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In this note we review the consequences in linear scale-space of rescaling a signal;
the contents of this note are primarily adapted from the presentation in (Lindeberg,
1998). The results presented in this note play a central role in the formulation of
scale invariant interest point detectors (e.g., (Mikolajczyk & Schmid, 2004)).

Briefly, the key idea in linear scale-space theory is the systematic removal of
details from an image in order to describe the image structure in a fine-to-coarse
manner. Alternatively, scale-space theory can be thought of as the theory of selecting
a measurement aperture (weighted average over a support proportional to its scale
parameter) (ter Haar Romeny, 2003). Given any continuous signal I : RN → R (i.e.,
initial image), its linear scale-space representation L : RN ×R+ → R is defined as the
solution to the (heat) diffusion equation, given by the following partial differential
equation,

∂L

∂t
=

1

2
∇2L (1)

=
1

2

D∑
d=1

∂2

∂xd∂xd

L, (2)

with initial condition,
L(x; 0) = I(x). (3)

The solution to (2) can be expressed as the convolution of the initial image with the
Gaussian kernel G : RN × R+ → R,

G(x; t) =
1

(2πt)N/2
e−
PN

i=1 x2/(2t), (4)

where t = σ2 represents the standard deviation of the Gaussian. The scale-space rep-
resentation given by (2) is realized by the specification of several axioms that formalize
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the notion of “uncommitment”, such as, linearity, shift invariance and various ways
of formalizing the idea that new structures are not created from fine-to-coarse, for
example, non-creation of new level curves (Koenderink, 1984); for further details on
the axiomatic development of scale-spaces see (Koenderink, 1984; Alvarez, Guichard,
Lions & Morel, 1993; Lindeberg, 1993) and for textbook treatments see (Lindeberg,
1993; ter Haar Romeny, 2003).

In the sequel, we consider the relationships between a signal and its rescaled copy.
Let two signals denoted I and I ′ be related as follows,

I(x) = I ′(x′), (5)

where,
x′ = sx. (6)

The scale-space representations of I and I ′ are denoted L(·; t) and L′(·; t′), respec-
tively, in their respective domains.

Next, we establish the relationship between L and L′ (Lindeberg, 1998):

L(x; t) = G(x) ∗ I(x) ; * denotes convolution (7)

=

∞∫
−∞

G(x− x′′)I(x′′)dx′′ (8)

=

∫
G(x− x′′)I ′(sx′′)dx′′ ; using signal relation (5) (9)

=
1

s

∫
G(x− x′′′

s
)I ′(x′′′)dx′′′ ; change of variables, x′′′ = sx′′ (10)

=
1

s
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)
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=
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=

∫ (
1√
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2t′

)
I ′(x′′′)dx′′′ ; using coordinate relation (6) (13)

= L′(x′, t′), (14)

where,
t′ = s2t. (15)
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The mth order spatial derivatives satisfy (Lindeberg, 1998):

∂mL(x; t)

∂xm
=

∂mL′(x′; t′)

∂xm
(16)

=
∂mL′(x′; t′)

∂x′m

(
∂x′

∂x

)m

(17)

=
∂mL′(x′; t′)

∂x′m
sm ; x′ = xs ⇒ ∂x′/∂x = s (18)

Note that in (18) the derivatives are not scale invariant. To yield scale invariant
derivative measures, the following γ-normalized operators are introduced (Lindeberg,
1998),

∂

∂ξ
= tγ/2 ∂

∂x
, (19)

which corresponds to the change of variables,

ξ =
x

tγ/2
. (20)

In terms of the γ-normalized derivative operator (19) we have the following relation-
ship (Lindeberg, 1998):

∂mL(x; t)

∂ξm
= (tγ/2)m ∂mL(x; t)

∂xm
(21)

= (tγ/2)msm ∂mL′(x′; t′)

∂x′m
; using (18) (22)

= (tγ/2)msm(t′γ/2)−m ∂mL′(x′; t′)

∂ξ′m
; using (19) (23)

= (tγ/2)msm(t′−mγ/2)
∂mL′(x′; t′)

∂ξ′m
(24)

= (tγ/2)msm((s2t)−mγ/2)
∂mL′(x′; t′)

∂ξ′m
; using (15) (25)

= (tγ/2)msm(s−mγt−mγ/2)
∂mL′(x′; t′)

∂ξ′m
(26)

= sm(s−mγ)
∂mL′(x′; t′)

∂ξ′m
(27)

= sm(1−γ)∂
mL′(x′; t′)

∂ξ′m
. (28)

Given that the spatial position and scale parameters satisfy (6) and (15), respectively,
setting γ = 1 in (28) leads to the scale invariant derivative relationship,

∂mL(x; t)

∂ξm
=

∂mL′(x′; t′)

∂ξ′m
, (29)
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or equivalently,

tm/2∂mL(x; t)

∂xm
= t′m/2∂mL′(x′; t′)

∂x′m
. (30)

Generally, the amplitude of spatial derivatives in the scale-space representation
decrease with scale (Lindeberg, 1993). The introduction of the normalized derivative
operator counteracts the decreasing trend.
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