
MULTI-VIEW CONSISTENCY CHECKING

OF BON SOFTWARE DESCRIPTION DIAGRAMS

by

Yan Gao

A Thesis Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfilment of the Requirements
For the Degree of

MASTER OF SCIENCE

In the Graduate College

YORK UNIVERSITY

2 0 0 4

Copyright © 2004 by Yan Gao

Copyright Page (ii — not typed)

iii

Certificate Page (iii — not typed)

iv

Abstract

Multi-View Consistency is an important aspect of current Model Driven Develop-

ment (MDD) methods for software construction. A model may consist of many views.

We need some assurance that these views are consistent. Yet, none of the current MDD

tools provide any justification that the generated code is consistent. The current genera-

tion of MDD tools also do not support code generation based on dynamic diagrams and

contracts, so that consistency of static and dynamic diagrams is an unexplored territory.

In this thesis we describe a first (to our knowledge) prototype multi-view consistency

checking tool. We first formalize the notion consistency(v1,v2) of two views v1 (a static

view with contracts) and v2 (a dynamic view) of a model, based on prior work by Paige

and Ostroff in [1; 14]. The definition of consistency (which is more comprehensive than

the earlier work) is divided into syntactic and contractual consistency. We then develop

algorithms to check syntactic consistency, and incorporate these algorithms in a new tool

called the BON Consistency Checking Tool (BCCT).

The tool can be used to construct graphical models, features, contracts and detailed

body code and automatically run the syntactic consistency tests. The model can be auto-

matically translated to executable Eiffel code, and a testdriver is used to check

contractual consistency. The tool can be used to interactively and repeatedly construct

models, automatically test for consistency and refactor the models as required. This leads

to a design method that we call Consistency Driven Development (CDD).

v

Acknowledgements

I’d like to take this opportunity to thank everyone who made this project possible.

Firstly, I would like to express my deep gratitude to my supervisor, Dr. Jonathan Os-

troff, who is so knowledgeable and generous. His continuous encouragement, motivation

and patience have kept my research on the right track and made this thesis possible.

Special thanks go to Dr. Vassilios Tzerpos for serving as member of my thesis com-

mittee and Dr. Eshrat Arjomandi and Dr. Steven Wang for serving on my Oral

Examining Committee.

I particularly wish to thank my team members: Ali Taleghani, Dave Makalsky, and

Oleksandr Fuks. I also thank my many classmates. My special thanks go to Ali Taleghani

for his help on my thesis writing and Dave Makalsky for his good questions.

I would also like to thank many people in our department, including students, support

staff and faculty, for always being helpful over the years. I thank my friends at York Uni-

versity for their kind help.

Thanks go to my family for their understanding, support and patience.

vi

Table of Contents

Chapter 1 Introduction..1

1.1 Model Consistency...5

1.1.1 Single-view consistency...6

1.1.2 Multi-view consistency..7

1.2 Other consistency approaches..11

1.3 The contribution of this thesis ...12

1.4 Thesis outline ...13

Chapter 2 Business Object Notation (BON)..15

2.1 Overview of BON..15

2.2 Design by contract ...23

2.3 Single model principle ...24

2.4 Why BON over UML?...28

Chapter 3 The BON Metamodel...30

Chapter 4 The extended BON Metamodel ..43

4.1 BON metamodel used in this thesis ...43

4.2 Mapping the consistency constraints to the new metamodel...........................48

4.3 Path closure problem..52

4.4 Proposed BCCT tool ..55

4.5 Consistency checking algorithms ..56

Chapter 5 Specified Depth Algorithm..61

vii

5.1 Links ..63

5.1.1 Direct links...63

5.1.2 Indirect links ..65

5.1.3 Ancestor links ..68

5.2 Specified depth algorithm..70

5.3 Tolerant versus Strict consistency checking ..80

Chapter 6 The Bon Consistency Checking Tool ...81

Chapter 7 Conclusions and Future Work ...91

7.1 Conclusions..91

7.2 Future work..92

7.2.1 Automatic generation of testdrivers...92

7.2.2 Specified Depth Algorithm..93

7.2.3 BCCT tool..93

Appendix A Code generated for bank example ..95

Appendix B Algorithm for generating test driver from the dynamic diagram..102

Appendix C Extended_Model used in [1] ..104

Appendix D The BCCT tool..105

References ..130

viii

List of Algorithm

Algorithm 4-1 Algorithm object-class for checking if each object has a corresponding

class..57

Algorithm 4-2 Algorithm message-feature for checking source and target feature match

..58

Algorithm 4-3 Algorithm for code generating...60

Algorithm 5-1 Algorithm for direct linked checking...64

Algorithm 5-2 Algorithm for indirectly linked checking ..67

Algorithm 5-3 Algorithm for direct and ancestor links ...70

Algorithm 5-4 Algorithm to calculate all links between classes A and B (see Figure 5-9)

..78

List of Figures

Figure 1-1 Plan and Elevation views of a house..1

Figure 1-2 UML models and metamodels ...7

Figure 2-1 BON Static diagram of bank example ...16

Figure 2-2 BON dynamic diagrams of bank example – Deposit.................................17

Figure 2-3 Expanded form of CUSTOMER..19

Figure 2-4 BON textual view of class CUSTOMER...22

Figure 2-5 Single model principle - comparison ...26

ix

Figure 2-6 Eiffel deliverable dependencies before this thesis27

Figure 2-7 Eiffel deliverable dependencies in this thesis ..27

Figure 3-1 The BON metamodel, abstract architecture ...30

Figure 3-2 Class MODEL with an invariant no_inheritance_cycles...........................32

Figure 3-3 Details of the BON metamodel ..33

Figure 3-4 BON dynamic diagrams of bank example – Withdraw35

Figure 3-5 BON dynamic diagram of bank example – Withdraw 2............................38

Figure 3-6 Class Account...39

Figure 3-7 Test driver generated from Figure 3-4 using the algorithm in Appendix B42

Figure 4-1 New BON metamodel architecture ..44

Figure 4-2 Interface of class MESSAGE in the new metamodel47

Figure 4-3 Interface of STATIC_DIAGRAM ...49

Figure 4-4 Interface of DYNAMIC_DIAGRAM..50

Figure 4-5 Interface of CLASS..50

Figure 4-6 Interface of OBJECT..50

Figure 4-7 Interface of FEATURE ..51

Figure 4-8 Recursive message check...53

Figure 4-9 Report of unit test...59

Figure 5-1 Static Diagram with six classes..62

x

Figure 5-2 Dynamic Diagram with two objects...62

Figure 5-3 Kind of links...63

Figure 5-4 An example of directly linked..64

Figure 5-5 An example of an indirect link...66

Figure 5-6 An example of an ancestor link..68

Figure 5-7 A BON class diagram...71

Figure 5-8 The interface of data structure ITEM ...73

Figure 5-9 Data for the calculation of all possible links to depth M............................74

Figure 5-10 the running result of Algorithm 5-4 ...79

Figure 5-11 Tree structure of the result ...79

Figure 5-12 Tolerant Consistency between view1 and view280

Figure 6-1 Two views of a model ..83

Figure 6-2 Report of missing client-supplier links for the model in Figure 6-1..........83

Figure 6-3 Refactoring the model ..84

Figure 6-4 Adding a new feature to class C...85

Figure 6-5 Error report for message-feature constraint ...86

Figure 6-6 Missing source routine in Message-feature error report86

Figure 6-7 Associating a message with source and target features87

Figure 6-8 The BON static diagram with class D expanded to contract view.............89

xi

Figure D-1 Overview of the tool..106

Figure D-2 Relationship between GoView and GoDocumnet109

Figure D-3 Diagram editor...111

Figure D-4 Context menu of tree view ..112

Figure D-5 Elements of BON diagrams editor ..113

Figure D-6 Actors in BON dynamic diagrams ..115

Figure D-7 XML file structure for a static diagram...118

Figure D-8 Context menu of class ...120

Figure D-9 User interface for editing class properties...121

Figure D-10 View of features ..122

Figure D-11 User interface for editing features...123

Figure D-12 Menu for consistency checking...126

Figure D-13 Classes List..127

Figure D-14 Features List ..128

1

Chapter 1 Introduction

Imagine that you are building your dream home. You hire an architect to draw up the

blueprints (Figure 1-1). In the elevation view you specify a window facing west with

a beautiful sea view. In the plan view the architect omits the window. These two

views are now inconsistent with each other. If the builder uses the plan view to con-

struct the floors, walls, windows and doors, then the window may actually be omitted

in the actual construction. Fixing it at a later date may also prove much costlier than

getting it right the first time.

Office

13 sq. m.

 Missing window

Plan View

Elevation View

Figure 1-1 Plan and Elevation views of a house

2

Modern software products involve some of the most complex artefacts in exis-

tence. Software engineers have suggested that constructing models of software

artefacts is as necessary as constructing models of buildings before they are built and

aeroplanes before they are constructed and flown. Models help us understand and

analyze complex problems and potential solutions through abstraction. By removing

or hiding detail that is irrelevant in a given viewpoint, we may understand the essence

of the problem more easily.

Models must also be understandable, accurate, predictive and inexpensive [37].

The last property (“inexpensive”) is obvious – the model must be significantly

cheaper to construct and analyze than the modelled system itself. But here is the rub.

The cost of building a bridge is immense (steel girders, concrete etc.). A paper blue-

print of the bridge is cheap. By contrast however, software is by definition “soft”.

There is no real cost difference between code and models of code – they are both just

bits in a file on the hard disk. This has suggested to some software professionals to

stress code over models and documentation [48].

But, many software developers do not want to give up on the many benefits that

come from models. This is especially the case given that only one third of commer-

cial software development products complete and are successful [49]. The remaining

products either fail altogether, or are late and over budget. Modelling will clearly aid

us in developing better quality code. But, if we must develop the artefact twice, once

3

as a model and again as code that implements the model, then the process is not inex-

pensive.

A solution to this conundrum has been suggested – it is called Model Driven De-

velopment (MDD). MDD’s defining characteristic is that software development’s

primary focus and products are models rather than code [37, 50]. A key idea is that

executable code (the final software product) is automatically generated from their

corresponding models. To obtain the full benefit of MDD we must have the following:

• Complete code must be automatically generated from models, as opposed

to just skeletons and fragments;

• Changes are always made to the model, and not to the generated code, oth-

erwise the code and model may become inconsistent;

• Models must at the very least be executable. David Harel compares mod-

els that cannot be executed to cars that do not have engines. There must be

some way to test or check the behaviour of the model.

Thus abstraction and automation are the two key elements of MDD.

There are now emerging industrial standards to support MDD [37]. The Object

Management Group is a consortium of software vendors, users, governments and

academia that has recently announced its Model Driven Architecture (MDA) initia-

tive that will support MDD. A key part of the standard is an enhancement to the

Unified Modelling Language (UML). The MDA/MDD approach works as follows:

4

• The designer develops a platform independent model (PIM) in UML to

represent the desired business functionality;

• An MDA-compliant tool applies standard mappings to generate a Platform

Specific Model (PSM) e.g. based on J2EE, .NET or XML/SOAP;

• The MDA tool generates all (or most of) the implementation code from

the PSM for deployment.

Not all MDD tools follow the strict MDA route. For example, the IBM Real-Time

Rational Rose tool follows a two-stage process. In the first stage, a composite

PIM/PSM model is constructed and tested, e.g. Java might be used to provide behav-

ioural detail in a UML statechart. In the second stage, the model is automatically

translated to code.

UML is a software description language that allows the designer to specify, visu-

alize, and document models of software systems. However, there are problems

associated with the use of UML.

The UML standard (v1.3) states: “Every complex system is best approached

through a small set of nearly independent views of a model; no single view is suffi-

cient. These diagrams provide multiple perspectives of the system under analysis or

development. The underlying model integrates these perspectives so that a self-

consistent system can be analyzed and built. These diagrams, along with supporting

documentation, are the primary artefacts that a modeller sees, although UML and its

support tools will provide for a number of derivative views.”

5

As explained in [11], the phrase “self-consistent” in the above quote is prob-

lematic. UML allows for multiple views of the system. This alone is not problematic;

indeed, experienced practitioners know that no single view of the system will suffice.

What is problematic is the claim that these views will be consistent with each other.

No such guarantee exists, and very little guidance has been provided with UML for

how one would achieve such consistency.

Model inconsistency may arise for various reasons, e.g. due to misunderstandings

of requirements, mistakes in constructing designs, and syntactical or semantic errors

in writing the models themselves. It is desirable to be able to detect model inconsis-

tency at an early stage, so that the problems will not be propagated to code or

customer deliverables such as documentation [14].

1.1 Model Consistency

A UML model for a software artefact may involve many views, e.g. use case dia-

grams, class diagrams, statecharts, collaboration diagrams and deployment diagrams.

The whole notion of view consistency does not have an accepted formal definition in

the literature. Rather, different researchers have developed their own notions, and this

makes the literature on the topic hard to summarize.

We may categorize the subject matter of consistency into single-view consistency,

and multi-view consistency.

6

1.1.1 Single-view consistency

Single-view consistency describes the constraints that must exist in a single view

to make that view legal. For example, not every UML class diagram is legal, e.g.

• If class A inherits from class B, then class B cannot inherit from class A;

• If class A has an attribute named d, then no other attribute may have the

name d.

A modelling language such as UML therefore consists of two parts: a notation which

is used to describe models, and a metamodel which expresses the well-formedness

constraints that all legitimate models written in the notation must obey. Without a

precise metamodel it is difficult to explain the notation and build tools that support

the notation.

As an example, consider a brief overview of the UML metamodel as described in

the UML 2.0 Infrastructure Specification [52]. The Specification states that a model

typically contains model elements. These are created by instantiating model elements

from a metamodel, i.e., metamodel elements. The typical role of a metamodel is to

define the semantics for how model elements in a model get instantiated.

The UML Specification illustrates the notion of a metamodel with Figure 1-2. The

metaclasses Association and Class are both defined as part of the UML metamodel.

These are instantiated in a user model in such a way that classes Person and Car are

both instances of the metaclass Class, and the association Person.car between the

classes is an instance of the metaclass Association.

7

Class

Person Car

Association
Metamodel

Model

<<instanceOf>> <<instanceOf>>

car

*

Figure 1-2 UML models and metamodels

We have therefore used UML to provide a metamodel of itself. While this ap-

proach lacks some of the rigour of a formal specification method, it offers the

advantage of being more intuitive and pragmatic for tool implementers and praction-

ers. Constraints can now be written on the metamodel to specify legitimate elements.

Some researchers [18, 19, 20] have used the UML logic called OCL to write

metamodel constraints. These constraints are applied to single-view consistency.

Various calculi have also been developed for providing metamodels with an appro-

priate semantics [51].

1.1.2 Multi-view consistency

Multi-view consistency for UML has been treated in [10, 17, 18, 21, 24, 25, 33]. In multi-

view consistency, we would like to know if two totally different views are “consis-

tent” with each other. For example, we would like to know if a UML class diagram is

consistent with a collaboration diagram.

8

There is no standard definition of “consistency” and each research group adopts

its own different approach, usually informal. To the best of our knowledge, even

where more formal approaches are suggested, no tool has yet been developed that im-

plements the approach.

As an example, consider the lightweight approach to multi-view consistency de-

veloped in [17] which presents an approach to determine the consistency between a

class model and a scenario model. The work assumes semi-formal, loosely coupled

models that are complementary. Scenarios model the external system behaviour and

class models specify the internal state dependent functionality. Consistency is

achieved by:

• minimizing overlap between the two models; and

• systematically cross-referencing corresponding information.

An example of a “formally checkable” rule in [17] is the Conformance of References

Rule: “every reference from a scenario to an item in the class model must have a cor-

responding reference in the class model”. While [17] calls this rule formally

checkable, a lot of infrastructure, including the proper definition and elaboration of

the underlying metamodel, would be needed.

The work in [53] is interesting because it proposes a formal notion of consistency

between a basic state-machine model and a message sequence chart by defining the

notion of a system trace. Views can then be transformed to labeled transition systems,

9

and consistency checked by the intersection of the transition systems. It is not clear

how this approach would scale up to complete and fully specified UML diagrams.

As mentioned earlier, MDA/MDD are now making quite an impact in industry.

There are currently over 40 MDA style tools listed at the OMG website1. Surprisingly,

none of these tools really support multi-view consistency in the sense that we have

been discussing it.

In order to see this, we must understand how MDD is currently being pursued. As

pointed out in [55], there are currently two approaches. Both approaches allow the

full range of UML diagrams (or views) in their tools including structural class dia-

grams and behavioural collaboration diagrams. However, both approaches do not

incorporate the collaboration diagram into model consistency (and hence model exe-

cution) and the final generated code. Thus neither approach truly address multi-view

consistency.

In the translationist approach [50] the PIM is automatically translated directly

into the final code of the system using generation rules. The downstream artefacts

(PSM and code) are not further elaborated or amended by hand. The PIM is the full

source of the generated system.

The generation rules are used to convert the class diagram into the final code.

How is the complete behaviour of a class defined? In the translationist approach the

1 http://www.omg.org/mda/committed-products.htm

10

“behaviour of the system is driven by objects moving from one stage in their lifecycle

to another in response to events” [50, page 6]. In this approach, UML statecharts and

a device independent Action Language are used to elaborate the behaviour of a class

in the PIM.

In the elaborationist approach, the definition of the application is built up gradu-

ally as you progress from PIM, to PSM and finally to code. Thus, it is possible for the

lower level models to get out of step with the higher ones. Thus, “round trip engineer-

ing” support is provided to help the designer get the code in synch with the model.

Most of the current MDA tools appear to fall into this category.

A recent text [54] on the elaborationist approach also uses class diagrams for

structure. However, instead of using statecharts for behaviour, [54] recommends that

the “dynamics of the system are represented by pre and post conditions on opera-

tions” [54, page 36]. OCL is the recommended language for expressing these

contracts. A major advantage of this approach is that later code can be tested against

the contracts, a feature missing from the translationist approach. To our knowledge,

none of the current MDA tools support OCL in this way. So this approach is still at

the conceptual stage.

What do translationists say about elaborationist? Don’t’ use it “because elabora-

tion is stupid” [50, page 303] as the benefits of MDD automation are lost.

Elaborationists write that “Executable UML [= translationists] is suitable within spe-

cialized domains [e.g. real-time systems], but even there the benefits are less than you

11

would expect” [54, Page 36]. In commercial applications statecharts are not the pre-

ferred modelling view; rather, collaboration diagrams are preferred [55].

In both approaches, basic system structure is defined in a class diagram. In order

to define behaviour and details of the class methods, either statecharts [50], or

pre/post conditions [54] are used. Roughly speaking, statecharts and contracts provide

complementary elaborations of class behaviour. BON class diagrams (see sequel)

contain the ability to display the classes and their contracts in a single-view. Thus

both current translationist and elaborationist approaches are, in effect, dealing with

what is a single view in BON. What is missing? – Collaboration diagrams for show-

ing the run-time interactions and scenarios between objects (called dynamic diagrams

in BON). The challenge taken up in this thesis is to develop a tool for checking the

consistency of structural class diagrams and behavioural dynamic diagrams.

1.2 Other consistency approaches

The work in [21] provides a framework for managing multi-view consistency

called xlinkit that is a generic tool for managing the consistency of distributed docu-

ments. It consists of a language based on first order logic for expressing constraints

between documents, a document management system and an engine that checks

documents against constraints.

In [42, 43, 38] a framework is developed in which software development knowl-

edge is portioned into multiple views called “ViewPoints”. Inconsistencies between

12

ViewPoints are managed by explicitly representing relationships between them, and

recording both resolved and unresolved inconsistencies. In this approach inconsisten-

cies are not always considered “bad” as it might prove premature to remove them too

early in the design. Inconsistency management can in fact be used as a tool for re-

quirements elicitation.

1.3 The contribution of this thesis

In this thesis, we develop the first tool, to our knowledge that does multi-view

consistency checking between structural class diagrams and behavioural collaboration

diagrams. For reasons explained in the next chapter, we use the description language

BON rather than UML.

We formalize the notion consistency(v1,v2) of two views v1 (a static view with

contracts) and v2 (a dynamic view) of a model, based on prior work by Paige and Os-

troff in [1; 14]. The definition of consistency (which is more comprehensive than the

earlier work) is divided into syntactic and contractual (or behavioural) consistency.

We develop algorithms to check syntactic consistency, and incorporate these algo-

rithms in a new tool called the BON Consistency Checking Tool (BCCT).

The tool can be used to construct graphical models, features, contracts and de-

tailed body code and automatically run the syntactic consistency tests. The model can

be automatically translated to executable Eiffel code, and a testdriver is used to check

contractual consistency. The tool can be used to interactively and repeatedly construct

13

models, automatically test for consistency and refactor the models as required. This

leads to a design method that we call Consistency Driven Development (CDD), by

analogy with Test Driven Development (TDD).

1.4 Thesis outline

The rest of this thesis proceeds as follows:

• In Chapter 2, we describe BON and explain why we choose BON over UML.

We describe BON static and dynamic diagrams.

• In Chapter 3 we describe prior work on the BON metamodel. The metamodel

is important in the definition of consistency between static and dynamic dia-

grams.

• In Chapter 4 we describe extensions to the metamodel needed for our tool, and

we also define the notion of multi-view consistency using the metamodel. We

also provide some of the algorithms involved in doing the consistency checks.

• In Chapter 5 we describe the remaining algorithm needed for consistency

checking called the Specified Depth algorithm, which is needed for checking

that a message in a dynamic diagram has an associated link in a static dia-

gram.

• In Chapter 6 we describe our BCCT tool that implements the algorithms to

check consistency. We also define the notion of Consistency Driven Devel-

opment.

14

• Chapter 7 is our concluding chapter.

15

Chapter 2 Business Object Notation (BON)

In this chapter, we describe the graphical BON design language, including its facility

for Design by Contract (DbC), and we also justify the choice of BON/Eiffel instead

of UML/Java for our work on consistency checking.

2.1 Overview of BON

BON (Business Object Notation), developed by Jean-Marc Nerson and Kim

Waldén [8], is an object-oriented method possessing a recommended development

process as well as graphical and textual notations for specifying OO systems2.

BON builds on three principles, fundamental to the construction of industrial

strength quality software: seamlessness, reversibility and software contracts. It was

developed as a means of extending the higher-level concepts of the Eiffel program-

ming language into the realm of analysis and design, aided by a graphical and textual

notation, and can be integrated into Eiffel seamlessly [30]. In this section, we intro-

duce some BON notation and definitions. The references [8, 9] provide more detailed

information on BON/Eiffel.

2 For the BON method and tool see http://www.bon-method.com

16

Static and dynamic diagrams

Graphical BON supports two kinds of diagrams: static diagrams, similar to class

diagrams in UML and dynamic diagrams similar to UML collaboration diagrams. A

sample static diagram and dynamic diagram representing part of a banking system is

shown in Figure 2-1 and Figure 2-2 respectively.

ROOT_CLASS CUSTOMER

TRANSACTION ACCOUNT

DEPOSIT_TRANSACTION

t a1

c1

account customer

transactions:LIST[..]

Figure 2-1 BON Static diagram of bank example

Static diagrams describe the structure of a system, i.e. the components and the re-

lationships between these components. In BON static diagrams, classes are grouped

into clusters. Likewise, in dynamic diagrams objects may be grouped [8]. Consistency

checking does not depend on clusters and groups; hence we do not show clusters and

groups in this thesis.

17

ROOT_CLASS
(root)

CUSTOMER
(c1)

ACCOUNT
(a1)

DEPOSIT_TRANSACTION
(t)

LIST[TRANSACTION]
(transactions)

1

2, 4

3

2.1

2.2

Scenario: deposit
1 create customer c1
2 create account a1 with c1
2.1 create transaction list transactions
2.2 set customer’s account to a1
3 create a deposit transaction t for account a1 of $100
3.1 add transaction t to transactions
4 check balance

3.1

Figure 2-2 BON dynamic diagrams of bank example – Deposit

Dynamic diagrams document how the system will behave over time. A dynamic

diagram consists of a set of communicating objects. The diagram will therefore con-

tain one or more objects, messages sent between these objects and a scenario box to

describe messages in free text.

A full execution of the system is simply the invocation of one routine (a construc-

tor such as make) on the root object. The make routine in turn calls other routines and

so on until termination. A system scenario is just a possible partial system execution.

Classes

The main construct in a BON diagram is a class. In a BON static diagram, there

are one or more classes, which have a name, an optional class invariant, and zero or

18

more features (attributes, functional routines and procedural routines). A class may be

in one of two relationships with other classes: the inheritance relationship and the cli-

ent-supplier relationship.

In BON, a class has two views: an expanded form and a compressed form. In the

compressed form, a class header is represented graphically by an ellipse with the class

name in the centre of the ellipse using upper case letters like this: CUSTOMER . The

class name is an alphanumeric string with possible underscores. In Figure 2-1, there

are five classes: ROOT_CLASS, CUSTOMER, TRANSACTION, ACCOUNT, and

DEPOSIT_TRANSACTION. Graphical BON uses different class headers to represent

different kind of classes: root, deferred, effective, etc. ROOT_CLASS in Figure 2-1 is

a root class and it is shown with a double ellipse as: ROOT_CLASS . A root class is a

class of which one instance will be created when an object-oriented process is started,

and whose initialization routine (often called make) drives the execution.

An expanded form of the class with features and their contracts is shown in Figure

 2-3.The expanded form of a class shows more detailed information of a class than the

condensed form. It shows the class invariant, and a precondition and postcondition for

each feature (e.g. set_account).

Class TRANSACTION* is deferred as indicated by the asterisk (*) after the name.

This is because this class has at least one deferred routine make* (i.e. a routine lack-

ing implementation). DEPOSIT_TRANSACTION+ is an effective class as all its

routines are implemented (as indicated by the plus sign after the class name).

19

Figure 2-3 Expanded form of CUSTOMER

Features

In BON, a feature is either a query or a command (a procedural routine). A query

returns a value but does not change the system state. A command does not return a

value, but may change the state of the system. A query is either an attribute or a func-

tion routine.

A static diagram supports two kinds of relationships: inheritance and client-

supplier.

Inheritance Relationship

Inheritance defines a sub-type (is-a) relation. It can be defined as the inclusion in

a class, called CHILD, of operations and contract elements defined in another class

PARENT. A class that is either a parent or grandparent (recursively) of a class is

20

called an ancestor of the class and a class that is either child or grandchild (recur-

sively) of a class is called a descendant of the class. An instance of a child class can

always be used instead of an instance of the parent class.

A single arrow pointing from the child to its parent, called an inheritance link,

represents an inheritance relation. In Figure 2-1, class DEPOSIT_TRANSACTION in-

herits from class TRANSACTION. Class DEPOSIT_TRANSACTION is the child and

class TRANSACTION is the parent.

Client-supplier Relationship

A client-supplier relationship or client relation for short, between a client class A

and a supplier class B means A uses services supplied by B. In Figure 2-1, there is a

client-supplier relationship between class TRANSACTION and class ACOUNT.

ACCOUNT is the client and TRANSANCTION is the supplier. In a static diagram, a

double line extending from the client to the supplier – called a client link, represents a

client-supplier relationship. There are two possible client-supplier relationships: asso-

ciation (represented by a simple arrow) and aggregation (represented by an

arrowhead with a perpendicular line). Both kinds of association relationships provide

the same information with respect to consistency. As a result, we will not treat them

separately.

A client link can be labelled with one or several names, which represent names of

references to the supplier classes. For example, there is a client link in Figure 2-1 be-

21

tween ROOT_CLASS and CUSTOMER labelled c1, which means that in

ROOT_CLASS there is an attribute with name c1 of type CUSTOMER.

Objects

Objects are represented graphically in dynamic diagrams by rectangles to differ-

entiate them from ellipses (for classes) in static diagrams. The name of the

corresponding class is in upper case in the centre and the name of the object in lower

case.

Messages

A message that is sent from one object to another is represented by a dashed ar-

row extending from the source object to the target object – this arrow is called a

message link. The source and target objects should have corresponding classes in the

static diagram. The message link is labelled with sequence numbers which represent

time in the scenario and correspond to entries in the scenario box where the role of

each call is described using free text. Messages in dynamic diagrams are visual rep-

resentations of feature calls.

BON Textual Notation

BON also supports a textual notation, which does not contain any description of

spatial layout. The following is the specification of the class CUSTOMER using tex-

tual BON.

22

indexing

 description: "Information about bank customer"

class interface

 CUSTOMER

create

 make

feature

 account: ACCOUNT

 make (a_name: STRING)

 require

 a_name_not_void: a_name /= void

 ensure

 name_assigned: name = a_name

 name: STRING

 set_account (a_account: ACCOUNT)

 ensure

 account_assigned: account = a_account

end -- class CUSTOMER

Figure 2-4 BON textual view of class CUSTOMER

The above view has no implementation detail. It is, in fact, the same as the Eiffel con-

tract view, which the EiffelStudio IDE (of Eiffel Software) can automatically extract

from the complete implemented text of the class. This is what makes the high-level

Eiffel views interchangeable with BON.

Both BON and UML can be used to describe a design irrespective of the imple-

mentation language (C, Java, Eiffel etc.). However, UML is not well-integrated with

any language. As an example, UML supports multiple inheritance, but Java does not.

It is not in general possible to seamlessly move from a UML design to Java code, nor

23

is it possible to automatically reverse engineer the UML diagram from the Java code.

By contrast, BON and Eiffel are seamless and reversible at least for static diagrams.

The BCCT tool (to be presented in this thesis), will aid in maintaining consistency

between static and dynamic diagrams, a property not supported in any current tool.

Obviously, BON/Eiffel is a better framework for such a tool than UML/Java, given

that at least static diagrams are consistent with Eiffel code by construction.

2.2 Design by contract

The aim of software engineering is to build reliable software. Design by Contract

(DbC) can be seen as an advanced software engineering technique for building qual-

ity software [9]. DbC is a principle that states interfaces of modules of a software

system (especially mission-critical ones) should be governed by precise specifica-

tions, similar to contracts between people or companies. The contracts cover mutual

obligations, benefits and consistency constraints (invariants). Together these proper-

ties are known as assertions, and are directly supported in BON and Eiffel [9].

In BON static diagrams, and indicate pre and postconditions respectively.

Invariants are specified in special invariant sections as shown in Figure 2-3.

In Eiffel, the precondition is the require part; the postcondition is the ensure part

and the invariant is the invariant part (Figure 2-4).

24

Java does not support contracts directly, although several tools are available for

monitoring behavioural contracts in Java. This is another reason why we choose

BON/Eiffel instead of UML/Java for the investigation of consistency.

2.3 Single model principle

UML, a de facto standard for modelling languages, is a major step towards standard-

izing notations for the visual specification and design of object-oriented systems [13].

UML allows the construction of many views of the system under description. In terms

of the views of a model, UML defines the following graphical diagrams:

• use case diagram

• class diagram

• behaviour diagrams:

• statechart diagram

• activity diagram

• interaction diagrams:

• sequence diagram

• collaboration diagram

• implementation diagrams:

• component diagram

• deployment diagram

25

UML allows for multiple views of the system because no single view of the sys-

tem will suffice. The problem is how to keep consistency between these various

views. This is where the single model principle plays an important role.

The single model principle is defined in [11] as follows: “A software development

follows the single model principle if it requires the use of a seamless and reversible

wide-spectrum language for software description, possessing conceptual integrity at

both the module and system levels, while maintaining view consistency at different

level of abstraction.” Following this principle can make consistency checking sim-

pler.

 In [11], UML/Java and BON/Eiffel are compared with respect to the single

model principle as shown in Figure 2-5. It is the lack of methods to ensure the consis-

tency of static and dynamic diagrams that prevents BON/Eiffel models from

completely satisfying the single model principle (see cell in the table of Figure

 2-5with a Qualified Yes). Better consistency checking methods between static and

dynamic diagrams will be treated in this thesis based on prior work in [1; 14].

26

Criterion UML/Java BON/Eiffel

Seamless and reversible
wide-spectrum descrip-
tions

No
(e.g., impedance mismatch
between OCL and iCon-
tract, or between
statecharts and classes)

Yes
(by construction)

Conceptual integrity

No
(e.g. constraints can be
expressed on dependency
arrows, in notes, via OCL
and in statecharts; collabo-
ration and sequence
diagrams are identical se-
mantically)

Yes
(by construction)

View consistency

No
(in general, no algorithms
or methods available to
check the constructive part
– classes and statecharts –
against the other views,
e.g., OCL)

Qualified Yes
(Static diagrams and code
can each be automatically
derived from each other.
Consistency of static and
dynamic diagrams is
treated in [1; 14] and in this
thesis).

Figure 2-5 Single model principle - comparison

Figure 2-6 describes the relationship between the various BON/Eiffel deliverables

before the work reported in [1; 14] and in this thesis. As described above, fully im-

plemented Eiffel source code and BON static diagrams can be automatically derived

from each other as indicated by the <<auto-derive>> stereotype. However, there is no

guarantee of consistency between the dynamic and static diagrams as indicated by the

question mark in the stereotype (<<?>>). What we would really like to achieve is the

situation described in Figure 2-7.

27

BON Static Diagrams BON Dynamic Diagrams

Eiffel Source Code
<<

au
t o

- d
er

i v
e>

>

<<?>>

<<?>>

Figure 2-6 Eiffel deliverable dependencies before this thesis

BON Static Diagrams BON Dynamic Diagrams

Eiffel Source Code

<<
au

t o
- d

er
i v

e>
>

<<check- consi st ency>>

<<check- consi st ency>>

Figure 2-7 Eiffel deliverable dependencies in this thesis

It may not be possible to have an <<auto-derive>> relationship for static and dy-

namic diagrams (static class diagrams can be automatically computed from code and

vice versa). However, at the very least, we can aim for an automatic consistency

28

check, as described by the <<check-consistency>> stereotype in Figure 2-7, i.e. given

a pair of diagrams, static and dynamic, press a button in some tool and automatically

confirm (yes or no) if the two are consistent. Also, given a dynamic diagram and Eif-

fel code, we would also at the same time like to confirm that they are consistent with

each other. Given any two views v1 and v2 (e.g. code and a diagram, or a static and

dynamic diagram) we thus have two possibilities:

• <<auto-derive>>: v1 can automatically be derived from v2 and vice versa;

• <<check-consistency>>: given both v1 and v2, we can automatically check

that the views are consistent.

A relatively easy way to implement check-consistency would be to allow the software

developer to develop the static and dynamic diagrams together (hand-in-hand). We

could then ensure that the two views are consistent by construction. However, this

would remove flexibility for the developer. Many developers might prefer to develop

the diagrams independently. We thus define check-consistency by stating that two

views (perhaps developed independently) are provided and we must automatically

check the consistency of these two views. This is a more difficult problem than the

hand-in-hand approach.

2.4 Why BON over UML?

From the discussion in the previous sections, BON has the following advantages over

UML:

29

1. It is simple. Instead of a variety of behavioural diagrams (collaboration dia-

grams, sequence diagrams and statecharts) with impedance mismatch between

them, BON uses the matching notions of Dynamic Diagrams and Contracts.

2. It uses a rich assertion language for pre-conditions, post-conditions and in-

variants. This allows the user to express constraints on class properties in the

text of the program itself, whereas in UML, the OCL is written separately

from the Class Diagram or code text. Without rich contract support (including

run-time assertion checking) in the program text, consistency checking of

OCL with the code is difficult.

3. It more closely follows the Single Model Principle [11], which makes it more

amenable to consistency checking.

4. It can be seamlessly integrated with Eiffel [9].

Because of these advantages, we have decided to use BON/Eiffel for presenting

our work on consistency checking. A detailed comparison between BON and UML

can be found in [12].

30

Chapter 3 The BON Metamodel

A modelling language consists of two parts: a notation used to write models; and a

metamodel which expresses the well-formedness constraints that all legitimate mod-

els written in the notation must obey. Without a precise metamodel it is difficult to

explain the notation and build tools that support the notation.

The construction of the BCCT tool developed in this thesis will use a modified

version of the BON metamodel. In this chapter we discuss the BON metamodel as it

currently stands, and describe the modifications in the next chapter.

The BON metamodel has been specified precisely using BON itself (informally)

and also formally in the higher order logic PVS [31]. The details of the BON meta-

model are described in [3] and [44].

MODEL

ABSTRACTIONS RELATIONSHIPS

abs:SET[..]

Figure 3-1 The BON metamodel, abstract architecture

A high-level view of the BON metamodel is shown in Figure 3-1. BON models

are instances of the class MODEL. Each model has a set of abstractions. The abstrac-

tions cluster in Figure 3-1 describes either static views (BON static diagrams) or

dynamic views (dynamic diagrams). For example, CLASS is an example of a static

abstraction. A class will have properties such as a name, features, and parents. A class

will also have a set of relationships with other classes, e.g. a class may inherit from

31

another class. These relationships are described in the relationship cluster, and

INHERITANCE is an example of a static relationship. The BON textual view of

INHERITANCE is shown below:

class interface INHERITANCE feature

 source: ABSTRACTION
 target: ABSTRACTION

 set_source (s: STATIC_ABSTRACTION) is
 require
 s /= void
 ensure
 source = s
 end

 set_target (s: STATIC_ABSTRACTION) is
 require
 s /= void
 ensure
 target = s
 end

invariant
 source /= target

end -- class INHERITANCE

An example of a metamodel well-formedness constraint is that there should be no

cycles in the inheritance graph (an ancestor cannot inherit from their descendant). In

the BON metamodel such constraints are expressed via assertions (in this case an in-

variant). This constraint is formulated as an invariant no_inheritance_cycles in

MODEL as shown in Figure 3-2.

32

class MODEL feature

 rel: LIST[RELATIONSHIP] -- list of all relationships including inheritance relationships

closure: LIST [INHERITANCE]

-- list of all direct inheritances as well as inheritances due to transitivity

no_inheritance_cycles ≅
1 1 1 1| : (. . . .)r closure r rel r INHERITANCE r source r target r target r source∀ ∈ •¬∃ ∈ • = ∧ =

…

invariant
 disjoint_clusters
 no_inheritance_cycles
 unique_abstraction_names
 no_bidirectional_aggregations
 unique_root_class
 at_least_one_instance_of_root
 model_covariance
 enable_dynamic_diagram

…
end

Figure 3-2 Class MODEL with an invariant no_inheritance_cycles

There are two categories of metamodel well-formedness constraints. The no-

inheritance-cycles constraint applies to a single diagram (or view), in this case a BON

static diagram. The first category of constraints is of this kind, and we call it single

view consistency. The original metamodel was limited to this kind of consistency, and

a BON case tool was developed to automatically perform these kinds of checks in

[16].

33

MODEL

ABSTRACTIONS

ABSTRACTION

STATIC_ABSTRACTION DYNAMIC_ABSTRACTION

CLASS CLUSTER OBJECT OBJECT_CLUSTER

RELATIONSHIPS

RELATIONSHIP

STATIC_
RELASTIONSHIP

MESSAGE

INHERITANCE ASSOCIATION AGGREGATION

abs:SET[..]

Figure 3-3 Details of the BON metamodel

In [1; 14], a second category of well-formedness constraints was developed which

we shall call multiple-view consistency, in which we are presented with two views of

the system (a BON static and a dynamic diagram). We would like to confirm that

these two views are consistent with each other. This is more challenging than single-

34

view consistency3. However, to the best of our knowledge, no such tool currently ex-

ists for mechanized (or fully automatic) checking of view consistency.

 The work in [1; 14] introduces four constraints for consistency checking between

static diagrams and dynamic diagrams using an extended version of the BON meta-

model of [3], and describes procedures for consistency checking using the logic PVS.

We discuss these consistency constraints using the bank example of the previous

chapter.

The dynamic diagram of the bank shown in Figure 2-2 is consistent with the static

diagram of Figure 2-1. So, we first provide an example of two views that are incon-

sistent with each other, as that will more clearly illustrate the concepts.

Consider the new withdrawal scenario in the BON Dynamic Diagram (BDD) of

Figure 3-4, which we wish to compare with the BON Static Diagram (BSD) of Figure

 2-1.

The BDD of Figure 3-4 has an object w of type WITHDRAW_TRANSACTION.

However, there is no corresponding class WITHDRAW_TRANSACTION in the BSD

of Figure 2-1. There is thus an inconsistency between these two views, which leads to

the first consistency constraint:

3 In [17], these two categories are called intra-model and inter-model consistency. The rules developed
in [17] are informal. In [21] a framework for such tools called XLinkit Is developed, but the user
must define their own constraints.

35

CC1 – Consistency Constraint 1: Each object o of type C in the BDD has a corre-

sponding type (i.e. class) C in the BSD.

ROOT_CLASS
(root)

WITHDRAW_TRANSACTION
(w)

LIST[TRANSACTION]
(transactions)

Scenario: withdraw

1 create a withdraw transaction w for account a1 of $100
1.1 add transaction w to transactions

1

1.1

Figure 3-4 BON dynamic diagrams of bank example – Withdraw

Suppose we now insert an empty class WITHDRAW_TRANSACTION into the

BSD. Now, CC1 is satisfied.

Now consider message-1 in the BDD (Figure 3-4). This message is invoked by

some routine in ROOT_CLASS. Of course, if this class has no routines, then no mes-

sage can be sent. Thus some routine (say withdrawal_scenario) must exist, and this

routine must invoke some routine (e.g. make) in the target of the message which in

our case is the class WITHDRAWAL_TRANSACTION, as shown in the sample

code below.

36

withdrawal_scenario: BOOLEAN is
 local
 a: ACCOUNT
 c1: CUSTOMER
 w: WITHDRAW_TRANSACTION
 balance:REAL

 do
 create c1.make ("joe")
 create a.make (c1)
 balance:=a.balance
 create w.make (-100, a)
 Result := c1.account.balance = (balance-100)
 end

CC2 – Consistency Constraint 2: Consider a message m with source object src

and target object tgt. Let src have type SRC and tgt have type TGT (by CC1, TGT

and SRC are guaranteed to exist in the corresponding BSD). Then message m

must have at least one corresponding feature r in class SRC of the BSD, where the

body of r makes a call tgt.f.

Now assume that ROOT_CLASS indeed contains withdrawal_scenario. Thus,

CC2 now holds.

 However, now there is another problem. There is no guarantee that the feature

make actually exists in WITHDRAW_TRANSACTION (e.g. this class may be empty).

What we need is something like the sample code below:

37

make (an_amount: REAL; a: ACCOUNT) is
 require else
 an_amount < 0 and a.balance >= - an_amount
 do
 amount := an_amount
 a.transactions.extend (Current)
 ensure then
 amount = an_amount
 a.balance = old a.balance + an_amount

a.transactions.has(Current)
a.transactions.count = old a.transactions.count + 1

end

Suppose we add make as above, but export it to NONE (i.e. we make it private). Then

the source of the message (object root in the BDD) still cannot invoke the routine.

Thus, make must be exported to class ROOT_CLASS. Of course, ROOT_CLASS is

guaranteed to exist by CC1.

CC3 – Consistency Constraint 3: Consider a message m with source object src

and target object tgt. Let src have type SRC and tgt have type TGT, and let SRC

have routine r that makes a call tgt.f (as in CC2). Then f must be a feature of TGT

that is exported to SRC4.

Suppose we now add the feature make and export it to ROOT_CLASS. Now, CC2

and CC3 are satisfied. What else could go wrong in the BDD?

4 In [1], the rules CC2 and CC3 are expressed differently, but the presentation here is clearer from the
point of view of understanding the sequel.

38

ROOT_CLASS
(root)

WITHDRAW_TRANSACTION
(w)

LIST[TRANSACTION]
(transactions)

Scenario: withdraw

1 create a withdraw transaction w for account a of $100
1.1 add transaction w to transactions
2 check balance

1

1.1

ACCOUNT
(a)

2

Figure 3-5 BON dynamic diagram of bank example – Withdraw 2

Consider the withdraw scenario in the BDD of Figure 3-5 in which message m1.1

has been greyed out (it is a submessage of message m1), and an extra message m2 has

been added, which is a call to the query balance of account a. The type of a is

ACCOUNT which has the contract view shown in Figure 3-6. For now, we ignore

submessages and focus on the main scenario which is:

m1; m2

The main idea is that the postcondition of m1 should be strong enough to entail the

precondition of m2. We need to assume the existence of a predicate init (the system

context), which holds initially before m1 executes, such that

)_.0_(.
.1

where
.1

amountanbalanceaamountanpremake
premake.prem

preminit

−≥∧<≅
≅

→

 (1)

39

where make is a feature of the target WITHDRAWAL_TRANSACTION of the mes-

sage. For example, suppose we select our system context init as

250.100_ =∧−=≅ balanceaamountaninit (2)

then (1) trivially holds. If (1) does not hold, then this is called a failed execution, and

init must be strengthened for the procedure to continue.

class ACCOUNT feature

…
 make (a_customer: CUSTOMER)

 customer: CUSTOMER

 transactions: LIST [TRANSACTION]

 balance: REAL is

 require balance >= 0

 ensure)`()).((alancebbalanceamounttnstransactiotResult =∧•∈∑=

end

Note: b̀alance is an abbreviation for balanceold

Figure 3-6 Class Account

We must first symbolically “execute” m1 to obtain its postcondition within the

system context, which is

)150.(
i.e.

).1]`:[`(

=≡′

∧=•∃≅′

balanceatini

postmvvinitvtini
 (3)

40

using the one point rule to eliminate the existential operator [45]. The single state

predicate init′ is the new system context after message m1 has been executed. To

“execute” message m2, we can now repeat the above procedure of (1) and (3), except

that instead of init in (1) we use the new context init′ .This procedure can be fol-

lowed recursively for any sequence of messages

m1; m2;m3;..;mn.

CC4 — Consistency Constraint 4: Given a message sequence m1; m2; m3; ..; mn,

select an initial context init and apply the procedure outlined in (1) and (3) recur-

sively, and check that there are no failed executions.

The four consistency constraints can be divided into two categories as follows:

• Syntactic-consistency: CC1, CC2 and CC3;

• Contractual-consistency: CC4

Syntactic-consistency is something that can in essence be automatically checked by a

suitably complex compiler based on the metamodel for static and dynamic views, and

it ensures that the appropriate objects and messages (in the BDD) and classes and re-

lationships (in the BSD) exist and appropriately correlate with each other.

By contrast, contract-consistency cannot be fully automated, because we must

prove theorems as shown at steps (1), and (3) above. Proving these theorems, in effect

41

shows the model (consisting of the BDD and BDS) has at least one successful sym-

bolic execution (assuming init).

However, we would like to provide the software developer with some mechanized

assistance in proving the theorems. The approach followed in [1] is to translate the

metamodel and model into predicate logic and to use the PVS theorem prover to

semi-automate the proofs. At this point the translation of the model must be done by

hand, but a tool could be envisaged that would do the job. The developer will have to

interact with the theorem prover during the proof process.

Another semi-automatic approach was outlined in [14]. In this approach, a test

driver is constructed from the BDD, using some interaction with the software devel-

oper. The test driver and code are compiled together and executed, with the test driver

making the calls in the order shown in the scenario box. If during the execution, a

contract violation is detected (automatically detected by the runtime), then that con-

tract violation indicates that CC4 is violated.

However, we believe that there is a flaw in the basic algorithm (see Appendix B).

Applying this algorithm for the withdrawal scenario of Figure 3-4, we obtain the test

driver in Figure 3-7. The user had to manually enter the code to set up the system

context init. Since $150 is deposited, a withdrawal of $100 should not trigger a failed

execution (and hence a contract violation).

However, if we run the test driver, we get a contract violation. What went wrong?

The problem is that m1.1 is a submessage of m1. In m1’s target feature (make of class

42

WIHTDRAW_TRANSACTION) was already included the call to m1.1’s target feature

(transactions.extend). In effect, the withdraw transaction has been invoked twice and

this leads to a contract violation. We refer to this problem with the algorithm as the

submessaging problem.

class TEST_DRIVER

creation

 make

feature

 w: WITHDRAW_TRANSACTION

 d: DEPOSIT_TRANSACTION

 a: ACCOUNT

 c: CUSTOMER

feature

 make is

 do

 -- manually entered by developer

 -- creates `init’

 create c.make("Joe")

 create a.make(c)

 create d.make (150, a)--initial state

 -- automatically generated by

 -- algorithm in Appendix B

 w.make(-100,a)------------------------------1

 a.transactions.extend (w)-------------------1.1

 check

 a.balance = 50

 end

 end

end -- class TEST_DRIVER

Figure 3-7 Test driver generated from Figure 3-4 using the algorithm in Appendix B

43

Chapter 4 The extended BON Metamodel

In previous chapters we discussed BON and the BON metamodel. In this chapter,

we introduce and justify extensions to the BON metamodel which will be needed for

the BCCT constraint checking tool.

4.1 BON metamodel used in this thesis

In Chapter 3, we introduced the BON metamodel from [1; 3]. In this section, we ex-

tend the metamodel so as to better describe multi-view consistency. We present the

new metamodel in BON itself as in [3], with consistency constraints written as invari-

ants of the model classes. Algorithms to check these constraints will then be

described. These algorithms will be at the heart of the BCCT tool. In the sequel,

“metamodel” refers to this new extended model, and “old metamodel” refers to the

original one described in the previous chapter.

The authors of reference [1] write “it is not within the spirit of BON to add new

views by adding new subclasses of MODEL, e.g., DYNAMIC_MODEL, etc., as this

can easily introduce inconsistency between views”. So, they use a class

EXTENDED_MODEL (Appendix C) that inherits from MODEL to describe multiple

view consistency and check for consistency by translating all the views to a common

model. This approach makes it difficult to introduce inconsistency between views and

has traceability problem [25, p34]. For example, if we find an object (in a BDD) that

44

has no corresponding class (in a BSD) as in constraint CC1, using only a model, it is

difficult to know which view this object belongs to.

MODEL VIEW

VIEWS

STATIC_DIAGRAM DYNAMIC_DIAGRAM

ABSTRACTIONS RELATIONSHIPS

abs:SET[..] rel:SET[..]

OTHERS

views:SET[..] CODE

Figure 4-1 New BON metamodel architecture

In the new metamodel we introduce the following:

• A new cluster VIEWS to describe the various views of the model. Static

and dynamic diagrams now inherit from a class VIEW in this cluster.

• Invariant clauses of class VIEW are used to capture single-view consis-

tency, such as the constraint no_inheritance_cycles described in the

previous chapter.

45

• Class MODEL contains a set of VIEW. Invariant clauses in MODEL are

used to capture constraints (CC1-CC4) and the new constraints introduced

in this chapter for multiple view consistency checking.

• In the old metamodel (Figure 3-1;Figure 3-3), the ABSTRACTIONS cluster

used the RELATIONSHIPS cluster. In the new metamodel, the VIEWS

cluster uses both ABSTRACTIONS and RELATIONSHIPS (Figure 4-1), to

allow simpler capture of multi-view consistency constraints.

In the views cluster, STATIC_DIAGRAM, DYNAMIC_DIAGRAM and CODE are

views. But we can now add new views in future work, such as use cases and state

charts.

 In the sequel, we focus on static diagrams and dynamic diagrams. A static dia-

gram is an instance of the class STATIC_DIAGRAM and a dynamic diagram is an

instance of the class DYNAMIC_DIAGRAM. MODEL has the following property

views: SET[VIEW]

For simplicity, but without loss of generality5, we will assume that there is a single

static diagram (view v1) and a single dynamic diagram (view v2) in views. We would

like to more formally define the notion of (1, 2)consistency v v , i.e. v1 and v2 are con-

5 The BCCT tool has the ability to store projects; each project can have many static and dynamic dia-
grams.

46

sistent precisely when they satisfy consistency constraints such as CC1, CC2, CC3

and CC4.

In the old metamodel, messages are between dynamic abstractions as shown be-

low [3]:

class MESSAGE feature

 source, target: OBJECT

 routine: ROUTINE

 number:INTEGER

invariant

 number >=1

end

The target routine (referred to in constraints CC2 and CC3 of the previous chapter)

must be constructed from the source routine, where routine has a property

calls: SET[CALL]

representing the calls made in the source routine body.

In the new metamodel, we follow the simpler approach of directly including both

the source and target features of MESSAGE as shown in Figure 4-2. The source rou-

tine is source_feature and the target feature called by the message is target_feature.

The source_feature is a feature in the source_object that invokes this message (i.e.

calls the target_feature) and the target_feature is the feature in the target_object that

executes this message (i.e. the feature called by the source_feature).

47

class MESSAGE feature

 number : STRING

 message : STRING

 source_object : OBJECT

 target_object : OBJECT

 source_feature : FEATURE

 target_feature : FEATURE

invariant

 source_object_exists

 target_object_exists

 source_feature_assigned

 target_feature_assigned

end –- MESSAGE

Figure 4-2 Interface of class MESSAGE in the new metamodel

In order to support submessages (see previous chapter), the property number of

MESSAGE is now a string from which message and submessage numbers can be ex-

tracted. Thus, a message “1” may have submessages “1.1” and “1.2”. The message’s

number and message represent the message information in the scenario box. The in-

variants in MESSAGE are to ensure the source object and the target object exist and

the source feature and the target feature have been assigned.

For consistency checking we will also need the ability to refer to the suppliers of a

class in a BSD. We therefore add a property suppliers in the metamodel construct

CLASS of Figure 3-3 as follows:

 suppliers: SET[CLASS]

48

4.2 Mapping the consistency constraints to the new meta-

model

In the previous chapter, we indicated that the old metamodel suffers from the submes-

saging problem. Consistency constraint CC4 requires that the postcondition of a

message (within the system context) must entail the precondition of the next message

in the BDD as shown in equations (1) and (3) of Chapter 4. To check CC4, the pro-

posal was made in [14] that a testdriver corresponding to the BDD could be derived;

the execution of the testdriver without contract failure would indicate that CC4 holds.

As we pointed out, the procedure to semi-automatically deriving the testdriver is

flawed.

In this chapter we will provide an algorithm (Algorithm 4-3) that automatically

translates the model (BDD and BSD views) into Eiffel code (the complete code or

text-view). We will also suggest how the testdriver can be semi-automatically derived

from the generated code.

Also, the consistency constraints CC1-CC4 are not complete. What we are lack-

ing is to check that an extended client-supplier path exists between the target class

and the source class. A new consistency constraint messages-invokable captures this

new constraint, and will be described in section 4.3.

Table 4-1 lists the old constraints and how they map to the constraints in the new

metamodel. For each constraint, we provide the formal predicate logic description of

the constraint, followed by an algorithm to check that the constraint holds.

49

Constraints

Old New
Algorithm

CC1 object-class Algorithm 4-1

CC2

CC3
message-feature Algorithm 4-2

CC4 contractual-consistency Algorithm 4-3
(generate code)

 messages-invokable Algorithm 5-4
(specified depth)

Table 4-1 Constraints and algorithms

The metamodel constructs STATIC_DIAGRAM, DYNAMIC_DIAGRAM,

CLASS, OBJECT, and FEATURE are shown in Figure 4-3 to Figure 4-7.

class STATIC_DIAGRAM feature

 name : STRING

 classes : SET[CLASS]

 rel : SET[STATIC_RELATIONSHIP]

 csrels : SET[CLIENT_SUPPLIER_REL]

 irels : SET[INHERITANCE_REL]

 closure_cs : SET[CLIENT_SUPPLIER_REL]

 -- set of all client-supplier closures

end

Figure 4-3 Interface of STATIC_DIAGRAM

50

class DYNAMIC_DIAGRAM feature

 name : STRING

 objects : SET[OBJECT]

 messages : SET[MESSAGES]

 message_seq: LIST[MESSAGES]

 scenario : SCENARIO

end –- DYNAMIC_DIAGRAM

Figure 4-4 Interface of DYNAMIC_DIAGRAM

class CLASS feature

 name : STRING

 features : SET[FEATURE]

 invariant : BOOLEAN

 suppliers : SET[CLASS]

end –- CLASS

Figure 4-5 Interface of CLASS

class OBJECT feature

 name : STRING

 class : CLASS

end –- OBJECT

Figure 4-6 Interface of OBJECT

51

class FEATURE feature

 name : STRING

 type : [ATTRIBUTE,QUERY,COMMAND]

 accessors : SET[CLASS]

 exported_type : [NONE, ANY, SELECTED]

 pre_condition : BOOLEAN

 post_condition : BOOLEAN

 calls : SET[CALL]

end – FEATURE

Figure 4-7 Interface of FEATURE

Constraint CC1 asserts that each object in view v2 in the BDD must have a corre-

sponding class in the BSD (in view v1). This constraint can be described as follows:

1 _
2 _

_ (1, 2) 2. 1. .

Constraint object-class:
v STATIC DIAGRAM
v DYNAMIC DIAGRAM
object class v v o v objects c v classes o class c

∈
∈

≅ ∀ ∈ •∃ ∈ • =

where STATIC_DIAGRAM and DYNAMIC_DIAGRAM are shown in Figure 4-3

and Figure 4-4 respectively.

The constraints CC2 and CC3 in the old metamodel (Chapter 4) are both related

to messages and features. In [1], CC2 is formalized as a PVS logical description,

while CC3 is left an informal part of the BON metamodel. There was no need to for-

malize CC3 as this is in essence checked by any Eiffel compiler.

Since we want our BCCT tool to do this check we must formalize CC3 as well. In

the new metamodel it is convenient to treat CC2 and CC3 as a single constraint called

message-feature(v1, v2):

52

1 _
2 _

_ (1, 2)
_ (1, 2)

2.
. _ . .

(. .

Constraint message-feature:

 (

v STATIC DIAGRAM
v DYNAMIC DIAGRAM
message feature v v

object class v v
m v messages
sf m source object class features

tf m target_object

∈
∈

≅

∧∀ ∈ •
∃ ∈ •

∃ ∈ .
. _ . .)))

_ (1, 2) . . 1.
_ (1, 2) . _ . 1.

 (

where

class features
m source feature sf m target_feature tf tf sf calls

object class v v m target_object class v classes
object class v v m source object class v classes

•
= ∧ = ∧ ∈

→ ∈
→ ∈

Constraint message-feature omits one aspect of CC3 – it does not check that tf is ex-

ported to source_object.class. This check is now done in the messages-invokable

constraint which we describe in the next subsection. The inner predicate of message-

feature could in fact be written in class MESSAGE.

4.3 Path closure problem

Consider the two views of a model (a BSD and a BDD) in Figure 4-8 in which

object a sends message m1 to object c. The sending routine r has a call b.z.c.f , where

(.) *z a b= , i.e. there may be zero or more double dotted calls a.b. The call b.z.c.f is

an element of property calls in the metamodel construct FEATURE in Figure 4-7.

The constraint message_feature indeed checks that appropriate routines r and c.f exist.

53

But, there is still no guarantee that there is a path in the class diagram (i.e. in the BSD)

between A and C that corresponds to a call such as b.z.c.f. We call this the path-

closure problem.

A

r is
do

 b.a.b.a.b.c.f
 end

C

f

B

b

a
c

A
(a)

C
(c)

1 Scenario
1: a sends message m to c

Figure 4-8 Recursive message check

Obviously, we must add an additional consistency constraint to check that there is

an appropriate path in the class diagram corresponding to a call such as b.z.c.f. We

define a new consistency constraint in addition to the already enumerated constraints

(see Table 4-1). This new constraint is called the messages-invokable consistency

constraint.

54

1 _
2 _

_ (1, 2)
_ (1, 2) 2.)

1. _ .

Constraint messages-invokable

where

 (

v STATIC DIAGRAM
v DYNAMIC DIAGRAM

messages invokable v v
object class v v m v messages client_supplier export

client_supplier
r v closures cs r s

∈
∈

≅
∧∀ ∈ • ∧

≅
∃ ∈ • . _ .)

(. _ .)

_ : [_ _]
{ | : _ _ } ensure

ource m source object class r.target m.target_object.class

export m source object class m.target_feature.accessors

closures cs SET CLIENT SUPPLIER REL
Result r rel r CLIENT SUPPLIER REL

= ∧ =

≅ ∈

= ∈ ∪
{ : _ _ |

(1, 2 | 1, 2 : _ _ 1. 2.)
()}

r CLIENT SUPPLIER REL
r r rel r r CLIENT SUPPLIER REL r source r target

 r.source r2.source r.target r1.target
∃ ∈ ∧ = •

= ∧ =

In the previous chapter we defined the contractual consistency of a message se-

quence m1; m2; … mn in a BDD via the recursive application of the

precondition/postcondition constraints (1) and (3) in Chapter 3. In these constraints,

the messages are elements of view v2 (the BDD), and the preconditions and postcon-

ditions of the source and target features of the messages are elements of view v1 (the

BSD). Thus contractual_consistency(v1, v2) is defined by the recursive application of

(1) and (3), and we thus have:

(

55

(1, 2)
_ (1, 2) _ (1, 2)

_ (1, 2)
_ (1, 2)

_ (1, 2)
_

where

consistency v v
syntactic consistency v v contractual consistency v v

contractual consistency v v
object class v v
message feature v v
messages invok

≅
∧

≅

∧
∧ (1, 2)able v v

4.4 Proposed BCCT tool

In the next section we provide the algorithms for checking (1, 2)consistency v v . These

algorithms will be part of the BCCT tool. To use the proposed BCCT tool, a software

developer proceeds as follows:

• Construct a model consisting of a BSD and BDD.

• Add detailed code to the bodies of routines in the model until the syntactic

consistency checks pass.

• Use Algorithm 4-3 to automatically translate from the model to Eiffel code,

and use a testdriver (developed in part by hand as described in the with-

drawal-scenario in Chapter 3) to execute the code. A successful run of the

testdriver without contract violations confirms that there is at least one execu-

tion of the system that conforms to the message sequence in the BDD.

56

4.5 Consistency checking algorithms

In the previous sections we defined the constraints needed to check syntactic and con-

tractual consistency between dynamic and static diagrams. We now supply algorithms

for syntactic consistency as well as code generation for contractual consistency

checking via testdrivers.

The algorithm for the object_class constraint is provided in Algorithm 4-1. We

need only traverse the dynamic diagram, object by object, and check if each object

has a corresponding class. The set of objects that have no corresponding class is

stored in entity object_no_class.

The algorithm for the message-feature constraint is provided in Algorithm 4-2.

We simply traverse the dynamic diagram, message by message, and check for appro-

priate source and target features. The entity message_no_feature is used to store

messages that do not have the appropriate source and target feature match.

57

class MODEL feature

 …

 object_no_class:SET[OBJECT]

 object_class (v1,v2): BOOLEAN is

 --where v1:STATIC_DIAGRAM, V2:DYNAMIC_DIAGRAM

 local

 j:INTEGER

 do

 from

 j:=v2.objects.lower

 Result := true

 until j = v2.objects.upper

 loop

 if (v1.classes.not_occur(v2.objects@j.class))

 Result := false

 object_no_class.add(v2.objects@j)

 end

 j:=j+1

 end

 end

 …

end

Algorithm 4-1 Algorithm object-class for checking if each object has a corresponding class

58

class MODEL feature

 …

 message_no_feature: SET[MESSAGE]

 message_feature(v1,v2):BOOLEAN is

 --v1:STATIC_DIAGRAM,v2:DYNAMIC_DIAGRAM

 local

 j:INTEGER

 m:MESSAGE

 do

 from

 Result := true

 j:=v2.messages.lower

 until j = v2.messages.upper

 loop

 m := v2.messages@j

 if(m.source_object.class.features.not_occur(m.source_feature)

 Result := false

 message_no_feature.add(m)

 elseif(m.target_object.class.features.not_occur(m.target_feature)

 Result := false

 message_no_feature.add(m)

 elseif(m.source_feature.calls.not_occur(m.target_feature))

 Result := false

 message_no_feature.add(m)

 end

 j:=j+1

 end

 end

 …

end -- MODEL

Algorithm 4-2 Algorithm message-feature for checking source and target feature match

59

The algorithm for messages_invokable is described in Chapter 5, where we also

discuss the possibility of supplying the software developer with all calls from the

source routine to a target routine to a specified depth.

Algorithm 4-3 describes how we generate code for each class in the model. On

the basis of this code we can develop a testdriver to check contractual consistency.

Etester [15] provides a unit testing framework for developing testdrivers. For example,

the deposit scenario in Figure 2-2 is easily converted to an Etester test. The report for

such a test is shown in Figure 4-9.

PASSED (1 out of 1)

Case Type Passed Total
Violation 0 0
Boolean 1 1

All Cases 1 1
State Contract Violation Test Name
Test1 ROOT_CLASS

PASSED NONE deposit_scenario

Figure 4-9 Report of unit test

If there is no object’s corresponding class is a root class in the static diagram, us-

ers then have to use Etester to generate a test driver to test the generated code.

60

class MODEL feature

 …

 generate_code (v1:STATIC_DIAGRAM) is

 local

 code : CODE

 classes : SET[CLASS]

 j : INTEGER

 class : CLASS

 do

 generate_system_code --generate .ace file

 from j:=v1.classes.lower

 until j = v1.classes.upper

 loop

 class := v1.classes@j

 code := creat_new_class_code (class.name)

 class.generate_descriptions(code)

 code.add (“CLASS”,class.name)

 code.generate_create_procedure(class.create)

 class.generate_inherit_code(code)

 class.generate_suppliers_code(code)

 class.generate_features(code)

 class.generate_invariant(code)

 code.write_to_file

 j:=j+1

 end

 end

 …

end -– class MODEL

 Algorithm 4-3 Algorithm for code generating

In this chapter, we have discussed algorithms for consistency checking. The im-

plementation of these algorithms described will be introduced in Appendix D.

61

Chapter 5 Specified Depth Algorithm

In the previous chapter (section 4.3) we illustrated and discussed the path-closure

problem. As part of consistency checking we must check that if (in a BDD view v2)

an object a (of type A) sends a message to object c (of type C), then in the BSD view

v1, a client-supplier path must exist from A to C.

A consistency constraint _ (1, 2)messages invokable v v was developed in the pre-

vious chapter to describe the appropriate constraint. In this chapter we develop

Algorithm 5-4 to check this constraint. The constraint is given by

)_.2()2,1(_
)2,1(_

exportsupplierclientmessagesvmvvclassobject
vvinvokablemessages

∧•∈∀∧
≅

We first illustrate checking the export predicate in the constraint. Figure 5-1

shows a static diagram with six classes, and Figure 5-2 shows a dynamic diagram

with two objects. In the dynamic diagram, object a is of type A and b is of type B. A

and B are specified in the static diagram. There are two checks that must be done for

messages_invokable. Object a sends message m1 to b. Message m1’s source feature is

sf and target feature is tf. If A is in the accessors’ list of tf (i.e. feature tf is exported to

A) then export is satisfied.

62

We noticed towards the end of this thesis that export needs a more detailed check.

For example, if the call is a.b.c.tf, then tf must be exported to C, c to B, and b to A.

However, this additional constraints has not been implemented in BCCT.

We must now check client_supplier – is there a client-supplier relationship be-

tween A and B? There are many client-supplier links (directly and indirectly) between

A and B. Because there are cycles such as E can call F and F can call E, many possi-

ble calls in the source routine are possible. Here are some of them:

b.tf

e.f.b.tf

e.f.e.f.b.tf

e.f.e.f.e.f.b.tf

e.f.e.f.e.f………b.tf

…

There are an infinite number of legal multi-dot calls. With inheritance the problem is

more complex.

A C D

E F B

Figure 5-1 Static Diagram with six classes

A(a) B(b)
1

Figure 5-2 Dynamic Diagram with two objects

63

5.1 Links

Figure 5-3 shows three different kinds of client-supplier links between a class A

and a class C: a direct link, an indirect-link and an ancestor-link.

A C

Direct Link

Indirect Link

Ancestor Link

A B C

A

B C

Figure 5-3 Kind of links

We will provide algorithms for checking each of these links separately, which

then makes it easier to describe the final procedure in Algorithm 5-4. These algo-

rithms refer to properties of the metamodel constructs developed in the previous

chapter.

5.1.1 Direct links

Figure 5-4 shows a direct link. In the static diagram, the source class (ROOT_CLASS)

is a direct client of the target class (CUSTOMER) and the source class will call a fea-

ture of the target class directly to execute message m1 (which is c1.make).

64

This is the simplest kind of link. It is only necessary to check that ROOT_CLASS

is one of CUSTOMER’s client classes. The procedure for this kind of link is shown

in Algorithm 5-1. The complexity of Algorithm 5-1 is O(V) with V classes in the

static diagram.

c1

ROOT_CLASS
(root)

CUSTOMER
(c1)

1

Scenario: deposit
1 create customer c1
...

make
make

ROOT_CLASS CUSTOMER

make(a_name:STRING)
 ? a_name /=void
! name = a_name...

make

...

Figure 5-4 An example of directly linked

direct_link_check(a,b:CLASS):BOOLEAN is

 do

 if a.suppliers.occurrences(b) > 0

 Result := true

 else

 Result := false

 end

 end

Algorithm 5-1 Algorithm for direct linked checking

65

5.1.2 Indirect links

Figure 5-5 shows two classes (ROOT_CLASS and ACCOUNT) that have a direct cli-

ent-supplier relationship and an indirect one (through a third class CUSTOMER).

There are thus two paths between ROOT_CLASS and ACCOUNT. In addition, there is

also a cycle between CUSTOMER and ACCOUNT.

In the dynamic diagram, the source feature make of object root sends messages

m2 and m4 to object a1. Message m2 refers to the creation command

create a1.make(c1)

which calls the feature make of ACCOUNT . Message m4 refers to the assignment

c1_balance := c1.account.balance

which includes a call to the query balance of ACCOUNT. Message m4 is executed

through an indirect link.

In standard BON dynamic diagrams, source and target features are never de-

scribed. However, our consistency checking does require these features to be

identified. We therefore extend the BON diagram with this information (which is

managed by the BCCT tool based on user input). In the dynamic diagram of Figure

 5-5, the source feature for message m2 (respectively m4) is make and the target fea-

ture for m2 (respectively m4) is make (respectively balance).

66

a1

c1

account customer

ROOT_CLASS
(root)

ACCOUNT
(a1)

2, 4

Scenario: deposit
...
2 create account a1 with c1
...
4 check balance

make,make

make,balance

ROOT_CLASS

make
...

CUSTOMER

account: ACCOUNT
...

ACCOUNT

balance: REAL
make(a_customer:CUSTOMER)

? a_customer ≠ void
...

Figure 5-5 An example of an indirect link

We can modify Algorithm 5-1 to get Algorithm 5-2 to check if there is a (possibly

indirect) path between two classes A and B. In order to ensure termination within a

reasonable time frame, we conduct a search only to a pre-specified depth M. In prac-

tice, we can get an upper bound on M by examining the feature body for multi-dot

calls. We first check if B is the direct supplier of A; if not, we will check if B is A’s

supplier’s supplier class and so on recursively. The complexity of Algorithm 5-2 is

).(3VMO because the union of two sets of size O(V) is cubed.

67

indirect_link_check(a,b: CLASS):BOOLEAN is

 local

 classes: SET[CLASS]

 i: INTEGER

 j: INTEGER

 do

 classes := a.suppliers

 from

 i:=1

 Result := false

 until i > M

 if classes.occurrences(b) > 0

 then

 Result := true

 i := M+1

 else

 classes := (. |)s suppliers s classes∈U

 i := i+1

 end

end

Algorithm 5-2 Algorithm for indirectly linked checking

68

5.1.3 Ancestor links

Figure 5-6 An example of an ancestor link

In Figure 5-6, we show message m3, taken from Figure 2-1 and Figure 2-2. The

source feature is make in ROOT_CLASS and the target feature is (apparently) the de-

ferred feature make in TRANSACTION. However, the actual target feature is the

routine make in the descendant DEPOSIT_TRANSACTION, i.e. the message corre-

sponds to a feature call

create {DEPOSIT_TRANSACTION} t.make (100,a1)

Thus, in the dynamic diagram, message m3 is sent from object root (correspond-

ing to class ROOT_CLASS) to object t (an instance of DEPOSIT_TRANSACTION).

Although object root’s corresponding class is not a client of object t’s corresponding

class, the static and dynamic diagrams are nevertheless consistent. This is because of

the feature call rule in [9, P473] – “if a feature call x.f, where the type of x is based

on a class C, feature f must be defined in one of the ancestors of C”. Ancestors of C,

ROOT_CLASS
(root)

DEPOSIT_TRANSACTION
(t)

3

t

Scenario: deposit
...
3 create a deposit transaction t for account a1 of $100
...

make

make

ROOT_CLASS

make

...

TRANSACTION
*

make *

...

DEPOSIT_TRANSACTION
+

...
make +

69

in this rule, include C itself. Thus, create {DEPOSIT_TRANSACTION} t.make

(100,a1) is a valid call.

Thus, when checking if two classes are linked or not, we must take their ancestors

into account. Algorithm 5-3 shows an algorithm, based on Algorithm 5-1 (direct

links), which considers the case in which two classes are linked by their ancestors.

This algorithm uses two loops to check if the source class’s ancestor is the target

class’s ancestors’ client class. The complexity of Algorithm 5-3 is O(V3). This is be-

cause there is an inner loop within the outer loop (over classes in the BSD); the inner

loop uses the feature occurrences which itself enumerates over classes in the BSD.

When we take the indirectly linked cases into account, the algorithm will be more

complicated.

Algorithm 5-1 to Algorithm 5-3 returns a true if there is at least one path that links

the source class to the target class. However, we would like a procedure that will ac-

tually return a list of all possible paths. In the next section, we describe the specified

depth algorithm .

70

directly_linked_ancestor_check(a,b:CLASS):BOOLEAN is

 local

 i,j:INTEGER

 do

 from

 i:= a.ancestors.lower

 Result := false

 until i = a.ancestors.upper

 loop

 from j := b.ancestors.lower

 until j > b.ancestors.upper

 loop

 if (a.ancestor)@i.suppliers.occurrences((b.ancestors)@j)>0

 then

 Result := true

 j := b.ancestors.upper

 else j:=j+1

 end

 end

 if Result then i:=a.ancestors.upper

 else i:=i+1

 end

 end

 end

Algorithm 5-3 Algorithm for direct and ancestor links

5.2 Specified depth algorithm

In the previous sections of this chapter we described the various kinds of links be-

tween two classes in a BON static diagram, i.e. direct, indirect and ancestor links. We

71

now need an algorithm to generate all the links between A and B to a specified depth

M for the messages-invokable constraint.

Consider the BON static diagram in Figure 5-7 which allows for many links be-

tween two classes A and B. A inherits from O and B inherits from S. There are

actually 7 links in this example to depth of M = 4, i.e.

A.B

O.S

A.C.F.B

A.E.F.B

A.C.D.B

A.B.D.B

A.C.E.F.B

The largest multi-dot is A.C.E.F.B which has four levels of “dots” corresponding to

M = 4. Normally the dot notation is used with entities. For the purposes of this algo-

rithm we use the dot notation to indicate links between classes. Thus A.B means that

A has some attribute (say b) that is of type B.

A C D

E F B

O

S

Figure 5-7 A BON class diagram

72

Because we want to record all the links from A to B, we introduce a data structure

ITEM shown in Figure 5-8 to record the classes on the path. The value of the attribute

class is a class in the static diagram, like A, B or other classes. This class has two que-

ries: linked which is a SET[ITEM] corresponding to the direct links of the target class.

For example, consider the target class C in Figure 5-7. An instance of ITEM corre-

sponding to C would have class = C and linked = {item corresponding to D, item

corresponding to E, item corresponding to F}, as classes D, E and F are the direct

links. A SET of ITEM is sufficient as we are merely generating all links such as C.D,

C.E and C.F, the order in which these links are enumerated not being relevant.

73

class ITEM feature

 class: CLASS

 -- a CLASS in a static diagram

 linked: SET[ITEM]

 -- items whose `class’ are direct client classes

 make(c: CLASS, i: ITEM)is

 require

 c /= Void and i /= Void

 ensure

 class = c

 linked.has(i)

 linked.count = 1

 add(a_linked like linked)is

 require

 a_linked /= Void

 ensure

 linked = old linked + a_linked

 -- extend `linked’ with items in `a_linked’

 end

Figure 5-8 The interface of data structure ITEM

In the section dealing with ancestor-links, we indicated that if ancestors of the

source class and target class of a message have a client-supplier relationship, then this

is also a link that may have a corresponding message in the dynamic diagram.

74

class LINKS feature

 a,b: CLASS

 -- source and target class

 sources: LIST[ITEM]

 -- includes `a’ and all its ancestors

 target: LIST[ITEM]

 -- includes `b’ and all its ancestors

 m: INTEGER

 -- depth of client-supplier links

 links: LIST[ITEM] is

 require

 a /= Void and b /= Void

 ensure

 Result = all links between `a’ and ‘b’

 -- see Algorithm 6-4

 ancestors(l:LIST[ITEM]):LIST[ITEM] is

 require

 l /= Void

 ensure

 Result = all ancestors of ‘l’

invariant

 a /= Void and b /= Void

 m > 0

end

Figure 5-9 Data for the calculation of all possible links to depth M

The specified depth algorithm is described as a function links in Figure 5-9 in

which a refers to the source class A and b to the target class B. The function links re-

turns all the links between a and b. The function sources includes a and all its

75

ancestors, and targets includes b and all its ancestors as discussed in the section deal-

ing with ancestor-links.

We illustrate the algorithm for links by using the class diagram in Figure 5-7 as an

example. Figure 5-10 and Figure 5-11 illustrate how all the links between A and B are

calculated to a depth of m = 4. Figure 5-10 has 7 columns each column being a list of

ITEM:

• The first column is sources (i.e. a and all its ancestors)

• The next 4 columns are mid [1], mid [2], mid [3] and mid [4]. The column

mid [1] is a list of all classes one-step away from sources. The column mid

[2] is a list of all classes that are two steps away from sources, as well as

information that allows us to re-trace the path back to sources (see linked

in Figure 5-8). There are 4 such columns because M = 4.

• The 6th column is targets (i.e. b and all its ancestors).

• The last column is the result of routine links, from which the set of all

links can be reconstructed as shown in Figure 5-11.

The algorithm proceeds as follows. The first item in sources is class A. The direct

suppliers of A are C, E and B (see Figure 5-7). Thus in mid [1] we must store

A.C

A.E

A.B

The other item in sources is O from which we obtain

76

O.S

Since B and S (the end of the path) are in targets, we copy over A.B and O.S to the

column result, and we have our first two (of seven) links.

We must now construct all paths two steps away from the source, i.e. mid [2]. The

first item in mid [1] is A.C (i.e. the class of the item is C, and the linked of the item

contains just A). The two-step path is

A.C.D

A.C.F

A.C.E

Obviously, there is no need to keep track of the source A. We know that C is one step

away from the source A. Thus we need record only C and all links one-step away

from C, i.e.

C.D

C.F

C.E

Thus, C.D is stored as an item in mid [2] with D the class and C an item in linked (C’s

item has its own field linked which points back to A). Thus item C.D allows us to re-

trace the path to the source A. Proceeding in a similar way for the remaining items in

mid [1], we obtain for A.E

E.F

for A.B we obtain,

B.D

and for O.S there is no item as S has no suppliers.

77

We note that items C.D and B.D in mid [2] both represent paths that terminate in

D. For efficiency, we can merge these two items into a single item CB.D where D is

the class of the item and C and B are in the field linked of the item. Since both items

terminate in D, we need only explore (for mid [3]) from D and onwards. Similarly,

items C.F and E.F can be merged into CE.F. Thus the items now stored in mid [2] are:

BC.D

CE.F

C.E

The terminating classes for these items (D, F and E) are not in targets, thus result

stays the same. The same procedure can now be followed for mid [3] and then mid[4].

This will terminate with the 7th column result which contains the items:

A.B

O.S

FD.B

F.B

From these items, we can reproduce the seven paths from the targets B and S, to

sources as shown in Figure 5-11, by following the linked field of each item. The

complete algorithm is shown in Algorithm 5-4.

From Figure 5-11, we directly obtain all paths links when the call depth is 4. The

complexity of the algorithm is O(MV3) because there are 3 loops.

78

1 links: LIST[ITEM] is

2 local

3 mid[1..m], t_list: LIST[ITEM]

4 item,item1,item2,item3: ITEM

5 i,j,k: INTEGER

6 do

7 t_list := sources

8 from i:=1 until i > m loop

9 from j := t_list.lower until j = t_list.upper loop

10 item:=t_list@j

11 from k := item.class.suppliers.lower

 until k = item.class.suppliers.upper loop

12 create item1.make(item.class.suppliers@k, item);

13 if ∃item2 ∈ mid@i • item2.class = item1.class then

14 item2.add(item1.linked);

15 else

16 mid@i.extend(item1);

17 if ∃item3 ∈ targets • item3.class = item1.class then

18 result.extend(item1)

19 end

20 end; k:=k+1

21 end; j:=j+1

22 end

23 mid@i := ancestors(mid@i)

24 t_list := mid@i; i:=i+1

 end

Algorithm 5-4 Algorithm to calculate all links between classes A and B (see Figure 5-9)

79

Sources 1 2 3 4 … targets

A A.C BC.D FD.B(3) B.D B

O A.E CE.F F.E F.B (4) S

 A.B (1) C.E E.F E.F

 O.S (2) F.E

A.B (1)

O.S(2)

FD.B (3)

F .B (4)

Figure 5-10 the running result of Algorithm 5-4

B S B B

result

A O F D F

C E C B E

A A A C

A

A

Figure 5-11 Tree structure of the result

result

80

5.3 Tolerant versus Strict consistency checking

Consider the static and dynamic diagrams shown in Figure 5-12 (view1 and view2),

and suppose that no further information about the classes A, B and C is available, i.e.

we do not know what features exist in these classes and what their export status is.

What we do know from the class diagram is that B is a supplier of A, and C a supplier

of B. Thus, the class diagram could potentially be completed to be consistent. This

would yield a tolerant consistency criterion for partial views.

The definition of consistency adopted in this thesis is strict. Thus, source and des-

tination features must exist for each message.

An advantage of the specified depth algorithm is that it can be used in a tolerant

version of consistency, as it merely checks client-supplier links in a class diagram.

A B C

A C

view1

view2

Figure 5-12 Tolerant Consistency between view1 and view2

81

Chapter 6 The Bon Consistency Checking Tool

In this chapter we describe BCTT, i.e. the BON Consistency Checking Tool. The tool

is based on the consistency criteria and algorithms for consistency checking devel-

oped in Chapter 4 and Chapter 5. Table 4-1 (Chapter 4 page 49) provides the four

constraints that must be checked to show that a BON static diagram (view1) is consis-

tent with a BON dynamic diagram (view2). The constraints are:

• object-class (i.e. every object in view2 has a corresponding class in view1);

• message-feature (i.e. each message has an associated target feature that is

called from an appropriate source feature and exported to it);

• messages-invokable (i.e. there is an appropriate client-supplier link in view1

associated with each message in view2);

• contractual-consistency (i.e. the postcondition of each message entails the

precondition of the succeeding message).

In the BCCT tool, the first three constraints are automatically checked via algo-

rithms supplied in Chapter 4 and Chapter 5. The BCTT tool accomplishes the

following:

• automatically checks if the constraint is satisfied (yes or no); and

• provides the user with precise feedback where the consistency fails; and

• provides the user with some mechanized support to fix the problems so that

consistency can be restored.

82

As explained in Chapter 4, the contractual-consistency constraint is not checked

automatically by BCCT. Instead, some mechanized support is supplied in the follow-

ing way:

• Algorithm 5-3 is used to automatically generate the code associated with

the model; and

• The designer uses the generated code to construct an ETester test corre-

sponding to the dynamic diagram. If the test succeeds, then we have

demonstrated at least one execution that satisfies the contractual-

consistency constraint.

As an illustration of consistency checking, consider the simple model in Figure

 6-1 consisting of a static and dynamic BON diagram. The message in the dynamic

diagram does not have an associated client-supplier link in the static diagram. Invok-

ing the Tools menu provides the following options:

If we invoke the first option object-class, the tool immediately reports Pass as this

constraint obviously holds. However, if we check messages-invokable, then the tool

provides the error report in Figure 6-2, which indicates that there is no client-supplier

link from class A to class D, as required by the message.

83

Figure 6-1 Two views of a model

Figure 6-2 Report of missing client-supplier links for the model in Figure 6-1

84

Figure 6-3 Refactoring the model

Suppose we now insert a client-supplier relationship between C and D as in

Figure 6-3. Then the tool reports a Pass for the constraint messages-invokable.

If the designer invokes Tools -> Message-feature, then the tool supplies an error

report which states that the message does not have a source and target feature in the

appropriate classes. The tool can now be used to add appropriate features. For exam-

ple, the user may right click on class D, and invoke add-feature. The tool allows the

designer to add a new feature as shown in Figure 6-4.

If the designer adds a feature (say the command deposit) as in Figure 6-3, then the

tool still reports that the message feature constraint is not satisfied as in Figure 6-4.

However, if the designer clicks on the error report for this message, a new report ap-

pears that indicates that the destination feature is present, but that the source feature is

missing (Figure 6-5).

85

Figure 6-4 Adding a new feature to class C.

86

Figure 6-5 Error report for message-feature constraint

Figure 6-6 Missing source routine in Message-feature error report

87

We may now add a source routine for the message to class A. In the body of the A

routine we must add a call to the deposit feature in class D, i.e. the body must contain

a call such as b.d.deposit(200). The message-feature constraint will still report an er-

ror. We need to link the message in the dynamic diagram to the appropriate source

and destination routines. This is done with a click as shown in Figure 6-7. The de-

signer selects the appropriate source and target routines, and then clicks ok to confirm

the selection. All tests will now pass.

Figure 6-7 Associating a message with source and target features

88

 Once all syntactic consistency constraint checks pass, the designer can generate

the code, write the appropriate test, and run the test to check for contractual consis-

tency.

An important property of the BCCT tool is the ease with which models can be

constructed and checked for consistency. The mere fact that a test fails is not the end

of the story. The tool reports the specific errors and allows the designer to interac-

tively change the model and keeps checking until all the checks pass. By analogy

with Test Driven Design [47], we call this property of our tool Consistency Driven

Design (CDD). CDD works as follows:

1. Construct some small part of the model;

2. Run the consistency checks (which will usually fail as the model is in-

complete or inconsistent);

3. Refactor the model to get the consistency check to pass, and re-run the

checks.

CDD works at a higher level of abstraction than Test Driven Design (TDD) be-

cause the designer works at the level of the model and not at the lower level of code

only. Of course, when checking contractual-consistency, the designer uses tests in the

style of TDD. Thus design and coding can be done incrementally with constant feed-

back and refactoring via tests and checks, by using CDD and DbC at the design level

and TDD at the implementation level.

89

Figure 6-8 The BON static diagram with class D expanded to contract view

Contracts are an important part of modelling and design. Thus, BCCT static views

also support the ability to expand a class into its contract view as shown in Figure 6-8.

These are the contracts that get exercised when the tests are executed.

The BCTT tool is not ready for industrial strength usage. Rather it is a prototype

tool that allowed us to explore tool support for multi-view consistency checking and

Consistency Driven Design. The tool was implemented in C# using .NET and a dia-

gramming component for .NET called GoDiagram. Even though the tool is a

prototype, its design and implementation presented many challenges as it had to sup-

port the various graphical features of BON as well as the extended BON metamodel

defined in Chapter 4. The tool includes the following components:

• A BON Diagram Editor. Before consistency can be checked, an editor is

needed to draw the static diagrams and dynamic diagrams.

90

• A BON Diagram Parser. This tool parses BON Diagrams to extract the

information needed to check consistency. The tool stores BON Diagrams

for a project in XML files (persistence).

• A Consistency Checker. The tool checks the various consistency con-

straints using the algorithms in Chapter 4 and Chapter 5.

• A Code Generator. The tool translates the model to executable code

which facilitates the writing of tests cases using ETester (a unit testing

feature which is also used for contract testing).

A detailed description of the BCTT tool is presented in Appendix D.

91

Chapter 7 Conclusions and Future Work

7.1 Conclusions

In chapter 1, we described how Model Driven Development (MDD) is currently

being promoted for addressing the complexities of software development. Model

Driven Architecture (MDA) is a flagship initiative of the OMG (Object Management

Group) for defining common infrastructures for building UML based MDD tools.

As stated in [55]: “The vision of MDA is both simple and grand. Its objective is to

decouple the way that application systems are defined from the technology they run

on. The purpose of this decoupling is to ensure that investments made in building sys-

tems can be preserved when the underlying technology platforms change”. The

Platform Independent Model is a representation of business functionality undistorted

by technology details.

As described in chapter 1, the current batch of MDD/MDA tools do not allow the

designer to check multi-view consistency between static class diagrams and dynamic

collaboration diagrams. Yet it is precisely these two diagrams that are often used by

designers.

The main contribution of this thesis was to develop the BCCT tool (the first to our

knowledge) that checks multi-view consistency between structural class diagrams and

behavioural collaboration diagrams. Such a tool also opens up the possibility of using

92

consistency to drive development as described in the previous chapter (Consistency

Driven Development). The following steps were needed to make the tool a reality:

• We formalized the notion consistency(v1,v2) of two views v1 (a static

view with contracts) and v2 (a dynamic view) of a model. This definition

of consistency includes notions of syntactic and contractual consistency.

• We developed algorithms to check syntactic consistency, and incorporated

these algorithms into BCCT.

• The tool has a graphical editor which is used to construct graphical models,

specify features, and contracts down to detailed body code.

• The syntactic consistency checks are run automatically and provide details

of where failures occur.

• The model can be automatically translated to executable Eiffel code, and a

testdriver is used to check contractual consistency.

Based on this thesis, there are a few opportunities for further research which we

describe in the next section.

7.2 Future work

7.2.1 Automatic generation of testdrivers

In Chapter 3 we mentioned that an earlier approach to automated testdriver generation

from BON Dynamic Diagrams (BDD) is flawed as outlined in the submessaging

93

problem. A top-level feature message in turn invokes submessages in the BDD. When

generating a corresponding testdriver, the only generated routine call associated with

a message should be the top call.

This problem should be solvable. Possibly a mark-and-sweep approach could be

attempted. Define a singleton linked list or set containing all messages in the dynamic

diagram, and then mark each message as code is generated (in order). This should

prevent redundant calls and automate testdriver generation and hence more automated

support for contractual consistency checking.

7.2.2 Specified Depth Algorithm

The specified depth algorithm (chapter 5) was used to check that for each message in

a BDD there is an associated link in the BSD. The algorithm actually generates all

possible calls from the target feature to a specified depth, but this full capability is not

used in the tool. The tool currently checks if the call actually specified in the feature

body is in the generated list.

However, the algorithm could also be used to provide the designer with a list of

possible calls in the list, allowing the designer to select which call to use.

7.2.3 BCCT tool

The current BCCT tool is only a prototype to explore consistency checking. As such

it only implements part of BON (e.g. support for expanded classes and aggregations).

To be a really useful tool, it needs more work so as to support the full range of BON

modelling constructs.

94

Some other areas that could be usefully developed are described below.

• In section 5.3 we described BCCT as effecting strict consistency. It would

be useful to enhance BCCT to deal with tolerant consistency in which

partial models, that could potentially be made consistent, would pass the

checks.

• As mentioned at the beginning of chapter 5, the check for export in the

messages-invoked constraint needs to be tightened up.

• The notion of Consistency Driven Development needs to be explored on

big systems, and more refactoring features may need to be included in the

tool to make this type of development useful.

• The BCCT tool is complementary to the work being pursued by Ali

Taleghani [46], in which contractual consistency is tested with a theorem

prover. The two approaches could be usefully merged into a single tool.

 95

Appendix A Code generated for bank example

 -- Automatic generation produced by ISE Eiffel --
indexing
 description: ""

class
 ACCOUNT

create
 make

feature

 make (a_customer: CUSTOMER) is
 require
 a_customer /= void
 do
 create {LINKED_LIST [TRANSACTION]} transactions.make
 customer := a_customer
 customer.set_account (Current)
 end

 customer: CUSTOMER

 transactions: LIST [TRANSACTION]

 balance: REAL is
 do
 from
 Result := 0
 transactions.start
 until
 transactions.after
 loop
 Result := Result + transactions.item.amount
 transactions.forth
 end
 end

 set_transactions (a_transactions: LINKED_LIST [TRANSACTION]) is
 require
 a_transactions_not_void: a_transactions /= void
 do
 transactions := a_transactions
 ensure
 transactions_assigned: transactions = a_transactions

 96

 end

end -- class ACCOUNT
 -- Generated by ISE Eiffel --
 -- For more details: http://www.eiffel.com --

 97

 -- Automatic generation produced by ISE Eiffel --
indexing
 description: "Information about bank customer"

class
 CUSTOMER

create
 make

feature

 make (a_name: STRING) is
 require
 a_name_not_void: a_name /= void
 do
 name := a_name
 ensure
 name_assigned: name = a_name
 end

 account: ACCOUNT

 name: STRING

 set_account (a_account: ACCOUNT) is
 do
 account := a_account
 ensure
 account_assigned: account = a_account
 end

end -- class CUSTOMER
 -- Generated by ISE Eiffel --
 -- For more details: http://www.eiffel.com --

 98

 -- Automatic generation produced by ISE Eiffel --
indexing
 description: ""

class
 DEPOSIT_TRANSACTION

inherit
 TRANSACTION

create
 make

feature

 make (an_amount: REAL; a: ACCOUNT) is
 require
 an_amount > 0
 do
 amount := an_amount
 a.transactions.extend (Current)
 ensure
 amount = an_amount
 a.balance = old a.balance + an_amount
 end

end -- class DEPOSIT_TRANSACTION
 -- Generated by ISE Eiffel --
 -- For more details: http://www.eiffel.com --

 99

 -- Automatic generation produced by ISE Eiffel --
indexing
 description: ""

class
 ROOT_CLASS

create
 make

feature

 a1: ACCOUNT

 c1: CUSTOMER

 make is
 do
 create c1.make ("joe")
 create a1.make (c1)
 create {DEPOSIT_TRANSACTION} t.make (100, a1)
 c1_balance := c1.account.balance
 check
 c1_balance = 100
 end
 print ("Balance is: ")
 print (c1_balance)
 create {WITHDRAW_TRANSACTION} t.make (- 100, a1)
 c1_balance := c1.account.balance
 check
 c1_balance = 0
 end
 print ("Balance is: ")
 print (c1_balance)
 end

 c1_balance: REAL

 t: TRANSACTION

end -- class ROOT_CLASS
 -- Generated by ISE Eiffel --
 -- For more details: http://www.eiffel.com --

 100

 -- Automatic generation produced by ISE Eiffel --
indexing
 description: "Interface of the deposit and withdraw transactions"

deferred class
 TRANSACTION

feature

 amount: REAL

 make (an_amount: REAL; a: ACCOUNT) is
 deferred
 end

end -- class TRANSACTION
 -- Generated by ISE Eiffel --
 -- For more details: http://www.eiffel.com --

 101

 -- Automatic generation produced by ISE Eiffel --
indexing
 description: ""

class
 WITHDRAW_TRANSACTION

inherit
 TRANSACTION

create
 make

feature

 make (an_amount: REAL; a: ACCOUNT) is
 require
 an_amount < 0 and a.balance >= - an_amount
 do
 amount := an_amount
 a.transactions.extend (Current)
 ensure
 amount = an_amount
 a.balance = old a.balance + an_amount
 end

end -- class WITHDRAW_TRANSACTION
 -- Generated by ISE Eiffel --
 -- For more details: http://www.eiffel.com --

 102

Appendix B Algorithm for generating test driver

from the dynamic diagram

class GENERATOR feature

 ...

 generate_test_driver(c:COLLABORATION_DIAGRAM) is

 local

 i: INTEGER;

 m: MESSAGE;

 f: FEATURE;

 do

 generate_driver_header;

 generate_declarations(c.objects);

 generate_check_statement(c.initial);

 from i:=1

 until i>c.messages.length

 loop

 m:=messages.item(i);

 if m.has_guard then

 generate_ifthen(m.guard)

 end

 if m.has_multiplicity then

 generate_loop(m.multiplicity)

 end

 if m.feature.is_create then

 f:=select_create_feature(m.target);

 else

 f:=select_feature(m.target);

 end

 generate_feature_call(m.target,f);

 generate_close_branches;

 103

 i:=i+1;

 end

 generate_check_statement(s.final);

 generate_driver_footer;

 end

 ...

 end – GENERATOR

 104

Appendix C Extended_Model used in [1]

class EXTENDED_MODEL inherit MODEL

feature {NONE}

 occurs: SET[OBJECT]

 sequence:SEQUENCE[MESSAGE]

 scenario_box:TEXT

 calls: SEQUENCE[ROUTINE]

feature{ANY}

 class_diagram,collab_diagram:EXTENDED_MODEL

invariant

 msgs_in_rels;calls_linked_to_msgs;

 object_in_occurs; objects_in_abs;

 same_lengths

end – EXTENDED_MODEL

 105

Appendix D The BCCT tool

In this appendix, we will provide an overview of BCCT (BON Consistency

Checking Tool). The tool is written in C# under .NET and uses a component called

GoDiagram for coding the diagram editor, and XML for saving the diagrams.

The .NET environment was chosen because GoDiagram provides a high-level graph-

ics library which was used to code the BON diagram editor. Thus features such as

graphical grouping, undo, moving and scaling are all supported.

1. The tool overview

Figure D-1 shows a screenshot of the tool showing a static diagram and a dynamic

diagram. The BON-CASE tool [2, 7] is a precursor to this tool, but our metamodel

differs as described in Chapter 4, and BON-CASE does not support multi-view con-

sistency. This is the first tool, to our knowledge, that supports multi-view consistency.

A complementary tool is being developed by [46].

 106

Figure D-1 Overview of the tool

The BON CASE tool [2, 7] is an extensible CASE tool for formal specification

and reasoning. It has a BON diagram editor and can generate text-based BON and

code compatible with the JML verification tool. It does, however, not provide func-

tionality for consistency checking. We had the option of extending this tool or

developing a new BON tool. We chose the latter because of the lack of documenta-

tion for the BON CASE tool and the friendlier user interface provided by GoDiagram

[32]. Also a prototype tool had been developed by an undergraduate student Ali

Taleghani using C# and GoDiagram, which was helpful in getting this tool started.

 107

We designed a new icon for this tool. The yellow ellipse represents a class in

BON static diagram and the blue square represents an object in a BON dynamic dia-

grams. The line with an arrow is used in BON to present relationships and messages.

In our tool it indicates that we are dealing with relationships between static diagrams

and dynamic diagrams, i.e. it deals with consistency checking.

The BCCT tool is developed using C# and GoDiagam under the .Net framework

and provides an integrated development environment for the construction of BON

diagrams and for consistency checking between static diagrams and dynamic dia-

grams. The tool provides user-friendly graphical interfaces that let users use the tool

without any special training. Undo/redo, zoom in/out, and other features are included

as well. It supports Design by Contract, which is not supported by many other tools,

especially those for UML. The major functionality, however, is the tool’s ability to

check consistency between static and dynamic diagrams.

The design of it is extendable, which allows it to be extended to meet other re-

quirements. Below is an outline of the various components of this tool:

• A BON Diagram Editor. Before consistency can be checked, an editor is

needed to draw the static diagrams and dynamic diagrams.

• A BON Diagram Parser. This tool will parse BON Diagrams to extract

the information needed to check consistency. Using this parser, we will

store the BON Diagrams into XML files and can restore diagrams from

the XML files.

• A Consistency Checker. This component will provide consistency

checking capabilities for BON diagrams. This function is based on algo-

 108

rithms given in Chapter 4 and Chapter 5.

• A Code Generator. This will generate the code associated with the dia-

grams, which the user can use to generate the final test case.

The following sections of this appendix will describe in detail the design of this

tool, concentrating on those components we just mentioned. We start with a short

overview of GoDiagram which is used throughout the tool.

2. GoDiagram for .NET

GoDiagram for .NET [32] is a product of Northwoods Software. The GoDiagram li-

brary, written entirely in C#, is a set of controls and classes built on the .NET

platform. It provides a variety of basic graphical objects such as rectangles, ellipses,

polygons, text, images, and lines. The user can group these objects together to form

more complex objects as a GoGroup and can customize their appearances and behav-

iours by setting properties and overriding methods.

GoDiagram uses a model-view-controller [34] architecture. GoDocument serves

as the model, i.e. a container providing the abstract representation of the items the

user sees in a view. Goview serves as the view and the controller – it provides a win-

dow displaying objects in a document and it also handles events raised by interactions

or other programs.

A GoDocument model provides runtime storage for displayable objects. Adding

an object to the document makes it visible in the document's views. Users can organ-

 109

ize objects in layers. Class GoDocument inherits from System.Object.GoDocument

and supports one event, Changed, to notify observers of changes to the document or

to any of its objects.

A GoView view provides a window in which the graphical objects stored in a

document are shown. A view defines how the user sees the objects and interacts with

them. It supports mouse-based object manipulation, including selecting, resizing,

moving and copying using drag-and-drop. Each view handles its document’s

Changed event so that it can keep its window up-to-date with all of the objects in the

document. The view also supports in-place editing, which can change its correspond-

ing documents, printing, and grids.

The relationship of GoView and GoDocument is shown in Figure D-2

GOVIEW GODOCUMENT
1

2

Scenario

1 Change

2 Notify

Figure D-2 Relationship between GoView and GoDocumnet

GoDiagram provides support for composing and manipulating graphs, also

known as diagrams, where nodes have ports that are connected by links, also known

as arcs or edges. GoDiagram provides this functionality with the GoNode, GoPort

 110

and GoLink classes. Nodes are groups containing one or more ports. Links are strokes

that connect two ports.

The design of the BCCT tool is mainly based on the concepts: Godocument, Go-

View, GoNode, GoPort, GoLink, GoGroup. GoDiagram provides other

functionalities that we did not mention here, but interested readers can refer to [32]

for more details.

3. A BON diagram editor

To check the consistency between a static diagram and a dynamic diagram, we need

to draw such diagrams. So, firstly the BCCT tool is a drawing tool for BON diagrams

which will then be checked for consistency. In this section, we introduce the GUI and

the components from the GUI point of view.

The GUI

As a drawing tool, we designed BCCT’s interface similar to the interface of many

other drawing programs. Figure D-3 is a screen shot of this tool. The screen is divided

into three parts: tool bar, tree view, and drawing area.

 111

toolbar

tree view

drawing area

Figure D-3 Diagram editor

The toolbar provides the elements needed to create BON diagrams. The toolbar

 is for static diagrams and the toolbar is for dynamic diagrams.

These toolbars are hidden and shown dynamically depending on which kind of dia-

gram is active. When a user wants to add an element into the diagram, they press the

appropriate button on the toolbar (unless the appropriate button has been already

pressed); move the mouse to the drawing area; and click or drag to add the element.

For example, if users want to add a class to the static diagram, they should first press

the button and then click at the position of the drawing area where the class should

be added. If this button is already pushed then the user can move the mouse to the

drawing area directly and click to add a class.

Adding objects is similar to adding a class. If users want to add a client-supplier

relationship to the static diagram, they can click the button and move the mouse to

 112

the drawing area and drag from the client class to the supplier class to add a client-

supplier relationship. Similarly, the user can add a message link.

The Tree view serves as a navigation tool. Users can use it to open, create dia-

grams and travel between diagrams. To open a diagram, the user can double click on

the diagram’s name shown in the tree view. If this diagram has been opened, it will be

activated and shows on the top of other windows. To add a new diagram, right click

the mouse, choose from the context menu as shown in Figure D-4 and create a new

diagram.

Figure D-4 Context menu of tree view

The drawing area works like a canvas in diagramming tools. Users can draw static

diagrams or dynamic diagrams on it. Users can add classes, objects, and other com-

ponent on it. Users can also select, delete and modify properties of elements on it by

using double clicking or context-click for other functions. Moreover, users can save

diagrams into XML files or load diagrams saved as XML files by using File->Save

and File->open. The conversion between BON diagrams and XML files will be dis-

cussed in section 4.

 113

Diagram elements

As mentioned earlier, the BCCT tool uses GoDiagram and the BON metamodel and

algorithms described in Chapter 4 and Chapter 5. In this section, we will give more

details about the implementation of the metamodel in our tool.

GOVIEW GODOCUMENT

GRAPHVIEW GRAPHDOC

NODES

BONCLASS

BONOBJECT

ACTOR

LINKS

MESSAGELINK

CSRELATIONSHIP

INHERITLINK

Figure D-5 Elements of BON diagrams editor

GODOCUMENT was extended to GRAPHDOC (a new BCCT class) to serve as

the model and GOVIEW was extended to GRAPHVIEW to serve as the view-

controller in the editor. The elements of the diagram editor and their relationship are

shown in Figure D-5.

 From the graph’s point of view, a document consists of nodes and links. While

from the BON diagram’s point of view, a static diagram consists of BONCLASSes

and relationships between these classes; a dynamic diagram consists of BONOB-

JECTs and messages passed between these objects.

 114

Use Case diagrams are not supported by BON. However, the original intention

was to include a Use Case view. The idea was that:

• Requirements are captured by Use Cases; and

• Use Cases are specified by dynamic diagrams; and

• Dynamic Diagrams are implemented by test cases.

However, we did not get as far as actually implementing Use Case views, although

the BCCT tool is designed to allow other views.

We do allow actors (a Use Case element) in BON dynamic diagrams as shown in

Figure D-6.

We thus add ACTOR elements as shown in Figure D-5. This allows us to model

external objects in dynamic diagrams that are ignored in consistency checking. Thus

diagram elements (BONCLASS, BONOBJECT, ACTOR) are based on classes NODES

provided by GoDiagram and INHERITLINK, CSRELATIONSHIP, MESSAGELINK

based on the GoDiagram class LINKS.

BON diagram elements in Figure D-5 represent the model and the data in a single

diagram element. For example, BONCLASS represents information about all class

features and all other properties related to a BON class. To provide functions to edit

the data and properties, we extend GOVIEW to GRAPHVIEW. GRAPHVIEW over-

rides some methods provided by GOVIEW to edit properties of BON diagram

elements, such as add-features.

 115

Figure D-6 Actors in BON dynamic diagrams

Methods store and load in class GRAPHDOC are used to store BON diagrams to

XML files [35] and load XML files to BON diagrams. In the next section, we will

depict how we parse a BON Diagram to an XML file and how to parse an XML file

to a BON diagram.

4. A BON Diagram Parser

GoDiagram does not have a standard file format that users have to use. The built-in

GoDocument and GoObject classes are serializable. Users can use serialization for

 116

short-term persistence and communication using the same version of the GoDiagram

library. For long-term persistence to save diagrams, communicate with other applica-

tions, serialization is not a good choice. In consistency checking, the diagrams and

the metamodel data associated with the diagrams are needed. As a result, we imple-

mented store and load methods for both GRAPHDOC and each BON diagram

element. In the store method, we will parse a BON diagram or a diagram element

(classes, objects, etc.) to an XML file; and in the load method, we will parse an XML

file to a BON diagram or a diagram element.

XML [35], eXtensible Markup Language, is a markup language much like HTML.

XML provides a set of rules for creating semantic tags used to describe data. XML is

extendible because its tags are not predefined; users can define their own tags.

An XML element is made up of a start tag, an end tag, and data in between. The

start and end tags describe the data within the tags, which is considered the value of

the element. An element can optionally contain one or more attributes. An attribute is

a name-value pair separated by an equal sign (=). A basic XML document is simply

an XML element that can, but might not, include nested XML elements.

We treat a project, a static diagram and a dynamic diagram as an XML document.

A project file has an extension “.bp”, and a static diagram file or a dynamic diagram

do not have an extension name. To reload, the user opens a project file. Other views

are then automatically reachable from there via the tree view.

 117

The project file contains an element project and nests two other elements static

and dynamic that store the metamodel information of diagrams included in this pro-

ject. Because the main part of this thesis is consistency checking, we did make the

XML persistence part as efficient as possible. Other XML technologies such as XPath

and XML Schema [36] should be considered for better efficiency.

Consider a project name is bank with a static diagram banksd and a dynamic dia-

gram bankdd. The XML project file bank.bp looks as follows:

<Project name ="bank">
 <Static>
 <File Name="banksd" />
 </Static>
 <Dynamic>
 <File Name="bankdd" />
 </Dynamic>
</Project>

A static or dynamic diagram file is slightly more complicated. The static diagram

file has a structure as shown in Figure D-7. The dynamic diagram file has a similar

structure like the static one. It has an element Static that indicates this is a static dia-

gram and the element Static nests other elements: Class, InheritLink and

ClientSupplierLink that are diagram elements of a static diagram. The Class element

nests Graph that stores the graphic information of the class and Features that stores

what feature the class has.

 118

<Static name="…" … …>

 <Class ClassName="…" ID="1" Inherit="…" ……>

 <Graph x="…" … … />

 <Features>

 <Feature Name="make"… … >

 … …

 </Features>

 </Class>

 … …

 <InheritLink from="3" to="4" />

 … …

 <ClientSupplierLink from="1" to="2" Name="…" … …

/>

 … …

</Static>

Figure D-7 XML file structure for a static diagram

The Class element has an attribute ID whose value is unique in the diagram.

When the information of links (inherit link, client-supplier link) is stored, the class ID

is stored instead of class name. This will avoid inconsistencies that can arise between

the diagram and the XML file when class names are changed.

Thus far the parser can only parse information of attributes of diagram elements.

The invariant of the class, the precondition, postcondition and code information of

features is stored as string and do not have any specific XML structure. Future work

will consist of finding ways of storing this information more efficiently.

 119

5. A Code generator

As we discussed in section 4.5, in order to check consistency, we need to run Eiffel

code generated from the static diagrams to check if the precondition of each feature

that is connected to a message is enabled. As already shown, the BCTT tool allows

the user to construct models easily. The BCCT tool also allows the designer to enter

features, their contracts, feature implementation detail and class invariants. Once suf-

ficient detail is added, the designer can automatically translate the model to

executable code. This is analogous to Model-Driven-Development [37] in which the

designer constructs models at a high level of abstraction, and the code is automati-

cally generated from the model.

Information editing

Algorithm 4-3 is a sketch for code generation. It generates code from detailed in-

formation such as invariants and features. The BCCT tool provides an easy-to-use

interface for users to enter this detailed information. As Figure D-8 shows, users can

easily edit related information through context menus – to change properties of a

class, add features to a class or edit features of a class.

 120

Figure D-8 Context menu of class

Clicking context menu Properties can edit properties of a class. Figure D-9 shows

the user interface for editing class properties. Users can use it to edit the class name,

change the status of the class (root, deferred, effective), create procedures (the default

is make), inherit classes. Not all classes that a class inherits from can be presented in

the same static diagram where this class appears. Users need the ability to add the in-

formation of parent classes other than drawing an inherit link. Also, the user can use

Properties to enter descriptions and invariants. The user interface of our application

was designed similar to that of EiffelStudio. Users familiar with EiffelStudio should

be able to use our tool easily.

 121

Figure D-9 User interface for editing class properties

The BCCT tool also provides an easy-to-use interface for adding features. Users

can add features by invoking “Add features” and can edit existing features by using

“Edit Features”. Once users click on “Edit Features”, they will be presented with a

list of features of the class they are editing as shown in Figure D-10.

 122

Figure D-10 View of features

Users can choose one or more features to delete; add a feature; or double click to

edit selected features as shown in Figure D-11. The add feature user interface is very

similar to the edit feature user interface. Through this interface, users can:

• Choose the type of the feature (Command, Query, Attribute);

• Choose the export type (None, Any, Selected) – Selected allows the user

to enter a set of classes in the accompanying edit box;

• State whether the feature is deferred or not;

• Edit the arguments, local variables, pre-, post- conditions, and the code

(Do).

 123

Figure D-11 User interface for editing features

Code Generation

The previous section introduced how users can edit information needed to generate

code. This section we will introduce how we can get code from information users en-

 124

tered. We refer to Algorithm 4-3 (Chapter 4, page 60) line by line to show how we

can generate code from the static diagram.

• generate_system_code generates an .ace file needed by EiffelStudio to run

a program.

• Foreach bonclass in s.cs does an iteration to generate code for every bon-

class in the static diagrams.

• code := creat_new_class_code (bonclass.name) creates a new code using

the name of the bonclass in the static diagram.

• bonclass.generate_descriptions(code) generates the “index description”

part of an Eiffel class. Information for this part comes from field descrip-

tion of Figure D-9. The code for this part of Figure D-9 will be:

indexing

 description:” information about bank customer”.

• code.add (“CLASS”, bonclass.name) adds a class name to the code, e.g.

for class CUSTOMER, it will be

class

 CUSTOMER

• code.generate_create_procedure(bonclass.create) creates the create part

of the code. For class CUSTOMER of Figure D-9, it will be

create

 make

 125

• bonclass.generate_inherit_code(code) will generate code for each class

this class inherits from. It adds an inheritance declaration for each ancestor

in the diagram as well as the additional inherit clauses in the inherit field

of inherit in Figure D-9.

• bonclass.generate_suppliers_code(code) generates code from the client-

supplier links.

• bonclass.generate_features(code) generates code for features with the in-

formation provided by Figure D-11.

• bonclass.generate_invariant(code) creates the code from field invariant of

Figure D-9.

• code.write_to_file writes code generated to a .e file.

6. The Consistency Checker

 Chapter 4 and Chapter 5 describe the algorithms used in this thesis to do consistency

checking. In this section, we will state how this tool will support consistency check-

ing.

In the BCCT tool, all consistency checking work can be done one by one by using

menus shown in Figure D-12. Each menu in Figure D-12 corresponds to the four con-

straints in Chapter 4 and implements algorithms described in Chapter 4 and Chapter 5.

 126

In order to check that a dynamic diagram is consistent with a static diagram, the tool

should also provide other functions such as assigning a class to an object and assign-

ing features to messages. We will introduce these in the following subsections.

Figure D-12 Menu for consistency checking

Assign a class to an object

As we stated in section 4.1, every object in a dynamic diagram must have a corre-

sponding class in the static diagram. Menu Tool Object-class is used to check if

each object in a dynamic diagram has a corresponding class by implementing

Algorithm 4-1.

To assign an object to a class, there are two approaches that can be used in BCCT

tool. One is that users can right click on the object and then choose a class from a list

of classes in the static diagram as shown in Figure D-13.

 127

Figure D-13 Classes List

Another approach is that after the check object_class, a list of objects which have

no corresponding class will be displayed to the user. Double-clicking the name of the

object will display a list of available classes.

Assign features to a message

The message-feature check requires that each message in the dynamic diagram must

have a corresponding feature belonging to the target class to execute this message and

there must be a feature in the source class that calls this feature in the static diagram.

 128

So, the BCCT tool should also support assigning a source feature and a target feature

to a message.

Like assigning a class to an object, there are also two approaches to assign fea-

tures. Figure D-14 shows the user-interface to let the user choose features related to a

message. The user can choose a source feature (from the list under from) and a target

feature (from the list under to) through this interface to assign sourcefeature and tar-

getfeature feature to the message.

Figure D-14 Features List

 129

E-tester

In order to check contractual consistency we generate the code from the model, and

allow a user to complete a test that checks the scenario in the dynamic diagram.

While user input is required at this stage, most of the infrastructure for the test will

already be there from the generated code.

In fact, the test can be fully constructed within the BCCT tool itself by allowing

one of the objects in the dynamic diagram to correspond to the ROOT_CLASS.

ETester, developed by Dave Makalsky, is a unit-testing framework for Eiffel [15].

It consists of three clusters, which, when added to your system, will allow for easy

development of test suites [15].

 Because the BCCT tool was developed as a prototype to implement consistency

algorithms, we did not concentrate on some aspects such as supporting a full BON

notation and intra-diagram constraints. Additional work is necessary to make this

tool useful in practice.

 130

References

1. R. F. Paige, J. S. Ostroff, and P. J. Brooke. Checking the Consistency of Collabo-
ration and class Diagrams using PVS. In Proc. Fourth Workshop on Rigorous
Object-Oriented Methods (ROOM4), London, England, British Computer Soci-
ety, March 2002.

2. R. F. Paige and L. Kaminskaya. A Tool Supported Integration of BON and JML,

Technical Report CS-TR-2001-04, Department of Computer Science, York Uni-
versity, July 2001.

3. R. F. Paige and J. S. Ostroff. Metamodelling and conformance checking with

PVS. In Proc. Fundamental Aspects of Software Engineering 2001, LNCS 2029,
Springer-Verlag, April 2001.

4. G. K. Evans. Model and Source in Sync. SoftwareDevelopment, June, 2002.

5. L. Briand and Y. Labiche. A UML-Based Approach to System Testing. In Proc.

UML 2001, LNCS 2185, Springer-Verlag, 2001.

6. A. Tsiolakis. Semantic Analysis and Consistency Checking of UML Sequence

Disgrams. Diplomarbeit, TU-Berlin, TR 2001-06, April 2001.

7. R.F. Paige, L. Kaminskaya, J.S. Ostroff, and J. Lancaric. BON-CASE: an Exten-

sible CASE Tool for Formal Specification and Reasoning. In Proc. TOOLS USA
2002, Santa Barbara, CA, USA, July 2002.

8. K. Walden and J. Nerson. Seamless Object-Oriented Software Architecture. Pren-

tice Hall, 1995.

9. B. Meyer. Object-Oriented Software Construction (Second Edition). Prentice

Hall, 1997.

10. W. Liu, S. M. Easterbrook and J. Mylopoulos. Rule-Based Detection of Inconsis-

tency in UML Models. Presented at the Workshop on Consistency Problems in
UML-Based Software Development, at the Fifth International Conference on the
Unified Modeling Language, Dresden, Germany, October 1, 2002.

11. R. Paige, J. S. Ostroff. The Single Model Principle. In Journal of Object Tech-

 131

nology, vol.1, no. 5, pages 63-81, http://www.jot.fm/issues/issue_2002-11/column6.

12. R. Paige, J. S. Ostroff. A comparison of BON and UML. In Proc. UML’99, Lec-

ture Notes in Computer Science, Springer-Verlag.

13. OMG. Unified Modeling Language Specification: Version 1.5. March 2003.

http://www.omg.org/docs/formal/03-03-01.pdf.

14. R. F. Paige, J. S. Ostroff, Phillip J. Brooke. A Test-Based Agile Approach to

Checking the Consistency of Class and Collaboration Diagrams. UK Software
Testing Workshop, University of York, 4-5 September 2003.

15. D. Makalsky. E-Tester.

https://sourceforge.net/project/showfiles.php?group_id=73928 (last accessed Jun 23,
03).

16. BON CASE TOOL. http://www.cs.yorku.ca/~eiffel/bon_case_tool/index.html.

17. Martin Glinz. A lightweight Approach to Consistency of Scenarios and Class

Models. Proceedings of the Fourth International Conference on Requirements
Engineering, Schaumburg, Illinois, June 10-23, 2000.

18. B. Hnatkowska, Z. Huzar, J. Magott. Consistency Checking in UML Models. In J.

Zendulka (ed.), Proceedings of the Conference “Information System Modelling”,
35-40, Ostrava, 2001.

19. J.L.Sourrouille, G. Caplat. Constraint Checking in UML Modeling. Int. Conf.

SEKE’02, ACM-SIGSOFT, pp217-224.

20. J.L.Sourrouille, G. Caplat. Checking UML Model Consistency. Presented at the

Workshop on Consistency Problems in UML-Based Software Development, at
the Fifth International Conference on the Unified Modeling Language, Dresden,
Germany, October 1, 2002.

21. C. Gryce, A. Frinkelstein, C. Nentwich. Lightweight Checking for UML Based

Software Development. Presented at the Workshop on Consistency Problems in
UML-Based Software Development, at the Fifth International Conference on the
Unified Modeling Language, Dresden, Germany, October 1, 2002.

22. B.Hnatkowska, Z. Huzar, L. Kuzniara, L.Tuzinkiewicz. A systematic Approach

to consistency within UML based software development process. Presented at the
Workshop on Consistency Problems in UML-Based Software Development, at
the Fifth International Conference on the Unified Modeling Language, Dresden,

 132

Germany, October 1, 2002.

23. T.H. Cormen, C. E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algo-

rithms. 2nd edition, MIT Press & McGraw-Hill, 2001.

24. P. Krishnan. Consistency Checks for UML. Proceedings of the 7th Asia-Pacific

Software Engineering Conference, 162-169, IEEE, December 2000.

25. J. Derrick and D. Akehurst and E. Boiten. A framework for UML consistency.

Presented at the Workshop on Consistency Problems in UML-Based Software
Development, at the Fifth International Conference on the Unified Modeling
Language, Dresden, Germany, October 1, 2002.

26. P. Andre, A. Romanczuk and J. Royer. Checking the Consistency of UML Class

Diagrams Using Larch Prover. Draft Proceeding of Third Workshop on Rigor-
ous Object Oriented Methods. ROOM’2000, York, UK, January 2000.

27. L.Jacobson, G.Booch, J.Rumbaugh. The Unified Software Development Process.

Addison-Wesley, 1999.

28. P. Kruchten. The Rational Unified Process — An Introduction. Addison Wesley

Longman Icnc., 1999.

29. K. Walden, E. Data, Sweden. Business Object Notation(BON). Published as

chapter 10 in “Handbook of Object Technology”, CRC Press, 1998.

30. K. Walden. BON Software Architecture Illustrator(BONsai) User’s guide version

1.4, available at http://www.bon-method.com/index_normal.htm, August 2003 .

31. S. Owre, N. Shankar, J.Rushby, and D.Stringer-Calvert. PVS Systerm Guide 2.4.

CSL, SRI International, November 2001.

32. Northwoods Software Corporation. GoDiagram for .NET Interactive Diagram

Classes, User Guide. January 2003.

33. A. Egyed. Scalable Consistency Checking between Diagrams – the ViewIntegra

Approach. Published in the Proceeding of the 16th IEEE International Conference
on Automated Software Engineering(ASE), San Diego, USA, November 2001,
pp. forthcoming .

34. E. Gamma. Design patterns: elements of reusable object-oriented software. Ad-

dison-Wesley professional computing series. Addison-Wesley, Reading, Mass.,
1995.

 133

35. T. Bray, J. Paoli. Extensible Markup Language (XML) 1.1. C. M. Sperberg-

McQueen, Eve Maler, and John Cowan eds.
 Available at http://www.w3.org/TR/2003/PR-xml11-20031105/.

36. http://www.w3.org/

37. B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, Sep/Oct

2003.

38. A. Finkelstein, D.Gabbay, A.Hunter, J.Kramer and B.Nuseibeh. Inconsistency

Handling Multi-Perspective Specification. IEEE trans. Software Engineering
20(8), August 1994.

39. P.Zave and M.Jackson. Conjunctions as Composition. ACM Transactions on

Software Engineering and Methodology 2(4), October 1993.

40. Jon Whittle, Johann Schumann. Generating Statechart Designs From Scenarios.

International Conference on Software Engineering, 2000.

41. ITU Recommendation, X.901-904 – ISO/IEC 10746 1-4. Open Distributed Proc-

essing. –Reference Model – Parts 1-4, July 1995.

42. A. Finkelstein, J. Kramer, B.Nuseibeh, L. Finkelstein, M. Goedicke. Viewpoints:

A Framework for Integrating Multiple Perspectives in System Development. In
International Journal of Software Engineering and Knowledge Engineering
2(1):31-38, March 1992, World Scientific Publishing Co.

43. S. Easterbrook, B. Nuseibeh. Managing Inconsistencies in an Evolving Specifica-

tion. Second IEEE International Symposium on Requirements Engineering, 1995.

44. R. Paige and J. Ostroff. Precise and Formal metamodelling with the Business

Object Notation and PVS. Technical Report CS-2000-03, York University, Au-
gust 2000.

45. E. C. R. Hehner. A Practical Theory of Programming. Springer-Verlag, New

York, 1993.

46. A. Taleghani. Contractual Consistency between BON Static and dynamic dia-

grams. Master thesis, to be submitted 2004.

47. K. Beck. Test Driven Development - By Example. Addison-Wesley, 2003.

 134

48. K.Beck. Extreme Programming Explained. Addison-Wesley, 1999.

49. J.H. Johnson. Micro Projects Cause Constant Change. 2nd International Confer-

ence on eXtreme Programming and Flexible Processes in Software Engineering.
Cagliari, Italy, 2001.
http://www.agilealliance.com/articles/ articles/Chapter30-Johnson.pdf

50. S.J.Mellor, M.J.Balcer. Executable UML – A Foundation for Model-Driven Ar-

chitecture. Addison-Wesley, 2002.

51. T. Clark, A.Evans, S.Kent. The metamodelling language calculus: foundation

semantics for UML. In Proc. Fundamental Aspects of Software Engineering,
LNCS Vol.2029. Springer-Verlag, 2001.

52. UML 2.0 Infrastructure Specification, document on http://www.omg.org.

53. P. Bhaduri, T. Venkatesh. Formal consistency of models in multi-view modelling.

In workshop on consistency problems in UML-bases Software Development.
2002.

54. A. Kleppe, J. Warmer, W. Bast. MDA Explained the model Driven Architecture:

Practice and Promise. Addison-Wesley, 2003.

55. A. Mcneile MDA: The vision with the hole?
 http://www.metamaxim.com/download/documents/MDAv1.pdf.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

