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In this note we review the consequences in linear scale-space of rescaling a signal;
the contents of this note are primarily adapted from the presentation in (Lindeberg,
1998). The results presented in this note play a central role in the formulation of
scale invariant interest point detectors (e.g., (Mikolajezyk & Schmid, 2004)).

Briefly, the key idea in linear scale-space theory is the systematic removal of
details from an image in order to describe the image structure in a fine-to-coarse
manner. Alternatively, scale-space theory can be thought of as the theory of selecting
a measurement, aperture (weighted average over a support proportional to its scale
parameter) (ter Haar Romeny, 2003). Given any continuous signal I : RN — R (i.e.,
initial image), its linear scale-space representation L : RN x RT™ — R is defined as the
solution to the (heat) diffusion equation, given by the following partial differential
equation,
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with initial condition,
L(x;0) = I(x). (3)

The solution to (2) can be expressed as the convolution of the initial image with the
Gaussian kernel G : RY x Rt — R,

G(x;t) = -2l a?/@) (4)
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where t = o2 represents the standard deviation of the Gaussian. The scale-space rep-
resentation given by (2) is realized by the specification of several axioms that formalize
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the notion of “uncommitment”, such as, linearity, shift invariance and various ways
of formalizing the idea that new structures are not created from fine-to-coarse, for
example, non-creation of new level curves (Koenderink, 1984); for further details on
the axiomatic development of scale-spaces see (Koenderink, 1984; Alvarez, Guichard,
Lions & Morel, 1993; Lindeberg, 1993) and for textbook treatments see (Lindeberg,
1993; ter Haar Romeny, 2003).

In the sequel, we consider the relationships between a signal and its rescaled copy.

Let two signals denoted I and I’ be related as follows,

I(x) =1I'(2'), (5)
where,
1’ = s. (6)

The scale-space representations of I and I’ are denoted L(-;t) and L'(-;t), respec-
tively, in their respective domains.
Next, we establish the relationship between L and L’ (Lindeberg, 1998):

L(z;t) = G(z) % I(x) ; * denotes convolution (7)
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The mth order spatial derivatives satisfy (Lindeberg, 1998):
o"L(xz;t)  omL'(a';t)
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Note that in (18) the derivatives are not scale invariant. To yield scale invariant

derivative measures, the following y-normalized operators are introduced (Lindeberg,
1998),
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which corresponds to the change of variables,
x
$=1n (20)

In terms of the y-normalized derivative operator (19) we have the following relation-
ship (Lindeberg, 1998):

O"L(z;t) .m0 L(x5t)
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Given that the spatial position and scale parameters satisfy (6) and (15), respectively,
setting v = 1 in (28) leads to the scale invariant derivative relationship,
O"L(xz;t)  OmL'(a;t)
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or equivalently,

O"L(x;t) e omL (x5t
ox™ oz'm
Generally, the amplitude of spatial derivatives in the scale-space representation

decrease with scale (Lindeberg, 1993). The introduction of the normalized derivative

operator counteracts the decreasing trend.
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