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In this note the Bayesian approach to motion estimation is summarized. For
a more detailed treatment of the subject see [4, 6].

The central idea behind the Bayesian approach as one might guess is Bayes’
theorem, formally stated,

P (A|B) =
P (B|A)P (A)

P (B)
(1)

where, P (A|B) denotes the posterior probability distribution function (PDF),
P (B|A) the likelihood PDF, P (A) the prior, and P (B) a normalization factor
(hereafter omitted). Bayes’ theorem can be thought of as a means of reversing
the likelihood statement. The goal of Bayesian approaches for the problem at
hand is to calculate the posterior probability of velocity (vx, vy) given image
data I [6],

P (vx, vy|I) ∝ P (I|vx, vy)P (vx, vy). (2)

A velocity estimate is often attributed to the maximum of the posterior (com-
monly referred to as the the maximum a posteriori or MAP for short). An
advantage of casting the motion estimation problem in a Bayesian framework
is that it not only yields a velocity estimate but also allows for the quantiza-
tion of the uncertainty of the best estimate, where uncertainty is related to the
inevitable occurrence of the aperture problem and noise in the observation data.

The starting point of the Bayesian approach to motion estimation is the
specification of the likelihood PDF. For the case of translational constant ve-
locity motion, the image data in the form of the gradient of the image sequence
∇I(x, y, t) is related to image velocity by assuming brightness constancy of im-
age points over time and local linearity of the image sequence in all dimensions
[1]. This relationship, commonly termed the brightness constancy constraint, is
given formally as [1],

∇I(x, y, t) · (vx(x, y, t), vy(x, y, t), 1)> = 0 (3)

where ∇I(x, y, t) = (Ix(x, y, t), Iy(x, y, t), It(x, y, t))> denotes the gradient that
encapsulates the partial derivatives of the image with respect to the spatial x, y
and temporal t parameters and v = (vx(x, y, t), vy(x, y, t)) represents the image
velocity; for simplicity of notation the spatial/temporal parameters of the gra-
dient and velocity are hereafter assumed. This constraint defines a plane in the
gradient space (Ix, Iy and It). Given velocity v and assuming perfect precision
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in the extraction of the gradient, the simplest likelihood function can be defined
as an equiprobable plane in the gradient space where all other probabilities are
zero. Inevitably in the real-world, noise enters our estimates of the data. A more
realistic model (though still an approximation) is that our data, specifically the
temporal derivative It, is contaminated by additive zero-mean Gaussian noise
N(0, σ2

n) while the spatial derivatives are assumed to be exact,

∇I · (vx, vy, 1)> = N(0, σ2
n) (4)

Correspondingly, the likelihood function of observing data ∇I given velocity v
is written as follows,

P (∇I|vx, vy) ∝ e
−(∇I·(vx,vy,1)>)2

2σ2
n (5)

∝ e
−(Ixvx+Iyvy+It)

2

2σ2
n (6)

This can be thought of as Gaussian deviations from the ideal plane (or mean
plane) in the gradient space isolated to the It dimension.

To combine multiple measurements taken over a small spatial image region
it is assumed that each measurement, ∇Ii where i = 1, . . . , N , is independent
and the velocity is constant1 [4], formally,

P (∇I1, . . . ,∇IN |vx, vy) ∝
N∏

i=1

e
−(Ii

xvx+Ii
yvy+Ii

t)2

2σ2
n (7)

∝ e
PN

i=1
−(Ii

xvx+Ii
yvy+Ii

t)2

2σ2
n (8)

To complete the definition of the posterior, a prior must be selected. When the
prior is assumed uniform (i.e., all velocities are equally likely) the maximum of
the posterior corresponds to the least-squares solution [2]. This is what is com-
monly referred to in the literature as the the maximum likelihood estimate. In
[4] the authors propose a zero-mean Gaussian prior that favours slower velocities
over larger ones,

P (vx, vy) ∝ e
−(v2

x+v2
y)

2σ2
v (9)

Combining the likelihood (8) and prior (9) yields the following posterior,

P (vx, vy|∇I1, . . . ,∇IN ) ∝ e
PN

i=1
−(Ii

xvx+Ii
yvy+Ii

t)2

2σ2
n e

−(v2
x+u2

y)

2σ2
v (10)

∝ e
PN

i=1
−(Ii

xvx+Ii
yvy+Ii

t)2

2σ2
n

−
(v2

x+v2
y)

2σ2
v (11)

Since the posterior (11) is a Gaussian, the MAP solution in this case is equivalent
to the mean of the posterior.

In practice, the assumption of attributing additive noise solely to the tem-
poral derivative may be unrealistic [3]. In [3] the authors counter with the
assumption that additive zero-mean Gaussian noise pervades all three deriv-
ative measurements. This assumption yields the following likelihood function
[3],

P (∇I1, . . . ,∇IN |vx, vy) ∝ e

PN
i=1

−(Ii
xvx+Ii

yvy+Ii
t)2

2σ2
n(1+v2

x+v2
y) (12)

1This begs the question, how valid is the local independence assumption?
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The maximum likelihood estimate (i.e., prior set to uniform) corresponds to the
total-least squares velocity estimate [5].
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