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1 Introduction

An important problem in computer vision is measuring the dissimilarity between distributions of
features, such as colour and texture (cf. (Rubner, Puzicha, Tomasi & Buhmann, 2001)). The focus
of this note is on the Bhattacharyya measure and its derivatives. For a discussion of the statistical
foundations of the Bhattacharyya measure, the reader is referred to (Aherne, Thacker & Rockett,
1997).

2 Bhattacharyya measure

Let p(i) and p’ (i) represent two multinomial populations, each consisting of N classes with respective
probabilities p(i = 1),...,p(i = N) and p'(i = 1),...,p'(¢ = N). Since p(i) and p'(i) represent
probability distributions, Zfil p(i) = Zi\;l p'(i) = 1. The Bhattacharyya measure (Bhattacharyya,
1943) (or coefficient) is a divergence-type measure between distributions, defined as,
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The Bhattacharyya measure has a simple geometric interpretation as the cosine of the angle between
the N-dimensional vectors (\/p(l)7 e \/p(N))T and (\/p’(l), e \/p’(N))T. Thus, if the two
distributions are identical, we have:
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and consequently § = 0. Furthermore, based on Jensen’s inequality (Cover & Thomas, 1991), we
have,
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A potentially undesirable property of the coefficient is that it does not impose a metric structure
since it violates at least one of the distance metric axioms (Fukunaga, 1990). In (Comaniciu, Ramesh

& Meer, 2003), the authors propose the following modification of the Bhattacharyya coefficient that
does indeed represent a metric distance between distributions:

d(p,p’) = V1= pp,p), (4)
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where p(-,-) denotes the Bhattacharyya coefficient (1). For the proof that this distance is indeed a
metric (i.e., obeys all of the metric axioms), see Appendix in (Comaniciu, Ramesh & Meer, 2003).
Next, let us consider a related measure, the Hellinger discrimination (Hellinger, 1909) (also

known as the Matusita measure (Matusita, 1955)). This measure defines the distance between two
probability distributions, as:
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This measure is related to the Bhattacharyya coefficient (1), p(-,-), and distance (4), d(-, ), by:
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Finally, let us turn our attention to the relationship between the the Bhattacharyya coefficient (1)

and the chi-square (x?) measure. The chi-square measure is used to provide a measure of similarity
between two distributions (cf. (Leung & Malik, 2001)):
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In (Aherne, Thacker & Rockett, 1997) it is shown that the Bhattacharyya coefficient (1) approx-
imates the y2-measure (13), while avoiding the singularity problem that occurs when comparing
instances of the distributions that are both zero.
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