A.C.D 

A.C.F 

A.C.E 

Obviously, there is no need to keep track of the source A. We know that C is one step 

away from the source A. Thus we need record only C and all links one-step away 

from C, i.e. 

C.D 

C.F 

C.E 

Thus, C.D is stored as an item in mid [2] with D the class and C an item in linked (C’s 

item has its own field linked which points back to A). Thus item C.D allows us to re-

trace the path to the source A. Proceeding in a similar way for the remaining items in 

mid [1], we obtain for A.E 

E.F 

for A.B we obtain, 

B.D 

and for O.S there is no item as S has no suppliers.  
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We note that items C.D and B.D in mid [2] both represent paths that terminate in 

D. For efficiency, we can merge these two items into a single item CB.D where D is 

the class of the item and C and B are in the field linked of the item. Since both items 

terminate in D, we need only explore (for mid [3]) from D and onwards. Similarly, 

items C.F and E.F can be merged into CE.F. Thus the items now stored in mid [2] are:   

BC.D 

CE.F 

C.E 

The terminating classes for these items (D, F and E) are not in targets, thus result 

stays the same. The same procedure can now be followed for mid [3] and then mid[4]. 

This will terminate with the 7th column result which contains the items: 

A.B 

O.S 

FD.B 

F.B 

From these items, we can reproduce the seven paths from the targets B and S, to 

sources as shown in Figure  5-11, by following the linked field of each item. The 

complete algorithm is shown in Algorithm  5-4. 

From Figure  5-11, we directly obtain all paths links when the call depth is 4. The 

complexity of the algorithm is O(MV3) because there are 3 loops. 
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1 links: LIST[ITEM] is 

2   local 

3   mid[1..m], t_list: LIST[ITEM] 

4  item,item1,item2,item3: ITEM 

5  i,j,k: INTEGER 

6   do 

7    t_list := sources 

8  from i:=1 until i > m loop 

9   from j := t_list.lower until j = t_list.upper loop 

10    item:=t_list@j 

11     from k := item.class.suppliers.lower  

   until k = item.class.suppliers.upper loop 

12    create item1.make(item.class.suppliers@k, item); 

13    if ∃item2 ∈ mid@i • item2.class = item1.class then 

14     item2.add(item1.linked); 

15    else 

16     mid@i.extend(item1); 

17     if ∃item3 ∈ targets • item3.class = item1.class then   

18      result.extend(item1) 

19     end 

20    end; k:=k+1 

21   end; j:=j+1 

22  end  

23  mid@i := ancestors(mid@i) 

24  t_list := mid@i; i:=i+1 

   end 

Algorithm  5-4 Algorithm to calculate all links between classes A and B (see Figure  5-9) 
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Sources  1  2  3  4 … targets

A  A.C  BC.D  FD.B(3)  B.D  B 

O  A.E  CE.F  F.E  F.B (4)  S 

  A.B (1)  C.E  E.F  E.F    

  O.S (2)      F.E   

 

A.B (1) 

O.S(2) 

FD.B (3) 

F .B (4) 

Figure  5-10 the running result of Algorithm  5-4 

 

B S B B

result

A O F D F

C E C B E

A A A C

A

A

 

Figure  5-11 Tree structure of the result 

result
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5.3 Tolerant versus Strict consistency checking 

Consider the static and dynamic diagrams shown in Figure  5-12 (view1 and view2), 

and suppose that no further information about the classes A, B and C is available, i.e. 

we do not know what features exist in these classes and what their export status is. 

What we do know from the class diagram is that B is a supplier of A, and C a supplier 

of B. Thus, the class diagram could potentially be completed to be consistent. This 

would yield a tolerant consistency criterion for partial views. 

The definition of consistency adopted in this thesis is strict. Thus, source and des-

tination features must exist for each message. 

An advantage of the specified depth algorithm is that it can be used in a tolerant 

version of consistency, as it merely checks client-supplier links in a class diagram. 

A B C

A C

view1

view2
 

Figure  5-12 Tolerant Consistency between view1 and view2 
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Chapter 6 The Bon Consistency Checking Tool  

In this chapter we describe BCTT, i.e. the BON Consistency Checking Tool. The tool 

is based on the consistency criteria and algorithms for consistency checking devel-

oped in  Chapter 4 and  Chapter 5. Table  4-1 ( Chapter 4 page 49) provides the four 

constraints that must be checked to show that a BON static diagram (view1) is consis-

tent with a BON dynamic diagram (view2). The constraints are: 

• object-class (i.e. every object in view2 has a corresponding class in view1); 

• message-feature (i.e. each message has an associated target feature that is 

called from an appropriate source feature and exported to it); 

• messages-invokable (i.e. there is an appropriate client-supplier link in view1 

associated with each message in view2); 

• contractual-consistency (i.e. the postcondition of each message entails the 

precondition of the succeeding message).  

In the BCCT tool, the first three constraints are automatically checked via algo-

rithms supplied in  Chapter 4 and  Chapter 5. The BCTT tool accomplishes the 

following: 

• automatically checks if the constraint is satisfied (yes or no); and 

• provides the user with precise feedback where the consistency fails; and 

• provides the user with some mechanized support to fix the problems so that 

consistency can be restored. 
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As explained in  Chapter 4, the contractual-consistency constraint is not checked 

automatically by BCCT. Instead, some mechanized support is supplied in the follow-

ing way: 

• Algorithm 5-3 is used to automatically generate the code associated with 

the model; and 

• The designer uses the generated code to construct an ETester test corre-

sponding to the dynamic diagram. If the test succeeds, then we have 

demonstrated at least one execution that satisfies the contractual-

consistency constraint. 

As an illustration of consistency checking, consider the simple model in Figure 

 6-1 consisting of a static and dynamic BON diagram. The message in the dynamic 

diagram does not have an associated client-supplier link in the static diagram. Invok-

ing the Tools menu provides the following options: 

 

If we invoke the first option object-class, the tool immediately reports Pass as this 

constraint obviously holds. However, if we check messages-invokable, then the tool 

provides the error report in Figure  6-2, which indicates that there is no client-supplier 

link from class A to class D, as required by the message. 



 

83 

 

 

Figure  6-1 Two views of a model 

 

 

Figure  6-2 Report of missing client-supplier links for the model in Figure  6-1 
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Figure  6-3 Refactoring the model 

 

Suppose we now insert a client-supplier relationship between C and D as in 

Figure  6-3. Then the tool reports a Pass for the constraint messages-invokable. 

If the designer invokes Tools -> Message-feature, then the tool supplies an error 

report which states that the message does not have a source and target feature in the 

appropriate classes. The tool can now be used to add appropriate features. For exam-

ple, the user may right click on class D, and invoke add-feature. The tool allows the 

designer to add a new feature as shown in Figure  6-4. 

If the designer adds a feature (say the command deposit) as in Figure  6-3, then the 

tool still reports that the message feature constraint is not satisfied as in Figure  6-4. 

However, if the designer clicks on the error report for this message, a new report ap-

pears that indicates that the destination feature is present, but that the source feature is 

missing (Figure  6-5). 
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Figure  6-4 Adding a new feature to class C. 
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Figure  6-5 Error report for message-feature constraint 

 

 

Figure  6-6 Missing source routine in Message-feature error report 
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We may now add a source routine for the message to class A. In the body of the A 

routine we must add a call to the deposit feature in class D, i.e. the body must contain 

a call such as b.d.deposit(200). The message-feature constraint will still report an er-

ror. We need to link the message in the dynamic diagram to the appropriate source 

and destination routines. This is done with a click as shown in Figure  6-7. The de-

signer selects the appropriate source and target routines, and then clicks ok to confirm 

the selection. All tests will now pass. 

 

Figure  6-7 Associating a message with source and target features 
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 Once all syntactic consistency constraint checks pass, the designer can generate 

the code, write the appropriate test, and run the test to check for contractual consis-

tency. 

An important property of the BCCT tool is the ease with which models can be 

constructed and checked for consistency. The mere fact that a test fails is not the end 

of the story. The tool reports the specific errors and allows the designer to interac-

tively change the model and keeps checking until all the checks pass. By analogy 

with Test Driven Design [ 47], we call this property of our tool Consistency Driven 

Design (CDD). CDD works as follows: 

1. Construct some small part of the model; 

2. Run the consistency checks (which will usually fail as the model is in-

complete or inconsistent); 

3. Refactor the model to get the consistency check to pass, and re-run the 

checks. 

CDD works at a higher level of abstraction than Test Driven Design (TDD) be-

cause the designer works at the level of the model and not at the lower level of code 

only. Of course, when checking contractual-consistency, the designer uses tests in the 

style of TDD. Thus design and coding can be done incrementally with constant feed-

back and refactoring via tests and checks, by using CDD and DbC at the design level 

and TDD at the implementation level. 
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Figure  6-8 The BON static diagram with class D expanded to contract view 

 

Contracts are an important part of modelling and design. Thus, BCCT static views 

also support the ability to expand a class into its contract view as shown in Figure  6-8. 

These are the contracts that get exercised when the tests are executed. 

The BCTT tool is not ready for industrial strength usage. Rather it is a prototype 

tool that allowed us to explore tool support for multi-view consistency checking and 

Consistency Driven Design. The tool was implemented in C# using .NET and a dia-

gramming component for .NET called GoDiagram. Even though the tool is a 

prototype, its design and implementation presented many challenges as it had to sup-

port the various graphical features of BON as well as the extended BON metamodel 

defined in  Chapter 4. The tool includes the following components: 

• A BON Diagram Editor. Before consistency can be checked, an editor is 

needed to draw the static diagrams and dynamic diagrams. 
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• A BON Diagram Parser. This tool parses BON Diagrams to extract the 

information needed to check consistency. The tool stores BON Diagrams 

for a project in XML files (persistence). 

• A Consistency Checker. The tool checks the various consistency con-

straints using the algorithms in  Chapter 4 and  Chapter 5. 

• A Code Generator. The tool translates the model to executable code 

which facilitates the writing of tests cases using ETester (a unit testing 

feature which is also used for contract testing). 

A detailed description of the BCTT tool is presented in Appendix D. 
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Chapter 7  Conclusions and Future Work 

7.1 Conclusions 

In chapter 1, we described how Model Driven Development (MDD) is currently 

being promoted for addressing the complexities of software development. Model 

Driven Architecture (MDA) is a flagship initiative of the OMG (Object Management 

Group) for defining common infrastructures for building UML based MDD tools. 

As stated in [ 55]: “The vision of MDA is both simple and grand. Its objective is to 

decouple the way that application systems are defined from the technology they run 

on. The purpose of this decoupling is to ensure that investments made in building sys-

tems can be preserved when the underlying technology platforms change”. The 

Platform Independent Model is a representation of business functionality undistorted 

by technology details. 

As described in chapter 1, the current batch of MDD/MDA tools do not allow the 

designer to check multi-view consistency between static class diagrams and dynamic 

collaboration diagrams. Yet it is precisely these two diagrams that are often used by 

designers. 

The main contribution of this thesis was to develop the BCCT tool (the first to our 

knowledge) that checks multi-view consistency between structural class diagrams and 

behavioural collaboration diagrams. Such a tool also opens up the possibility of using 
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consistency to drive development as described in the previous chapter (Consistency 

Driven Development). The following steps were needed to make the tool a reality: 

• We formalized the notion consistency(v1,v2) of two views v1 (a static 

view with contracts) and v2 (a dynamic view) of a model. This definition 

of consistency includes notions of syntactic and contractual consistency.  

• We developed algorithms to check syntactic consistency, and incorporated 

these algorithms into BCCT.  

• The tool has a graphical editor which is used to construct graphical models, 

specify features, and contracts down to detailed body code. 

• The syntactic consistency checks are run automatically and provide details 

of where failures occur. 

• The model can be automatically translated to executable Eiffel code, and a 

testdriver is used to check contractual consistency.  

Based on this thesis, there are a few opportunities for further research which we 

describe in the next section.  

7.2 Future work 

7.2.1 Automatic generation of testdrivers 

In Chapter 3 we mentioned that an earlier approach to automated testdriver generation 

from BON Dynamic Diagrams (BDD) is flawed as outlined in the submessaging 
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problem. A top-level feature message in turn invokes submessages in the BDD. When 

generating a corresponding testdriver, the only generated routine call associated with 

a message should be the top call. 

This problem should be solvable. Possibly a mark-and-sweep approach could be 

attempted. Define a singleton linked list or set containing all messages in the dynamic 

diagram, and then mark each message as code is generated (in order). This should 

prevent redundant calls and automate testdriver generation and hence more automated 

support for contractual consistency checking. 

7.2.2 Specified Depth Algorithm  

The specified depth algorithm (chapter 5) was used to check that for each message in 

a BDD there is an associated link in the BSD. The algorithm actually generates all 

possible calls from the target feature to a specified depth, but this full capability is not 

used in the tool. The tool currently checks if the call actually specified in the feature 

body is in the generated list.  

However, the algorithm could also be used to provide the designer with a list of 

possible calls in the list, allowing the designer to select which call to use. 

7.2.3 BCCT tool 

The current BCCT tool is only a prototype to explore consistency checking. As such 

it only implements part of BON (e.g. support for expanded classes and aggregations). 

To be a really useful tool, it needs more work so as to support the full range of BON 

modelling constructs. 
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Some other areas that could be usefully developed are described below. 

• In section 5.3 we described BCCT as effecting strict consistency. It would 

be useful to enhance BCCT to deal with tolerant consistency in which 

partial models, that could potentially be made consistent, would pass the 

checks. 

• As mentioned at the beginning of chapter 5, the check for export in the 

messages-invoked constraint needs to be tightened up. 

• The notion of Consistency Driven Development needs to be explored on 

big systems, and more refactoring features may need to be included in the 

tool to make this type of development useful. 

• The BCCT tool is complementary to the work being pursued by Ali 

Taleghani [ 46], in which contractual consistency is tested with a theorem 

prover. The two approaches could be usefully merged into a single tool.
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Appendix A Code generated for bank example 

   -- Automatic generation produced by ISE Eiffel -- 
indexing  
 description: "" 
 
class   
 ACCOUNT 
 
create   
 make 
 
feature   
 
 make (a_customer: CUSTOMER) is  
  require  
   a_customer /= void 
  do  
   create  {LINKED_LIST [TRANSACTION]} transactions.make 
   customer := a_customer 
   customer.set_account (Current) 
  end  
 
 customer: CUSTOMER 
 
 transactions: LIST [TRANSACTION] 
 
 balance: REAL is  
  do  
   from  
    Result := 0 
    transactions.start 
   until  
    transactions.after 
   loop  
    Result := Result + transactions.item.amount 
    transactions.forth 
   end  
  end  
 
 set_transactions (a_transactions: LINKED_LIST [TRANSACTION]) is  
  require  
   a_transactions_not_void: a_transactions /= void 
  do  
   transactions := a_transactions 
  ensure  
   transactions_assigned: transactions = a_transactions 
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  end  
  
end  -- class ACCOUNT 
   -- Generated by ISE Eiffel -- 
   -- For more details: http://www.eiffel.com -- 
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   -- Automatic generation produced by ISE Eiffel -- 
indexing  
 description: "Information about bank customer" 
 
class   
 CUSTOMER 
 
create   
 make 
 
feature   
 
 make (a_name: STRING) is  
  require  
   a_name_not_void: a_name /= void 
  do  
   name := a_name 
  ensure  
   name_assigned: name = a_name 
  end  
 
 account: ACCOUNT 
 
 name: STRING 
 
 set_account (a_account: ACCOUNT) is  
  do  
   account := a_account 
  ensure  
   account_assigned: account = a_account 
  end  
  
end  -- class CUSTOMER 
   -- Generated by ISE Eiffel -- 
   -- For more details: http://www.eiffel.com -- 
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   -- Automatic generation produced by ISE Eiffel -- 
indexing  
 description: "" 
 
class   
 DEPOSIT_TRANSACTION 
 
inherit  
 TRANSACTION 
 
create   
 make 
 
feature   
 
 make (an_amount: REAL; a: ACCOUNT) is  
  require  
   an_amount > 0 
  do  
   amount := an_amount 
   a.transactions.extend (Current) 
  ensure  
   amount = an_amount 
   a.balance = old  a.balance + an_amount 
  end  
  
end  -- class DEPOSIT_TRANSACTION 
   -- Generated by ISE Eiffel -- 
   -- For more details: http://www.eiffel.com -- 
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   -- Automatic generation produced by ISE Eiffel -- 
indexing  
 description: "" 
 
class   
 ROOT_CLASS 
 
create   
 make 
 
feature   
 
 a1: ACCOUNT 
 
 c1: CUSTOMER 
 
 make is  
  do  
   create  c1.make ("joe") 
   create  a1.make (c1) 
   create  {DEPOSIT_TRANSACTION} t.make (100, a1) 
   c1_balance := c1.account.balance 
   check  
    c1_balance = 100 
   end  
   print ("Balance is: ") 
   print (c1_balance) 
   create  {WITHDRAW_TRANSACTION} t.make (- 100, a1) 
   c1_balance := c1.account.balance 
   check  
    c1_balance = 0 
   end  
   print ("Balance is: ") 
   print (c1_balance) 
  end  
 
 c1_balance: REAL 
 
 t: TRANSACTION 
  
end  -- class ROOT_CLASS 
   -- Generated by ISE Eiffel -- 
   -- For more details: http://www.eiffel.com -- 
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   -- Automatic generation produced by ISE Eiffel -- 
indexing  
 description: "Interface of the deposit and withdraw transactions" 
 
deferred  class   
 TRANSACTION 
 
feature   
 
 amount: REAL 
 
 make (an_amount: REAL; a: ACCOUNT) is  
  deferred  
  end  
  
end  -- class TRANSACTION 
   -- Generated by ISE Eiffel -- 
   -- For more details: http://www.eiffel.com -- 
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   -- Automatic generation produced by ISE Eiffel -- 
indexing  
 description: "" 
 
class   
 WITHDRAW_TRANSACTION 
 
inherit  
 TRANSACTION 
 
create   
 make 
 
feature   
 
 make (an_amount: REAL; a: ACCOUNT) is  
  require  
   an_amount < 0 and  a.balance >= - an_amount 
  do  
   amount := an_amount 
   a.transactions.extend (Current) 
  ensure  
   amount = an_amount 
   a.balance = old  a.balance + an_amount 
  end  
  
end  -- class WITHDRAW_TRANSACTION 
   -- Generated by ISE Eiffel -- 
   -- For more details: http://www.eiffel.com -- 
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Appendix B Algorithm for generating test driver 

from the dynamic diagram 

class GENERATOR feature 

 ... 

 generate_test_driver(c:COLLABORATION_DIAGRAM) is 

 local 

 i: INTEGER; 

 m: MESSAGE; 

 f: FEATURE; 

  do 

   generate_driver_header; 

   generate_declarations(c.objects); 

   generate_check_statement(c.initial); 

   from i:=1 

    until i>c.messages.length 

    loop 

     m:=messages.item(i); 

     if m.has_guard then 

      generate_ifthen(m.guard) 

     end 

     if m.has_multiplicity then 

      generate_loop(m.multiplicity) 

     end 

     if m.feature.is_create then 

      f:=select_create_feature(m.target); 

     else 

      f:=select_feature(m.target); 

     end 

     generate_feature_call(m.target,f); 

     generate_close_branches; 
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     i:=i+1; 

   end 

   generate_check_statement(s.final); 

   generate_driver_footer; 

  end 

  ... 

 end – GENERATOR 
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Appendix C Extended_Model used in [ 1] 

class EXTENDED_MODEL inherit MODEL 

feature {NONE} 

 occurs: SET[OBJECT] 

 sequence:SEQUENCE[MESSAGE] 

 scenario_box:TEXT 

 calls: SEQUENCE[ROUTINE] 

feature{ANY} 

 class_diagram,collab_diagram:EXTENDED_MODEL 

invariant  

 msgs_in_rels;calls_linked_to_msgs; 

 object_in_occurs; objects_in_abs; 

 same_lengths 

end – EXTENDED_MODEL 
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Appendix D The BCCT tool 

In this appendix, we will provide an overview of BCCT (BON Consistency 

Checking Tool). The tool is written in C# under .NET and uses a component called 

GoDiagram for coding the diagram editor, and XML for saving the diagrams. 

The .NET environment was chosen because GoDiagram provides a high-level graph-

ics library which was used to code the BON diagram editor. Thus features such as 

graphical grouping, undo, moving and scaling are all supported. 

1. The tool overview 

Figure D-1 shows a screenshot of the tool showing a static diagram and a dynamic 

diagram. The BON-CASE tool [ 2, 7] is a precursor to this tool, but our metamodel 

differs as described in  Chapter 4, and BON-CASE does not support multi-view con-

sistency. This is the first tool, to our knowledge, that supports multi-view consistency. 

A complementary tool is being developed by [ 46].  
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Figure D-1 Overview of the tool 

 

The BON CASE tool [ 2, 7] is an extensible CASE tool for formal specification 

and reasoning. It has a BON diagram editor and can generate text-based BON and 

code compatible with the JML verification tool. It does, however, not provide func-

tionality for consistency checking.  We had the option of extending this tool or 

developing a new BON tool. We chose the latter because of the lack of documenta-

tion for the BON CASE tool and the friendlier user interface provided by GoDiagram 

[ 32]. Also a prototype tool had been developed by an undergraduate student Ali 

Taleghani using C# and GoDiagram, which was helpful in getting this tool started.   
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We designed a new icon for this tool.  The yellow ellipse represents a class in 

BON static diagram and the blue square represents an object in a BON dynamic dia-

grams. The line with an arrow is used in BON to present relationships and messages. 

In our tool it indicates that we are dealing with relationships between static diagrams 

and dynamic diagrams, i.e. it deals with consistency checking. 

The BCCT tool is developed using C# and GoDiagam under the .Net framework 

and provides an integrated development environment for the construction of BON 

diagrams and for  consistency checking between static diagrams and dynamic dia-

grams. The tool provides user-friendly graphical interfaces that let users use the tool 

without any special training. Undo/redo, zoom in/out, and other features are included 

as well.  It supports Design by Contract, which is not supported by many other tools, 

especially those for UML. The major functionality, however, is the tool’s ability to 

check consistency between static and dynamic diagrams.  

The design of it is extendable, which allows it to be extended to meet other re-

quirements. Below is an outline of the various components of this tool: 

• A BON Diagram Editor. Before consistency can be checked, an editor is 

needed to draw the static diagrams and dynamic diagrams. 

• A BON Diagram Parser. This tool will parse BON Diagrams to extract 

the information needed to check consistency. Using this parser, we will 

store the BON Diagrams into XML files and can restore diagrams from 

the XML files. 

• A Consistency Checker. This component will provide consistency 

checking capabilities for BON diagrams. This function is based on algo-
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rithms given in  Chapter 4 and  Chapter 5. 

• A Code Generator. This will generate the code associated with the dia-

grams, which the user can use to generate the final test case. 

 

The following sections of this appendix will describe in detail the design of this 

tool, concentrating on those components we just mentioned. We start with a short 

overview of GoDiagram which is used throughout the tool. 

2. GoDiagram for .NET  

GoDiagram for .NET [ 32] is a product of Northwoods Software. The GoDiagram li-

brary, written entirely in C#,  is a set of controls and classes built on the .NET 

platform. It provides a variety of basic graphical objects such as rectangles, ellipses, 

polygons, text, images, and lines. The user can group these objects together to form 

more complex objects as a GoGroup and can customize their appearances and behav-

iours by setting properties and overriding methods. 

GoDiagram uses a model-view-controller [ 34] architecture. GoDocument serves 

as the model, i.e. a container providing the abstract representation of the items the 

user sees in a view. Goview serves as the view and the controller – it provides a win-

dow displaying objects in a document and it also handles events raised by interactions 

or other programs.  

A GoDocument model provides runtime storage for displayable objects. Adding 

an object to the document makes it visible in the document's views. Users can organ-
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ize objects in layers. Class GoDocument inherits from System.Object.GoDocument 

and supports one event, Changed, to notify observers of changes to the document or 

to any of its objects. 

A GoView view provides a window in which the graphical objects stored in a 

document are shown. A view defines how the user sees the objects and interacts with 

them. It supports mouse-based object manipulation, including selecting, resizing, 

moving and copying using drag-and-drop. Each view handles its document’s 

Changed event so that it can keep its window up-to-date with all of the objects in the 

document. The view also supports in-place editing, which can change its correspond-

ing documents, printing, and grids. 

The relationship of GoView and GoDocument is shown in Figure D-2 

GOVIEW GODOCUMENT
1

2

Scenario
 

1  Change

2  Notify
 

Figure D-2 Relationship between GoView and GoDocumnet 

 

GoDiagram provides support for composing and manipulating graphs, also 

known as diagrams, where nodes have ports that are connected by links, also known 

as arcs or edges. GoDiagram provides this functionality with the GoNode, GoPort 
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and GoLink classes. Nodes are groups containing one or more ports. Links are strokes 

that connect two ports.  

The design of the BCCT tool is mainly based on the concepts: Godocument, Go-

View, GoNode, GoPort, GoLink, GoGroup. GoDiagram provides other 

functionalities that we did not mention here, but interested readers can refer to [ 32] 

for more details. 

3. A BON diagram editor 

To check the consistency between a static diagram and a dynamic diagram, we need 

to draw such diagrams. So, firstly the BCCT tool is a drawing tool for BON diagrams 

which will then be checked for consistency. In this section, we introduce the GUI and 

the components from the GUI point of view. 

The GUI 

As a drawing tool, we designed BCCT’s interface similar to the interface of many 

other drawing programs. Figure D-3 is a screen shot of this tool. The screen is divided 

into three parts: tool bar, tree view, and drawing area. 
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toolbar

tree view

drawing area

 

Figure D-3 Diagram editor 

The toolbar provides the elements needed to create BON diagrams. The toolbar 

 is for static diagrams and the toolbar   is for dynamic diagrams. 

These toolbars are hidden and shown dynamically depending on which kind of dia-

gram is active. When a user wants to add an element into the diagram, they press the 

appropriate button on the toolbar (unless the appropriate button has been already 

pressed); move the mouse to the drawing area; and click or drag to add the element.  

For example, if users want to add a class to the static diagram, they should first press 

the button  and then click at the position of the drawing area where the class should 

be added. If this button is already pushed then the user can move the mouse to the 

drawing area directly and click to add a class.  

Adding objects is similar to adding a class. If users want to add a client-supplier 

relationship to the static diagram, they can click the button  and move the mouse to 
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the drawing area and drag from the client class to the supplier class to add a client-

supplier relationship. Similarly, the user can add a message link.  

The Tree view serves as a navigation tool. Users can use it to open, create dia-

grams and travel between diagrams. To open a diagram, the user can double click on 

the diagram’s name shown in the tree view. If this diagram has been opened, it will be 

activated and shows on the top of other windows.  To add a new diagram, right click 

the mouse, choose from the context menu as shown in Figure D-4 and create a new 

diagram.  

 

Figure D-4 Context menu of tree view 

 

The drawing area works like a canvas in diagramming tools. Users can draw static 

diagrams or dynamic diagrams on it. Users can add classes, objects, and other com-

ponent on it.  Users can also select, delete and modify properties of elements on it by 

using double clicking or context-click for other functions.  Moreover, users can save 

diagrams into XML files or load diagrams saved as XML files by using File->Save 

and File->open. The conversion between BON diagrams and XML files will be dis-

cussed in section  4. 
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Diagram elements  

As mentioned earlier, the BCCT tool uses GoDiagram and the BON metamodel and 

algorithms described in  Chapter 4 and  Chapter 5.  In this section, we will give more 

details about the implementation of the metamodel in our tool.  

GOVIEW GODOCUMENT

GRAPHVIEW GRAPHDOC

NODES

BONCLASS

BONOBJECT

ACTOR

LINKS

MESSAGELINK

CSRELATIONSHIP

INHERITLINK

 

Figure D-5 Elements of BON diagrams editor  
 

GODOCUMENT was extended to GRAPHDOC (a new BCCT class) to serve as 

the model and GOVIEW was extended to GRAPHVIEW to serve as the view-

controller in the editor. The elements of the diagram editor and their relationship are 

shown in Figure D-5. 

 From the graph’s point of view, a document consists of nodes and links. While 

from the BON diagram’s point of view, a static diagram consists of BONCLASSes 

and relationships between these classes; a dynamic diagram consists of BONOB-

JECTs and messages passed between these objects.  
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Use Case diagrams are not supported by BON. However, the original intention 

was to include a Use Case view. The idea was that: 

• Requirements are captured by Use Cases; and 

• Use Cases are specified by dynamic diagrams; and 

• Dynamic Diagrams are implemented by test cases. 

However, we did not get as far as actually implementing Use Case views, although 

the BCCT tool is designed to allow other views.  

We do allow actors (a Use Case element) in BON dynamic diagrams as shown in 

Figure D-6.  

We thus add ACTOR elements as shown in Figure D-5. This allows us to model 

external objects in dynamic diagrams that are ignored in consistency checking. Thus 

diagram elements (BONCLASS, BONOBJECT, ACTOR) are based on classes NODES 

provided by GoDiagram and INHERITLINK, CSRELATIONSHIP, MESSAGELINK 

based on the GoDiagram class LINKS. 

BON diagram elements in Figure D-5 represent the model and the data in a single 

diagram element. For example, BONCLASS represents information about all class 

features and all other properties related to a BON class. To provide functions to edit 

the data and properties, we extend GOVIEW to GRAPHVIEW. GRAPHVIEW over-

rides some methods provided by GOVIEW to edit properties of BON diagram 

elements, such as add-features.  
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Figure D-6 Actors in BON dynamic diagrams 

 

Methods store and load in class GRAPHDOC are used to store BON diagrams to 

XML files [ 35] and load XML files to BON diagrams. In the next section, we will 

depict how we parse a BON Diagram to an XML file and how to parse an XML file 

to a BON diagram.  

4. A BON Diagram Parser 

GoDiagram does not have a standard file format that users have to use.  The built-in 

GoDocument and GoObject classes are serializable. Users can use serialization for 
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short-term persistence and communication using the same version of the GoDiagram 

library. For long-term persistence to save diagrams, communicate with other applica-

tions, serialization is not a good choice.  In consistency checking, the diagrams and 

the metamodel data associated with the diagrams are needed. As a result, we imple-

mented store and load methods for both GRAPHDOC and each BON diagram 

element. In the store method, we will parse a BON diagram or a diagram element 

(classes, objects, etc.) to an XML file; and in the load method, we will parse an XML 

file to a BON diagram or a diagram element. 

XML [ 35], eXtensible Markup Language, is a markup language much like HTML. 

XML provides a set of rules for creating semantic tags used to describe data. XML is 

extendible because its tags are not predefined; users can define their own tags. 

An XML element is made up of a start tag, an end tag, and data in between. The 

start and end tags describe the data within the tags, which is considered the value of 

the element. An element can optionally contain one or more attributes. An attribute is 

a name-value pair separated by an equal sign (=). A basic XML document is simply 

an XML element that can, but might not, include nested XML elements. 

We treat a project, a static diagram and a dynamic diagram as an XML document. 

A project file has an extension “.bp”, and a static diagram file or a dynamic diagram 

do not have an extension name. To reload, the user opens a project file. Other views 

are then automatically reachable from there via the tree view. 
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The project file contains an element project and nests two other elements static 

and dynamic that store the metamodel information of diagrams included in this pro-

ject. Because  the main part of this thesis is consistency checking, we did make the 

XML persistence part as efficient as possible. Other XML technologies such as XPath 

and XML Schema [ 36] should be considered for better efficiency.  

Consider a project name is bank with a static diagram banksd and a dynamic dia-

gram bankdd. The XML project file bank.bp looks as follows: 

<Project name ="bank"> 
  <Static> 
    <File Name="banksd" /> 
  </Static> 
  <Dynamic> 
    <File Name="bankdd" /> 
  </Dynamic> 
</Project> 

 

A static or dynamic diagram file is slightly more complicated.  The static diagram 

file has a structure as shown in Figure D-7. The dynamic diagram file has a similar 

structure like the static one. It has an element Static that indicates this is a static dia-

gram and the element Static nests other elements: Class, InheritLink and 

ClientSupplierLink that are diagram elements of a static diagram.  The Class element 

nests Graph that stores the graphic information of the class and Features that stores 

what feature the class has.  
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<Static name="…" … …> 

  <Class ClassName="…" ID="1" Inherit="…" ……> 

    <Graph x="…" … … /> 

    <Features> 

      <Feature Name="make"… … > 

    … … 

    </Features> 

  </Class> 

   … …  

  <InheritLink from="3" to="4" /> 

   … … 

  <ClientSupplierLink from="1" to="2" Name="…" … … 

/> 

 … … 

</Static> 

Figure D-7 XML file structure for a static diagram 
 

The Class element has an attribute ID whose value is unique in the diagram. 

When the information of links (inherit link, client-supplier link) is stored, the class ID 

is stored instead of class name. This will avoid inconsistencies that can arise between 

the diagram and the XML file when class names are changed. 

Thus far the parser can only parse information of attributes of diagram elements. 

The invariant of the class, the precondition, postcondition and code information of 

features is stored as string and do not have any specific XML structure. Future work 

will consist of finding ways of storing this information more efficiently.  
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5. A Code generator 

As we discussed in section  4.5, in order to check consistency, we need to run Eiffel 

code generated from the static diagrams to check if the precondition of each feature 

that is connected to a message is enabled. As already shown, the BCTT tool allows 

the user to construct models easily. The BCCT tool also allows the designer to enter 

features, their contracts, feature implementation detail and class invariants. Once suf-

ficient detail is added, the designer can automatically translate the model to 

executable code. This is analogous to Model-Driven-Development [ 37] in which the 

designer constructs models at a high level of abstraction, and the code is automati-

cally generated from the model.  

Information editing 

Algorithm  4-3 is a sketch for code generation. It generates code from detailed in-

formation such as invariants and features. The BCCT tool provides an easy-to-use 

interface for users to enter this detailed information. As Figure D-8 shows, users can 

easily edit related information through context menus – to change properties of a 

class, add features to a class or edit features of a class. 
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Figure D-8 Context menu of class 

 

Clicking context menu Properties can edit properties of a class. Figure D-9 shows 

the user interface for editing class properties. Users can use it to edit the class name, 

change the status of the class (root, deferred, effective), create procedures (the default 

is make), inherit classes. Not all classes that a class inherits from can be presented in 

the same static diagram where this class appears. Users need the ability to add the in-

formation of parent classes other than drawing an inherit link. Also, the user can use 

Properties to enter descriptions and invariants. The user interface of our application 

was designed similar to that of EiffelStudio. Users familiar with EiffelStudio should 

be able to use our tool easily.  
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Figure D-9 User interface for editing class properties 
 

The BCCT tool also provides an easy-to-use interface for adding features. Users 

can add features by invoking “Add features” and can edit existing features by using 

“Edit Features”. Once users click on “Edit Features”, they will be presented with a 

list of features of the class they are editing as shown in Figure D-10. 
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Figure D-10 View of features 
 

Users can choose one or more features to delete; add a feature; or double click to 

edit selected features as shown in Figure D-11.  The add feature user interface is very 

similar to the edit feature user interface. Through this interface, users can: 

• Choose the type of the feature (Command, Query, Attribute);  

• Choose the export type (None, Any, Selected) – Selected allows the user 

to enter a set of classes in the accompanying edit box; 

• State whether the feature is deferred or not; 

• Edit the arguments, local variables, pre-, post- conditions, and the code 

(Do). 
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Figure D-11 User interface for editing features 

Code Generation 

The previous section introduced how users can edit information needed to generate 

code. This section we will introduce how we can get code from information users en-
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tered. We refer to Algorithm  4-3 ( Chapter 4, page 60) line by line to show how we 

can generate code from the static diagram.  

• generate_system_code generates an .ace file needed by EiffelStudio to run 

a program.  

• Foreach bonclass in s.cs does an iteration to generate code for every bon-

class in the static diagrams. 

• code := creat_new_class_code (bonclass.name) creates a new code using 

the name of the bonclass in the static diagram.  

• bonclass.generate_descriptions(code) generates the “index  description” 

part of an Eiffel class. Information for this part comes from field descrip-

tion of Figure D-9. The code for this part of Figure D-9 will be: 

indexing 

  description:” information about bank customer”. 

 

• code.add (“CLASS”, bonclass.name) adds a class name to the code, e.g. 

for class CUSTOMER, it will be 

class 

 CUSTOMER 

 

• code.generate_create_procedure(bonclass.create) creates the create part 

of the code. For class CUSTOMER of Figure D-9, it will be 

create 

 make 



 

 125

 

• bonclass.generate_inherit_code(code) will generate code for each class 

this class inherits from. It adds an inheritance declaration for each ancestor 

in the diagram as well as the additional inherit clauses  in the inherit field 

of inherit in Figure D-9.  

• bonclass.generate_suppliers_code(code) generates code from the client-

supplier links. 

• bonclass.generate_features(code) generates code for features with the in-

formation provided by Figure D-11. 

• bonclass.generate_invariant(code) creates the code from field invariant of 

Figure D-9. 

• code.write_to_file writes code generated to a .e file. 

6. The Consistency Checker 

 Chapter 4 and  Chapter 5 describe the algorithms used in this thesis to do consistency 

checking. In this section, we will state how this tool will support consistency check-

ing. 

In the BCCT tool, all consistency checking work can be done one by one by using 

menus shown in Figure D-12. Each menu in Figure D-12 corresponds to the four con-

straints in  Chapter 4 and implements algorithms described in  Chapter 4 and  Chapter 5. 
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In order to check that a dynamic diagram is consistent with a static diagram, the tool 

should also provide other functions such as assigning a class to an object and assign-

ing features to messages. We will introduce these in the following subsections.  

 

Figure D-12 Menu for consistency checking  

Assign a class to an object 

As we stated in section  4.1, every object in a dynamic diagram must have a corre-

sponding class in the static diagram. Menu Tool  Object-class is used to check if 

each object in a dynamic diagram has a corresponding class by implementing 

Algorithm  4-1.  

To assign an object to a class, there are two approaches that can be used in BCCT 

tool. One is that users can right click on the object and then choose a class from a list 

of classes in the static diagram as shown in Figure D-13. 
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Figure D-13 Classes List 

Another approach is that after the check object_class, a list of objects which have 

no corresponding class will be displayed to the user. Double-clicking the name of the 

object will display a list of available classes.  

Assign features to a message 

The message-feature check requires that each message in the dynamic diagram must 

have a corresponding feature belonging to the target class to execute this message and 

there must be a feature in the source class that calls this feature in the static diagram. 
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So, the BCCT tool should also support assigning a source feature and a target feature 

to a message.  

Like assigning a class to an object, there are also two approaches to assign fea-

tures. Figure D-14 shows the user-interface to let the user choose features related to a 

message. The user can choose a source feature (from the list under from) and a target 

feature (from the list under to) through this interface to assign sourcefeature and tar-

getfeature feature to the message.  

 

Figure D-14 Features List 
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E-tester 

In order to check contractual consistency we generate the code from the model, and 

allow a user to complete a test that checks the scenario in the dynamic diagram. 

While user input is required at this stage, most of the infrastructure for the test will 

already be there from the generated code.  

In fact, the test can be fully constructed within the BCCT tool itself by allowing 

one of the objects in the dynamic diagram to correspond to the ROOT_CLASS. 

ETester, developed by Dave Makalsky, is a unit-testing framework for Eiffel [ 15]. 

It consists of three clusters, which, when added to your system, will allow for easy 

development of test suites [ 15]. 

 Because the BCCT tool was developed as a prototype to implement consistency 

algorithms, we did not concentrate on some aspects such as supporting a full BON 

notation and intra-diagram constraints.  Additional work is necessary to make this 

tool useful in practice. 
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