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In the following note we derive the so called structure tensor used for the
estimation of the dominant local 2D orientation. For many computer vision
students the notion of a tensor is foreign. Don’t be scared off!!! The structure
tensor formulated here requires nothing more than basic knowledge of linear
algebra and calculus.

Let f(x) represent a two-dimensional image, with spatial dimensions denoted
x = (x, y). Assume that f is oriented in a region Ω, formally,

f(x) = f(x + u) (1)

where u = (cos(θ), sin(θ))> describes the orientation of f(x) parameterized by
−π

2 ≤ θ < π
2 .

To find θ we pose the problem as finding the minimum gray level axis within
the local neighbourhood Ω. More specifically, we find the local directional deriv-
ative that vanishes,

u · ∇f(x) = 0

or equivalently in matrix notation

u>∇f(x) = 0 (2)

This can be accomplished by minimizing Eq. (2) locally in a least-squares
sense, as follows,

E(u) = min
||u||=1

∫
Ω

(u>∇f(x))2dΩ (3)

Note that an additional weighting term may be added to each constraint term
within the minimization for robustness purposes (e.g., a Gaussian weighting
function centred in the middle of the image patch).
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Expanding Eq. (3), yields,

E(u) = min
||u||=1

∫
Ω

(u>∇f(x))2dΩ (4)

= min
||u||=1

∫
Ω

(u>∇f(x))(u>∇f(x))dΩ (5)

= min
||u||=1

∫
Ω

(u>∇f(x))(u>∇f(x))>dΩ (6)

= min
||u||=1

∫
Ω

(u>∇f(x))(∇f(x)>u)dΩ (7)

= min
||u||=1

∫
Ω

u>(∇f(x)∇f(x)>)u dΩ (8)

= min
||u||=1

u>(
∫

Ω

∇f(x)∇f(x)> dΩ)u (9)

Let,

J =
∫

Ω

∇f(x)∇f(x)> dΩ (10)

=
∫

Ω

[
f2

x fxfy

fxfy f2
y

]
dΩ (11)

and substituting into Eq. (9),

E(u) = min
||u||=1

u>Ju (12)

Matrix J is what is usually referred to in the literature as the structure tensor.
One possible route to minimizing Eq. (12) is to form a Lagrange minimiza-

tion. It can be shown that this minimization is equivalent to the following
eigenvalue problem,

Ju = λu (13)

where the solution we seek corresponds to the eigenvector with the smallest
eigenvalue λ2. If our model is ideally met then the rank of J is one. Violation
of the single orientation model is signalled by λ1 > λ2 � 0. Furthermore, the
eigenvalues can be used to classify regions as: homogeneous (i.e., no dominant
orientation λ1 = λ2 ≈ 0), single orientation (λ1 � 0 and λ2 ≈ 0) and multiple
orientations λ1 > λ2 � 0. Interestingly, though motivated differently the struc-
ture tensor and its subsequent eigen-analysis corresponds to the Harris corner
detector analysis [1].

If one simply seeks to classify regions one can avoid the expense of explicitly
calculating the eigenvalues and instead analyze the determinant K and trace H
of J , formally,

K = det(J) = λ1λ2 (14)

= (
∫

Ω

f2
x dΩ)(

∫
Ω

f2
y dΩ)− (

∫
Ω

fxfy dΩ) (15)

H = trace(J) = λ1 + λ2 (16)

= (
∫

Ω

f2
x dΩ) + (

∫
Ω

f2
y dΩ) (17)

where in the ideal case,
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• Homogeneous: H = 0 (ideal case λ1 = λ2 = 0)

• Single Orientation: H > 0 and K = 0

• Multiple Orientations: H > 0 and K > 0 (condition used for Harris
Corner Detector [1])

This concludes the formulation of the structure tensor for the 2D dominant
orientation case. Importantly, this basic formulation can be extended to various
other multidimensional problems. For example, the problem of optical flow
estimation can be formulated as a tensor of the spatiotemporal image structure
[2]; it turns out that the structure tensor for optical flow yields an estimate
equivalent to the total least squares estimate [3]. In fact, any linear partial
differential equation can be written as a structure tensor [4]. For example, in
[4] the authors demonstrate an “extended” structure tensor for motion analysis
that can handle brightness changes other that those caused by movement in the
scene (i.e., violations of the brightness constancy assumption).
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