Gaussian Integrals

Konstantinos G. Derpanis kosta@cs.yorku.ca

October 27, 2004

In this report, the area under the Gaussian curve,

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-x^2/(2\sigma^2)}$$
 (1)

where σ is a constant controlling the spread of the Gaussian (see Fig. 1), is verified to be equal to 1, formally,

$$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/(2\sigma^2)} dx = 1 \tag{2}$$

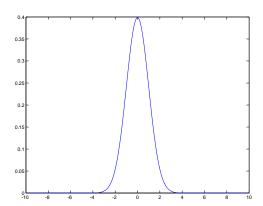


Figure 1: Gaussian curve with $\sigma = 1$.

The verification of this result can be obtained as follows. Denoting the area under the Gaussian as A,

$$A^{2} = \left(\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^{2}/(2\sigma^{2})} dx\right)^{2} \tag{3}$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/(2\sigma^2)} dx\right) \left(\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-y^2/(2\sigma^2)} dy\right) \tag{4}$$

The product of two integrals can be expressed as a double integral, as follows,

$$A^{2} = \frac{1}{\sigma^{2} 2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}/2\sigma^{2}} e^{-y^{2}/(2\sigma^{2})} dx dy$$
 (5)

$$= \frac{1}{\sigma^2 2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)/(2\sigma^2)} dx dy$$
 (6)

Next, reexpress the area of integration in polar coordinates,

$$x = rcos\theta \tag{7}$$

$$y = rsin\theta \tag{8}$$

$$dxdy = rdrd\theta \tag{9}$$

the double integral becomes,

$$A^{2} = \frac{1}{\sigma^{2} 2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}/(2\sigma^{2})} r dr d\theta$$
 (10)

To solve the inner most integral, (i.e, $\int_0^\infty(\cdot)dr$) apply the substitution $u=r^2/(2\sigma^2), du=r/(\sigma^2)dr$,

$$A^{2} = \frac{1}{\sigma^{2} 2\pi} \int_{0}^{2\pi} \left(\int_{0}^{\infty} e^{-u} \sigma^{2} du \right) d\theta \tag{11}$$

$$=\frac{1}{2\pi}\int_0^{2\pi} \left(\int_0^\infty e^{-u}du\right)d\theta\tag{12}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (1)d\theta \tag{13}$$

$$=\frac{1}{2\pi}(2\pi)\tag{14}$$

$$=1\tag{15}$$

Therefore, A=1, proving result in Eq. 2.