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Band-pass quadrature filters represent popular means in computer vision for estimating local
multi-scale image information, such as the energy, phase, (radial) frequency and orientation/angular
frequency. This note reviews the mathematical properties of quadrature filters in continuous space.
In practice, care must be taken when realizing their discrete counterparts to avoid aliasing (i.e.,
violating the Nyquist theorem by undersampling). We begin with the one-dimensional quadrature
filter and conclude with a discussion of two-dimensional generalizations.

Central to the definition of quadrature filters is the Hilbert transform. The Hilbert transform of
a signal, f(x), is defined as:

fh(x) = (h ∗ f)(x) (1)

=

∞∫
−∞

f(τ)h(x− τ)dτ, (2)

where ∗ symbolizes the convolution operator and h(x) is the point spread function given by,

h(x) = − 1
πx

, (3)

with transfer function

H(ω) = i · signum(ω), (4)

where i denotes the complex unit and

signum(ω) =

 1, ω > 0
0, ω = 0
−1, ω < 0

. (5)

Thus, the amplitude information of the Hilbert transformed signal remains the same while a phase
shift of ±π/2 is introduced for positive and negative frequencies, respectively.

A real-valued signal and its Hilbert transform can be combined into a complex valued signal,
termed the analytic signal, fa(x), by the following transform,

fa(x) = f(x)− ifh(x). (6)

The point spread function used to realize the analytic signal is given by,

a(x) = 1 +
i

πx
(7)
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with transfer function (see Appendix A for derivation),

A(ω) =

2, ω > 0
1, ω = 0
0, ω < 0

. (8)

In other words, the analytic signal is a signal that has no negative frequency components.
(Band-pass) quadrature filters as traditionally used in the computer vision literature transform

a real-valued signal, f(x), to an analytic signal, fa(x), with the addition of weighting the frequency
components. The quadrature filter transform is defined in the frequency domain as,

Fq(ω) =
{

2F (ω), ω > 0
0, otherwise . (9)

Examples of quadrature filters in the literature include: Gabor filters1,2 (Gabor, 1946; Daugman,
1980; Daugman, 1985), log-Gabor/Normal filters (Granlund & Knutsson, 1995) and Gaussian deriv-
atives (Freeman & Adelson, 1991). For a comparative study of quadrature filters, the reader is
referred to (Boukerroui, Noble & Brady, 2004).

In practice, quadrature filters can be used to estimate the local amplitude or energy3, A(x), and
local phase, φ(x), as follows,

A(x) =
√

Re[fq]2 + Im[fq]2 (10)

φ(x) = arctan
Re[fq]
Im[fq]

, (11)

where Re[·] and Im[·] correspond to the real and complex portion of the signal, respectively.
A popular generalization of quadrature filters to 2D (and more generally to nD) is the directional

formulation (Jähne, 2005). In this case, quadrature filters are defined with respect to half spaces
which are chosen with respect to a certain direction, formally,

Fq(ω) =
{

2F (ωx, ωy), ω · n̂ > 0
0, otherwise , (12)

where ω = (ωx, ωy) denote the spatial frequency coordinates, n̂ is a 2D unit vector defining the
half-space and · symbolizes the inner product operator. Hence, in multiple dimensions the transfer
function of the analytic signal preserves the frequency components on one side of the half-space. A
drawback of the directional formulation is that it is not isotropic. To address the anisotropy of the
half-space formulation, several authors (e.g., (Freeman & Adelson, 1991)) have proposed combining
the quadrature filter results from multiple orientations.

More recently, Felsberg and Sommer (Felsberg & Sommer, 2001) proposed a vector-valued,
isotropic, two-dimensional generalization of the analytic signal, they termed the monogenic sig-
nal. The proposed transform is founded on the Riesz transform rather than the Hilbert transform.
However, for 1D signals the Riesz transform is equivalent to the Hilbert transform. For further
details of the monogenic signal the reader is pointed to (Felsberg & Sommer, 2001; Jähne, 2005).

1Gabor filters are not strictly in quadrature since they have non-zero negative frequencies and a non-zero DC
component. To address the DC related issue several authors have proposed correction schemes (e.g., (Heeger, 1988)).

2A common justification for the use of Gabor filters is their “optimality”. It should be stressed that this optimality
is attained with respect to a specific metric as defined in the uncertainty principle. This metric measures the joint
spread/localization of a function in the spatial and spectral domains. However, there are an infinite number of
plausible alternative metrics that could be substituted which yield different classes of optimal filters (Stork & Wilson,
1990).

3There is quite a bit of inconsistency in the literature in the usage of the term energy. Some authors define the
squared amplitude as energy, while others use amplitude and energy interchangeably.
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A Transfer function of an analytic signal

In this section, the derivation of the transfer function of an analytic signal, Fa(ω), is provided. Let
fa(x) denote the impulse response of an analytic signal. Taking its Fourier transform (denoted
F{·}), yields,

Fa(ω) = F{fa(x)} (13)
= F{f(x)− ifh(x)} (14)
= F{f(x)} − iF{fh(x)} (15)

= F (ω)− i

(
i · signum(ω)F (ω)

)
(16)

= F (ω)
(

1− i2 · signum(ω)
)

(17)

= F (ω)
(

1 + signum(ω)
)

(18)

=

2F (ω), ω > 0
F (ω), ω = 0

0, ω < 0
. (19)
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