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1 Background

� Expectation Maximization (EM) is a method to design algorithms and not an algorithm in
itself

� Dempster, Laird, and Rubin first proposed it in 1977 [1]

� early predecessors include: Iteratively Reweighted Least-Squares and Newcomb in 1886 pro-
posed a two class problem

� EM-like methods were used long before EM was formalized

2 EM algorithm

� start at some random θ0

�

Q(θ, θt) = Ez{ln p(x, z|θ)|x, θt} (1)

x represents observed data and z is the missing data (e.g., cluster label in EM clustering). We
seek a value θ that maximizes (1),

θt+1 = arg max
θ

Q(θ, θt) (2)

θt+1 = arg max
θ

Ez{ln p(x, z|θ)|x, θt} (3)

observation x, unobserved z, parameters θ, guess θt, complete y = x ∪ z

� 3 classes of problems for EM: lost data (e.g., in transmission), inaccessible data (e.g., the life
span of a light bulb but only have a short period of time to gather data) and uninteresting
data (e.g., in clustering we might not be interested in the membership data)

∗The review is adapted from a lecture given by Minas Spetsakis (York University)
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� We show the monotonicity of EM

L(θ|x) = p(x|θ) =
∫

p(x, z|θ)dz (4)

Taking the ln of both sides, yields,

lnL(θ|x) = ln p(x|θ) = ln
∫

p(x, z|θ)dz (5)

� could formulate non-linear optimization problem (e.g., Newton-Raphson) but generally HARD

� add a self-cancelling term to (5), notice the introduction of θt,

ln
∫

p(x, z|θ)dz = ln
∫ (

p(x, z|θ)
p(z|x, θt)

)
p(z|x, θt)dz (6)

� Apply Jensen’s inequality to (6),

ln
∫ (

p(x, z|θ)
p(z|x, θt)

)
p(z|x, θt)dz ≥

∫
ln

(
p(x, z|θ)
p(z|x, θt)

)
p(z|x, θt)dz (7)

=
∫

ln
(

p(x, z|θ)
)

p(z|x, θt)dz −
∫

ln
(

p(z|x, θt)
)

p(z|x, θt)dz

(8)

= Q(θ, θt)−Q′(θt) (9)

� From (7), if θ = θt,

p(x, z|θt)
p(z, |x, θt)

=
p(x|θt)p(z|x, θt)

p(z, |x, θt)
(10)

= p(x|θt) (11)

since (11) is independent of z, Jensen’s strict equality in (7) holds,

lnL(θt|x) = Q(θt, θt)−Q′(θt) (12)

� So far we know:
lnL(θ|x) ≥ Q(θ, θt)−Q′(θt) (13)

and
lnL(θt|x) = Q(θt, θt)−Q′(θt) (14)

� Let θt+1 = arg maxθ Q(θ, θt) and Q(θt+1) > Q(θt, θt), e.g., θt is not already maximizing
Q(θ, θt),

lnL(θt|x) = Q(θt, θt)−Q′(θt) < Q(θt+1, θt)−Q′(θt) ≤ lnL(θt+1|x) (15)
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Figure 1. Illustrative conceptualization of EM algorithm.
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