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1 Introduction

An important problem in computer vision is measuring the dissimilarity between distributions of
features, such as colour and texture (cf. (Rubner, Puzicha, Tomasi & Buhmann, 2001)). The focus
of this note is on the Bhattacharyya measure and its derivatives. For a discussion of the statistical
foundations of the Bhattacharyya measure, the reader is referred to (Aherne, Thacker & Rockett,
1997).

2 Bhattacharyya measure

Let p(i) and p′(i) represent two multinomial populations, each consisting of N classes with respective
probabilities p(i = 1), . . . , p(i = N) and p′(i = 1), . . . , p′(i = N). Since p(i) and p′(i) represent
probability distributions,

∑N
i=1 p(i) =

∑N
i=1 p′(i) = 1. The Bhattacharyya measure (Bhattacharyya,

1943) (or coefficient) is a divergence-type measure between distributions, defined as,

ρ(p, p′) =
N∑

i=1

√
p(i)p′(i). (1)

The Bhattacharyya measure has a simple geometric interpretation as the cosine of the angle between
the N -dimensional vectors (

√
p(1), . . . ,

√
p(N))> and (

√
p′(1), . . . ,

√
p′(N))>. Thus, if the two

distributions are identical, we have:

cos(θ) =
N∑

i=1

√
p(i)p′(i) =

N∑
i=1

√
p(i)p(i) =

N∑
i=1

p(i) = 1, (2)

and consequently θ = 0. Furthermore, based on Jensen’s inequality (Cover & Thomas, 1991), we
have,

0 ≤ ρ(p, p′) =
N∑

i=1

√
p(i)p′(i) =

N∑
i=1

p(i)

√
p′(i)
p(i)

≤

√√√√ N∑
i=1

p′(i) = 1. (3)

A potentially undesirable property of the coefficient is that it does not impose a metric structure
since it violates at least one of the distance metric axioms (Fukunaga, 1990). In (Comaniciu, Ramesh
& Meer, 2003), the authors propose the following modification of the Bhattacharyya coefficient that
does indeed represent a metric distance between distributions:

d(p, p′) =
√

1− ρ(p, p′), (4)
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where ρ(·, ·) denotes the Bhattacharyya coefficient (1). For the proof that this distance is indeed a
metric (i.e., obeys all of the metric axioms), see Appendix in (Comaniciu, Ramesh & Meer, 2003).

Next, let us consider a related measure, the Hellinger discrimination (Hellinger, 1909) (also
known as the Matusita measure (Matusita, 1955)). This measure defines the distance between two
probability distributions, as:

N∑
i=1

(√
p(i)−

√
p′(i)

)2

. (5)

This measure is related to the Bhattacharyya coefficient (1), ρ(·, ·), and distance (4), d(·, ·), by:

N∑
i=1

(√
p(i)−

√
p′(i)

)2

(6)

=
N∑

i=1

√
p(i)

√
p(i)− 2

N∑
i=1

√
p(i)

√
p′(i) +

N∑
i=1

√
p′(i)

√
p′(i) (7)

=
N∑

i=1

p(i)− 2
N∑

i=1

√
p(i)

√
p′(i) +

N∑
i=1

p′(i) (8)

= 2− 2
N∑

i=1

√
p(i)

√
p′(i) (9)

= 2− 2ρ(p, p′) (10)
= 2(1− ρ(p, p′)) (11)

= 2d(p, p′)2. (12)

Finally, let us turn our attention to the relationship between the the Bhattacharyya coefficient (1)
and the chi-square (χ2) measure. The chi-square measure is used to provide a measure of similarity
between two distributions (cf. (Leung & Malik, 2001)):

χ2(p, p′) =
1
2

N∑
i=1

(p(i)− p′(i))2

p(i) + p′(i)
. (13)

In (Aherne, Thacker & Rockett, 1997) it is shown that the Bhattacharyya coefficient (1) approx-
imates the χ2-measure (13), while avoiding the singularity problem that occurs when comparing
instances of the distributions that are both zero.
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