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In this report, the area under the Gaussian curve,
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where o is a constant controlling the spread of the Gaussian (see Fig. 1), is
verified to be equal to 1, formally,
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Figure 1: Gaussian curve with o = 1.

The verification of this result can be obtained as follows. Denoting the area
under the Gaussian as A,
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The product of two integrals can be expressed as a double integral, as follows,
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Next, reexpress the area of integration in polar coordinates,
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the double integral becomes,
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To solve the inner most integral, (i.e, fooo(~)dr) apply the substitution u =

r2/(202),du = r/(c?)dr,
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Therefore, A = 1, proving result in Eq. 2.
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